Load, Stress and Strain
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Design Procedure 1: Critical
Section and Loading

To establish the critical section and the critical loading,
the designer:

1.

o

Considers the external loads applied to a machine
(e.g., a gyroscope)

Considers the external loads af)é)lied to an element
within the machine (e.g., a ball bearing)

Locates the critical section within the machine
element (e.g., the inner race)

Determines the loading at the critical section (e.g.,
contact stresses)



Example 1: Simple Crane
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Figure 1: A schematic of a simple crane and applied forces considered in
Example 1. (a) Assembly drawing; (b) free-body diagram of forces acting on the
beam.



[.oad Classification

Any applied load can be classified with
respect to time in the following ways:

1. Static load - Load is gradually
applied and equilibrium is reached
in a relatively short time. The
structure experiences no dynamic
effects.

2. Sustained load - Load, such as the
weight of a structure, is constant
over a long time.

3. Impact load - Load is rapidly applied.

An impact load is usually attributed
to an energy imparted to a system.

4. Cyclic load - Load can vary and even
reverse its direction and has a
characteristic period with respect to
time.

The load can also be classified
with respect to the area over
which it is applied:

1. Concentrated load - Load is
applied to an area much
smaller than the loaded
member.

2. Distributed load - Load is
spread along a large area. An
example would be the
weight of books on a

bookshelf.



[.oad Classification
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Figure 2: Load classified as to location and method of application. (a) Normal,
tensile; (b) normal, compressive; (c) shear; (d) bending; (e) torsion; (f) combined.



Sign Conventions
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Figure 3: Sign conventions used
in bending. (a) Positive moment
leads to a tensile stress in the
positive y-direction; (b) positive
moment acts in a positive
direction on a positive face. The
sign convention shown in (b) will
be used in this book.
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Example 3
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Figure 4: Lever assembly and results. (a) Lever assembly; (b) results showing (1)
normal, tensile, (2) shear, (3) bending, (4) torsion on section B of lever assembly.
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Example 4

Figure 5: Ladder in contact with a house and

the ground while having a painter on the
ladder.




Example 5
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Figure 6: Sphere and applied forces. (a) Sphere supported with wires
from top and spring at bottom; (b) free-body diagram of forces acting
on sphere.
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Figure 7: External rim brake and applied forces, considered in Example 2.6. (a)
External rim brake; (b) external rim brake with forces acting on each part. (Linear
dimensions are in millimeters.)



Beam Supports
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Figure 8: Three types of beam support. (a) Simply supported; (b) cantilevered; (c)
overhanging.



Design Procedure 2: Drawing Shear
and Moment Diagrams by the
Method of Sections

The procedure for drawing shear and moment diagrams by the method of
sections is as follows:

1. Draw a free-body diagram and determine all the support reactions.
Resolve the forces into components acting perpendicular and parallel to
the beam's axis.

2. Choose a position, x, between the origin and the length of the beam, |/,
thus dividing the beam into two segments. The origin is chosen at the
beam's left end to ensure that any x chosen will be positive.

3. Draw a free-body diagram of the two segments and use the equilibrium
equations to determine the transverse shear force, V, and the moment, M.

4.  Plot the shear and moment functions versus x. Note the location of the
maximum moment. Generally, it is convenient to show the shear and
moment diagrams directly below the free-body diagram of the beam.

5. Additional sections can be taken as necessary to fully quantify the shear
and moment diagrams.
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Figure 9: Simply supporteddar. (a) Midlength load and reactions; (b) free-body
diagram for 0 <x <[/2; (c) free-body diagram for [/2 < x <[; (d) shear and moment
diagrames.
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Figure 10: Beam for Example 8. (a) Applied loads and reactions; (b) Shear diagram
with areas indicated, and moment diagram with maximum and minimum values
indicated.



Design Procedure 3: Singularity Functions

Some general rules relating to singularity functions are:

1.  If n>0 and the expression inside the angular brackets is positive (i.e., x > a), then
f(x) = (x —a)". Note that the angular brackets to the right of the equal sign in
Eq.~(2.6) are now parentheses.

2. If n>0 and the expression inside the angular brackets is negative (i.e., x <a), then
fn(x) 5 O'

3. Ifn<0,thenf,(x)=0.

4. Iftn=0,thenf,(x)=1whenx>aand f,(x) =0 when x <a.

5. If n2>0, the integration ruleis =

(&~ a)" =

— 0o

(x —a)"t!

n-+1

Note that this is the same as if there were parentheses instead of angular brackets.

€T
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6. If n <0, the integration rule is

— O

d
7.  Whenn>1, then %@ S =,



Design Procedure 4: Shear and Moment
Diagrams by Singularity Functions

The procedure for drawing the shear and moment diagrams by making
use of singularity functions is as follows:

1.

Draw a free-body diagram with all the applied distributed and
concentrated loads acting on the beam, and determine all support
reactions. Resolve the forces into components acting perpendicular
and parallel to the beam's axis.

Write an expression for the load intensity function g(x) that
describes all the singularities acting on tﬁe beam. L?se Table 2.2 as
a reference, and make sure to “turn off” singularity functions for
distributed loads and the like that do not extend across the full
length of the beam.

Integrate the negative load intensity function over the beam length
to get the shear force. Integrate the negative shear force
distribution over the beam length to get the moment, in
accordance with Egs. (2.4) and (2.5).

Draw shear and moment diagrams from the expressions

developed.
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Figure 11: Beam for Example 8. (a) Applied loads and reactions; (b) Shear diagram with
areas indicated, and moment diagram with maximum and minimum values indicated.
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Figure 12: Simply supported beam examined in Example 10. (a) Forces acting on beam
when P; =8 kN, P, =5 kN; w, =4 kN/m; [ =12 m; (b) free-body diagram showing
resulting forces; (c) shear and (d) moment diagrams.
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Figure 13: Figures used in Example 11. (a) Load assembly drawing; (b) free-body
diagram.



3D Stress Element
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Figure 14: Stress element showing general
state of three-dimensional stress with origin
placed in center of element.



2D Stress Element
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Figure 15: Stress element showing two-dimensional state of stress. (a) Three-
dimensional view; (b) plane view.



Equivalent Stress States
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Figure 16: [llustration of equivalent stress states; (a) Stress element oriented in the
direction of applied stress; (b) stress element oriented in different (arbitrary) direction.



Stress on an Oblique Plane
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Figure 17: Stresses in an oblique plane at
an angle .



Design Procedure 5: Mohr’s Circle

The steps in constructing and using Mohr's circle in two dimensions
are as follows:

1.

2!

Calculate the plane stress state for any x-y coordinate system so
that o,, 0,, and t,, are known.

The center of the Mohr's circle can be placed at

Op 1 Oy
0
S

Two points diametrically opposite to each other on the circle
correspond to the points (o,, -t,,) and (o, T,,). Using the center
and either point allows one to draw the circle.

The radius of the circle can be calculated from stress
transformation equations or through geometry by using the center
and one point on the circle. For example, the radius is the distance
between points (o,, -T,,) and the center, which directly leads to

2
Or — Oy
’r’:\/(—2 ) +TLL‘2y
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Design Procedure 5: Mohr’s Circle (cont.)

The principal stresses have the values o , = center + radius.
The maximum shear stress equals the radius.

The principal axes can be found by calculating the angle
between the x-axis in the Mohr's circle plane and the point
(0, -T,,)- The principal axes in the real plane are rotated one-
half this angle in the same direction relative to the x-axis in
the real plane.

The stresses in an orientation rotated ¢ from the x-axis in the
real plane can be read by traversing an arc of 2¢ in the same
direction on the Mohr's circle from the reference points

(0 - 1) and (0, T,,). The new points on the circle
correspond to the new stresses FGX,, - T,,) and (0,, T

2 xy/’
respectively.



Mohr’s Circle
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Figure 18: Mohr's circle diagram of Egs.
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Example 14
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Figure 19: Results from Example 14. (a)
Mohr's circle diagram; (b) stress element
for principal normal stress shown in x-y
coordinates; (c) stress element for
principal shear stresses shown in x-y
coordinates.



Mohr’s Circle for Triaxial Stresses
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Figure 20: Mohr's circle for triaxial stress state. (a) Mohr's circle representation; (b)
principal stresses on two planes.
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Shear stress, t© Shear stress, ©

Shear stress, © /
R

To/3 T1/3

T2/3

Op O Op
Pl T 1 Ll Ll Ot i T My SR s el )

+ ——+ +—t— +—t +—t :' :
100 200 300
Normal stress, o

10 200
Normal stress, ¢

|||||||||

300 10

O3

(c)

(a) (b)

Figure 21: Mohr's circle diagrams for Example 15. (a) Triaxial stress state when o, =
234.3 MPa, 0, =457 MPa and o, = 0; (b) biaxial stress state when ¢, =307.6 MPa and o, =

-27.6 MPa; (c) triaxial stress state when o, =307.6 MPa, 0,=0, and 0;=-27.6 MPa.



Octahedral Stresses
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Figure 22: Stresses acting on octahedral planes. (a) General state of stress. (b) normal
stress; (c) octahedral shear stress.
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Normal Strain
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Figure 23: Normal strain of cubic element subjected to uniform tension in x-direction.
(a) Three-dimensional view; (b) two-dimensional (or plane) view.




Shear Strain
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Figure 24: Shear strain of cubic element subjected to shear stress. (a) Three-

dimensional view; (b) two-dimensional (or plane) view.



Plane Strain Element
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Figure 25: Graphical depiction of plane strain element. (a) Normal strain ¢,; (b) normal

strain ¢,; and (c) shear strain y,,.
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Figure 26: Strain gage rosette used in Example 18.
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