
Coughanowr

LeBlanc

Third
Edition

P
rocess System

s 
A
nalysis and C

ontrol

Process Systems 
Analysis and Control

Donald R. Coughanowr

Steven E. LeBlanc

Third Edition

Process Systems Analysis and Control, Third Edition retains the clarity of presentation for which 
this book is well known. It is an ideal teaching and learning tool for a semester-long undergraduate 
chemical engineering course in process dynamics and control. It avoids the encyclopedic approach 
of many other texts on this topic. Computer examples using MATLAB¨ and Simulink¨ have been 
introduced throughout the book to supplement and enhance standard hand-solved examples. These 
packages allow the easy construction of block diagrams and quick analysis of control concepts to enable 
the student to explore Òwhat-ifÓ type problems that would be much more dif�cult and time consuming 
by hand. New homework problems have been added to each chapter. The new problems are a mixture 
of hand-solutions and computational-exercises. One-page capsule summaries have been added to the 
end of each chapter to help students review and study the most important concepts in each chapter.

Key Features:

control classesÉthat this is just another mathematics course disguised as an engineering course
¨ ¨ and Excel¨ have been introduced throughout the 

book.

dynamics and control and not get bogged down in the mathematical complexities of each problem

available for the course material

The Solutions to the End-of-Chapter Problems are available to Instructors at the textÕs website:  
www.mhhe.com/coughanowr-leblanc

Electronic Textbook Options
This text is offered through CourseSmart for both instructors and students. CourseSmart is an online 
browser where students can purchase access to this and other McGraw-Hill textbooks in a digital 

half the cost of a traditional text. Purchasing the eTextbook also allows students to take advantage of 

sales representative or visit www.CourseSmart.com. 

ISBN 978-0-07-339789-4
MHID 0-07-339789-X

www.mhhe.com

McGraw-HillÕs
CHEMICAL ENGINEERING SERIES

M
D

 D
A

L
IM

  976649  7/29/08  C
Y

A
N

 M
A

G
 Y

E
L

O
 B

L
A

C
K



Confirming Pages

  PROCESS SYSTEMS ANALYSIS 
AND CONTROL  

cou9789x_fm_i-xx.indd   icou9789x_fm_i-xx.indd   i 8/25/08   2:48:38 PM8/25/08   2:48:38 PM



Confirming Pages

  McGraw-Hill Chemical Engineering Series 

 Editorial Advisory Board 

  Eduardo D. Glandt,   Dean, School of Engineering and Applied Science, University of 
Pennsylvania  
  Michael T. Klein,   Dean, School of Engineering, Rutgers University  
  Thomas F. Edgar,   Professor of Chemical Engineering, University of Texas at Austin  

    Coughanowr and LeBlanc:       Process Systems Analysis and Control    
   Davis and Davis:       Fundamentals of Chemical Reaction 

Engineering    
   de Nevers:       Air Pollution Control Engineering    
   de Nevers:       Fluid Mechanics for Chemical Engineers    
   Douglas:      Conceptual Design of Chemical Processes    
   Edgar, Himmelblau, and Lasdon:      Optimization of Chemical Processes    
   Marlin:     Process Control   
   McCabe, Smith, and Harriott:      Unit Operations of Chemical Engineering    
   Murphy:      Introduction to Chemical Processes    
   Perry and Green:      Perry’s Chemical Engineers’ Handbook    
   Peters, Timmerhaus, and West:       Plant Design and Economics for 

Chemical Engineers    
   Smith, Van Ness, and Abbott:       Introduction to Chemical Engineering 

Thermodynamics      

cou9789x_fm_i-xx.indd   iicou9789x_fm_i-xx.indd   ii 8/25/08   2:48:39 PM8/25/08   2:48:39 PM



Confirming Pages

  The Founding of a Discipline: 
The McGraw-Hill Companies, Inc. Series in Chemical Engineering 

 Over 80 years ago, 15 prominent chemical engineers met in New York to plan a con-
tinuing literature for their rapidly growing profession. From industry came such pioneer 
practitioners as Leo H. Baekeland, Arthur D. Little, Charles L. Reese, John V. N. Dorr, 
M. C. Whitaker, and R. S. McBride. From the universities came such eminent educa-
tors as William H. Walker, Alfred H. White, D. D. Jackson, J. H. James, Warren K. 
Lewis, and Harry A. Curtis. H. C. Parmlee, then editor of  Chemical and Metallurgical 
Engineering,  served as chairman and was joined subsequently by S. D. Kirkpatrick as 
consulting editor. 

 After several meetings, this committee submitted its report to the McGraw-Hill 
Book Company in September 1925. In the report were detailed specifi cations for a 
correlated series of more than a dozen texts and reference books which became the 
McGraw-Hill Series in Chemical Engineering—and in turn became the cornerstone of 
the chemical engineering curricula. 

 From this beginning, a series of texts has evolved, surpassing the scope and lon-
gevity envisioned by the founding Editorial Board. The McGraw-Hill Series in Chemi-
cal Engineering stands as a unique historical record of the development of chemical 
engineering education and practice. In the series one fi nds milestones of the subject’s 
evolution: industrial chemistry, stoichiometry, unit operations and processes, thermo-
dynamics, kinetics, and transfer operations. 

 Textbooks such as McCabe et al.,  Unit Operations of Chemical Engineering,  
Smith et al.,  Introduction to Chemical Engineering Thermodynamics,  and Peters et al., 
 Plant Design and Economics for Chemical Engineers  have taught to generations of 
students the principles that are key to success in chemical engineering. 

 Chemical engineering is a dynamic profession, and its literature continues to 
grow. McGraw-Hill, with its in-house editors and consulting editors Eduardo Glandt 
(Dean, University of Pennsylvania), Michael Klein (Dean, Rutgers University), and 
Thomas Edgar (Professor, University of Texas at Austin), remains committed to a pub-
lishing policy that will serve the needs of the global chemical engineering profession 
throughout the years to come.  
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  PREFACE TO THE THIRD EDITION 

 It has been over 17 years since the second edition of this book was published. The sec-
ond edition, which was written by Dr. Donald R. Coughanowr in 1991, contained many 
changes and new topics to bring the book up to date at the time of publication. The third 
edition has been a number of years in the making. I would like to thank Dr. Coughanowr 
for the opportunity to work on this project and help update this excellent work, which 
he fi rst published in 1965 with Dr. Lowell B. Koppel. As an undergraduate, I learned 
process control from the fi rst edition of this text over 30 years ago. It was an excellent 
book then, and it still is. I’ve used a number of other books over the years as a student 
and as a professor, but I kept coming back to this one. I felt that it was the best book 
to learn from. Is it an all-encompassing, totally comprehensive process dynamics and 
control book? No, but it is not intended to be. It is a clearly written book that is geared 
toward students in a fi rst process dynamics and control course. Many control books 
on the market contain more material than one could ever hope to cover in a standard 
undergraduate semester-long class. They can be overwhelming and diffi cult to learn 
from. I have always felt that one of the strengths of this book, from both the student’s 
and professor’s point of view, was the relatively short, easy-to-read chapters that can be 
covered in one to two lectures. An additional strength of this text has been its unique 
ability to be a teaching and learning text. I hope that in this current revision, I have been 
able to retain that style and fl avor, while introducing some new material and examples 
to update the text. 

  OBJECTIVES AND USES OF THE TEXT 

  This text is intended for use in an introductory one-semester-long undergraduate proc-
ess dynamics and control course. It is intended to be not a comprehensive treatise on 
process control, but rather a textbook that provides students with the tools to learn 
the basic material and be in a position to continue their studies in the area if they so 
choose. Students are expected to have a background in mathematics through differ-
ential equations, material and energy balance concepts, and unit operations. After the 
fi rst 13 chapters, the instructor may select from the remaining chapters to fi t a course 
of particular duration and scope. A typical one-semester 15-week course, for example, 
may include Chapters 1 through 19 and 26.  

   Features of the third edition 

    • A capsule summary of the important points at the end of each chapter  
   • Restructuring of the initial chapters to reduce the impression that students fre-

quently have regarding control classes—that this is just another mathematics 
course disguised as an engineering course  

   • Integration of MATLAB,® Simulink,® and Excel throughout the text:
    •  To reduce the tedium of solving problems so that students may concentrate 

more on the concepts of dynamics and control and not get bogged down in the 
mathematical complexities of each problem  
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   • To give students the tools to be able to ask (and more easily answer) “what if . . .?” 
type of questions  

   • To allow students to explore more difficult problems than would otherwise be 
possible in the time available for the course material         

  ACKNOWLEDGMENTS 

  We would like to thank the following reviewers of the third edition for their help-
ful comments and suggestions: Thomas F. Edgar, University of Texas–Austin; John 
Erjavec, University of North Dakota; Duane Johnson, University of Alabama; Costas 
Maranas, Penn State University; Michael Nikolaou, University of Houston; F. Joseph 
Schork, Georgia Institute of Technology; Delmar Timm, University of Nebraska; and 
William A. Weigand, University of Maryland. We especially acknowledge the helpful 
suggestions from Susan Montgomery of the University of Michigan and thank her for 
her thoroughness and useful comments to help make the text more student-friendly. 

 I would like to thank McGraw-Hill for having confi dence in this project and 
providing the opportunity to revise and update the text. Special thanks go to Lorraine 
Buczek, Developmental Editor, and Melissa Leick, Project Manager, for their help in 
the fi nal stages of this revision. 

 I would also like to thank my students and my University of Toledo colleague 
Sasidhar Varanasi for his help in using manuscript drafts when he taught the Process 
Control course to “fi eld-test” the revisions. I am also grateful to my friend and colleague 
Dean Nagi Naganathan, of the College of Engineering at the University of Toledo, for 
his general support and his willingness to allow me the time required to complete this 
work. I especially want to thank my wife, Molly, for her love and continuing encourage-
ment and support over the course of the writing and revising. 

  Dr. Steven E. LeBlanc   

 University of Toledo  

  RESOURCES FOR INSTRUCTORS AND STUDENTS:  

 For instructors, the solutions to the end-of-chapter problems are available at the text’s 
website:  www.mhhe.com/coughanowr-leblanc    

  ELECTRONIC TEXTBOOK OPTIONS 

  This text is offered through CourseSmart for both instructors and students. CourseSmart 
is an online browser where students can purchase access to this and other McGraw-
Hill textbooks in a digital format. Through their browser, students can access the com-
plete text online for one year at almost half the cost of a traditional text. Purchasing 
the eTextbook also allows students to take advantage of CourseSmart’s Web tools for 
learning, which include full text search, notes and highlighting, and e-mail tools for 
sharing notes between classmates. To learn more about CourseSmart options, contact 
your sales representative or visit  www.CourseSmart.com .  
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   HISTORY OF  PROCESS SYSTEMS 
ANALYSIS AND CONTROL  (FROM 
THE SECOND EDITION PREFACE) 

 Since the fi rst edition of this book was published in 1965, many changes have taken 
place in process control. Nearly all undergraduate students in chemical engineering are 
now required to take a course in process dynamics and control. The purpose of this 
book is to take the student from the basic mathematics to a variety of design applica-
tions in a clear, concise manner. 

 The most signifi cant change since the fi rst edition is the use of the digital compu-
ter in complex problem solving and in process control instrumentation. However, the 
fundamentals of process control, which remain the same, must be acquired before one 
can appreciate the advanced topics of control. 

 In its present form, this book represents a major revision of the fi rst edition. The 
material for this book evolved from courses taught at Purdue University and Drexel 
University. The fi rst 17 chapters on fundamentals are quite close to the fi rst 20 chapters 
of the fi rst edition. The remaining 18 chapters contain many new topics, which were 
considered very advanced when the fi rst edition was published. 

 Knowledge of calculus, unit operations, and complex numbers is presumed on the 
part of the student. In certain later chapters, more advanced mathematical preparation is 
useful. Some examples would include partial differential equations in Chap. 21, linear 
algebra in Chaps. 28 through 30, and Fourier series in Chap. 33. 

 Analog computation and pneumatic controllers in the fi rst edition have been 
replaced by digital computation and microprocessor-based controllers in Chaps. 34 
and 35. The student should be assigned material from these chapters at the appropriate 
time in the development of the fundamentals. For example, the transient response for a 
system containing a transport lag can be obtained easily only with the use of computer 
simulation of the transport lag. Some of the software now available for solving control 
problems should be available to the student; such software is described in Chap. 34. 
To understand the operation of modern microprocessor-based controllers, the student 
should have hands-on experience with these instruments in a laboratory. 

 Chapter 1 is intended to meet one of the problems consistently faced in present-
ing this material to chemical engineering students, that is, one of perspective. The 
methods of analysis used in the control area are so different from the previous experi-
ences of students that the material comes to be regarded as a sequence of special math-
ematical techniques, rather than an integrated design approach to a class of real and 
practically signifi cant industrial problems. Therefore, this chapter presents an overall, 
albeit superfi cial, look at a simple control system design problem. The body of the 
text covers the following topics: Laplace transforms, Chaps 2. to 4; transfer functions 
and responses of open-loop systems, Chaps. 5 to 8; basic techniques of closed-loop 
control, Chaps. 9 to 13; stability, Chap. 14; root locus methods, Chap. 15; frequency 
response methods and design, Chaps. 16 and 17; advanced control strategies (cascade, 
feedforward, Smith predictor, internal model control), Chap. 18; controller tuning and 
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process identifi cation, Chap. 19; control valves, Chap. 20; advanced process dynam-
ics, Chap. 21; sampled-data control, Chaps. 22 to 27; state-space methods and multi-
variable control, Chaps. 28 to 30; nonlinear control, Chaps. 31 to 33; digital computer 
simulation, Chap. 34; microprocessor-based controllers, Chap. 35. 

 It has been my experience that the book covers suffi cient material for a one-
semester (15-week) undergraduate course and an elective undergraduate course or part 
of a graduate course. In a lecture course meeting 3 hours per week during a 10-week 
term, I have covered the following chapters: 1 to 10, 12 to 14, 16, 17, 20, 34, and 35. 

 After the fi rst 14 chapters, the instructor may select the remaining chapters to fi t 
a course of particular duration and scope. The chapters on the more advanced topics 
are written in a logical order; however, some can be skipped without creating a gap in 
understanding. 

 I gratefully acknowledge the support and encouragement of the Drexel University 
Department of Chemical Engineering for fostering the evolution of this text in its cur-
riculum and for providing clerical staff and supplies for several editions of class notes. I 
want to acknowledge Dr. Lowell B. Koppel’s important contribution as coauthor of the 
fi rst edition of this book. I also want to thank my colleague Dr. Rajakannu Mutharasan 
for his most helpful discussions and suggestions and for his sharing of some of the new 
problems. For her assistance in typing, I want to thank Dorothy Porter. Helpful sug-
gestions were also provided by Drexel students, in particular Russell Anderson, Joseph 
Hahn, and Barbara Hayden. I also want to thank my wife Effi e for helping me check the 
page proofs by reading to me the manuscript, the subject matter of which is far removed 
from her specialty of Greek and Latin. 

 McGraw-Hill and I would like to thank Ali Cinar, Illinois Institute of Technology; 
Joshua S. Dranoff, Northwestern University; H. R. Heichelheim, Texas Tech University; 
and James H. McMicking, Wayne State University, for their many helpful comments 
and suggestions in reviewing this second edition.    

     Dr. Donald R.     Coughanowr      

   

xviii  HISTORY OF  PROCESS SYSTEMS ANALYSIS AND CONTROL  (FROM THE SECOND EDITION PREFACE)
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 CHAPTER 

 1 

  In this chapter we examine the concept of chemical process control and introduce sev-
eral examples to illustrate the necessity for process modeling as we begin our study 

of process dynamics and control.  

   1.1 WHY PROCESS CONTROL? 

  As competition becomes stiffer in the chemical marketplace and processes become 
more complicated to operate, it is advantageous to make use of some form of automatic 
control. Automatic control of a process offers many advantages, including

    • Enhanced process safety  
   • Satisfying environmental constraints  
   • Meeting ever-stricter product quality specifications  
   • More efficient use of raw materials and energy  
   • Increased profitability   

Considering all the benefits that can be realized through process control, it is well 
worth the time and effort required to become familiar with the concepts and practices 
used in the field.   

  1.2 CONTROL SYSTEMS 

  Control systems are used to maintain process conditions at their desired values by 
manipulating certain process variables to adjust the variables of interest. A common 
example of a control system from everyday life is the cruise control on an automobile. 
The purpose of a cruise control is to maintain the speed of the vehicle (the controlled 
variable) at the desired value (the set point) despite variations in terrain, hills, etc. 

 INTRODUCTORY 
CONCEPTS 
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2 CHAPTER 1 INTRODUCTORY CONCEPTS

(disturbances) by adjusting the throttle, or the fuel flow to the engine (the manipulated 
variable). Another common example is the home hot water heater. The control system 
on the hot water heater attempts to maintain the temperature in the tank at the desired 
value by manipulating the fuel flow to the burner (for a gas heater) or the electrical 
input to the heater in the face of disturbances such as the varying demand on the heater 
early in the morning, as it is called upon to provide water for the daily showers. A third 
example is the home thermostat. This control system is designed to maintain the tem-
perature in the home at a comfortable value by manipulating the fuel flow or electrical 
input to the furnace. The furnace control system must deal with a variety of disturbances 
to maintain temperature in the house, such as heat losses, doors being opened and hope-
fully closed, and leaky inefficient windows. The furnace must also be able to respond 
to a request to raise the desired temperature if necessary. For example, we might desire 
to raise the temperature by 5 � , and we’d like the system to respond smoothly and effi-
ciently. From these examples, we can deduce that there are several common attributes 
of control systems:

    • The ablity to maintain the process variable at its desired value in spite of distur-
bances that might be experienced (this is termed  disturbance rejection )  

   • The ability to move the process variable from one setting to a new desired setting 
(this is termed  set point tracking )    

 Conceptually we can view the control systems we’ve discussed in the following 
general manner ( Fig. 1–1 ). 

 The controller compares the measurement signal of the controlled variable to the 
set point (the desired value of the controlled variable). The difference between the two 
values is called the  error.  

 Error Set point value Measurement si� �( ) ( ggnal of controlled variable)       

Depending upon the magnitude and sign of the error, the controller takes appropriate 
action by sending a signal to the final control element, which provides an input to the pro-
cess to return the controlled variable to the set point. The concept of using information 

Process

Manipulated
Variable

Controller

Controlled 
Variable

Measurement
Device

Desired Value 
(Set Point) Final 

Control 
Element

Disturbances

Control 
Signal

Measurement
Signal

  FIGURE 1–1   
 Generalized process control system.  
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 CHAPTER 1 INTRODUCTORY CONCEPTS 3

about the deviation of the system from its desired state to control the system is called 
 feedback  control. Information about the state of the system is “fed back” to a controller, 
which utilizes this information to change the system in some way. 

 The type of control system shown in  Fig. 1–1  is termed a  closed-loop  feedback 
control system.  Closed-loop  refers to the fact that the controller automatically acts to 
return the controlled variable to its desired value. In contrast, an  open-loop  system 
would have the measurement signal disconnected from the controller, and the control-
ler output would have to be manually adjusted to change the value of the controlled 
variable. An open-loop system is sometimes said to be in manual mode as opposed to 
automatic mode (closed-loop). Negative feedback is the most common type of sig-
nal feedback. Negative refers to the fact that the error signal is computed from the 
difference between the set point and the measured signal. The  negative  value of the 
measured signal is “fed back” to the controller and added to the set point to compute 
the  error.  

  Example 1.1. Hot water tank control system.   As a specific example, let us 
consider a hot water heater for a home ( Fig. 1–2 ) and examine its control system, 
using the same type of diagram ( Fig. 1–3 ). 

 The desired hot water temperature is selected by the homeowner, and typi-
cally it is in the neighborhood of 120 to 140 � F. Let us assume that the set point is 
130 � F. The thermocouple measures the temperature of the water in the tank and 
sends a signal to the thermostat indicating the temperature. The thermostat (con-
troller) determines the error as 

   Error set point measured� �T T    

If the error is positive (� 0), the 
measured temperature is lower than 
desired and the thermostat opens the 
fuel valve to the burner which adds 
heat to the tank. If the error is zero or 
negative (� 0), the thermostat closes 
the fuel valve and no heat is added 
to the tank. Disturbances to the sys-
tem, which decrease the tempera-
ture of the water in the tank, include 
ambient heat losses and hot water 
demand by the household which is 
replaced with a cold water feed.  

  Types of Controllers 

 The thermostat on the hot water heater 
is called an “on/off ” type of controller. 
Depending on the value of the error 
signal, the output from the controller is 

  FIGURE 1–2   
 Physical drawing of a hot water heater.  
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4 CHAPTER 1 INTRODUCTORY CONCEPTS

either “full on” or “full off ” and the fuel valve is full open or full closed; there are no 
intermediate values of the output. Many other types of controllers that we will study can 
modulate their output based on the magnitude of the error signal, how long the error 
signal has persisted, and even how rapidly the error appears to be changing. 

 Clearly, the larger the error, the less we are satisfied with the present state of 
affairs and vice versa. In fact, we are completely satisfied only when the error is exactly 
zero. Based on these considerations, it is natural to suggest that the controller should 
change the heat input by an amount  proportional  to the error. This is called  proportional 
control.  In effect, the controller is instructed to maintain the heat input at the steady-
state design value as long as the error is zero. If the tank temperature deviates from the 
set point, causing an error, the controller is to use the magnitude of the error to change 
the heat input proportionally. We shall reserve the right to vary the proportionality con-
stant to suit our needs. This degree of freedom forms a part of our instructions to the 
controller. As we will see shortly during the course of our studies, the larger we make 
the proportionality constant for the proportional controller (called the controller gain), 
the smaller the steady-state error will become. We will also see that it is impossible to 
completely eliminate the error through the use of a proportional controller. For example, 
if the set point is 130 � F and a disturbance occurs that drops the temperature to 120 � F, 
if we use only a proportional controller, then we will never be able to get the tank tem-
perature to  exactly  130 � F. Once the sytem stabilizes again, the temperature will not be 
exactly 130 � F, but perhaps 127�F or 133 � F. There will always be some residual steady-
state error (called  offset ). For a home water heater, this is probably good enough; the 
exact temperature is not that critical. In an industrial process, this may not be adequate, 
and we have to resort to a bit more complicated controller to drive the error to zero. 

 Considerable improvement may be obtained over proportional control by adding 
integral control. The controller is now instructed to change the heat input by an addi-
tional amount proportional to the time integral of the error. This type of control system 
has two adjustable parameters: a multiplier for the error and a multiplier for the integral 
of the error. If this type of controller is used, the steady-state error will be zero. From this 
standpoint, the response is clearly superior to that of the system with proportional control 
only. One price we pay for this improvement is the tendency for the system to be more 

  FIGURE 1–3   
 Block diagram of a hot water heater control system.  
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 CHAPTER 1 INTRODUCTORY CONCEPTS 5

oscillatory. The system will tend to overshoot its final steady-state value before slowly 
settling out at the desired set point. So what is the best control system to use for a particu-
lar application? This and related questions will be addressed in subsequent chapters.  

  Some Further Complications 

 At this point, it would appear that the problem has been solved in some sense. A little 
further probing will shatter this illusion. 

 It has been assumed that the controller receives instantaneous information about 
the tank temperature. From a physical standpoint, some measuring device such as a 
thermocouple will be required to measure this temperature. The temperature of a ther-
mocouple inserted in the tank may or may not be the same as the temperature of the 
fluid in the tank. This can be demonstrated by placing a mercury thermometer in a 
beaker of hot water. The thermometer does not instantaneously rise to the water tem-
perature. Rather, it takes a bit of time to respond. Since the controller will receive mea-
sured values of the temperature, rather than the actual values, it will be acting upon 
the  apparent error,  rather than the actual error. The effect of the thermocouple delay 
in transmission of the temperature to the controller is primarily to make the response 
of the system somewhat more oscillatory than if the response were instantaneous. If 
we increase the controller gain (the proportionality constants), the tank temperature 
will eventually oscillate with  increasing  amplitude and will continue to do so until the 
physical limitations of the heating system are reached. In this case, the control system 
has actually caused a deterioration in performance, and this type of reponse is referred 
to as an  unstable response.  

 This problem of  stability  of response will be a major concern for obvious reasons. 
At present, it is sufficient to note that extreme care must be exercised in specifying con-
trol systems. In the case considered, the proportional and integral controllers described 
above will perform satisfactorily if the gain is kept lower than some particular value. 
However, it is not difficult to construct examples of systems for which the addition of 
 any  amount of integral control will cause an unstable response. Since integral control 
usually has the desirable feature of eliminating steady-state error, it is extremely impor-
tant that we develop means for predicting the occurrence of unstable response in the 
design of any control system.  

  Block Diagram 

 A good overall picture of the relationships among variables in the heated-tank control 
system may be obtained by preparing a  block diagram  as shown in  Fig. 1–1 . It indicates 
the flow of information around the control system and the function of each part of the 
system. Much more will be said about block diagrams later, but the reader can undoubt-
edly form a good intuitive notion about them by comparing  Fig. 1–1  with the physical 
description of the process. Particularly significant is the fact that each component of the 
system is represented by a block, with little regard for the actual physical characteris-
tics of the represented component (e.g., the tank or controller). The major interest is in 
(1) the relationship between the signals entering and leaving the block and (2) the man-
ner in which information flows around the system.     
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6 CHAPTER 1 INTRODUCTORY CONCEPTS

   SUMMARY 

 We have taken an overall look at a typical control problem and some of its ramifications. 
At present, the reader has been asked to accept the results on faith and to concentrate on 
obtaining a physical understanding of the transient behavior of the heated tank. In the 
forthcoming chapters we develop tools for determining the response of such systems. As 
this new material is presented, the reader may find it helpful to refer to this chapter to 
place the material in proper perspective to the overall control problem.  

  PROBLEMS 

    1.1.  Draw a block diagram for the control system generated when a human being steers an 
automobile.  

   1.2.  Draw a block diagram for the control system generated when a human being shoots a bow 
and arrow.  

   1.3.  Draw a block diagram for an automobile cruise control system.  

   1.4.  Draw a block diagram for the control system that maintains the water level in a toilet tank.  

   1.5.  Draw a block diagram for a security lighting system that activates at dusk and turns off at 
dawn.  

   1.6.  Draw a block diagram for the control system for a home oven.    
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  CHAPTER

 1 
CAPSULE SUMMARY 

 DEFINITIONS 

    Block diagram —Diagram that indicates the flow of information around the con-
trol system and the function of each part of the system.  

   Closed loop —In closed loop, the measured value of the controlled variable is fed 
back to the controller.  

   Controlled variable —The process variable that we want to maintain at a par-
ticular value.  

   Controller —A device that outputs a signal to the process based on the magnitude 
of the error signal. A  proportional  controller outputs a signal proportional to 
the error.  

   Disturbance rejection —One goal of a control system, which is to enable the 
system to “reject” the effect of disturbance changes changes and maintain the 
controlled variable at the set point.  

   Disturbances —Any process variables that can cause the controlled variable to 
change. In general, disturbances are variables that we have no control over.  

   Error —The difference between the values of the set point and the measured 
variable.  

   Manipulated variable —Process variable that is adjusted to bring the controlled 
variable back to the set point.  

   Negative feedback —In negative feedback, the error is the difference between the 
set point and the measured variable (this is usually the desired configuration).  

   Offset —The steady-state value of the error.  
   Open loop —In open loop, the measured value of the controlled variable is not 

fed back to the controller.  
   Positive feedback —In positive feedback, the measured temperature is added to 

the set point. (This is usually an undesirable situation and frequently leads to 
instability.)  

   Set point —The desired value of the controlled variable.  
   Set point tracking —One goal of a control system, which is to force the system to 

follow or “track” requested set point changes.                  

7
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 CHAPTER 

 2 

  Understanding process dynamics (how process variables change with time) will be 
very important to our studies of process control. In the examples in Chap.1, we 

saw some of the implications of process dynamics and their relationship to process con-
trol. In this chapter we explore process dynamics further and review some mathematical 
tools for solving the resulting process models.  

   2.1  PROCESS DYNAMICS—A CHEMICAL 
MIXING SCENARIO 

  Consider the following chemical mixing example ( Fig. 2–1 ). Two process streams are 
mixed to produce one of the feeds for our chemical reactor. After mixing, the blended 
stream is fed to a heating vessel before being sent to the reactor. 

 MODELING TOOLS FOR 
PROCESS DYNAMICS 

FIGURE 2–1
Chemical mixing process flow diagram.

Stream 2 
Ca2=4 g/L 
v2=20 L/min

Stream 1 
Ca1=1 g/L 
v1=10 L/min

V=150 L

Ca

Mixing tee

Heater

To reactor 

Stream 3
Ca3=? g/L
v3=30 L/min
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12 PART 1 MODELING FOR PROCESS DYNAMICS

 The process is running along at steady state. The concentration of  A  in stream 1 is 1 g/L 
and in stream 2 is 4 g/L. At 3:00  P.M.  the shift changes at the plant. The new operator 
on our unit misreads the flowmeters for the process and switches the flow rates of the 
two streams. Stream 1 is switched to 20 L/min, and stream 2 is switched to 10 L/min. 
At 3:30  P.M.  the shift supervisor hurries to the control room to determine the source of 
the problem now being experiencing with the reactor. Use your knowledge of chemical 
engineering to determine what has happened to the exit concentration from the heating 
vessel over the first half-hour of the shift. 

 We can model the mixing tee and the blending tank using an unsteady-state mass 
balance to predict the behavior of this part of the process since the shift change and the 
unfortunate error by the new operator. 

 A balance on component  A  around the mixing tee before and after the change 
will yield information on how the feed concentration to the heating vessel changes. The 
component  A  balance around the mixing tee is 

    

Rate of into

mixing tee

in stream 1 (g/min

A

))

Rate of into

mixing tee

in stre
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 Before the change,  we can calculate the original steady-state concentration into the 
heating vessel: 
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Since the process has been running along at steady state for a long time under these 
conditions, the concentration in the heating vessel is also the same.

   After the change,  the new feed concentration to the heating vessel is

20 1 10 4
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So the net result of the operator error is to decrease the feed concentration to the heating 
vessel from 3 to 2 g/L. After we analyze the process for a moment, it is apparent that the 
exit concentration from the heating vessel will eventually also fall from 3 to 2 g/L if the 
process is left in its current configuration for a long enough time. So, what we know of 
the situation is shown in  Fig. 2–2 . 

 To analyze how the exit from the heating vessel (the feed to the reactor) varies 
with time, we must perform an unsteady mass balance on component  A  around the heat-
ing vessel.
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 CHAPTER 2  MODELING TOOLS FOR PROCESS DYNAMICS 13
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Note that the volumetric flow rate  v  is constant into and out of the heating vessel at  v  3 . Thus 
the volume of fluid in the tank  V  is constant. We can rearrange this equation to the following 
form: 

V

v

dC

dt
C Ca

a a
3

3

�
�

� �

 

(2.1)

The coefficient of the derivative term is the residence time of the heating vessel  � , 
which in this process is 5 min. Substituting the numbers for this scenario yields
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We can rearrange and solve this equation as follows.
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FIGURE 2–2
Chemical mixing process flow diagram showing operator-induced transient.
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14 PART 1 MODELING FOR PROCESS DYNAMICS

A plot of the exit concentration from the heating vessel is shown in  Fig. 2–3 . As 
expected, the concentration starts at the original steady-state concentration of 3 g/L and 
exponentially decreases to 2 g/L. 

 Modeling the mixing process enables us to determine the concentration of com-
ponent  A  in the stream being fed to the reactor. Being able to determine or predict the 
dynamic behavior of a process is crucial to being able to design a control system for it. 

 As another modeling example, consider the energy balance for the mixing 
process described above. Prior to 3  P.M.  the process conditions are depicted as in 
 Fig. 2–4 . 

     Stream 1 (at 25 � C) mixes with stream 2 (at 55 � C), producing stream 3, the feed 
to the heating vessel. The heater adds energy to the vessel to bring the outlet stream to 
80 � C. Before we look at the effect of the disturbance caused by the operator, it is neces-
sary to determine the steady-state process conditions prior to the upset. An energy bal-
ance around the mixing tee will enable us to calculate the steady-state feed temperature 
to the heating vessel  T  3 .

 

Rate of

enthalpy into

mixing tee

with stream 11

Rate of

enthalpy into

mixing



















�
ttee

with stream 2

Rate of

enthal


















�
ppy leaving

mixing tee

with stream 3



















r r rv C T T v C T T v C Tp p p1 1 2 2 3 3( ) ( ) (� � � �ref ref �� Tref )
   

We have assumed that the stream density  �  (g/L) and specific heat  C   p   [cal/(g .  � C)] 
remain constant, independent of the concentration of component  A  in the stream. We 

FIGURE 2–3
Outlet concentration from the heating vessel as a function of time.
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 CHAPTER 2  MODELING TOOLS FOR PROCESS DYNAMICS 15

have also defined a reference temperature  T  ref  for the enthalpy calculation. The energy 
balance can be simplified to

 
v T v T v T1 1 2 2 3 3� �

   
Note that we have made use of the relation ( v  1   �   v  2 ) T  ref   �   v  3  T  ref  to eliminate some 
terms. Solving for  T  3  yields

 
T

v T v T

v
3

1 1 2 2

3

10 25 20 55

30
45�

�
�

�
�

( )( ) ( )( ) °C
   

So, the steady-state inlet temperature to the heating vessel is 45 � C. We can now deter-
mine the steady-state heat input required from the heater by performing a steady-state 
energy balance around the heating vessel.

    

Rate of

enthalpy into

heating vessel

with streeam 3

Rate of

enthalpy into

hea



















�
tting vessel

from heater

Rate of


















� eenthalpy leaving

heating vessel















r v C3 pp pT T Q v C T( ) ( )3 3� � � �ref r fr T e  
Solving for the heater input gives

 

Q v C T Tp� � � �3 3 1000 30 1( )
L min

g L c











aal

°
° °

g C
80 C 45 C)

1 05 10
cal

min
6

⋅






(

. .

�

� � � 73 22 kW
 

The energy balance for the original steady-state case is summarized in  Fig. 2–5 . 
     The inlet temperature to the heating vessel after the 3:00  P.M.  disturbance can be 

determined from the steady-state energy balance around the mixing tee using the new 
flow rates ( Fig. 2–6 ).

FIGURE 2–4
Chemical mixing process flow diagram showing initial temperatures.

Stream 1
Ca1=1 g/L 
ν1=10 L/min 
T1=25°C

Stream 2
Ca2=4 g/L 
ν2=20 L/min 
T2=55°C

Stream 3 
Ca3=3 g/L 
ν3=30 L/min 
T3=?°C

V=150 L

Ca 
T=80°C

Mixing tee

Heater

To reactor
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16 PART 1 MODELING FOR PROCESS DYNAMICS

T
v T v T

v
3

1 1 2 2

3 30
35�

�
�

�
�

(20)(25) (10)(55)
ºC

     

 To determine the effect of this inlet temperature dis-
turbance on the feed to the reactor, an unsteady-state 
energy balance on the heating vessel is required. We 
can logically predict that if the heat input stays constant, 
as well as the process flow rate, when the inlet tempera-
ture falls by 10 � C, the outlet temperature from the heat-
ing vessel will correspondingly decrease by 10� to 70 � C. 
The energy balance on the heating vessel is

    

Rate of enthalpy

into heating

vessel

with streeam 3

Rate of enthalpy

leaving


















�
hheating

vessel

with exit stream



















��

Rate of energy

input to

heating vessel

from heater

Rate of

accumulation

of



















�
enthalpy in

heating vessel



















rv C3 pp pT T v C T T Q
d

dt
VC T T( ) ( ) ( (3 3� � � � � �ref ref r fr r p e ))

  
Simplifying yields

V

v
Q

p3
3

3

1





t

r�

dT

dt
T T

v C
� � �

      

(2.3)

Substituting values for the scenario we are considering gives

FIGURE 2–5
Chemical mixing process flow diagram summarizing initial temperatures.

V=150 L

T=80°C

Heater 
input

73.2 kW

To reactor

Stream 3 
ν3=30 L/min 
T3=45°C

45°C

35°C

Time

Temperature 
of stream 3

3:00 P.M.

FIGURE 2–6
Inlet temperature disturbance.
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 CHAPTER 2  MODELING TOOLS FOR PROCESS DYNAMICS 17

    

( )

min

5 35
1

1000 30

min
g

L

L

dT

dt
T� � �ºC

























⋅1

106

cal

C

1 05
cal

min

g º

. � � 770

0 80

º

º

C

CT ( ) �
   

Separating and integrating, we have

    

5 70

70 5

70

10

080

dT

dt
T

dT

T

dt

T

tT

� �

�
�

�
�

�

∫∫





ln ��

� � �

t

T e t

5

70 10 5/

  
(2.4)

  
A plot of the outlet temperature from the heating vessel as a function of time is shown 
in  Fig. 2–7 . 

FIGURE 2–7
Outlet temperature transient due to the disturbance.

Outlet Temperature from Heating Vessel as a Function of Time

Time (min)

T
em

pe
ra

tu
re

 (
C

)

0
60

62

64

66

68

70

72

74

76

78

80

5 10 15 20 25 30

cou9789x_ch02_009-031.indd   17cou9789x_ch02_009-031.indd   17 8/14/08   1:55:13 PM8/14/08   1:55:13 PM

DELL
Highlight

DELL
Highlight



Confirming Pages

18 PART 1 MODELING FOR PROCESS DYNAMICS

 Notice the shape of the temperature response is the same as the shape of the concentra-
tion response that we saw previously. By appropriate modeling of the process, we can 
predict how the system will respond to changes in the operating conditions. Our ability 
to model the process will be extremely valuable as we design controllers to automati-
cally control the process variables at their desired settings.   

  2.2  MATHEMATICAL TOOLS 
FOR MODELING 

  As we just saw in our analysis of the chemical mixer, the unsteady-state material and 
energy balance models that we wrote required us to solve differential equations to 
obtain the concentration and temperature versus time behavior for the process. This 
will be a common occurrence for us as we continue our studies of process dynamics 
and control. It would be beneficial to review some additional tools available to us for 
solving our process models. In Sec. 2.1, we solved the equations by separation and 
integration. A couple of other useful tools for solving such models are Laplace trans-
forms and MATLAB/Simulink. In the next several sections, we will review the use of 
these additional tools for solving our model differential equations.  

   Definition of the Laplace Transform 

 The Laplace transform of a function  f ( t ) is  defined  to be  F ( s ) according to the equation
 

   
F s f t e dtst( ) ( )� �

0

∞
∫

   (2.5)  

We often abbreviate this to 

    
F s L f t( ) { ( )}�

   

where the operator  L  is defined by Eq. (2.5).

   Example 2.1. Find the Laplace transform of the function
 

    
f t( ) � 1

   
According to Eq. (2.5),

 

    
F s e dt

e

s s
st

st

t

t

( ) ( )� � � ��
�

�

�

1
1

0
0

∞
∞

∫
   

Thus, 

    
L

s
{ }1

1
�

     
 There are several facts worth noting at this point:

   1. The Laplace transform  F ( s ) contains no information about the behavior of  f ( t ) for 
 t , 0. This is not a limitation for control system study because  t  will represent the 
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 CHAPTER 2  MODELING TOOLS FOR PROCESS DYNAMICS 19

time variable and we will be interested in the behavior of systems only for positive 
time. In fact, the variables and systems are usually defined so that  f ( t )  0 for  t  , 0. 
The time we designate as  t   �  0 is arbitrary. We shall generally define  t   �  0 as 
the time when the process is disturbed from steady state (i.e., when an input is 
changed). Our usual starting point will be a steady-state system or process, and we 
will be interested in examining what happens when the system is disturbed. This 
will become clearer as we study specific examples.  

  2. Since the Laplace transform is defined in Eq. (2.5) by an improper integral, it will 
not exist for every function  f ( t ). A rigorous definition of the class of functions pos-
sessing Laplace transforms is beyond the scope of this book, but readers will note 
that every function of interest to us  does  satisfy the requirements for possession of 
a transform [see Churchill (1972)].  

  3. The Laplace transform is linear. In mathematical notation, this means 

    
L af t bf t aL f t bL f t{ ( ) ( )} { ( )} { ( )}1 2 1 2� � �

   
where  a  and  b  are constants and  f  1  and  f  2  are two functions of  t.  

  Proof.  Using the definition, we have 

    

L af t bf t af t bf t e dt

a

st{ ( ) ( )} [ ( ) ( )]1 2 1 2
0

� � �

�

�∞
∫

ff t e dt b f t e dt

aL f t b

st st
1

0
2

0

1

( ) ( )

{ ( )}

� ��

� �

∞ ∞
∫ ∫

LL f t{ ( )}2
     

  4. The Laplace transform operator transforms a function of the variable  t  to a function 
of the variable  s.  The  t  variable is eliminated by the integration.     

  Transforms of Simple Functions 

 We now proceed to derive the transforms of some simple and useful functions. We shall 
see these common functions repeatedly during our future studies. 

    1.  The  step function  is 

    
f t

t

t
( ) �

�

�

1 0

0 0{
   

This important function is known as the unit-step function and will henceforth be 
denoted by  u ( t ). From Example 2.1, it is clear that 

    
L u t

s
{ ( )} �

1

   
As expected, the behavior of the function for  t  � 0 has no effect on its Laplace 
transform. Note that as a consequence of linearity, the transform of any constant 
 A,  that is,  f ( t )  �   Au ( t ), is just  F ( s )  �   A / s.  Notice in the chemical mixing example 

cou9789x_ch02_009-031.indd   19cou9789x_ch02_009-031.indd   19 8/14/08   1:55:14 PM8/14/08   1:55:14 PM

DELL
Highlight

DELL
Highlight

DELL
Highlight

DELL
Highlight

DELL
Highlight

DELL
Highlight

DELL
Highlight

DELL
Highlight



Confirming Pages

20 PART 1 MODELING FOR PROCESS DYNAMICS

that we just discussed that the inlet concentration and temperature are described by 
a step function initiated at time zero (3  P.M.  in the example).  

   2.  The  exponential function  is 

    

f t u t e
e at

t

t at( ) ( )� � 
�

 
 
�

 �

−{ 0

0

0

   
where  u ( t ) is the unit-step function. Again proceeding according to definition, we 
have 

    
L u t e e dt

s a
eat s a t s a t( ) ( ) ( )� � � � �� � �

�
�{ } ∞ ∞

∫0 0

1 1

ss a�
   

provided that  s   �   a  �   0, that is,  s  �  �  a.  In this case, the convergence of the inte-
gral depends on a suitable choice of  s.  In case  s  is a complex number, it may be 
shown that this condition becomes 

    
Re( )s a� �

   
For problems of interest to us it will always be possible to choose  s  so that these condi-
tions are satisfied, and the reader uninterested in mathematical niceties can ignore 
this point.  

   3.  The  ramp function  is 

    

f t tu t

L tu t te dt

t t

t

st

( ) ( )

{ ( )}

� �

�

  
  

�

0

0

0

0

>
<

∞

{
∫

   
Integration by parts yields 

    

L tu t e
t

s s s
st{ ( )} � � � �� 1 1

2
0

2






∞

     

  4. The  sine function  is 

    

f t u t kt

L u t

kt t

t( ) ( )

{ ( )

sin
� �  

  sin

sin

0
0
0

>
<{

sinkt kt e dtst} � �

0

∞
∫   

  
Integrating by parts, we have 

    

L u t kt
e

s k
s kt k kt

st

{ ( ) } ( )sin sin cos�
�

�
�

�

2 2
0

∞∞

�
�

k

s k2 2
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TABLE 2.1

Function Graph Transform

u(t)

1

1

s

tu(t)
1
2s

tnu(t)
n

sn

!
�1

e�atu(t)

1
1

s a�

tne�atu(t)
n

s a n

!

� �( ) 1

sin kt u(t)
k

s k2 2�
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22 PART 1 MODELING FOR PROCESS DYNAMICS

TABLE 2.1 (Continued)

Function Graph Transform

cos kt u(t)
s

s k2 2�

sinh kt u(t)
k

s k2 2�

cosh kt u(t) 1
s

s k2 2�

e�at sin kt u(t)
k

s a k( )� �2 2

e�at cos kt u(t)
s a

s a k

�

� �( )2 2

	(t), unit impulse

Area = 1

1
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 In a like manner, the transforms of other simple functions may be derived. 
 Table 2.1  is a summary of transforms that will be of use to us. Those which have not 
been derived here can be easily established by direct integration, except for the trans-
form of  	 ( t ), which will be discussed in detail in the Appendix at the end of Chap    . 3.

Using MATLAB for Symbolic Processing—Laplace Transforms

MATLAB is capable of symbolic processing. To prepare MATLAB for symbolic operations, some 
variable names will be declared symbolic (rather than numeric) using the syms command.

syms a x y z t k s

We can also define u as the Heaviside function (the unit step):

u=sym('Heaviside(t)')

u=

Heaviside(t)

Now we can determine the transform of the simple functions we have just discussed:
The step function:

laplace(u)

ans=

1/s

The exponential function:

laplace(exp(–a*t))

ans=

1/(s+a)

The ramp function:

laplace(t)

ans�

1/s^2

The sine function:

laplace(sin(k*t))

ans=

k/(s^2+k^2)

  Transforms of Derivatives 

 At this point, the reader may wonder what has been gained by introduction of the La-
place transform. The transform merely changes a function of  t  into a function of  s.  The 
functions of  s  look no simpler than those of  t  and, as in the case of  A  →  A / s,  may actu-
ally be more complex. In the next few paragraphs, the motivation will become clear. It 
will be shown that the Laplace transform has the remarkable property of transforming 
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24 PART 1 MODELING FOR PROCESS DYNAMICS

the operation of differentiation with respect to  t  to that of multiplication by  s.  Thus, we 
claim that 

    
L

df t

dt
sF s f

( )
( ) ( ){ } � � 0

   

(2.6)  

where 

    
F s L f t( ) { ( )}�

   

and  f (0) is  f ( t ) evaluated at  t   �  0. If  f ( t ) is discontinuous at  t   �  0,  f (0) should be evalu-
ated at  t   �  0 � , that is, just to the right of the origin. Since we will seldom want to 
differentiate functions that are discontinuous at the origin, this detail is not of great 
importance. However, the reader is cautioned to watch carefully for situations in which 
such discontinuities occur. 

     Proof   

    
L

df t

dt

df

dt
e dtst( ){ } ∞

∫� �

0
   

To integrate this by parts, let 

    
u e dv

df

dt
dtst� ��

   

Then 

    du se dt v f tst� � �� ( )   

Since 

    
u dv uv v du� �∫ ∫   

we have 

    

df

dt
e dt f t e s f t e dt fst st st

0 0
0

∞ ∞
∫ � � �� � � � �( ) ( ) ( ) ssF s( )

0

∞
∫
   

The salient feature of this transformation is that whereas the function of  t  was to be 
differentiated with respect to  t,  the corresponding function of  s  is merely multiplied 
by  s.  We shall find this feature to be extremely useful in the solution of differential 
equations. 

 To find the transform of the second derivative we make use of the transform of 
the first derivative twice, as follows: 

    

L
d f

dt
L

d

dt

2

2



























� �
df

dt
sL

df

ddt

df t

dt

s sF s f f

s

t









�

� � �

�

�

( )

[ ( ) ( )]

0

2

0 ′(0)

FF s sf f( ) ( )� �0 ′(0)
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 CHAPTER 2  MODELING TOOLS FOR PROCESS DYNAMICS 25

where we have abbreviated

     

df t

dt
f

t

( )
( )

�
�

0
0′

   
In a similar manner, the reader can easily establish by induction that repeated applica-
tion of Eq. (2.6) leads to 

    

L
d f

dt
s F s s f s f

n

n
n n n












� � �� �( ) ( ) (( )1 2 10 00 0 02 1) ··· ( ) ( )( ) ( )� � �� �sf fn n

   

where  f    i  (0) indicates the  i th derivative of  f ( t ) with respect to  t,  evaluated for  t   �  0. 
 Thus, the Laplace transform may be seen to change the operation of differentiation 

of the function to that of multiplication of the transform by  s,  the number of multipli-
cations corresponding to the number of differentiations. In addition, some polynomial 
terms involving the initial values of  f ( t ) and its first  n   �  1 derivatives are involved. In 
later applications we usually define our variables so that these polynomial terms will 
vanish. Hence, they are of secondary concern here. 

  Example 2.2. Find the Laplace transform of the function  x ( t ) that satisfies the 
differential equation and initial conditions 

    

d x

dt

d x

dt

dx

dt
x

x
dx

dt

d x

3

3

2

2

2

4 5 2 2

0
0 0

� � � �

� �( )
( ) ( ))

dt2 0�

   
It is permissible mathematically to take the Laplace transforms of both sides of a 
differential equation and equate them, since equality of functions implies equality 
of their transforms. Doing this, we obtain 

    

s x s s x sx x s x s sx3 2 20 0 0 4 0( ) ( ) ( ) ( ) [ ( ) ( )� � � � � �′ ′′ ′′x

sx s x x s
s

( )]

[ ( ) ( )] ( )

0

5 0 2
2

� � � �

   
where  x ( s )  �   L { x ( t )}. Use has been made of the linearity property and of the fact 
that only positive values of  t  are of interest. Inserting the initial conditions and 
solving for  x ( s ), we have 

    

x s
s s s s

( ) �
� � �

2

4 5 23 2( )
   

(2.7)  

This is the required answer, the Laplace transform of  x ( t ).       
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26 PART 1 MODELING FOR PROCESS DYNAMICS

  2.3  SOLUTION OF ORDINARY 
DIFFERENTIAL EQUATIONS (ODE S ) 

  There are two important points to note regarding this last example. First, application of 
the transformation resulted in an equation that was solved for the unknown function by 
 purely algebraic means.  Second, and most important, if the function  x ( t ), which has the 
Laplace transform 2/ s ( s  3   �  4 s  2   �  5 s   �  2), were known, we would have the solution 
to the differential equation and initial conditions. This suggests a procedure for solving 
differential equations that is analogous to that of using logarithms to multiply or divide. 
To use logarithms, one transforms the pertinent numbers to their logarithms and then 
adds or subtracts, which is much easier than multiplying or dividing. The result of the 
addition or subtraction is the logarithm of the desired answer. The answer is found by 
reference to a table to find the number having this logarithm. 

 In the Laplace transform method for solution of differential equations, the func-
tions are converted to their transforms, and the resulting equations are  algebraically  
solved for the unknown function. This is much easier than solving a differential equa-
tion. However, at the last step the analogy to logarithms is not complete. We obviously 
cannot hope to construct a table containing the Laplace transform of every function  f ( t ) 
that possesses a transform. Instead, we will develop methods for expressing compli-
cated transforms, such as  x ( s ) in Example 2.2, in terms of simple transforms that can be 
found in  Table 2.1 . For example, it is easily verified that the solution to the differential 
equation and initial conditions of Example 2.2 is 

    
x t te et t( ) � � �� �1 2 2

 
  (2.8)  

The Laplace transform of  x,  using Eq. (2.8) and  Table 2.1 , is 

    

x s
s s s

( )
( )

� �
�

�
�

1
2

1

1

1

22

 

  (2.9)  

Equation (2.7) is actually the result of placing Eq. (2.9) over a common denominator. 
Although it is difficult to find  x ( t ) from Eq. (2.7), Eq. (2.9) may be easily inverted to 
Eq. (2.8) by using  Table 2.1 . Therefore, what is required is a method for expanding the 
common-denominator form of Eq. (2.7) to the separated form of Eq. (2.9). This method 
is provided by the technique of partial fractions, which is developed in Chap. 3. 

Using MATLAB for Symbolic Processing—Inversion of Laplace Transforms

Remember that we have previously declared some variables symbolic (a, k, x, y, z, t and s). Let’s have 
MATLAB invert Eq. (2.3) for us and determine x(t).

x=ilaplace(2/s/(s^3+4*s^2+5*s+2))

x=

1-exp(–2*t)–2*t*exp(–t)

which is the same as Eq. (2.8).
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For the mass balance, 

    
t [ ( ) ( )] ( ) ( )sC s C C s C sa a a a� � �0 3

   
Rearranging and solving for  C   a  ( s ), we have 

    
C s

C s C
a

a a( )
( ) ( )

�
�

�

3 0

1

t
ts   

After the disturbance,  C   a 3  has a constant value of 2 g/L. Therefore,  C   a 3  ( s )  �  2/ s.  
Also, from the process description, we know that  C   a  (0)  �  3g/L [this is the initial 
concentration of  A  in the tank at time 0 (3  P.M .)] and that  � , the time constant, is 
5 min. Substituting these values into the expression for  C   a   yields 

    

C s
s

s s s s
a ( )

( )

( )
�

�

�
�

�
�

�

2 5 3

5 1

2

5 1

15

5 1

/

   

(2.10)  

For the energy balance, 

    

t
r

[ ( ) ( )] ( ) ( ) ( )sT s T T s T s
v C

Q s� � � �0
1

3
3 p

   

Using MATLAB for Symbolic Processing—Solution of Differential Equations

MATLAB can solve differential equations symbolically using the DSOLVE command. The deriva-
tives are represented as Dx (first derivative), D2x (second derivative), etc.

x=dsolve('D3x+4*D2x+5*Dx+2*x=2','x(0)=0','Dx(0)=0','D2x(0)=0')

x=

1–exp(–2*t)–2*t*exp(–t)

which, again, is the same as Eq. (2.8).

 Now, let’s return to our chemical mixing scenario from earlier in the chapter. 

Example 2.3.   Transform the differential equations resulting from the mass and 
energy balances for the chemical mixer to determine the transform of the exit 
concentration and temperature. 

    

t

t
r

dC

dt
C C

dT

dt
T T

v C
Q

a
a a� �

� � �

3

3
3

1

p







mass baalance

energy balance
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28 PART 1 MODELING FOR PROCESS DYNAMICS

Rearranging and solving for  T (s), we find 

    
T s

T s v C Q s T

s
( )

( ) ( ) ( )( )
�

� �

�

3 31 0

1

/ r t
t

p 

   
After the disturbance,  T  3  is constant at 35  �  C, so  T  3  ( s )  �  35/ s.  The initial tem-
perature in the tank  T (0), at 3  P.M.  is 80  �  C. The heater input  Q  is constant at 
1.05  
  10 6  cal/min. The time constant  �  is 5 min. Substituting these values into the 
expression for  T ( s ) gives 

    
T s

s

( ) �

�
35

º

1

1000 30 1
g

L

L

g










min

cal

⋅ CC





























1 05 10

5

6.
min

�

�

cal

s
(( )80

5 1s �   
Simplifying yields 

    

T s
s

s s s s
( )

( )

( )
�

�

�
�

�
�

�

70 5 80

5 1

70

5 1

400

5 1

/

 
  (2.11)  

If we can invert these expressions for  C   a  ( s ), Eq. (2.10), and  T ( s ), Eq. (2.11), we 
will obtain the time domain solutions for the exiting concentration and tempera-
ture. We will address this topic in Chap. 3.  

 To summarize, we have reviewed a procedure using Laplace transforms for solv-
ing  linear, ordinary, differential equations (ODEs) with constant coefficients.  

 The procedure is as follows:

   1. Take the Laplace transform of both sides of the equation. The initial conditions are 
incorporated at this step in the transforms of the derivatives.  

  2. Solve the resulting equation for the Laplace transform of the unknown function 
algebraically.  

  3. Find the function of  t  that has the Laplace transform obtained in step 2. This func-
tion satisfies the differential equation and initial conditions and hence is the desired 
solution. This third step is frequently the most difficult or tedious step and will be 
developed further in Chap. 3. It is called inversion of the transform. Although there 
are other techniques available for inversion, the one that we will develop and make 
consistent use of is that of partial fraction expansion.   

A simple example will serve to illustrate steps 1 and 2 (we’ll save step 3 until Chap. 3). 

  Example 2.4. Solve 

    

dx

dt
x� �

�

3 0

0 2x( )
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 CHAPTER 2  MODELING TOOLS FOR PROCESS DYNAMICS 29

We number our steps according to the discussion in the preceding paragraphs:

    1.         
 
   2.         

   3.      x ( t )  �  2 e   � 3 t          

   SUMMARY 

 In this chapter we discussed the importance of process modeling and worked through 
a chemical mixing example that led to two differential equations that described the 
process (one from the mass balance and one from the energy balance). We solved those 
relatively simple equations by separating and integrating. We also discussed using 
Laplace transforms for solving differential equations and presented a table of common 
transforms. We concluded by demonstrating the use of MATLAB for symbolically 
solving differential equations. In Chap. 3 we will discuss the method of partial fractions 
for inverting the solutions we obtained by using transforms to the time domain.  

  PROBLEMS 

    2.1.  Transform the following:

    
(a)

      
sin( )2

4
t �

	

    
  ( b )  e   �  t   cos 2 t   
  ( c )  Use the formula for the Laplace transform of a derivative to find  L {sin h ( kt )} if you are 

given that  L {cos h ( kt )}  �   s /( s  2   �   k  2 ).     

   2.2.  Invert the following transforms.

   
( a )

     

3

s     

  
( b )

     

3

2s �     

  
( c )

     

3

2 2( )s �     

  
( d )

     

3
3s     

  
( e )

     

1
2

2 9s �     

  
( f )

     

3

4 82s s� �     

  
( g )

     

s

s s

�

� �

4

4 82
    

  
( h )

     

1

2 2( )s �         

x s
s s

( ) �
�

�
�

2

3
2

1

3
x s

s s
( ) �

�
�

�

2

3
2

1

3

sx s x s
sx s x

( ) ( )
( ) ( )

� � �

�

2 3 0
0

[ ]� �� ��
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30 PART 1 MODELING FOR PROCESS DYNAMICS

   2.3.  Find  x(s)  for the following differential equations.

   
( a )

     

d x

dt

dx

dt
x u t x x

2

2 4 3 0 0 0� � � � �( ) ( ) ( )′
    

  
( b )

     

d x

dt

dx

dt
x u t x x

2

2 2 0 0 1� � � � �( ) ( ) ( )′
    

  
( c )

     

d x

dt

dx

dt
x u t x x

2

2 2 0 0 0� � � � �( ) ( ) ( )′
       

   2.4.  Solve Prob. 2.1 using the MATLAB  laplace  command.  

   2.5.  Solve Prob. 2.2 using the MATLAB  ilaplace  command.  

   2.6.  Solve Prob. 2.3 using the MATLAB  dsolve  command, and then use  ezplot  to graph the 
solutions.  

   2.7.  Use the MATLAB  dsolve  command to solve the differential equations that we developed 
for the mass and energy balances for the chemical mixing scenario, and then use  ezplot  to 
graph the solutions. Compare the results with those presented in the text.  

   2.8.  Use the MATLAB  ilaplace  command to invert Eqs. (2.10) and (2.11), and then use 
 ezplot  to graph the solutions. Compare the results with those presented in the text.  

   2.9.  Rework the chemical mixing scenario if at 3  P.M.  the operator mistakenly increases the flow 
rate of stream 1 to 20 L/min while stream 2 and the heater input remain unchanged.    
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  CHAPTER

2
CAPSULE SUMMARY 

   Definition of the Laplace transform:         L f t f s f t e dtst{ ( )} ( ) ( )� � �

0

∞
∫

  Linearity:  L { af  1 ( t )  �   bf  2 ( t )}  �   aL { f  1 ( t )}  �   bL { f  2 ( t )}  

  Transform of first derivative:
 

L
df t

dt
sf s f

( )
( ) ( ){ } � � 0

           

 Transform of  n   th   derivative:
        
L

d f

dt
s f s s f s f

n

n
n n n









� � �� �( ) ( ) ( )( )1 2 10 0 �� � �� �n sf fn n( ) ( )( ) ( )2 10 0

  Transforms of some simple functions: See  Table 2.1 .   

 The following procedure uses Laplace transforms for solving  linear, ordinary, differen-
tial equations (ODEs) with constant coefficients: 

   1.  Take the Laplace transform of both sides of the equation. The initial conditions are 
incorporated at this step in the transforms of the derivatives.  

  2. Solve the resulting equation for the Laplace transform of the unknown function 
algebraically.  

  3. Find the function of  t  that has the Laplace transform obtained in step 2. This function 
satisfies the differential equation and initial conditions and hence is the desired solu-
tion. This third step is frequently the most difficult or tedious step. We will make 
consistent use of partial fraction expansions to accomplish this (see Chap. 3).    

   Useful MATLAB Commands:  
   syms —declares variables to be symbolic  
   laplace —takes the Laplace transform of a symbolic expression  
   ilaplace —inverts a symbolic Laplace transform expression  
   dsolve —solves a differential equation symbolically     
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 CHAPTER 

 3 
 INVERSION BY PARTIAL FRACTIONS 

  Our study of the application of Laplace transforms to linear differential equations 
with constant coefficients has enabled us to rapidly establish the Laplace trans-

form of the solution. We now wish to develop methods for inverting the transforms 
to obtain the solution in the time domain. In the first part of this chapter we give a 
series of examples that illustrate the partial fraction technique. After a generalization of 
these techniques, we proceed to a discussion of the qualitative information that can be 
obtained from the transform of the solution without inverting it. 

 The equations to be solved are all of the general form 

    
a

d x

dt
a

d x

dt
a

dx

dt
a x rn

n

n n

n

n� � � � ��

�

�1

1

1 1 0. (. . tt)
   

The unknown function of time is  x ( t ), and  a   n  ,  a   n   �  1 , . . . ,  a  1 ,  a  0  are constants. The 
given function  r ( t ) is called the  forcing function.  In addition, for all problems of inter-
est in control system analysis, the initial conditions are given. In other words, values 
of  x,   dx / dt,  . . . ,   d   n   � 1   x / dt   n   � 1  are specified at time 0. The problem is to determine  x ( t ) 
for all  t   �  0.  

   3.1 PARTIAL FRACTIONS 

  In the series of examples that follow, the technique of partial fraction inversion for solu-
tion of this class of differential equations is presented. 
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  Example 3.1.   Solve 

    

dx

dt
x

x

� �

�

1

0 0( )     

 Application of the Laplace transform yields 

    
sx s x s

s
( ) ( )� �

1

   

 

or
    

x s
s s

( )
( )

�
�

1

1   

The theory of partial fractions enables us to write this as 

    
x s

s s

A

s

B

s
( )

( )
�

�
� �

�

1

1 1   
(3.1)

  

where  A  and  B  are constants. Hence, from Table 2.1, it follows that 

    x t A Be t( ) � � �   (3.2)  

Therefore, if  A  and  B  were known, we would have the solution. The conditions on 
 A  and  B  are that they must be chosen to make  Eq. (3.1)  an identity in  s.  

 To determine  A,  multiply both sides of  Eq. (3.1)  by  s.  

    
1

1 1s
A

Bs

s�
� �

� 
  (3.3)  

Since this must hold for all  s,  it must hold for  s   �  0. Putting  s   �  0 in  Eq. (3.3)  
yields 

    A � 1   

To find  B,  multiply both sides of  Eq. (3.1)  by  s   �  1. 

    

1
1

s

A

s
s B� � �( )

 
  (3.4)  

Since this must hold for all  s,  it must hold for  s   �   � 1. This yields 

    B � �1   

This procedure for determining the coefficients is called the  Heaviside expansion.  
There is an easy way to visualize the Heaviside procedure and quickly determine 
the coefficients of the partial fraction expansion ( A  and  B  in this case). Consider-
ing  Eq. (3.1) , we can determine  A,  the numerator of the 1/ s  factor, by ignoring (or 
“covering up”) this term in the denominator of  x ( s ) and letting all the remaining 
 s ’s equal the value of  s  that makes the “covered up” term equal to zero. The other 
coefficients are found in a similar manner. 
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 For example, to solve for  A,  we “cover up” the  s  factor and let all the other 
 s  values equal 0. 

    

A
s s

�
�

�
1

1
1

0

( )�
    

 Similarly for  B,  we cover up the  s   �  1 term and let the other  s  values equal  
� 1, so 

    

B
s s

�
�

�
�

� �

�

1

1

1

1
1

1
� ( )

    

 Cross-multiplication (as well as the quick visualization method) works for dis-
tinct roots (non-repeated factors in the denominator) and in a limited way for 
repeated roots. We will discuss the case of repeated roots shortly. 

 Now that we’ve found  A  and  B,  we have 

    

x s
s s s s

( )
( )

�
�

� �
�

1

1

1 1

1
 

  (3.5)  

and therefore, 

    x t e t( ) � � �1   (3.6)   

  Equation (3.5)  may be checked by putting the right side over a common denomi-
nator, and  Eq. (3.6)  by substitution into the original differential equation and ini-
tial condition.  

  Example 3.2.   Chemical mixing scenario revisited.   In Chap. 2 we solved the 
chemical mixing scenario problem to the point where we had obtained the trans-
formed solution to the material and energy balances. The transformed solutions, 
 Eqs. (2.10)  and  (2.11) , are repeated in this example for convenience. 

    
C s

s s s
a ( )

( )
�

�
�

�

2

5 1

15

5 1 
   (2.10)

    

 We can now invert this expression for the concentration in the tank to the time 
domain. 

 Considering the first term on the left-hand side, we can separate it into par-
tial fractions by using the same method that was employed in  Example 3.1 . 

    

2

5 1

2 22
5

1
5

1
5

1
5s s s s

A

s

B

s s s( )�
�

�
� �

�
� �

�

�( )
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  Equation (2.10)  may now be written as 

    

C s
s s s s s s s s

a ( )
( )

�
�

�
�

� �
�

�
�

� �
�

2

5 1

15

5 1

2 2 3 2 1
1
5

1
5

11
5

    

 We can now readily invert this expression to the time domain 

    
C t ea

t( ) /� � �2 5
    

 This is the same solution that we previously obtained by separation and integra-
tion of the original mass balance differential equation in the time domain, which 
is plotted in Fig. 2–3. 

 Similarly, we can obtain the time domain solution for the temperature in the 
mixing vessel by inverting  Eq. (2.11) . 

    
T s

s

s s s s
( )

( )

( )
�

�

�
�

�
�

�

70 5 80

5 1

70

5 1

400

5 1

/

 
   (2.11)    

 Separating the right-hand side by using partial fractions, we get 

    

T s
s s s s s s

( )
( )

�
�

�
�

� �
�

�
�

�
�

70

5 1

400

5 1

70 70 80 7
1
5

1
5

00 10

70 10

1
5

5

s s

T t e t

�
�

� � �( ) /

    

 This is the same solution that we previously obtained by separation and integra-
tion of the original energy balance differential equation in the time domain which 
is plotted in Fig. 2–7.  

  Example 3.3.   Solve 

    

d x

dt

d x

dt

dx

dt
x e

x x

t
3

3

2

2
22 2 4

0 1 0 0

� � � � �

� �( ) ( )′ ′′xx ( )0 1� �
    

 Taking the Laplace transform of both sides yields 

    
s x s s s x s s sx s x3 2 21 2 1 2( ) ( ) ( ) (� � � � � � �    [ ] ss

s s
) � �

�

4 1

2    

 Solving algebraically for  x ( s ), we find 

    
x s

s s s

s s s s s
( )

( )( )
�

� � �

� � � �

4 2

3 2
6 9 8

2 2 2 
  (3.7)
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36 PART 1 MODELING FOR PROCESS DYNAMICS

 The cubic in the denominator may be factored, and  x ( s ) is expanded in partial 
fractions. 

    
x s

s s s

s s s s s

A

s

B

s
( )

( )( )( )( )
�

� � �

� � � �
� �

4 26 9 8

2 1 2 1 ��
�

�
�

�
�

�2 1 2 1

C

s

D

s

E

s   
  (3.8)   

 To find  A,  multiply both sides of  Eq. (3.8)  by  s  and then set  s   �  0; the result is 

    
A = �

� �
� �

8

2 1 2 1
2

( )( )( )( )    

 The other constants are determined in the same way. The procedure and results 
are summarized in the following table.    

 

To determine Multiply Eq. (3.8) by and set s to Result

B s � 2 2 B � 1
12

C s � 1 �1 C � 11
3

D s � 2 �2 D � �17
12

E s � 1 1 E = 2
3

 Accordingly, the solution to the problem is 

    
x t e e e et t t t( ) � � � � � �� �2 1

12
2 11

3
17
12

2 2
3     

 A comparison between this method and the classical method, as applied to  
Example 3.2 , may be profitable. In the classical method for solution of differential equa-
tions, we first write down the characteristic function of the homogeneous equation: 

    s s s3 22 2 0� � � �    

 This must be factored, as was also required in the Laplace transform method, to obtain 
the roots  � 1,  � 2, and  � 1. Thus, the complementary solution is 

    x t C e C e C ec
t t t( ) � � �� �

1 2
2

3    

 Furthermore, by inspection of the forcing function, we know that the particular solution 
has the form 

    x t A Bep
t( ) � � 2

    

 The constants  A  and  B  are determined by substitution into the differential equation and, 
as expected, are found to be  � 2 and     1

12 ,    respectively. Then 

x t e C e C e C et t t t( ) � � � � � �� �2 1
12

2
1 2

2
3
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     and constants  C  1 ,  C  2 , and  C  3  are determined by the three initial conditions. The Laplace 
transform method has systematized the evaluation of these constants, avoiding the solu-
tion of three simultaneous equations. Four points are worth noting:

    1.  In both methods, one must find the roots of the characteristic equation. The roots 
give rise to terms in the solution  whose form is independent of the forcing function.  
These terms make up the  complementary solution.   

   2.  The forcing function gives rise to terms in the solution  whose form depends on 
the form of the forcing function and is independent of the left side of the equation.  
These terms comprise the  particular solution.   

   3.  The only interaction between these sets of terms, i.e., between the right side and left 
side of the differential equation, occurs in the evaluation of the constants involved.  

   4.  The only effect of the initial conditions is in the evaluation of the constants. This is 
so because the initial conditions affect only the numerator of  x ( s ), as may be seen 
from the solution of this example.    

 In the three examples we have discussed, the denominator of  x ( s ) factored into 
real factors only. In the next example, we consider the complications that arise when 
the denominator of  x ( s ) has complex factors. 

Using MATLAB for Symbolic Processing—Partial Fractions

Remember that we have previously declared some variables symbolic (a, k, x, y, z, t, and s). MATLAB 
does not have a built-in function for performing partial fractions. However, we can force MATLAB 
to do the work for us by taking advantage of two other MATLAB functions, diff and int. We have 
MATLAB integrate x(s), which it does internally by using partial fractions, and then immediately 
differentiate the resulting expression. The result will be the partial fraction expansion of x(s).

Let’s have MATLAB find the partial fraction expansion represented by Eq. (3.8).

x=(s^4–6*s^2+9*s–8)/s/(s–2)/(s+1)/(s+2)/(s–1)

x=

(s^4–6*s^2+9*s–8)/s/(s–2)/(s+1)/(s+2)/(s–1)

diff(int(x))

ans=

–2/s+1/12/(s–2)+11/3/(s+1)–17/12/(s+2)+2/3/(s–1)

pretty(ans)

-2 / s + 1 / 12
1

s - 2
+ 11 / 3

1

s + 1
-
17

12

1

s ++ 2
+ 2 / 3

1

s - 1

Thus, MATLAB arrives at the same result as we did by hand.
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  Example 3.4.   Inversion of a transform that has complex roots in the 
denominator.   Solve 

    

d x

dt

dx

dt
x

x x

2

2 2 2 2

0 0 0 0

� � �

� �( ) ( )′    

 Application of the Laplace transform yields 

    

x s
s s s

( ) �
� �

2

2 22( )
    

 The quadratic term in the denominator may be factored by use of the quadratic 
formula. The roots are found to be  � 1  �   j  and  � 1  �   j.  If we use these complex 

Using MATLAB for Symbolic Processing—Solving ODEs

MATLAB can symbolically solve ODEs. It uses the DSOLVE command for this purpose. We 
illustrate the use of this command with Example 3.2.

The problem consisted of

 

d x

dt

d x

dt

dx

dt
x e

x x

t
3

3

2

2
22 2 4

0 1 0 0

� � � � �

� �( ) ( )′ ′′xx ( )0 1� � 

The DSOLVE command is straighforward for solving this equation.

dsolve('D3x+2*D2x–Dx–2*x=4+exp(2*t)','x(0)=1','Dx(0)=0','D2x(0)=–1')

ans=

–1/12*exp(2*t)*(24*exp(–2*t)–1)+2/3*exp(t)–17/12*exp(–2*t)+11/3*exp(–t)

expand(ans) This command multiplies out the expression to make it easier to compare with our 
original answer.

ans=

–2+1/12*exp(t)̂ 2+2/3*exp(t)–17/12/exp(t)̂ 2+11/3/exp(t)

which is the same result we obtained by hand: x t e e e et t t t( ) � � � � � �� �2 1
12

2 11
3

17
12

2 2
3

We can verify this result with MATLAB by inverting the partial fraction expansion we obtained 
with MATLAB previously.

ilaplace(–2/s+1/12/(s–2)+11/3/(s+1)–17/12/(s+2)+2/3/(s–1))

ans=

–2+1/12*exp(2*t)+11/3*exp(–t)–17/12*exp(–2*t)+2/3*exp(t)

The result is the same!
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roots in the partial fraction expansion, the algebra can get quite tedious. We pres-
ent a method to obtain the partial fraction expansion for the case of complex 
roots, without resorting to the use of complex algebra. 

  Avoiding the use of complex algebra with a quadratic term.   If we choose not 
to factor the quadratic term, we can use an alternate form of the partial fraction 
expansion. 

    
x s

s s s

A

s

Bs C

s s
( )

( )
�

� �
� �

�

� �

2

2 2 2 22 2
    

 Note that the second term of the expansion has the unfactored quadratic in the 
denominator. The numerator of each term in the expansion is a polynomial in 
 s  of one less degree than the denominator, hence the  Bs   �   C  in the numerator 
(a first-order numerator with a second-order denominator). As before, we can 
determine  A.  

    
A �

� �
�

2

0 2 0 2
1

( )    

 So we now have 

    
x s

s s s s

Bs C

s s
( )

( )
�

� �
� �

�

� �

2

2 2

1

2 22 2
    

 Clearing the denominator on the left-hand side, we obtain 

    2 2 22 2� � � � �s s Bs Cs    

 Collecting like terms, we get 

    ( ) ( )B s C s� � � � �1 2 2 22
    

 We now match coefficients of like terms on the left and right sides of the equation. 

    

s B B

s C C

2 1 0 1

2 0 2

:

:

� � � �

� � � �    

 Thus, 

    
x s

s

s

s s
( ) � �

�

� �

1 2

2 22
 

  (3.9)   

 To invert the second term, we complete the square in the denominator to get a 
familiar transform. Remember that for a perfect square, the quadratic must have 
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the form  s  2   �   a   s   �  ( a   /2) 2   �  ( s   �   a   /2) 2 , where the constant is one-half the mid-
dle coefficient squared. The second term on the right-hand side becomes 

    

s

s s

s

s s

s

s

�

� �
�

�

� � � �
�

�

� �

2

2 2

2

2 1 2 1

2

1 12 2 2( ) ( )    

 where we’ve added and subtracted one-half the middle coefficent squared, 
(2/2) 2   �  1, so the denominator remains unchanged. The transform of the solution 
is now 

    
x s

s

s

s
( )

( )
� �

�

� �

1 2

1 12 
  (3.10)

   

 One last modification of the second term is required before inversion. A term of 
this type will lead to a sine term and a cosine term in the solution. From Table 2.1, 
we see that 

    
L e kt

k

s a k
at� �

� �
sin( )

( )
{ } 2 2 

  (3.11a)   

    
L e kt

s a

s a k
at� �

�

� �
cos( )

( )
{ } 2 2 

  (3.11b)   

 Note that everywhere  s  appears in these forms, it appears as the quantity  s   �   a.  
Thus, comparing these transforms with  Eq. (3.10) , we see that we need an  s   �  1 
term in the numerator, to go with the  s   �  1 in the denominator. So we regroup as 

    
x s

s

s

s s

s

s
( )

( )

( ) ( ) (
� �

� �

� �
� �

�

� �
�

1 1 1

1 1

1 1

1 1

1
2 2 2 2 ss � �1 12 2)    

 We can easily invert these terms to obtain the solution to the differential equation. 

    x t e t tt( ) ( )� � ��1 cos sin    

 We now summarize the steps in this method for inverting quadratic terms with 
complex roots while avoiding the use of complex algebra. 

   Step 1.  Form the partial expansion term for the quadratic with a first-order term 
in  s  in the numerator.  

  Step 2.  Determine the numerators of the other terms in the expansion, using the 
Heaviside expansion.  

  Step 3.  Cross-multiply the equation for  x ( s ) by the denominator of  x(s),  and 
equate coefficients of like terms to determine the constants in the numer-
ator of the quadratic term.  

  Step 4.  Complete the square for the quadratic term.  
  Step 5.  Regroup the terms in the numerator, such that if the quadratic is now 

( s   �   a ) 2 , everywhere else that  s  appears, it appears as  s   �   a.   
  Step 6.  Invert the resulting two terms to a sine and a cosine term (probably mul-

tiplied by an exponential).   
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 In the next example, an exceptional case is considered; the denominator of  x ( s ) has 
 repeated roots.  The procedure in this case will vary slightly from that of the previous 
cases.   

  Example 3.5.   Inversion of a transform with repeated roots .  Solve 

    

d x

dt

d x

dt

dx

dt
x

x x x

3

3

2

2
3 3

1

0 0 0 0

� � � �

� � �( ) ( ) ( )′ ′′    

 Application of the Laplace transform yields 

    

x s
s s s s

( ) �
� � �

1

3 3 13 2( )
    

 Factoring and expanding in partial fractions, we find 

    
x s

s s

A

s

B

s

C

s

D

s
( )

( ) ( ) ( )
�

�
� �

�
�

�
�

�

1

1 1 1 13 3 2 
  (3.12)   

 As in the previous cases, to determine  A,  multiply both sides by  s  and then set  s  
to zero. This yields 

    A � 1    

 Multiplication of both sides of  Eq. (3.12)  by ( s   �  1) 3  results in 

    
1 1

1 1
3

2

s

A s

s
B C s D s�

�
� � � � �

( )
( ) ( )

 
  (3.13)   

 Setting  s   �   � 1 in  Eq. (3.13)  gives 

    B � �1    

 Having found  A  and  B,  we introduce these values into  Eq. (3.12)  and place the 
right side of the equation over a common denominator; the result is 

    

1

1

1 1 1

13

3 2

3s s

s s Cs s Ds s

s s( )

( ) ( ) ( )

( )�
�

� � � � � �

� 
  (3.14)   

 Expanding the numerator of the right side gives 

    

1

1

1 3 2 2 1

13

3 2

s s

D s C D s C D s

s s( )

( ) ( ) ( )

(�
�

� � � � � � � �

� ))3 
  (3.15)   

 We now equate the numerators on each side to get 

    1 1 3 2 2 13 2� � � � � � � � �( ) ( ) ( )D s C D s C D s    
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 Equating the coefficients of like powers of  s  gives 

    

1 0

3 2 0

2 0

� �

� � �

� � �

D

C D

C D    

 Solving these equations gives  C   �   � 1 and  D   �   � 1. 
 The final result is then 

    
x s

s s s s
( )

( ) ( )
� �

�
�

�
�

�

1 1

1

1

1

1

13 2
   (3.16)   

 By referring to Table 2.1, this can be inverted to 

    

x t e
t

tt( ) � � � ��1
2

1
2





   (3.17)   

 The reader should verify that  Eq. (3.16)  placed over a common denominator 
results in the original form 

    
x s

s s
( )

( )
�

�

1

1 3
   

and that  Eq. (3.17)  satisfies the differential equation and initial conditions.  

 The result of  Example 3.5  may be generalized. The appearance of the factor 
( s   �   a )  n   in the denominator of  x ( s ) leads to  n  terms in the partial fraction expansion 

    

C

s a

C

s a

C

s an n
n1 2

1( )
,

( )
, . ,

� � ��
. .

    

 The constant  C  1  can be determined as usual by multiplying the expansion by ( s   �   a )  n   
and setting  s   �   �  a.  The other constants are determined by the method shown in  
Example 3.5 . These terms, according to Table 2.1, lead to the following expression as 
the inverse transform: 

    

C

n
t

C

n
t C t Cn n

n n
1 1 2 2

1
1 2( )! ( )!

.
�

�
�

� � �� �
�

. .




e at�

 
  (3.18)   

 It is interesting to recall that in the classical method for solving these equations, one 
treats repeated roots of the characteristic equation by postulating the form of  Eq. (3.18)  
and selecting the constants to fit the initial conditions.   
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  3.2 QUALITATIVE NATURE OF SOLUTIONS 

  If we are interested  only in the form  of the solution  x ( t ), which is often the case in our 
work,  this information may be obtained directly from the roots of the denominator of  
 x ( s ). As an illustration of this “qualitative” approach to differential equations, consider 
 Example 3.4  in which 

    

x s
s s s

A

s

B

s j

C

s j
( ) �

� �
� �

� �
�

� �

2

2 2 1 12( )
   

is the transformed solution of 

    

d x

dt

dx

dt
x x x

2

2
2

2 2 0 0 0� � � � �
′ ′( ) ( )

    

 It is evident by inspection of the partial fraction expansion,  without  evaluation of the 
constants, that the  s  in the denominator of  x ( s ) will give rise to a constant in  x ( t ). Also, 
since the roots of the quadratic term are  � 1  �   j,  it is known that  x ( t ) must contain terms 
of the form  e   �  t   ( C  1  cos  t   �   C  2  sin  t ) as we saw previously. This may be sufficient infor-
mation for our purposes. Alternatively, we may be interested in the behavior of  x ( t ) as 
 t  →  � . It is clear that the terms involving sin and cos vanish because of the factor  e   �  t  . 
Therefore,  x ( t ) ultimately approaches the constant, which by inspection must be unity. 

 The qualitative nature of the solution  x ( t ) can be related to the location of the 
roots of the denominator of  x ( s ) in the complex plane. These roots are the roots of 
the characteristic equation and the roots of the denominator of the transformed forcing 
function. Consider  Fig. 3–1 , a drawing of the complex plane, in which several typical 

Imaginary
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FIGURE 3–1
Location of typical roots of characteristic equation.
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roots are located and labeled with their coordinates.  Table 3.1  gives the form of the 
terms in the equation for  x ( t ), corresponding to these roots. Note that all constants  a  1 ,  
a  2 , . . . ,  b  1 ,  b  2 , . . . are taken as positive. The constants  C  1  and  C  2  are arbitrary and can 
be determined by the partial fraction expansion techniques. As discussed above, this 
determination is often not necessary for our work. 

 If any of these roots are repeated, the term given in  Table 3.1  is multiplied by a 
power series in  t  

    K K t K t K tr
r

1 2 3
2 1� � � � �. . .
  

 where  r  is the number of repetitions of the root and the constants  K  1 ,  K  2 , . . . ,  K   r   can be 
evaluated by partial fraction expansion.  

It is thus evident that the imaginary axis divides the root locations into distinct 
areas, with regard to the behavior of the corresponding terms in  x ( t ) as  t  becomes large. 
Terms corresponding to roots to the left of the imaginary axis vanish exponentially 
in time, while those corresponding to roots to the right of the imaginary axis increase 
exponentially in time. Terms corresponding to roots at the origin behave as power series 
in time, a constant being considered as a degenerate power series. Terms corresponding 
to roots located elsewhere on the imaginary axis oscillate with constant amplitude in 
time unless they are multiple roots, in which case the amplitude of oscillation increases 
as a power series in time. Much use will be made of this information in later sections 
of the text. 

      SUMMARY 

 The reader now has available the basic tools for the use of Laplace transforms to solve 
differential equations. In addition, it is now possible to obtain considerable informa-
tion about the qualitative nature of the solution with a minimum of labor. It should be 
pointed out that it is always necessary to factor the denominator of  x ( s ) to obtain any 
information about  x ( t ). If this denominator is a polynomial of order 3 or more, this may 
be far from a trivial problem. 

Roots in denominator of X(s) Terms in x(t) for  t > 0

s1 C e a t
1 1�

e C b t C b ta t� �2 1 2 2 2( )cos sin

C1 cos b3 t � C2 sin b3 t

e C b t C b ta t4 1 4 2 4( )cos sin�

s5 C ea t
1 5

s6 C1

s s2 2, *s s2 2, *

s s3 3, *s s3 3, *

s s4 4, *s s4 4, *

TABLE 3.1

Nature of terms in the solution x(t) based on roots in the denominator of X(s) 
from Fig. 3–1
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 The appendix to this chapter is a grouping of several Laplace transform theorems 
that will find later application. In addition, a discussion of the impulse function  d   ( t ) is 
presented there. Unavoidably, this appendix is rather dry. It may be desirable for the 
reader to skip directly to Chap. 4, where our control studies begin. At each point where 
a theorem of App. 3A is applied, reference to the appropriate section of the appendix 
can be made.  

  PROBLEMS 

    3.1.  Solve the following by using Laplace transforms.

   ( a )
     

d x

dt

dx

dt
x x x

2

2 1 0 0 0� � � � �( ) ( )′
     

  
( b )

     

d x

dt

dx

dt
x x x

2

2 2 1 0 0 0� � � � �( ) ( )′
     

  
( c )

     

d x

dt

dx

dt
x x x

2

2 3 1 0 0 0� � � � �( ) ( )′
       

  Sketch the behavior of these solutions on a single graph. What is the effect of the coefficient 
of  dx/dt?   

   3.2.  Solve the following differential equations by Laplace transforms.

   
( a )

     

d x

dt

d x

dt
t x x x x

4

4

3

3 0 0 0 0� � � � �cos ( ) ( ) ( ) (′ ′′′ ′′ 00 1) �
     

  ( b )
     

d q

dt

dq

dt
t t q q

2

2
2 2 0 4 0 2� � � � � �( ) ( )′

        

   3.3.  Invert the following transforms.

   
( a )

     

3

1 42 2

s

s s� �( )( )
     

  
( b )

     

1

2 52s s s� �( )
     

  
( c )

     

3 3 2

1

3 2

2 2
s s s

s s

� � �

�( )         

   3.4.  Expand the following functions by partial fraction expansion. Do  not  evaluate coefficients 
or invert expressions.

   

( a )

     

X s
s s s

( )
( ) ( )

�
� � �

2

1 1 32 2( )
     

  ( b )
     

X s
s s s s

( )
( )( )( )

�
� � �

1

1 2 33 3
     

  ( c )
     

X s
s s s s

( )
( )( )( )( )

�
� � � �

1

1 2 3 4         
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    3.5.     ( a )  Invert:  x ( s )  �  1/[ s ( s   �  1)(0.5 s   �  1)]  
  ( b ) Solve:  dx / dt   �  2 x   �  2   x (0)  �  0     

    3.6.  Obtain  y ( t ) for

   
( a )

     
y s

s

s s
( ) �

�

� �

1

2 52
     

  ( b )
     

y s
s s

s
( ) �

�2

4
2

     

  ( c )
     

y s
s

s
( )

( )
�

�

2

1 3
        

    3.7.     ( a )  Invert the following function. 

    
y s s( ) � �1 12 2

/ ( )
     

  ( b ) Plot  y  versus  t  from 0 to 3 p .     
    3.8.  Determine  f (t)  for  f ( s )  �  1/[ s  2  ( s   �  1)].  

    3.9.  Solve the following differential equations.

   
( a )

     

d x

dt

dx

dt
x u t x x

2

2 4 3 0 0 0� � � � �( ) ( ) ( )′
     

  ( b )
     

d x

dt

dx

dt
x u t x x

2

2 2 0 0 1� � � � �( ) ( ) ( )′
     

  
( c )

     
2 2 0 0 0

2

2
d x

dt

dx

dt
x u t x x� � � � �( ) ( ) ( )′

        

   3.10.  Use the trigonometric identities below to express the solution to Prob. 3.9 c  in terms of sine 
only. ( Note:  A sine and a cosine wave with the same frequency can be expressed as a single 
sine wave of the same frequency. The resulting sine wave will have a different amplitude 
and be phase-shifted from the original waves. This result will be important when we dis-
cuss frequency response in Chap. 15.) 

    

a b a b a b

A B A

1 2 3cos sin sin

sin sin

� � � �

� �

( )

( ) cos sin cosB B A�     

   3.11.  Find  f (t)  if  F ( s ) is

   
( a )

     

1

1 23( ) ( )s s� �      

  ( b )
     

s

s s

�

� �

1

2 52
     

  
( c )

     

s s

s s s

2

3 2
6

2 2

� �

� � �      

  
( d )

     

s

s s

�

�

1

22 ( )      
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( e )

     

1

1 1s As Bs( )( )� �      

  
( f )

     

s

s s

�

�

1

2 1( )      

  ( g )
     

s

s s

�

� �

1

3 12
     

  
( h )

     

s

s s

�

�

1

2 12 ( )         

   3.12.  Find the solution to the following set of equations. 

    

dx

dt
x x

dx

dt
x x e

x
t

1
1 2

2
1 2

1

2 3 1

2
0

� � �

� � �

�










( ) xx2 0 0( ) �

    

   Hint:  Transformed equations can be manipulated algebraically to solve for each unknown 
(i.e., two equations in two unknowns) and then inverted separately.  

   3.13.  Use MATLAB.
   ( a ) Find the partial fraction expansions for Prob. 3.11.  
  ( b ) Invert the transforms in Prob. 3.11, using the  ILAPLACE  command.  
  ( c ) Graph the solutions to Prob. 3.11 (skip Prob. 3.11 e ).     

   3.14.  Use the MATLAB  DSOLVE  command to solve Prob. 3.12.  

   3.15.  Use the MATLAB  DSOLVE  command to solve Prob. 3.9.  

   3.16.     ( a )  Solve the differential equations in Prob. 2.3, using partial fractions.  
  ( b ) Use the MATLAB  DSOLVE  command to solve the ODEs in Prob. 2.3.       
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  CHAPTER 

3
CAPSULE SUMMARY 

 Any proper fraction may be resolved into a number of partial fractions subject to the 
following rules. 

   1. Factors such as ( as   �   b ) in the denominator  F ( s )/… ( as   �   b ) . . . will produce a 
term of type  A /( as   �   b ), where  A  is a nonzero constant, in the expansion.  

  2. If there are repeated factors in the denominator, such as  F ( s )/( as   �   b )  n  , they will 
produce  n  terms in the partial fraction expansion. 

    

F s

as b

A

asn

n

( )

( )�
�

�

root repeated  times
� �� ��

1

bb

A

as b

A

as b

n
n

�
�

� �
�

2
2( ) ( )

.  . .

there are  parn ttial fractions in expansion
� ��������� ����������

     

  3. Quadratic or polynomial factors that you do not choose to factor yield 

    

F s

as bs c

As B

as bs c

( )

( )� �2 2� �
�

�

� �
numerator is poolynomial of one
less degree than denominatoor

� ��� ���
��

     

  4. If you have repeated quadratics, 

    

F s

as bs c

A s B

as

n

( )

( )�� ���� �����
2

1 1
2

� �
�

�

yields→

�� �
�

�

� �
� �

�

�bs c

A s B

as bs c

A s B

as b

n n2 2
2 2 2( ) (

. . .
ss c n

n

�
�

)
. . .

 terms in expansion
� ���������������� ���������������

      

 Useful MATLAB commands:  
 dsolve — used to symbolically solve ODEs 
 ilaplace — used to invert Laplace transforms 
  diff(int(...)) — used to “force” MATLAB to perform a partial fraction 
expansion     
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  CHAPTER APPENDIX

3
  FURTHER PROPERTIES OF TRANSFORMS 

AND PARTIAL FRACTIONS 

  This appendix is a collection of theorems and results relative to the Laplace transfor-
mation. The theorems are selected because of their applicability to problems in control 
theory. Other theorems and properties of the Laplace transformation are available in 
standard texts on elementary differential equations. In later chapters, the theorems pre-
sented here will be used as needed.  

  3A.1 FINAL-VALUE THEOREM 

  If  f ( s ) is the Laplace transform of  f (t) , then 

    
lim [ ( )] lim[ ( )]
t s

f t sf s
→ ∞ →

�
0    

 provided that  sf  ( s ) does not become infinite for any value of  s  satisfying Re( s )  �  0. If 
this condition does not hold,  f  ( t ) does not approach a limit as  t  →  � . In the practical 
application of this theorem, the limit of  f  ( t ) that is found by use of the theorem is correct 
only if  f  ( t ) is bounded as  t  approaches infinity. 

  Proof. 
From the Laplace transform of a derivative, we have 

    

df

dt
e dt sf s fst� � �( ) ( )0

0

∞
∫
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 Hence, 

    
lim lim[ ( )] ( )
s

st

s

df

dt
e dt sf s f

→ →

∞
∫0 00

0� � �
    

 It can be shown that the order of the integration and limit operation on the left side of this 
equation can be interchanged if the conditions of the theorem hold. Doing this gives 

    

df

dt
dt sf s f

s
� �lim[ ( )] ( )

→

∞
∫ 00

0
    

 Evaluating the integral gives 

    
lim[ ( )] ( ) lim[ ( )] ( )
t s

f t f sf s f
→∞ →

� � �0 0
0    

 which immediately yields the desired result. 

  Example 3A.1.   Find the final value of the function  x ( t ) for which the Laplace 
transform is 

    

x s
s s s s

( ) �
� � �

1

3 3 13 2( )
    

 Direct application of the final-value theorem yields 

    
lim[ ( )] lim
t s

x t
s s s→ ∞ →

�
� � �

�
0 3 2

1

3 3 1
1

    
 As a check, note that this transform was inverted in Example 3.6 to give 

    
x t e

t
tt( ) � � � ��1

2
1

2





    
 which approaches unity as  t  approaches infinity. Note that since the denominator 
of  sx ( s ) can be factored to ( s   �  1) 3 , the conditions of the theorem are satisfied; 
that is, ( s   �  1) 3  � 0 unless  s   �   � 1.  

  Example 3A.2 .  Find the final value of the function  x ( t ) for which the Laplace 
transform is 

    

x s
s s s

s s s s s
( )

( )
�

� � �

� � � �

4 2

3 2

6 9 8

2 2 2( )
    

 In this case, the function  sx ( s ) can be written 

    
sx s

s s s

s s s s
( )

( )( )( )( )
�

� � �

� � � �

4 26 9 8

1 2 1 2    

cou9789x_ch03_032-068.indd   50cou9789x_ch03_032-068.indd   50 8/14/08   2:32:56 PM8/14/08   2:32:56 PM



Confirming Pages

 CHAPTER 3  INVERSION BY PARTIAL FRACTIONS 51

 Since this becomes infinite for  s   �  1 and  s   �  2, the conditions of the theorem are 
not satisfied. Note that we inverted this transform in  Example 3.3 , where it was 
found that 

    
x t e e e et t t t( ) � � � � � �� �2

1

12

11

3

17

12
2 2 2

3
    

 This function continues to grow exponentially with  t  and, as expected, does not 
approach a limit. Mathematically we can understand why this is so, by referring 
to  Fig. 3–1 . A term in the denominator (the characteristic equation) such as  s   �  1 
yields a root in the right half-plane (to the right of the imaginary axis in  Fig. 3–1 ). 
Referring to  Table 3.1 , we see that the solution will involve a term of the form 
 C  1  e   t   which will grow without bound and not approach a limit as  t  →  � . Thus, 
if any roots of the denominator have positive real parts, the final-value theorem 
does not apply.  

 The proof of the next theorem closely parallels the proof of the last one and is left 
as an exercise for the reader.   

  3A.2 INITIAL-VALUE THEOREM   

    
lim [ ( )] lim [ ( )]
x s

f t sf s
→ → ∞0

�
   

 The conditions on this theorem are not so stringent as those for the previous one because 
for functions of interest to us the order of integration and limiting process need not be 
interchanged to establish the result. 

  Example 3A.3 .  Find the initial value  x (0) of the function that has the transform 

    

x s
s s s

s s s s s
( )

( )
�

� � �

� � � �

4 2

3 2

6 9 8

2 2 2( )
    

 The function  sx ( s ) is written in the form 

    
sx s

s s s

s s
( ) �

� � �

� �

4 2

4 2
6 9 8

5 4    
 Dividing the numerator and denominator by  s  4 , we get 

    
sx s

s s s

s s
( ) �

� � �

� �

1 6 9 8

1 5 4

2 3 4

2 4
/ / /

/ /    
 which clearly goes to unity as  s  becomes infinite. Hence 

    x( )0 1�    
 which again checks  Example 3.3 .    
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  3A.3 TRANSLATION OF TRANSFORM 

  If  L { f (t) }  �   f  ( s ), then 

    
L e f t f s aat{ ( )} ( )� � �

   
 In other words, the variable in the transform  s  is translated by  a.  We can transform  f (t)  
just as if the  e   �  at   were not present, and then replace all the  s ’s by  s   �   a.  

  Proof  

    
L e f t f t e e dt f t e dat at st s a t{ ( )} ( ) ( ) ( )� � � � �� �

0

∞
∫ tt f s a� �( )

0

∞
∫

    

  Example 3A.4 .  Find  L{e   �  at   cos  kt }. Since 

   
L kt

s

s k
{ }cos �

�2 2
  

then by the previous theorem, 

    
L e kt

s a

s a k
at{ }

( )
� �

�

� �
cos 2 2

   
which matches the result shown in Table 2.1. 

 A primary use for this theorem is in the inversion of transforms. For example, by 
using this theorem the transform 

    
x s

s a
( )

( )
�

�

1
2

   
can be immediately inverted to 

    x t te at( ) � �
   

In obtaining this result, we made use of the following transform pair from Table 2.1: 

    
L t

s
{ } �

1
2

         

3A.4 TRANSLATION OF FUNCTION 

  If  L { f  ( t )}  �   f  ( s ), then 

    
L f t t e f sst{ ( )} ( )� � �

0 0

 
  provided that 

    
f t t( ) � �0 0for

 
  (which will always be true for functions we use). 
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 Before we prove this theorem, it may be desirable to clarify the relationship 
between  f  ( t   �   t  0 ) and  f  ( t ). This is done for an arbitrary function  f  ( t ) in  Fig. 3A–1 , 
where it can be seen that  f  ( t   �   t  0) is simply translated horizontally from   f  ( t ) through a 
distance  t  0 . 

  Proof.  

    

L f t t f t t e dt

e f t t e

st

st s

{ ( )} ( )

( )

� � �

� �

��

� �

0 0
0

00

∫
(( ) ( )t t

t
d t t�

�

�
�0

0
0∫

    
 But since  f  ( t )  �  0 for  t  < 0, the lower limit of this integral may be replaced by zero. Since 
 t   �   t  0  is now the dummy variable of integration, the integral may be recognized as the 
Laplace transform of  f  ( t ); thus, the theorem is proved. 

 This result is also useful in inverting transforms. It follows that if  f  ( t ) is the inverse 
transform of  f  ( s ), then the inverse transform of 

    
e f sst� 0 ( )

 
  is the function 

    
g t

f t t t t

t t
( ) �

� �

�

0 0

00
( ){

    
 In other words,  g ( t )  �   f  ( t   �   t  0 ) u ( t   �   t  0 ). 

   This property of transforms is very useful when pure 
time delays are present in a system. For example, 
consider a case where we have a stream exiting a 
chemical reactor, and the sensor that measures the 
exiting concentration lies downstream at a distance 
of 20 ft. If the exiting concentration changes at time 
 t   �  0, the sensor will not “see” the change until the 
fluid can travel the 20 ft down the pipeline to the 
sensor. The concentration signal at the sensor is 
delayed, and the delay time is due to the transporta-
tion lag in the pipeline. If the signal at the exit of the 

reactor is  C ( t ), then the signal at the sensor will be  C ( t   �   t  0 ) u ( t   �   t  0 ), where  t  0  is the 
delay time. We will discuss this phenomenon further in Chap. 7. 

  Example 3A.5 .  Find the Laplace transform of 

    

f t
h

t

t h

t h

( ) �

�

� �

�

0

1

0

0

0










    

tt0

f(t)

f (t–t0)

O

f

FIGURE 3A–1
Illustration of f(t � t0) as related to f (t).
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 This function is pictured in  Fig. 3A–2 . It is clear that  f (t)  
may be represented by the difference of two functions 

   f t
h

u t u t h( ) [ ( ) ( )]� � �
1

  where  u ( t   �   h ) is the unit-step function translated  h  units to 
the right. We may now use the linearity of the transform and 
the previous theorem to write immediately 

    f s
h

e

s

hs

( ) �
� �1 1

    

 This result is of considerable value in establishing the transform of the unit-
impulse function, as will be described in the next section.    

  3A.5  TRANSFORM OF THE UNIT-IMPULSE 
FUNCTION 

  Consider again the function of  Example 3A.5 . If we allow  h  to shrink to zero, we obtain 
a new function which is zero everywhere except at the origin, where it is infinite. How-
ever, it is important to note that the area under this function always remains equal to 
unity. We call this new function  d   ( t ), and the fact that its area is unity means that 

    
d ( )t dt �

��

�
1∫    

 The graph of  d   ( t ) appears as a line of infinite height at the origin, as indicated in 
Table 2.1. The function  d  ( t ) is called the unit-impulse function or, alternatively, the 
delta function. 

 It is mentioned here that, in the strict mathematical sense of a limit, the function 
 f (t)  does not possess a limit as  h  goes to zero. Hence, the function  d   ( t ) does not fit the 
strict mathematical definition of a function. To assign a mathematically precise mean-
ing to the unit-impulse function requires use of the theory of distributions, which is 
clearly beyond the scope of this text. However, for our work in automatic control, we 
will be able to obtain useful results by formal manipulation of the delta function, and 
hence we ignore these mathematical difficulties. 

 We have derived in  Example 3A.5  the Laplace transform of  f (t)  as 

    
L f t

e

hs

hs

{ ( )} �
� �1

    
 Formally, then, the Laplace transform of  d   ( t ) can be obtained by letting  h  go to 0 in 
 L { f (t) }. Applying L’Hôpital’s rule, we find 

    
L t

e

hs

se

sh

hs

h

hs

{ ( )} lim limd �
�

� �
� �

→ →0 0

1
1

 
  (3A.1)   

 This “verifies” the entry in Table 2.1. 

hO t

f(t)

h
1

FIGURE 3A–2
Pulse function of 
Example 3A.5.
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 It is interesting to note that since we rewrote  f  ( t ) in  Example 3A.5  as 

    
f t

h
u t u t h( ) [ ( ) ( )]� � �

1

 
  then  d   ( t ) can be written as 

    
d ( ) lim

( ) ( )
t

u t u t h

hh
�

� �

→ 0    
 In this form, the delta function appears as the derivative of the unit-step function. The 
reader may find it interesting to ponder this statement in relation to the graphs of  d  ( t ) 
and  u ( t ) and in relation to the integral of  d   ( t ) discussed previously. 

 The unit-impulse function finds use as an idealized disturbance in control systems 
analysis and design. For example if one were to add water to a tank very quickly, the 
disturbance could be modeled as an impulse whose magnitude would be equal to the 
volume of the addition. If the contents of a 55-gal drum were quickly dumped into a 
storage tank, the addition could be modeled using an impulse function.   

  3A.6 TRANSFORM OF AN INTEGRAL 

  If  L { f  ( t )}  �   f  ( s ), then 

    
L f t dt

f s

s

t
( )

( )
0∫{ } �

    
 This important theorem is closely related to the theorem on differentiation. Since the 
operations of differentiation and integration are inverses of each other when applied to 
the time functions, i.e., 

    
d

dt
f t dt

df

dt
dt f t

t t
( ) ( )

0 0∫ ∫� �
 

  (3A.2)
   

 it is to be expected that these operations when applied to the transforms will also be 
inverses. Thus assuming the theorem to be valid,  Eq. (3A.2)  in the transformed variable 
 s  becomes 

    
s

f s

s s
sf s f s

( )
( ) ( )� �

1

       

In other words, multiplication of f(s) by s corresponds to differentiation of f (t) with respect to t, and 
division of f (s) by s corresponds to integration of f (t) with respect to t.

  The proof follows from a straightforward integration by parts. 

    
f s f t e dtst( ) ( )� �

0

∞
∫
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 Let 

    
u e dv f t dtst� �� ( )

    
 Then 

    
du se dt v f t dtst t

� � �� ( )
0∫    

 Hence, 

    
f s e f t dt s f t dt est t t
( ) ( ) ( )� �� �

0 0 00∫ ∫∫
∞ ∞ 





sst dt

    
 Since  f  ( t ) must satisfy the requirements for possession of a transform, it can be shown 
that the first term on the right, when evaluated at the upper limit of  � , vanishes because 
of the factor  e   �  st  . Furthermore, the lower limit clearly vanishes, and hence there is no 

contribution from the first term. The second term may be recognized as     sL f t dt
t

{ ( ) },
0∫  

  and the theorem follows immediately. 

  Example 3A.6 .  Solve the following equation for  x ( t ). 

    

dx

dt
x t dt t

x

t
� �

�

( )

( )

0

0 3

∫
    

 Taking the Laplace transform of both sides and making use of the previous theo-
rem yield 

    
sx s

x s

s s
( )

( )
� � �3

1
2

    
 Solving for  x ( s ) gives 

    

x s
s

s s

s

s s s
( )

( )( )
�

�

�
�

�

� �

3 1

1

3 1

1 1

2

2

2

( )
    

 This may be expanded into partial fractions according to the usual procedure 
to give 

    
x s

s s s
( ) � �

�
�

�

1 1

1

1

1    
 Hence, 

    x t e et t( ) � � ��1    
 The reader should verify that this function satisfies the original equation.  
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  Example 3A.7 .  We mentioned above that the unit impulse is the derivative of 
the unit-step function, and therefore the unit step must be the integral of the unit-
impulse function. Use the theorem for the transform of an integral to determine 
the transform of the unit-step function if we know that  L { d   ( t )}  �  1. 

 

Since we know that

     

u t t dt( ) ( ) ,�
�

d
0
∫

   

then

 

    

L u t L t dt
s

L t
s

{ ( )} ( ) { ( )}� � �
�

d d
0

1 1
∫











    
 Similarly, since we know that  du ( t )/ dt   �   d   ( t ), then 

    
L t L

du t

dt
sL u t s

s
{ ( )}

( )
{ ( )}d � � � �{ } ⋅ 1

1
         

3A.7 CUSTOM INPUTS 

  We can produce “custom” input signals by appropriately constructing them using stan-
dard input signals. These custom inputs are frequently useful when we analyze a pro-
cess disturbance. 

  Example 3A.8 .  Determine  f (t)  and  f (s)  for the input signal in  Fig. 3A–3 . This 
signal represents the step change in temperature of a furnace at hour 1, and then 

after holding for 2 h at that temperature, the slow ramping 
down to the original temperature over an hour-long period. 

 We can consider this input signal to be constructed 
from several individual “pieces,” as shown in  Fig. 3A–4 . 

 Thus, 

   
f t u t t u t t u t( ) ( ) ( ) ( ) ( ) ( )� � � � � � � �1 3 3 4 4

   
 A physical example where a custom input would be useful 
occurs if we decide to change the temperature set point of 
a process up by 5  � F and then 10 min later we step the set 

–1 0 1 2 3 4 5
–1

–0.5

0

0.5

1

1.5

time

f

FIGURE 3A–3
Custom input signal.

FIGURE 3A–4
Constructing the custom input signal by combining standard inputs.

–1 0 1 2 3 4 5
–1

–0.5

0

0.5

1

1.5

time

f

–1 0 1 2 3 4 5
–1

–0.5

0

0.5

1

1.5

time

f

–1 0 1 2 3 4 5
–1

–0.5

0

0.5

1

1.5

time

f

 Start with this piece . . . Add this piece . . . Then add this piece.

cou9789x_ch03_032-068.indd   57cou9789x_ch03_032-068.indd   57 8/14/08   2:33:04 PM8/14/08   2:33:04 PM



Confirming Pages

58 PART 1 MODELING FOR PROCESS DYNAMICS

point back down to its original value. We’ ve introduced a square wave “pulse” that we 
can construct from two unit steps.    

  3A.8  GENERAL DISCUSSION OF PARTIAL 
FRACTIONS ON A QUADRATIC TERM 

  In Chap. 3 we discussed how to express a quadratic term in the denominator of a frac-
tion using partial fractions without resorting to complex algebra if we had complex 
roots. For completeness, we present the method using complex algebra. 

 Consider the general expression involving a quadratic term 

    
x s

F s

s s
( )

( )
�

� �2 a b 
  (3A.3)  

where  F ( s ) is some function of  s  (say, 1/ s ). Expanding the terms on the right side gives 

    
x s F s

Bs C

s s
( ) ( )� �

�

� �
1 2 a b 

  (3A.4)
  

where  F  1 ( s ) represents other terms in the partial fraction expansion. First solve for  B  
and  C  algebraically by placing the right side over a common denominator and equating 
the coefficients of like powers of  s.  The next step is to express the quadratic term in 
the form 

    
s s s a k2 2 2� � � � �a b ( )

    
 The terms  a  and  k  can be found by solving for the roots of  s  2   �   a   s   �   b   �  0 by the 
quadratic formula to give  s  1   �   �  a   �   jk  and  s  2   �   �  a   �   jk.  The quadratic term can now 
be written 

    
s s s s s s s a jk s a jk s a2

1 2� � � � � � � � � � � �a b ( )( ) ( )( ) ( )22 2� k
    

 Equation (3A.4) now becomes 

    
x s F s

Bs C

s a k
( ) ( )

( )
� �

�

� �
1 2 2 

  (3A.5)   

 The numerator of the quadratic term is written to correspond to the transform pairs 
given by  Eqs. (3.11 a )  and  (3.11 b ) . 

    
Bs C B s a

C B a

k
k B s a

C aB

k
k� � � �

�
� � �

�/



 ( )

    
 Equation (3A.5) becomes 

    
x s F s B

s a

s a k

C aB

k

k

s a k
( ) ( )

( ) ( )
� �

�

� �
�

�

� �
1 2 2 2 2
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 Applying the transform pairs of  Eqs. (3.11 a )  and  (3.11 b )  to the quadratic terms on the 
right gives 

    
x t F t Be kt

C aB

k
e kat at( ) ( )� � �

�� �
1 cos sin



 tt

 
  (3A.6)  

where  F  1  ( t ) is the result of inverting  F  1  ( s );  B  and  C  are coefficients of polynomial 
 Bs   �   C  in numerator of quadratic term; and  a  and  k  correspond to the roots of the qua-
dratic, roots  �   �  a   �   kj.  Let’s use this generalized approach to solve a problem that 
we’re already familiar with,  Example 3.4 . 

 Recall from  Eq. (3.9)  that 

    
x s

A

s

Bs C

s s s

s

s s
( ) � �

�

� �
� �

� �

� �2 22 2

1 2

2 2    
 The roots of the quadratic in the denominator are 

    
Roots �

� � �
� � �

2 4 8

2
1 j

    
 Summarizing the constants required for  Eq. (3A.6) , we have   

A B C a k F1(s)
1 �1 �2 1 1 1/s

   Substituting these quantities into  Eq. (3A.6) , we obtain the solution 

    
x t e t e t et t( ) ( )

( )( )
� � � �

� � �
� �� �1 1

2 1 1

1
1cos sin �� �t t t( )cos sin

  
 which is the same as our previous result. 

 We now apply this method to another example. 

  Example 3A.9 .  Solve 

    

x s
s s s

A

s

Bs C

s s
( ) �

� �
� �

�

� �

1

2 5 2 52 2( )
    

 Applying the quadratic equation to the quadratic term gives 

    
Roots �

� �
� �

2 4 20

2
1 2 j

    
 Thus, we find that  a   �   � 1 and  k   �  2. Solving for  A, B,  and  C  gives     A � 1

5 ,   

B � � 1
5 , and     C � 2

5 .   Introducing these values into the expression for  x ( s ) and 

applying  Eq. (3A.6)  give 

    
x t e t e tt t( ) � � �1

5
1
5

1
102 2cos sin
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        3A.9  USING COMPLEX ALGEBRA 
FOR A QUADRATIC TERM 

  Reworking  Example 3.4  using the complex roots of the quadratic, we can arrive at the 
partial fraction expansion 

    
x s

s s j s j

A

s

B

s j

C

s j
( )

( )( )
�

� � � �
� �

� �
�

� �

2

1 1 1 1 
  (3A.7)

  

where  A, B,  and  C  are constants to be evaluated, so that this relation is an identity in 
 s.  The presence of complex factors does not alter the Heaviside procedure at all. How-
ever, the computations are more tedious. 

 To obtain  A,  multiply  Eq. (3A.7)  by  s  and set  s   �  0: 

    
A

j j
�

� �
�

2

1 1
1

( )( )    
 To obtain  B,  multiply  Eq. (3A.7)  by  s   �  1  �   j  and set  s   �   � 1  �   j:  

    
B

j j

j
�

� � �
�

� �2

1 2

1

2( )( )    
 To obtain  C,  multiply  Eq. (3A.7)  by  s   �  1  �   j  and set  s   �   � 1  �   j:  

    
C

j j

j
�

� �
�

� �2

1 2

1

2( )( )    
 Therefore, 

    
x s

s

j

s j

j

s j
( ) � �

� �

� �
�

� �

� �

1 1

2

1

1

1

2

1

1    
 This is the desired result. To invert  x ( s ), we may now use the fact that 1/( s   �   a ) is the 
transform of  e   �  t  . The fact that  a  is complex does not invalidate this result, as can be 
seen by returning to the derivation of the transform of  e   �  at  . The result is 

    
x t

j
e

j
ej t j t( ) ( ) ( )� �

� �
�

� �� � � �1
1

2

1

2
1 1

    
 By using the identity 

    
e e bt j bta jb t at( ) ( )� � �cos sin

 
  this can be converted to 

    x t e t tt( ) ( )� � ��1 cos sin    
 The details of this conversion are recommended as an exercise for the reader. 

 A more general discussion of this case will promote understanding. It was seen in 
 Example 3.4  that the complex conjugate roots of the denominator of  x ( s ) gave rise to a 
pair of complex terms in the partial fraction expansion. The constants in these terms,  B  
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and  C,  proved to be complex conjugates ( � 1  �   j )/2 and ( � 1  �   j )/2. When these terms 
were combined through a trigonometric identity, it was found that the complex terms 
canceled, leaving a real result for  x ( t ). Of course, it is necessary that  x ( t ) be real, since 
the original differential equation and initial conditions are real. 

 This information may be utilized as follows: The general case of complex conju-
gate roots arises in the form 

    
x s

F s

s k jk s k jk
( )

( )
�

� � � �1 2 1 2( )( ) 
  (3A.8)  

where  F ( s ) is some real function of  s.  
 For instance, in  Example 3A.9  we had 

    
F s

s
k k( ) � � �

2
1 11 2

    
 Expanding  Eq. (3A.8)  in partial fractions gives 

    

F s

s k jk s k jk
F s

a jb

s k j

( )
( )

� � � �
� �

�

� �1 2 1 2
1

1 1

1( )( ) kk

a jb

s k jk2

2 2

1 2
�

�

� �





   

(3A.9)
  

where  a  1 ,  a  2 ,  b  1 , and  b  2  are the constants to be evaluated in the partial fraction expan-
sion and  F  1  ( s ) is a series of fractions arising from  F ( s ). 

 Again, in  Example 3A.9 , 

    
a a b b F s

s
1 2 1 2 1

1

2

1

2

1

2

1

2

1
� � � � � � � �( )

    
 Now, since the left side of  Eq. (3A.9)  is real for all real  s,  the right side must also be 
real for all real  s.  Since two complex numbers will add to form a real number if they are 
complex conjugates, the right side will be real  for all real s  if and only if the two terms 
are complex conjugates. Since the denominators of the terms are conjugates, this means 
that the numerators must also be conjugates, or 

    

a a

b b

2 1

2 1

�

� �    
 This is exactly the result obtained in the specific case of  Example 3.4 . With this infor-
mation,  Eq. (3A.9)  becomes 

    

F s

s k jk s k jk
F s

a jb

s k j

( )
( )

� � � �
� �

�

� �1 2 1 2
1

1 1

1( )( ) kk

a jb

s k jk2

1 1

1 2
�

�

� �





    (3A.10)   

 Hence, it has been established that terms in the inverse transform arising from the com-
plex conjugate roots may be written in the form 

    
a jb e a jb ek jk t k jk t

1 1 1 1
1 2 1 2� � �� � � �( ) ( )( ) ( )
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62 PART 1 MODELING FOR PROCESS DYNAMICS

 Again, by using the identity 

    
e e C t j C tC jC t C t1 2 1 2 2

� � �( ) ( )cos sin
   

this reduces to 

    2 1 1 2 1 2e a k t b k tk t� �cos sin( )   (3A.11)   

 Let us now rework  Example 3A.9,  using  Eq. (3A.11) . We return to the point at 
which we arrived, by our usual techniques, with the conclusion that 

    
B

j
�

� �1

2    
 Comparison of  Eqs. (3A.7)  and  (3A.10)  and the result for  B  show that we have two 
possible ways to assign  a  1 ,  b  1 ,  k  1 , and  k  2  so that we match the form of  Eq. (3A.10) . 
They are 

    

a a

b b

1
1
2 1

1
2

1
1
2 1

1
2

� � � �

� � �
 

  or 

    

k k

k k

1 1

2 2

1 1

1 1

� �

� � �
    

 The first way corresponds to matching the term involving  B  with the first term of the 
conjugates of  Eq. (3A.10) , and the second to matching it with the second term.  In either 
case,  substitution of these constants into  Eq. (3A.11)  yields 

    � ��e t tt ( )cos sin 
  which is, as we have discovered, the correct term in  x ( t ). 

 What this means is that one can proceed directly from the evaluation of one of the 
partial fraction constants, in this case  B,  to the complete term in the inverse transform, 
in this case  �  e   �  t   (cos  t   �  sin  t ). It is not necessary to perform all the algebra, since it 
has been done in the general case to arrive at  Eq. (3A.11) . 

 Another example will serve to emphasize the application of this technique. 

  Example 3A.10 .  Solve 

    

d x

dt
x e x x

2

2
14 2 0 0 0� � � �� ( ) ( )′

    
 The Laplace transform method yields 

    

x s
s s

( )
( )

�
� �

2

4 12( )
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 Factoring and expanding into partial fractions give 

    

2

1 2 2 1 2 2( )( )( )s s j s j

A

s

B

s j

C

s j� � �
�

�
�

�
�

�   (3A.12)   

 Multiplying  Eq. (3A.12)  by  s   �  1 and setting  s   �   � 1 yields 

    
A

j j
�

� � � �
�

2

1 2 1 2

2

5( )( )    
 Multiplying  Eq. (3A.12)  by  s   �  2 j  and setting  s   �   � 2 j  yield s

    
B

j j

j
�

� � �
�

� �2

2 1 4

2

10( )( )    
 Matching the term 

    

( ) /� �

�

2 10

2

j

s j 
  with the first term of the conjugates of  Eq. (3A.10)  requires that 

    
a b k k1

2
10

1
5 1

1
10 1 20 2� � � � � � �

    
 Substituting in  Eq. (3A.11)  results in 

    
� �2

5
1
52 2cos sint t

    
 Hence the complete answer is 

    
x t e t tt( ) � � ��2

5
2
5

1
52 2cos sin

    
 Readers should verify that this answer satisfies the differential equation and initial 
conditions. In addition, they should show that it can also be obtained by matching 
the term with the second term of the conjugates of  Eq. (3A.10)  or by determining 
 C  instead of  B.      

  SUMMARY 

 In this appendix, we have presented and discussed several properties of Laplace trans-
forms. As we continue our studies with first-order systems, these properties will prove 
quite useful in our understanding and analysis of the process dynamics.  

  PROBLEMS 

   3A.1. If a forcing function  f (t)  has the Laplace transform 

    
f s

s

e

s

e

s

s s

( ) � � �
� �1
2

3

 
    graph the function  f (t) .  
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  3A.2. Solve the following equation for  y ( t ). 

    
� � � �2 3 0 1

0
y d

dy

dt
y y

t
( ) ( )t t∫

     
  3A.3. Express the function given in Fig. P3A–3 in the  t  domain and the  s  domain. 

   3A.4. Sketch the following functions.
   ( a )  f (t)   �   u ( t )  �  2 u ( t   �  1)  �   u ( t   �  3)  
  ( b )  f (t)   �  3 tu ( t )  �  3 u ( t   �  1)  �   u ( t   �  2)     

  3A.5. The function  f (t)  has the Laplace transform 

    f s e e ss s( ) ( )� � �� �1 2 2 2/   
 Obtain the function  f (t)  and graph  f (t) .  

  3A.6. Determine  f (t)  at  t   �  1.5 and at  t   �  3 for the function 

    f t u t u t t u t( ) . ( ) . ( ) ( ) ( )� � � � � �0 5 0 5 1 3 2     

  3A.7. For the following ODE:     
1

2
0 0

dx

dt
x f t x� � �( ) ( )    

   ( a ) Use  f  ( t ) from Prob. 3A.1 and determine  x ( t ). Plot  f (t)  and  x(t)  on the same graph.  
  ( b ) Use  f  ( t ) from Prob. 3A.3 and determine  x ( t ). Plot  f (t)  and  x(t)  on the same graph.  
  ( c ) Use  f  ( t ) from Prob. 3A.4 a  and determine  x ( t ). Plot  f (t)  and  x(t)  on the same graph.  
  ( d ) Use  f  ( t ) from Prob. 3A.4 b  and determine  x ( t ). Plot  f (t)  and  x(t)  on the same graph.  
  ( e ) Use  f  ( t ) from Prob. 3A.5 and determine  x ( t ). Plot  f (t)  and  x(t)  on the same graph.  
  ( f ) Use  f  ( t ) from Prob. 3A.6 and determine  x ( t ). Plot  f (t)  and  x(t)  on the same graph.     

  3A.8. Use the final-value theorem to predict the final values for the ODEs in Prob. 2.3. Verify 
your answers, using the time domain solutions obtained in Prob. 3.16.  

  3A.9. Find and sketch the solution to the following differential equations, using Laplace 
transforms.
   ( a )  y  	   �   y   �   d  ( t )   y (0)  �  0  
  ( b )  y  	   �   y   �   d  ( t   �  1)   y (0)  �  0  
  ( c )  y  	   �   y   �   u ( t )   y (0)  �  0  
  ( d )  y  	   �   y   �   u ( t   �  1)   y (0)  �  0     

2

1

0
0 1 2 3 4

t

5 6

f(
t)

FIGURE P3A–3
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3A.10. For the following transforms, find

 
lim ( ).
t

f t
→ � .

   ( a )
     

f s
s s

( )
( )

�
�

1

1 2
     

  ( b )
     

f s
s s

( )
( )

�
�

1

1 2
        

  3A.11. Use the formula for the Laplace transform of an integral to find  L {sin h  ( kt )} if you are 
given that  L {cos h  ( kt )}  �   s /( s  2   �   k  2 ).  

  3A.12. Transform the function  f (t)   �  5 e   � 2 t    t  sin (3 t ).    
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  APPENDIX

3A
CAPSULE SUMMARY 

    Final-value theorem:  
     

lim[ ( )] lim[ ( )]
t s

f t sf s
→ ∞ →

�
0    

 [Be careful, this does not apply if the denominator of  f(s)  has roots with posi-
tive real parts, such as  s   �  1.]  

   Initial-value theorem:
       

lim[ ( )] lim[ ( )]
t s

f t sf s
→ → ∞0

�
     

   Translation of a transform:  If  L { f (t) }  �   f ( s ), then  L { e   �  at    f (t) }  �   f ( s   �   a ). If 
the function of interest is multiplied by  e   �  at  , we can transform  f (t)  just as if the 
 e   �  at   were not present, and then replace all the  s ’s by  s   �   a.   

   Translation of a function (time delay):  If  L { f (t) }  �   f ( s ), then     L f t t{ ( )}� �0    
e f sst� 0 ( ),  provided that  f (t)   �  0 for  t  < 0 (which will always be true for func-

tions we use). Alternatively, if     g s e f sst( ) ( ),� � 0    then 

    
g t

f t t t t

t t
( ) �

� �

�

0 0

00
( ){

 
  or, more compactly,  g ( t )  �   f  ( t   �   t  0 ) u ( t   �   t  0 ).  

   Transform of the unit-impulse function:
       

L t
e

hsh

hs

{ ( )} limd �
�

�
�

→ 0

1
    

   Relationship between unit step and unit impulse:
       d ( ) ( )t dt u t�

�

0
∫     

and
du t

dt
t

( )
( )� d

   Transform of an integral and a derivative:    Multiplication of  f  ( s ) by  s  cor-
responds to differentiation of  f (t)  with respect to  t,  and division of  f ( s ) by  s  

corresponds to integration of  f (t)  with respect to  t.  

    

L
df t

dt
sf s f

L f t dt
t

( )
( ) ( )

( )

{ }

∫

� �provided 0 0

0











�

f s

s

( )

      

lim
h

hsse

s→ 0
1

�

�lim
h

hsse

s→ 0
1

�

�

cou9789x_ch03_032-068.indd   66cou9789x_ch03_032-068.indd   66 8/14/08   2:33:17 PM8/14/08   2:33:17 PM



Confirming Pages

 CHAPTER 3  INVERSION BY PARTIAL FRACTIONS 67

 When inverting an expansion containing a quadratic factor  
x ( s )  �   F  1 ( s )  �   Bs   �   C /( s  2   �   a   s   �   b    ), we obtain 

    
x t F t Be kt

C aB

k
e kat at( ) ( )� � �

�� �
1 cos sin



 tt

   
where  F  1 ( t ) is the result of inverting  F  1 ( s ),  B  and  C  are the coefficients of the polyno-
mial  Bs   �   C,  in the numerator of the quadratic term, and  a  and  k  correspond to the roots 
of the quadratic, roots  �   �  a   �   kj.  

 “Custom” input signals can be constructed using standard input signals. 

–1 0 1 2 3 4 5
–1

–0.5

0

0.5

1

1.5

time

f

–1 0 1 2 3 4 5
–1

–0.5

0

0.5

1

1.5

time

f

–1 0 1 2 3 4 5
–1

–0.5

0

0.5

1

1.5

time

f

  Start with this piece . . . step.   Add this piece . . . ramp.   Then add this piece . . . ramp. 

–1 0 1 2 3 4 5
–1

–0.5

0

0.5

1

1.5

time

f

“Custom” signal

 We can consider this input signal to be constructed from several individual “pieces” as 
follows:    
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 CHAPTER 

 4 

 Before we discuss a complete control system, it is necessary to become familiar 
with the responses of some of the simple, basic systems that often are the building 

blocks of a control system. This chapter and the three that follow describe in detail the 
behavior of several basic systems and show that a great variety of physical systems can 
be represented by a combination of these basic systems. Some of the terms and conven-
tions that have become well established in the field of automatic control will also be 
introduced. 

 By the end of this part of the book, systems for which a transient must be calcu-
lated will be of high order and require calculations that are time-consuming if done by 
hand. Several software packages exist for streamlining this effort. We will use MATLAB 
as a tool throughout the book to demonstrate the applications of such software.    

 4.1 TRANSFER FUNCTION     

  MERCURY THERMOMETER.   We develop the  transfer function  for a  first-order sys-
tem  by considering the unsteady-state behavior of an ordinary mercury-in-glass ther-
mometer. A cross-sectional view of the bulb is shown in  Fig. 4–1 a.   

 Consider the thermometer to be located in a flowing stream of fluid for which 
the temperature  x  varies with time. Our problem is to calculate the  response  or the time 
variation of the thermometer reading  y  for a particular change in  x.   (In order that the 
result of the analysis of the thermometer be general and therefore applicable to other 
first-order systems, the symbols x and y have been selected to represent surrounding 
temperature and thermometer reading, respectively.)  

 The following assumptions will be used in this analysis:

   1. All the resistance to heat transfer resides in the film surrounding the bulb (i.e., the 
resistance offered by the glass and mercury is neglected).  

 RESPONSE OF FIRST-ORDER SYSTEMS  
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72 PART 2 LINEAR OPEN-LOOP SYSTEMS

  2. All the thermal capacity is in the mercury. Furthermore, at any instant the mercury 
assumes a uniform temperature throughout.    

  (Making these first two assumptions is often referred to as the lumping of parameters 
because all the resistance is “lumped” into one location and all the capacitance into 
another. As shown in the analysis, these assumptions make it possible to represent the 
dynamics of the system by an ordinary differential equation. If such assumptions were 
not made, the analysis would lead to a partial     differential equation, and the representa-
tion would be referred to as a  distributed-parameter  system. In Chap. 20, distributed-
parameter systems will be considered in detail. See the difference between the actual 
temperature and lumped temperature profiles in    Fig. 4–1b  .) 

Fluid

x = fluid temperature

y = thermometer
reading

Mercury Glass wall

FIGURE 4–1a
Cross-sectional view of themometer.

Glass wall
resistance

Film
resistances 

Fluid

Mercury

y

x

Resistance to heat transfer
distributed throughout the

system

Glass wall

Film
resistance

Fluid

Mercury

y

x

All resistance
to heat transfer lumped

in the fluid 

Actual temperature profile Lumped temperature profile

FIGURE 4–1b
Temperature profiles in themometer.
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 CHAPTER 4  RESPONSE OF FIRST-ORDER SYSTEMS 73

   3. The glass wall containing the mercury does not expand or contract during the 
transient response. (In an actual thermometer, the expansion of the wall has an 
additional effect on the response of the thermometer reading. The glass initially 
expands and the cavity containing the mercury grows, resulting in a mercury read-
ing that initially falls. Once the mercury warms and expands, the reading increases. 
This is an example of an inverse response. Inverse responses will be discussed in 
greater detail later.   )

 It is assumed that the thermometer is initially at steady state. This means that, 
before time 0, there is no change in temperature with time. At time 0, the thermometer 
will be subjected to some change in the surrounding temperature  x ( t ). 

 By applying the unsteady-state energy balance 

    Input rate Output rate Rate of accumula( ) ( )� � ttion( )   

we get the result 

    
hA x y mC

dy

dt
( )� � �0

   (4.1)  

where      A   �  surface area of bulb for heat transfer, ft 2   
     C   �  heat capacity of mercury, Btu/(lb  m  · °F)  
    m   �  mass of mercury in bulb, lb  m   
      t   �  time, h  
     h   �  film coefficient of heat transfer, Btu/(ft 2  · h · °F)    

 For illustrative purposes, typical engineering units have been used. 
 Equation (4.1) states that the rate of flow of heat through the film resistance sur-

rounding the bulb causes the internal energy of the mercury to increase at the same rate. 
The increase in internal energy is manifested by a change in temperature and a corre-
sponding expansion of mercury, which causes the mercury column, or “reading” of the 
thermometer, to rise. 

 The coefficient  h  will depend on the flow rate and properties of the surrounding 
fluid and the dimensions of the bulb. We will assume that  h  is constant for a particular 
installation of the thermometer. 

 Our analysis has resulted in Eq. (4.1), which is a first-order differential equation. 
Before we solve this equation by means of the Laplace transform,  deviation variables  
will be introduced into Eq. (4.1). The reason for these new variables will soon become 
apparent. Prior to the change in  x,  the thermometer is at steady state and the derivative 
 dy/dt  is zero. For the steady-state condition, Eq. (4.1) may be written 

    hA x y ts s� � �( ) 0 0   (4.2)   

 The subscript  s  is used to indicate that the variable is the steady-state value. Equation 
(4.2) simply states that  y   s    �   x   s  , or the thermometer reads the true, bath temperature. 
Subtracting Eq. (4.2) from Eq. (4.1) gives 

    
hA x x y y mC

d y y

dt
s s

s
� � � �

�( ) ( ) 
( )

 
  (4.3)   
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74 PART 2 LINEAR OPEN-LOOP SYSTEMS

 Notice that  d ( y   �   y   s  )/ dt   �   dy / dt  because  y   s   is a constant. 
 If we define the deviation variables to be the differences between the variables 

and their steady-state values 

    

X x x

Y y y

s

s

� �

� �   
then Eq. (4.3) becomes 

    
hA X Y mC

dY

dt
( )� �

   
(4.4)

   

 If we let  mC / hA   �   t , Eq. (4.4) becomes 

    
X Y

dY

dt
� � t

 
  (4.5)

   

 The parameter  t  is called the  time constant  of the system and has the units of time. 
From above, we have 

    

t � �
 �

  

mC

hA
[ ]

lb
Btu

lb F
Btu

ft h

m
m

( )



⋅

⋅ ⋅2   �

�

F
ft

h




 ( )2

[ ]

   

Remember, in Eq. (4.5),  X  is the input to the system (the bath temperature) and  Y  is the 
output from the system (the indicated thermometer temperature). 

 Taking the Laplace transform of Eq. (4.5) gives 

    X s Y s sY s Y sY s( ) ( ) ( ) ( ) ( )� � � �t t0   (4.6)   

 The Laplace transform of the differential equation results in an equation that is free 
of initial conditions because the initial values of  X  and  Y  are zero. Since we start from 
steady state,  Y (0) must be zero, 

    Y y y y ys s s( ) ( )0 0 0� � � � �    

 And  X (0) is zero for the same reason. In control system engineering, we are primarily 
concerned with the deviations of system variables from their steady-state values. The 
use of deviation variables is, therefore, natural as well as convenient. 

 Rearranging Eq. (4.6) as a ratio of  Y ( s ) to  X ( s ) gives 

    

Y s

X s s

( )

( )
�

�
�

1

1t
output

input   
(4.7)   

 The expression on the right side of Eq. (4.7) is called the  transfer function  of the system. 
It is the ratio of the Laplace transform of the deviation in thermometer reading  (output)  
to the Laplace transform of the deviation in the surrounding temperature  (input).  In 
examining other physical systems, we usually attempt to obtain a transfer function. 

 Any physical system for which the relation between Laplace transforms of input 
and output deviation variables is of the form given by Eq. (4.7) is called a  first-order 
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 CHAPTER 4  RESPONSE OF FIRST-ORDER SYSTEMS 75

system.  Synonyms for first-order systems are first-order lag and single exponential 
stage. The naming of all these terms is motivated by the fact that Eq. (4.7) results from 
a first-order, linear differential equation, Eq. (4.5). In Chap. 5 we discuss a number of 
other physical systems that are first-order. 

 To summarize the procedure for determining the transfer function for a process:

   Step 1.  Write the appropriate balance equations (usually mass or energy balances 
for a chemical process).  

  Step 2.  Linearize terms if necessary (details on this step are given in Chap. 5).  
  Step 3.  Place balance equations in deviation variable form.  
  Step 4.  Laplace-transform the linear balance equations.  
  Step 5.  Solve the resulting transformed equations for the transfer function, the 

output divided by the input.   

This procedure is a very useful summary for developing the transfer function for a 
process.   

  Standard Form for First-Order Transfer 
Functions 

 The general form for a first-order system is 

    
t dy

dt
y K x tp� � ( )

 
  (4.8)  

where  y  is the output variable and  x ( t ) is the input forcing function. The initial condi-
tions are 

    y y K x K xs p p s( ) ( )0 0� � �    

 Introducing deviation variables gives 

    

X x x

Y y y

s

s

� �

� �    
 Eq. (4.8) becomes 

    

t dY

dt
Y K X t

Y

p� �

�

( )

( )0 0 
  (4.9)   

 Transforming Eq. (4.9), we obtain 

    t sY s Y s K X sp( ) ( ) ( )� �   

and rearranging, we obtain the standard first-order transfer function 

    

Y s

X s

K

s
p( )

( )
�

�t 1 
  (4.10)   
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76 PART 2 LINEAR OPEN-LOOP SYSTEMS

 The important characteristics of the standard form are as follows:

    • The denominator must be of the form  t    s   �  1.  
   • The coefficient of the  s  term in the denominator is the system time constant  t .  
   • The numerator is the steady-state gain  K   p  .    

Example 4.1.   Place the following transfer function in standard first-order form, 
and identify the time constant and the steady state gain. 

    

Y s

X s s

( )

( )
�

�

2
1
3    

 Rearranging to standard form, we get 

    

Y s

X s s

( )

( )
�

�

6

3 1    

 Thus, the time constant is 3, and the steady-state gain is 6. 
 The physical significance of the steady-state gain becomes clear if we let 

 X ( s )  �  1/ s,  the unit-step function. Then  Y(s)  is given by 

    
Y s

s s
( )

( )
�

�

6

3 1    

 The ultimate value of  Y ( t ) is 

    
lim[ ( )] lim
s s

psY s
s

K
→ →





0 0

6

3 1
6�

�
� �

    

 Thus the steady-state gain  K   p   is the steady-state value that the system attains after 
being disturbed by a unit-step input. It can be obtained by setting  s   �  0 in the 
transfer function.  

  PROPERTIES OF TRANSFER FUNCTIONS.   In general, a transfer function relates two 
variables in a physical process; one of these is the cause (forcing function or input vari-
able), and the other is the effect (response or output variable). In terms of the example 
of the mercury thermometer, the surrounding temperature is the cause or input, whereas 
the thermometer reading is the effect or output. We may write 

    
Transfer function � �G s

Y s

X s
( )

( )

( )   

where     G ( s )  �  symbol for transfer function  
     X ( s )  �  transform of forcing function or input, in deviation form  
     Y ( s )  �  transform of response or output, in deviation form   
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 CHAPTER 4  RESPONSE OF FIRST-ORDER SYSTEMS 77

The transfer function completely describes the dynamic characteristics of the system. If 
we select a particular input variation  X ( t ) for which the transform is  X ( s ), the response 
of the system is simply 

   Y s G s X s( ) ( ) ( )�    (4.11)   

 By taking the inverse of  Y ( s ), we get  Y ( t ), the response of the system. 
 The transfer function results from a linear differential equation; therefore, the 

principle of superposition is applicable. This means that the transformed response of a 
system with transfer function  G ( s ) to a forcing function 

    X s a X s a X s( ) ( ) ( )� �1 1 2 2   

where  X  1  and  X  2  are particular forcing functions and  a  1  and  a  2  are constants, is 

    

Y s G s X s

a G s X s a G s X s

a Y

( ) ( ) ( )

( ) ( ) ( ) ( )

(

�

� �

�

1 1 2 2

1 1 ss a Y s) ( )� 2 2   

where  Y  1  ( s ) and  Y  2  ( s ) are the responses to  X  1  and  X  2  alone, respectively. For example, 
the response of the mercury thermometer to a sudden change in surrounding tempe-
rature of 10°F is simply twice the response to a sudden change of 5°F in surrounding 
temperature. 

 The functional relationship contained in a transfer function is often expressed by 
a  block diagram  representation, as shown in  Fig. 4–2 . 

 The arrow entering the box is the forcing 
function or input variable, and the arrow leav-
ing the box is the response or output variable. 
The transfer function is placed inside the box. 
We state that the transfer function  G ( s ) in the 
box “operates” on the input function  X ( s ) to pro-
duce an output function  Y ( s ). The usefulness of 
the block diagram will be appreciated in Chap. 
8, when a complete control system containing 
several blocks is analyzed.      

 4.2 TRANSIENT RESPONSE  

 Now that the transfer function of a first-order system has been established, we can eas-
ily obtain its transient response to  any  forcing function. Since this type of system occurs 
so frequently in practice, it is worthwhile to study its response to several common forc-
ing functions: step, impulse, ramp, and sinusoidal. These forcing functions have been 
found to be very useful in theoretical and experimental aspects of process control. They 
will be used extensively in our studies, so let’s explore each before we study the tran-
sient response of the first-order system to these forcing functions.    

G(s)
X(s) Y(s)

Transfer
Function

Forcing
Function Response

OutputInput

FIGURE 4–2
Block diagram.

cou9789x_ch04_069-098.indd   77cou9789x_ch04_069-098.indd   77 8/14/08   3:01:53 PM8/14/08   3:01:53 PM

user
Highlight

user
Highlight

user
Highlight



Confirming Pages

78 PART 2 LINEAR OPEN-LOOP SYSTEMS

 4.3 FORCING FUNCTIONS     

   STEP FUNCTION.   Mathematically,  the step function of magnitude  A  can be expres-
sed as 

    X t Au t( ) ( )�   

where  u ( t ) is the unit-step function defined in 
Chap. 2. A graphical representation is shown in 
 Fig. 4–3 . 

 The transform of this function is  X ( s )  �   A / s.  
A step function can be approximated very closely 
in practice. For example, a step change in flow 
rate can be obtained by the sudden opening of a 
valve. 

   IMPULSE FUNCTION.   Mathematically, the impulse function of magnitude  A  is 
defined as 

       

where  d    ( t ) is the unit-impulse function defined 
and discussed in App. 3A. A graphical representa-
tion of this function, before the limit is taken, is 
shown in  Fig. 4–4 . 

 The true impulse function, obtained by letting 
 b  → 0 in  Fig. 4–4 , has a Laplace transform  of A.  
It is used more frequently as a mathematical aid 
than as an actual input to a physical system. For 
some systems it is difficult even to approximate 
an impulse forcing function. For this reason the 
representation of  Fig. 4–4  is valuable, since this 

form can usually be approximated physically by application and removal of a step func-
tion. If the time duration  b  is sufficiently small, we will see in Chap. 5 that the forc-
ing function of  Fig. 4–4  gives a response that closely resembles the response to a true 

impulse. In this sense, we often justify the use of  A  
as the Laplace transform of the physically realizable 
forcing function of  Fig. 4–4 . 

       RAMP FUNCTION.   This function increases linearly 
with time and is described by the equations 

    
X

X bt

t

t

�

�

�

�

0 0

0
   

 The ramp is shown graphically in  Fig. 4–5 . The trans-
form of the ramp forcing function is   X ( s )  �   b / s  2 . 

 We might, for example, desire to ramp up the 
temperature of an oven by 10°F/min. This would be 
an example of a ramp function.  

X t A t( ) ( )� dX t A t( ) ( )� d

0

X = 0; t <  0

tO

A

X
(t

)

X = A; t >  0
A
sX (s) =

FIGURE 4–3
Step input.

0 b

lim X(t) = Aδ(t)
b→0

L{Aδ(t)} = A

X = 0; t > b

X = 0; t < 0

tO

X
(t

)

; 0 < t < bA
b

X =
A
b

FIGURE 4–4
Impulse function.

X = 0;  t < 0

X

t

X(s) = b/s2
X = bt;  t > 0

0

0

Slope = b

FIGURE 4–5
Ramp function.
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 CHAPTER 4  RESPONSE OF FIRST-ORDER SYSTEMS 79

  SINUSOIDAL INPUT.   This function is represented mathematically by the equations 

   
X

X A t

t

t

�

� �

�

�

0 0

0sin   

0

0

X = 0; t < 0

t

A

X
(t

)

X = A sin wt; t > 0
Aw

s2+ w2X(s) =

Period = 2p
w

FIGURE 4–6
Sinusoidal input.

where  A  is the amplitude and  w  is the radian frequ ency. The radian frequency  w  is 
related to the frequ ency  f  in cycles per unit time by  w   �  2 p   f.   Figure 4–6  shows the 
graphical representation of this function. The transform is  X ( s )  �   A  w   /( s  2   �   w    2 ). This 
forcing function forms the basis of an important branch of control theory known as 
 frequency response.  Historically, a large segment of the development of control theory 
was based on frequency-response methods, which will be presented in Chaps. 15 and 
16. Physically, it is more difficult to obtain a sinusoidal forcing function in most pro-
cess variables than to obtain a step function. 

 This completes the discussion of some of the common forcing functions. We now 
devote our attention to the transient response of the first-order system to each of the 
forcing functions just discussed. 

      4.4 STEP RESPONSE  

 If a step change of magnitude  A  is introduced into a first-order system, the transform 
of  X ( t ) is 

    
X s

A

s
( ) �

 
  (4.12)   

 The transfer function, which is given by Eq. (4.7), is 

    

Y s

X s s

( )

( )
�

�

1

1t
 

   (4.7)    

 Combining Eqs. (4.7) and (4.12) gives 

    
Y s

A

s s
( ) �

�

1

1t
 

  (4.13)   

 This can be expanded by partial fractions to give 

    
Y s

A

s s

C

s

C

s
( )

( )
�

�
� �

�

/

/ /

t
t t1 1

1 2

 
  (4.14)   
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80 PART 2 LINEAR OPEN-LOOP SYSTEMS

 Solving for the constants  C  1  and  C  2  by the techniques covered in Chap. 3 gives  C  1   �   A  
and  C  2   �   �  A.  Inserting these constants into Eq. (4.14) and taking the inverse transform 
give the time response for  Y:  

    

Y t

Y t A e

t

tt

( )

( ) /

�

� �

�

�
�

0

1

0

0t( )
 

  (4.15)   

 Hereafter, for the sake of brevity, it will be understood that, as in Eq. (4.15), the response 
is zero before  t   �  0. Equation (4.15) is plotted in  Fig. 4–7  in terms of the dimension-
less quantities  Y ( t )/ A  and  t / t . (Note that if we refer to the standard form for a first-order 
system, Eq. (4.10),  K   p    �   A  in this case. )

 Having obtained the step response, Eq. (4.15), from a purely mathematical 
approach, we should consider whether the result seems to be correct from physical 
principles. Immediately after the thermometer is placed in the new environment, the 
temperature difference between the mercury in the bulb and the bath temperature is at 
its maximum value. With our simple lumped-parameter model, we should expect the 
flow of heat to commence immediately, with the result that the mercury temperature 
rises, causing a corresponding rise in the column of mercury. As the mercury tempera-
ture rises, the driving force causing heat to flow into the mercury will diminish, with 
the result that the mercury temperature changes at a slower rate as time proceeds. We 
see that this description of the response based on physical grounds does agree with the 
response given by Eq. (4–15) and shown graphically in  Fig. 4–7 . 

 Several features of this response are worth remembering:

   1. The value of  Y ( t ) reaches 63.2 percent of its ultimate value when the time elapsed 
is equal to one time constant  t . When the time elapsed is 2 t , 3 t , and 4 t , the percent 
response is 86.5, 95, and 98, respectively. From these facts, one can consider the 
response essentially completed in three to four time constants.  

  2. One can show from Eq. (4.15) that the slope of the response curve at the origin in 
 Fig. 4–7  is 1. This means that if the initial rate of change of  Y ( t ) were maintained, the 
response would be complete in one time constant. (See the dotted line in  Fig. 4–7 .)  

  3.  A consequence of the principle of super-
position is that the response to a step input 
of any magnitude  A  may be obtained 
directly from  Fig. 4–7  by multiplying the 
ordinate by  A.   Figure 4–7  actually gives 
the response to a unit-step function input, 
from which all other step responses are 
derived by superposition.   

These results for the step response of a first-
order system will now be applied to the fol-
lowing example. 

Example 4.2.   A thermometer having a 
time constant of 0.1 min is at a steady-state 

543210
0

0.2

0.4

0.6

0.8

1.0

Y
(t

)
A

t/t

FIGURE 4–7
Response of a first-order system to a step input.
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 CHAPTER 4  RESPONSE OF FIRST-ORDER SYSTEMS 81

temperature of 90°F. At time  t   �  0, the thermometer is placed in a temperature 
bath maintained at 100°F. Determine the time needed for the thermometer to 
read 98°F. 

  (Note: The time constant given in this problem applies to the thermometer 
when it is located in the temperature bath. The time constant for the thermometer 
in air will be considerably different from that given because of the lower heat-
transfer coefficient in air.)  

 In terms of symbols used in this chapter, we have 

    t � � �0 1 90 10. min F Fx As
� �

    

 The ultimate thermometer reading will, of course, be 100°F, and the ultimate 
value of the deviation variable  Y ( � ) is 10°F. When the thermometer reads 98°F, 
 Y ( t )  �  8°F. 

 Substituting into Eq. (4.12) the appropriate values of  Y,   A,  and  t  gives 

    
8 10 1 0 1� � �e t / .( )

    

 Solving this equation for  t  yields 

    t � 0 161. min    

 The same result can also be obtained by referring to  Fig. 4–7 , where it is seen that 
 Y / A   �  0.8 at  t /t    �  1.6.     

Using MATLAB to Obtain the Response of a First-Order System to a Step Function

The transform of the response is 10/s(0.1s � 1). We can simulate that in MATLAB by defining a 
system using the numerator and denominator of the response:

num=[10]; 

den=[0.1 1];

We then use the step function in MATLAB to obtain the response (Fig. 4–8).

step(num,den)

To obtain numerical values for the plot, we use the tf (transfer function command).

sys=tf(num,den)

 Transfer function:

   10

0.1 s + 1 

[temp,t]=step(sys); % Assigns the variables, temp and t, to the response.
 data=[t,temp] % Concatenates time and temperature into one matrix and displays them.
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data =

         0      0

    0.0055 0.5372

    0.0110 1.0455

    0.0166 1.5265

    0.0221 1.9817

    0.0276 2.4124

    0.0331 2.8200

    0.0387 3.2057

    0.0442 3.5707

    0.0497 3.9161

    ...... ......

    0.1380 7.4851

    0.1436 7.6202

    0.1491 7.7481

    0.1546 7.8690

    0.1601 7.9835  temp=8.0 at approximately t = 0.16 min

    0.1656 8.0918

    0.1712 8.1943

    0.1767 8.2913

    ...... ......

    0.5908 9.9728

    0.5963 9.9743

0 0.1 0.2 0.3 0.4 0.5 0.6
0

1

2

3

4

5

6

7

8

9

10

Time (min)

T

FIGURE 4–8
Step response of thermometer in Example 4.1.
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Using Simulink to Obtain the Response of a First-Order System to a Step Function

We constructed the block diagram for the system using Simulink (Fig. 4–9). The simulation was run 
for 0.6 min, and the Scope output is shown in Fig. 4–10. The data were also exported to the MAT-
LAB workspace and graphed in Fig. 4–11 using the plot command.

[plot (ScopeData.time, ScopeData.signals.values)]

1
0.1s + 1

ThermometerStep Scope

FIGURE 4–9
Simulink block diagram for thermometer.

FIGURE 4–10
Thermometer response to step input from Simulink scope.
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FIGURE 4–11
Thermometer response to step input using MATLAB 
plot command.
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84 PART 2 LINEAR OPEN-LOOP SYSTEMS

Note that the Simulink results are the same as we obtained previously by hand calculation and with 
MATLAB.

The speed of the response of a first-order system is determined by the time constant for the sys-
tem. Consider the following first-order system disturbed by a step input (Fig. 4–12).

The response of a first-order system for several values of t  is shown in Fig. 4–13.
It can be seen that as t increases, it takes longer for the system to respond to the step 

disturbance.

1
tau. s + 1

First-Order System
tau = 2,4,6,8,10 min

Step Scope

FIGURE 4–12
Simulink model for examining the effect of t on the step 
response.
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FIGURE 4–13
Effect of t on the step response of a first-order system.
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 CHAPTER 4  RESPONSE OF FIRST-ORDER SYSTEMS 85

 4.5 IMPULSE RESPONSE  

 The impulse response of a first-order system will now be developed. Anticipating the 
use of superposition, we consider a unit impulse for which the Laplace transform is 

    X s( ) � 1   (4.16)   

 Combining this with the transfer function for a first-order system, which is given by 
Eq. (4.7), results in 

    

Y s
s

( ) �
�

1

1t
 

  (4.17)   

 This may be rearranged to 

    
Y s

s
( ) �

�

1

1

/

/

t
t

 
  (4.18)   

 The inverse of  Y ( s ) can be found directly from the table of transforms and can be writ-
ten in the form 

      
(4.19)   

 A plot of this response is shown in  Fig. 4–14  in terms of the variables  t / t  and  t   Y ( t ). The 
response to an impulse of magnitude  A  is obtained, as usual, by multiplying  t   Y ( t ) from 
 Fig. 4–14  by  A / t . 

 Notice that the response rises immediately to 1.0 and then decays exponentially. 
Such an abrupt rise is, of course, physically impossible, but as we will see in Chap. 5, 
it is approached by the response to a finite pulse of narrow width, such as that of 
 Fig. 4–4 . 

t tY t e t( ) � � /t tY t e t( ) � � /

543210
0

0.2

0.4

0.6

0.8

1.0

tY
(t

)

t/t

FIGURE 4–14
Unit-impulse response of a first-order system.
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86 PART 2 LINEAR OPEN-LOOP SYSTEMS

Using MATLAB to Generate the Impulse Response to a First-Order System

num=[1]; 

den=[1 1]; 

sys=tf(num,den)

 Transfer function:

  1

s + 1 

[x,y]=impulse(sys); % Assigns the variables x and y to the response.
data=[x,y] % Concatenates x and y into one matrix and displays them.

data =

         0 1.0000

    0.0552 0.9463

    0.1104 0.8954

    0.1656 0.8473

    0.2209 0.8018

    0.2761 0.7588

    0.3313 0.7180

    0.3865 0.6794

    0.4417 0.6429

    0.4969 0.6084

    ...... ......

    5.0245 0.0066

    5.0797 0.0062

    5.1350 0.0059

    5.1902 0.0056

    5.2454 0.0053

    5.3006 0.0050

    5.3558 0.0047

    5.4110 0.0045

    5.4662 0.0042

    5.5215 0.0040

    5.5767 0.0038

    5.6319 0.0036

    5.6871 0.0034

    5.7423 0.0032

    5.7975 0.0030

    5.8527 0.0029

    5.9080 0.0027

    5.9632 0.0026
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 CHAPTER 4  RESPONSE OF FIRST-ORDER SYSTEMS 87

    4.6 RAMP RESPONSE  

 For a ramp input of  x ( t )  �   bt,  where  X ( s )  �   b / s  2 , the output is 

    
Y s

b

s s
( )

( )
�

�2 1t    

 Rearranging and using partial fractions yield. 

    
Y s

b

s s

b

s s

b

s

b

s

b

s
( )

( )
�

�
�

�
� � �

�2 2 2 21 1 1t
t
t

t t/

/ /( ) tt    

Y t bt b e b t b et t( ) ( )/� � � � � �t t tt t1 − −( ) /

      

 A plot of this response is shown in  Fig. 4–16 . 

    4.7 SINUSOIDAL RESPONSE  

 To investigate the response of a first-order system to a sinusoidal forcing function, the 
example of the mercury thermometer will be considered again. Consider a thermometer 
to be in equilibrium with a temperature bath at temperature  x   s  . At some time  t   �  0, the 
bath temperature begins to vary according to the relationship 

    x x A t ts� � �sin w 0   (4.20)  

plot=[x,y] % The result of this command is shown in Fig. 4–15.
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FIGURE 4–15
Impulse response of a first-order system using MATLAB.
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88 PART 2 LINEAR OPEN-LOOP SYSTEMS

where       x   �  temperature of bath  
    x   s    �  temperature of bath before sinusoidal disturbance is applied  
     A   �  amplitude of variation in temperature  
     w   �  radian frequency, rad/time    

 In anticipation of a simple result, we introduce a deviation variable  X  which is 
defined as 

    X x xs� �   (4.21)   

 Using this new variable in Eq. (4.20) gives 

    X A t� sin w   (4.22)   

 By referring to a table of transforms, the transform of Eq. (4.22) is 

    
X s

A

s
( ) �

�

w
w2 2 

  (4.23)
   

 Combining Eqs. (4.7) and (4.23) to eliminate  X ( s ) yields 

    
Y s

A

s s
( ) �

� �

w
w

t
t2 2

1

1

/

/ 
  (4.24)   

 This equation can be solved for  Y ( t ) by means of a partial fraction expansion, as described 
in Chap. 3. The result is 

    

Y t
A e A

t
At

( ) cos s�
�

�
�

�
�

�wt
t w

wt
t w

w
t w

t/

2 2 2 2 2 21 1 1
iinw t

 

  (4.25)   

t /t
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FIGURE 4–16
Response of a first-order system to a ramp input.
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 CHAPTER 4  RESPONSE OF FIRST-ORDER SYSTEMS 89

 Equation (4.25) can be written in another form by using the trigonometric identity 

    p B q B r Bcos sin sin� � �( )q   (4.26)  

where 

    
r p q

p

q
� � �2 2 tan q

    

 Applying the identity of Eq. (4.26) to Eq. (4.25) gives 

    
Y t

A
e

A
tt( ) ( )/�

�
�

�
��wt

t w t w
w ft

2 2 2 21 1
sin

 
  (4.27)

  

where 

    f wt� ��tan 1( )    

 As  t  →  � , the first term on the right side of Eq. (4.27) vanishes and leaves only the ulti-
mate periodic solution, which is sometimes called the steady-state solution 

    
Y t

A
wts( ) ( )�

�
�

t w
f

2 2 1
sin

 
  (4.28)

   

 By comparing Eq. (4.25) for the input forcing function with Eq. (4.28) for the ultimate 
periodic response, we see that

   1. The output is a sine wave with a frequency  w  equal to that of the input signal.  

  2. The ratio of output amplitude to input amplitude is     1 12 2t � � .    This ratio is 
always smaller than 1. We often state this by saying that the signal is  attenuated.   

  3. The output lags behind the input by an angle  f . It is clear that lag occurs, for the 
sign of  f  is always negative.  *  

*    By convention, the output sinusoid lags the input sinusoid if  f  in Eq. (4.28) is negative. In terms of a 
recording of input and output, this means that the input peak occurs before the output peak. If  f  is positive in 
Eq. (4.28), the system exhibits phase  lead,  or the output leads the input. In this book we always use the term 
 phase angle  ( f ) and interpret whether there is lag or lead by the convention 

    
f
f

�

�

0

0

phase lag

phase lead   

For a particular system for which the time constant  t  is a fixed quantity, it is seen from Eq. (4.28) that the 
attenuation of amplitude and the phase angle  f  depend only on the frequency  w . The attenuation and phase lag 
increase with frequency, but the phase lag can never exceed 90° and approaches this value asymptotically.  
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Sinusoidal Response of a First-Order System Using MATLAB

For a first-order transfer function 1/(t s � 1), determine the response to an input function x � sin (4t). 
Plot the input and output on the same set of axes, and indicate the transient portion as well as the 
steady-state portion of the response.

num=[1]; % Set up the transfer function as before…
den=[1 1];

sys=tf(num,den)

 Transfer function:

  1

s + 1 

t=0:0.1:10; % Sets up a time vector to be used for the sine wave input.
u=sin(4*t); % Defines the sine wave input function.
z=lsim(sys,u,t);  %  Invokes the linear simulator within MATLAB and assigns 

the output to z.
[plot(t,z,t,u)] % Plots the input and output on the same axes.
[hold on] % Holds the axes for further graphs.
[w=0.2353*exp(-t)+0.2425;] % Transient envelope.
[plot(t,w)]  % Plots the transient envelope.
[q=0.2425;]  % Peak height for the ultimate periodic response.
[plot(t,q)] % Plots the steady-state peak height

The resulting MATLAB graph is shown in Fig. 4–17.

FIGURE 4–17
Response of a first-order system to a sine wave using MATLAB.
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 CHAPTER 4  RESPONSE OF FIRST-ORDER SYSTEMS 91

     The sinusoidal response is interpreted in terms of the mercury thermometer by the fol-
lowing example. 

Example 4.3.   A mercury thermometer having a time constant of 0.1 min is 
placed in a temperature bath at 100°F and allowed to come to equilibrium with 
the bath. At time  t   �  0, the temperature of the bath begins to vary sinusoidally 
about its average temperature of 100°F with an amplitude of 2°F. If the frequency 
of oscillation is 10/ p  cycles/min, plot the ultimate response of the thermometer 
reading as a function of time. What is the phase lag? 

 In terms of the symbols used in this chapter 

    t � 0 1. min    

    
x

A

s � �

� �

100

2

F

F    

    

f

f

�

� � �

10

2 2
10

p

w p p
p

cycles/min

20 rad/min
    

 From Eq. (4.28), the amplitude of the response and the phase angle are calculated; 
thus 

    

A

t w2 2 1

2

4 1
0 896

�
�

�
� �. F

    

    f � � � � � � ��tan 1 11 rad12 63 5. .   

or     Phase lag � �63 5.    

 The response of the thermometer is therefore 
       

or     y t t( ) . ( . )� � �100 0 896 20 1 11sin    

Y t t( ) . ( . )� �0 896 20 1 11sinY t t( ) . ( . )� �0 896 20 1 11sin

Note that the system response has pretty much settled down to the steady periodic output wave after 
approximately 4 min (or 4 time constants).

By using Eq. (4.27), the analytic solution for the response is

 Y e tt� � ��0 2353 0 2425 4. . ( . )sin 1 326 rad 

Note that the phase angle is �1.326 rad (�75.96°), and the response is nearly peaking as the input 
is zero and vice versa.
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 To obtain the lag in terms of time rather than angle, we proceed as follows: A fre-
quency of 10/ p  cycles/min means that a complete cycle (peak to peak) occurs in 
(10/ p   )  � 1  min. Since one cycle is equivalent to 360° and the lag is 63.5°, the time 
corresponding to this lag is 

    
Lag time time for 1 cycle� 	

63 5

360

.
( )

   
or 

    
Lag time min� �

63 5

360 10
0 0555

.
.










p

   
thus, 

    y t t( ) . [ ( . )]� � �100 0 896 20 0 0555sin min    

 In general, the lag in units of time is given by 

    
Lag time �

f
360 f   

when  f  is expressed in degrees. 
 The response of the thermometer reading and the variation in bath tempera-

ture are shown in  Fig. 4–18 . Note that the response shown in this figure holds 
only after sufficient time has elapsed for the nonperiodic term of Eq. (4.27) to 
become negligible. For all practical purposes this term becomes negligible after a 
time equal to about 3 t . If the response were desired beginning from the time the 
bath temperature begins to oscillate, it would be necessary to plot the complete 
response as given by Eq. (4.27).  

Ultimate periodic response

Bath
temperature Thermometer

temperature

lag = 0.056 minPeriod = 0.314 min
102.0

100.9

100.0

99.1

98.0

Transient

t (min)
0

FIGURE 4–18
Response of a thermometer in Example 4.3.
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      SUMMARY 
 In this chapter several basic concepts and definitions of control theory have been intro-
duced. These include input variable, output variable, deviation variable, transfer func-
tion, response, time constant, first-order system, block diagram, attenuation, and phase 
lag. Each of these ideas arose naturally in the study of the dynamics of the first-order 
system, which was the basic subject matter of the chapter. As might be expected, the 
concepts will find frequent use in succeeding chapters. 

 In addition to introducing new concepts, we have listed the response of the first-
order system to forcing functions of major interest. This information on the dynamic 
behavior of the first-order system will be of significant value in the remainder of our 
studies.  

  PROBLEMS 

    4.1.  A thermometer having a time constant of 0.2 min is placed in a temperature bath, and after 
the thermometer comes to equilibrium with the bath, the temperature of the bath is increased 
linearly with time at a rate of 1°/min. Find the difference between the indicated temperature 
and the bath temperature.
   ( a ) 0.1 min after the change in temperature begins  
  ( b ) 1.0 min after the change in temperature begins  
  ( c ) What is the maximum deviation between indicated temperature and bath temperature, 

and when does it occur?  
  ( d ) Plot the forcing function and response on the same graph. After a long enough time, by 

how many minutes does the response lag the input?     

   4.2.  A mercury thermometer bulb is     1
2

   in long by     1
8 -in    diameter. The glass envelope is very 

thin. Calculate the time constant in water flowing at 10 ft/s at a temperature of 100°F. In 
your solution, give a summary that includes
   ( a ) Assumptions used  
  ( b ) Source of data  
  ( c ) Results     

  4.3. Given: a system with the transfer function  Y ( s )/ X ( s )  �  ( T  1   s   �  1)/( T  2   s   �  1). Find  Y ( t ) if  X ( t ) 
is a unit-step function. If  T  1 / T  2   �  5, sketch  Y ( t ) versus  t / T  2 . Show the numerical values of 
minimum, maximum, and ultimate values that may occur during the transient. Check these 
by using the initial-value and final-value theorems of App. 3A.  

  4.4. A thermometer having first-order dynamics with a time constant of 1 min is placed in a tem-
perature bath at 100°F. After the thermometer reaches steady state, it is suddenly placed in a 
bath at 110°F at  t   �  0 and left there for 1 min, after which it is immediately returned to the 
bath at 100°F.
   ( a )  Draw a sketch showing the variation of the thermometer reading with time.  
  ( b )  Calculate the thermometer reading at  t   �  0.5 min and at  t   �  2.0 min.     

  4.5.  Repeat Prob. 4.4 if the thermometer is in the 110°F bath for only 10 s.  

  4.6.  A mercury thermometer, which has been on a table for some time, is registering the room 
temperature, 75°F. Suddenly, it is placed in a 400°F oil bath. The following data are obtained 
for the response of the thermometer.   
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    Give two independent estimates of the thermometer time constant.  

    4.7.   Rewrite the sinusoidal response of a first-
order system [Eq. (4.27)] in terms of a 
cosine wave. Reexpress the forcing func-
tion [Eq. (4.22)] as a cosine wave, and 
compute the phase difference between 
input and output cosine waves.  

   4.8.  The mercury thermometer of Prob. 4.6 is 
again allowed to come to equilibrium in 
the room air at 75°F. Then it is placed in 
the 400°F oil bath for a length of time less 
than 1 s and quickly removed from the 
bath and reexposed to the 75°F  ambient 

 conditions. It may be estimated that  the heat-transfer coefficient to the thermometer in 
air is one-fifth that in the oil bath. If 10 s after the thermometer is removed from the bath 
it reads 98°F, estimate the length of time that the thermometer was in the bath.  

   4.9. A thermometer having a time constant of 1 min is initially at 50°C. It is immersed in a bath 
maintained at 100°C at  t   �  0. Determine the temperature reading at  t   �  1.2 min.  

  4.10. In Prob. 4.9, if at  t   �  1.5 min the thermometer is removed from the bath and put in a bath 
at 75°C, determine the maximum temperature indicated by the thermometer. What will be 
the indicated temperature at  t   �  20 min?  

  4.11. A process of unknown transfer function is subjected to a unit-impulse input. The output of 
the process is measured accurately and is found to be represented by the function  y ( t )  �  
 te   �  t  . Determine the unit-step response of this process.  

  4.12. The temperature of an oven being heated using a pulsed resistance heater varies as 

    
T t� � � �120 5 25 30cos( )

   
 where  t  is the time in seconds. The temperature of the oven is being measured with a ther-

mocouple having a time constant of 5 s.
   ( a ) What are the maximum and minimum temperatures indicated by the thermocouple?  
  ( b ) What is the maximum difference between the actual temperature and the indicated 

temperature?  
  ( c ) What is the time lag between the actual temperature and the indicated temperature?     

  4.13. The temperature of a experimental heated enclosure is being ramped up from 80 to 450°F 
at the rate of 20°F/min. A thermocouple, embedded in a thermowell for protection, is 
being used to monitor the oven temperature. The thermocouple has a time constant
of 6 s.
   ( a ) At  t   �  10 min, what is the difference between the actual temperature and the tempera-

ture indicated by the thermocouple? What is it at 60 min?  
  ( b ) When the thermocouple indicates 450°F, the heater will begin to modulate and main-

tain the temperature at the desired 450°F. What is the actual oven temperature when the 
thermocouple first indicates 450°F?     

   4.14.   For the transfer function in Fig. P4–14, the 
response  Y ( t ) is sinusoidal. The amplitude of 
the output wave is 0.6 and it lags behind the 
input by 1.5 min. Find  X ( t ). Note: the time con-
stant in the transfer function is in minutes. 

2
4s + 1

X(t) Y(t)

FIGURE P4–14

Time, s Thermometer reading, °F

  0   75
  1 107
  2.5 140
  5 205
  8 244
10 282
15 328
30 385

cou9789x_ch04_069-098.indd   94cou9789x_ch04_069-098.indd   94 8/14/08   3:02:03 PM8/14/08   3:02:03 PM



Confirming Pages
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   4.15. The graph in Fig. P4–15 is the response of a suspected first-order process to an impulse 
function of magnitude 3. Determine the transfer function  G ( s ) of the unknown process. 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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4.5

FIGURE P4–15

Time (min) Level (ft)

0 4.8
0.138 5.3673

0.2761 5.9041
0.4141 6.412
0.5521 6.8927
0.6902 7.3475
0.8282 7.7779
0.9663 8.1852
1.1043 8.5706
1.2423 8.9354
1.3804 9.2805
1.5184 9.6071
1.6564 9.9161
1.7945 10.2085
1.9325 10.4853
2.0705 10.7471
2.2086 10.9949
2.3466 11.2294
2.4847 11.4513
2.6227 11.6612

  2.7607 11.8599
............ ............
14.3558 15.3261
14.4938 15.328
14.6319 15.3297
14.7699 15.3313
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at time = 0 

Note: LI = level indicator

FIGURE P4–16

   4.16. The level in a tank responds as a first-order system with changes in the inlet flow. Given 
the following level versus time data that were gathered (Fig. P4–16) after the inlet flow was 
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increased quickly from 1.5 to 4.8 gal/min, deter-
mine the transfer function that relates the height 
in the tank to the inlet flow. Be sure to use devia-
tion variables and include units on the steady-state 
gain and the time constant.   

    4.17.   A simple mixing process follows first-order beha-
vior. A 200-gal mixing tank process, initially at 
steady state, is shown in Fig. P4–17. At time  t   �  0, 
the inlet flow is switched from 5% salt to fresh-
water. What does the inlet flow rate need to be to 
reduce the exit concentration to less than 0.5% in 
30 min? 

Salt Water
@ 5% salt

Volume = 200 gal

FIGURE P4–17

Current volume =
200 gal of water 

40 gal/min

40 gal/min 

5 ft

3 ft

FIGURE P4–18

   4.18. Joe, the maintenance man, dumps the contents of a 55-gal drum of water into the tank pro-
cess shown below. 

   ( a ) Will the tank overflow?  
  ( b ) Plot the height as  f ( t ), starting at  t   �  0, the time of the dump.  
  ( c ) Plot the output flow as  f ( t ), starting at  t   �  0, the time of the dump.      
 NOTE: The output flow is proportional to the height of fluid in the tank.
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  CHAPTER

4
CAPSULE SUMMARY 

    Standard form for first-order system transfer function:  

    
G s

Y s

X s

K p
( )

( )

( )
� �

�ts 1
   

    where  K   p   is the steady-state gain and  �  is the time constant (having units of time).
Note the 1 in the denominator when the transfer function is in standard form.  

   De viation variables:  The difference between the process system variables and 
their steady-state values. When transfer functions are used, deviation values 
are always used. The convenience and utility of deviation variables lie in the 
fact that their initial values are most often zero. 

    X x x Y y ys s� � � �     

   Procedure for determining the transfer function for a process:   
  Step 1.  Write the appropriate balance equations (usually mass or energy balances 

for a chemical process).  
  Step 2. Linearize terms if necessary (details on this step are given in Chap. 5).  
  Step 3. Place balance equations in deviation variable form.  
  Step 4. Laplace-transform the linear balance equations.  
  Step 5.  Solve the resulting transformed equations for the transfer function, the 

output divided by the input.  
   Block diagrams:  Graphically depict the relationship between the input variable, 

the transfer function, and the output variables  Y ( s )  �   X ( s ) G ( s ). We always use 
transformed deviation variables with block diagrams.  

   Standard responses of first-order systems to common inputs:       

 
G s

Y s

X s

K p
( )

( )

( )
� �

�t s 1
      

G(s)
X(s) Y(s)

Transfer
function

Forcing
function Response

OutputInput
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98 PART 2 LINEAR OPEN-LOOP SYSTEMS

      Key features of standard responses of first-order systems to common inputs          

Step Response of First-Order System

0 1 2 3 4
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0.2

0.3

0.4

0.5

0.6

0.7

0.8
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t/t

Initial slope intersects ultimate value at t = t 
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Response is 63.2% complete at t = t

Impulse Response of a First-Order System

t/t
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p

(Initial “jump” has decayed to 36.8%)
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Sinusoidal Response of a First-Order System
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K
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Y
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the response is periodic with
the same frequency
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Response of First-Order System to Ramp Input
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Y
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After an initial transient period, 
the response is parallel with input.

Steady-state difference between
input and output (after transient)
is b*t.

Output lags 
input byt

b*t

Input

Output

Input Output

X(t) X(s) Y(s) Y(t)

Step u(t) 1

s
K

s s
p

( )t � 1

Kp (1 � e�t/�)

Impulse � (t) 1 K

s
p

t � 1

K
e

p t

t
t� /

Ramp btu(t) b

s2
bK

s s

p
2 1( )t �

Kp [bt � b� (1 � e�t/t)]

Sinusoid u(t) A sin (w t) A

s

w
w2 2�

A K

s s

pw
w t2 2 1� �( )( )

AK
e

AK
t

p t pwt
wt wt

w wtt

1 1
2 2

1

�
�

�
� �� �

( ) ( )
(/ sin tan )) 
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 CHAPTER 

 5 

  In the first part of this chapter, we will consider several physical systems that can 
be represented by a first-order transfer function. In the second part, a method for 

approximating the dynamic response of a nonlinear system by a linear response will be 
presented. This approximation is called linearization.  

   5.1 EXAMPLES OF FIRST-ORDER SYSTEMS 

   Liquid Level 

 Consider the system shown in  Fig. 5–1 , which consists of a tank of uniform cross-
sectional area  A  to which is attached a flow resistance  R  such as a valve, a pipe, or a 
weir. Assume that  q   o  , the volumetric flow rate (volume/time) through the resistance, is 
related to the head  h  by the linear relationship 

    
q

h

R
o �

   
(5.1)

  

A resistance that has this linear relationship between flow and head is referred to as 
a  linear resistance.  (A pipe is a linear resistance if the flow is in the laminar range. A 
specially contoured weir, called a Sutro weir, produces a linear head-flow relationship. 
Turbulent flow through pipes and valves is generally proportional to     h.    Flow through 
weirs having simple geometric shapes can be expressed as  Kh   n  , where  K  and  n  are posi-
tive constants. For example, the flow through a rectangular weir is proportional to  h  3/2 .) 

 A time-varying volumetric flow  q  of liquid of constant density  r  enters the tank. 
Determine the transfer function that relates head to flow. 
 We can analyze this system by writing a transient mass balance around the tank: 

   

Rate of

mass flow in

Rate of

mass flow







−
out

Rate of accumulation

of mass in







=
ttank





    

 PHYSICAL EXAMPLES 
OF FIRST-ORDER SYSTEMS 
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100 PART 2 LINEAR OPEN-LOOP SYSTEMS

In terms of the variables used in this analysis, 
the mass balance becomes 

     

r r r
q t q t

d Ah

dt

q t q t A
dh

dt

o

o

( ) ( )
( )

( ) ( )

� �

� �  
(5.2)  

Combining Eqs. (5.1) and (5.2) to eliminate  q   o  ( t ) gives the following linear differential 
equation: 

    
q

h

R
A

dh

dt
� �

  
 (5.3)  

We will introduce deviation variables into the analysis before proceeding to the transfer 
function. Initially, the process is operating at steady state, which means that  dh / dt   �  0 
and we can write Eq. (5.3) as 

    
q

h

R
s

s
� � 0

  
 (5.4)  

where the subscript  s  has been used to indicate the steady-state value of the variable. 
 Subtracting Eq. (5.4) from Eq. (5.3) gives 

    
q q

R
h h A

d h h

dt
s s

s
� � � �

�1 ( ) ( )
  

 (5.5)  

If we define the deviation variables as 

    

Q q q

H h h

s

s

� �

� �  

 then Eq. (5.5) can be written 

    
Q

R
H A

dH

dt
� �

1
  

 (5.6)  

Taking the transform of Eq. (5.6) gives 

    
Q s

R
H s AsH s( ) ( ) ( )� �

1
  

 (5.7)  

Notice that  H (0) is zero, and therefore the transform of  dH/dt  is simply  sH ( s ). 
 Equation (5.7) can be rearranged into the standard form of the first-order lag 

to give 

    

H s

Q s

R

s

( )

( )
�

�t 1   
(5.8)  

where  t   �   AR.  

q (t)

h (t)

qo(t)
R

FIGURE 5–1
Liquid-level system.
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 CHAPTER 5  PHYSICAL EXAMPLES OF FIRST-ORDER SYSTEMS 101

 In comparing the transfer function of the tank given by Eq. (5.8) with the transfer 
function for the thermometer given by Eq. (4.7), we see that Eq. (5.8) contains the fac-
tor  R.  The term  R  is simply the conversion factor that relates  h ( t ) to  q ( t ) when the sys-
tem is at steady state. As we saw in Chap. 4, this value is the steady-state gain. We can 
again verify the physical significance of this value (as we did in Chap. 4) by applying 
the final-value theorem of App. 3A to the determination of the steady-state value of  H  
when the flow rate  Q ( t ) changes according to a unit-step change; thus 

    Q t u t( ) ( )�   

where  u ( t ) is the symbol for the unit-step change. The transform of  Q ( t ) is 

    
Q s

s
( ) �

1

   

Combining this forcing function with Eq. (5.8) gives 

    
H s

s

R

s
( ) �

�

1

1t   

Applying the final-value theorem, proved in App. 3A, to  H ( s ) gives 

    
H t sH s

R

s
Rt

s s
( ) lim ( ) lim| S� � �

�
�

→ →0 0 1
C D

t   

This shows that the ultimate change in  H ( t ) for a unit change in  Q ( t ) is simply  R.  
 If the transfer function relating the inlet flow  q ( t ) to the outlet flow is desired, 

note that we have from Eq. (5.1) 

    
q

h

R
o

s
s �

   
(5.9)

  

Subtracting Eq. (5.9) from Eq. (5.1) and using the deviation variable     Q q qo o os� �    
give 

    
Q

H

R
o �

   
(5.10)

  

Taking the transform of Eq. (5.10) gives 

    
Q s

H s

R
o ( )

( )
�
  

 (5.11)
  

Combining Eqs. (5.11) and (5.8) to eliminate  H ( s ) gives 

    

Q s

Q s s
o ( )

( )
�

�

1

1t  
 (5.12)

  

Notice that the steady-state gain for this transfer function is dimensionless, which is to 
be expected because the input variable  q ( t ) and the output variable  q   o  ( t ) have the same 
units (volume/time). 

 The possibility of approximating an impulse forcing function in the flow rate to 
the liquid-level system is quite real. Recall that the unit-impulse function is defined as a 
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102 PART 2 LINEAR OPEN-LOOP SYSTEMS

pulse of unit area as the duration of the pulse approaches zero, and the impulse function 
can be approximated by suddenly increasing the flow to a large value for a very short 
time; that is, we may pour very quickly a volume of liquid into the tank. The nature of the 
impulse response for a liquid-level system will be described by the following example. 

 Example 5.1.  A tank having a time constant of 1 min and a resistance of     19 ft/cfm    
is operating at steady state with an inlet flow of 10 ft 3 /min (or cfm). At time  t   �  0, 
the flow is suddenly increased to 100 ft 3 /min for 0.1 min by adding an additional 
9 ft 3  of water to the tank uniformly over a period of 0.1 min. (See  Fig. 5–2a  
for this input disturbance.) Plot the response in tank level and compare with the 
impulse response. 

 Before proceeding with the details of the computation, we should observe 
that as the time interval over which the 9 ft 3  of water is added to the tank is short-
ened, the input approaches an impulse function having a magnitude of 9. 

 From the data given in this example, the transfer function of the process is 

    

H s

Q s s

( )

( )
�

�

1
9

1   

The input may be expressed as the difference in step functions, as was done in 
Example 3A.5. 

    Q t u t u t( ) [ ( ) ( . )]� � �90 0 1   

The transform of this is 

    
Q s

s
e s( ) .� � �90

1 0 1( )
   

Combining this and the transfer function of the process, we obtain 

    
H s

s s

e

s s

s

( )
( ) ( )

.

�
�

�
�

�

10
1

1 1

0 1









  
 (5.13)  

The first term in Eq. (5.13) can be inverted as shown in Eq. (4.15) to give 
10(1 �  e�   t  ). The second term, which includes  e  �0.1 s  , must be inverted by use of 
the theorem on translation of functions given in App. 3A. According to this theo-
rem, the inverse of     e f sst� 0 ( )    is  f ( t  �  t  0 ) u ( t  �  t  0 ) with  u ( t  �  t  0 )  �  0 for  t  �  t  0  < 0 
or  t  <  t  0  . The inverse of the second term in Eq. (5.13) is thus 

    

L
e

s s
t

e

s

t

− 







1
0 1

1
0 0 1

10 1

�

�

�
� �

� �

.

(

( )
.for

�� �0 1 0 1. ) .( ) for t
  

 or 

    
10 1 0 10 1� �� �e u tt( . ) ( . )( )
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 CHAPTER 5  PHYSICAL EXAMPLES OF FIRST-ORDER SYSTEMS 103

The complete solution to this problem, which is the inverse of Eq. (5.13), is 

    H t e u t e u tt t( ) ( ) ( . )( . )� � � � �� � �10 1 10 1 0 10 1( ) ( )   (5.14)  

which is equivalent to 

    

H t e

H t e e

t

t t

( )

( ) ( . )

� �

� � � �

�

� � �

10 1

10 1 1 0 1

( )
( ) ( )





t

t

�

�

0 1

0 1

.

.
   

Simplifying this expression for  H(t)  for  t  > 0.1 gives 

    H t e tt( ) . .� ��1 052 0 1  

 From Eq. (4.19), the response of the system to an impulse of magnitude 9 is 
given by 

    
H t e et t( ) ( )impulse � �� �9 1

9( )
  

 In  Fig. 5–2 , the pulse response of the liquid-level system and the ideal 
impulse response are shown for comparison. Notice that the level rises very rap-
idly during the 0.1 min that additional flow is entering the tank; the level then 
decays exponentially and follows very closely the ideal impulse response.  

Pulse response
1.0

0
0 1

H
(t

)

2
t (min)

(b)

Impulse response
(ideal)

10

100

Area = 9 ft3

q
(f

t3 /m
in

)

0 0.1 0.2
t (min)

(a)

FIGURE 5–2
Approximation of an impulse function in a liquid-level system 
(Example 5.1). (a) Pulse input; (b) response of tank level.

 The responses to step and sinusoidal forcing functions are the same for the liquid-
level system as for the mercury thermometer of Chap. 4. Hence, they need not be 
rederived. This is the advantage of characterizing all first-order systems by the same 
transfer function.  

  Liquid-Level Process with Constant-Flow Outlet 

 An example of a transfer function that often arises in control systems may be devel-
oped by considering the liquid-level system shown in  Fig. 5–3 . The resistance shown in 
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104 PART 2 LINEAR OPEN-LOOP SYSTEMS

 Fig. 5–1  is replaced by a constant-flow pump. The same assumptions of constant cross-
sectional area and constant density that were used before also apply here. 

 For this system, Eq. (5.2) still applies, but  q  o ( t ) is now a constant; thus 

    
q t q A

dh

dt
o( ) � �
  

 (5.15)  

At steady state, Eq. (5.15) becomes 

    q qs o� � 0   (5.16)  

Subtracting Eq. (5.16) from Eq. (5.15) and introducing the deviation variables 
 Q   �   q  �  q   s   and  H   �   h  �  h   s   give 

    
Q A

dH

dt
�

  
 
(5.17)  

Taking the Laplace transform of each side of Eq. (5.17) and solving for  H/Q  give 

    

H s

Q s As

( )

( )
�

1

  
 (5.18)  

Notice that the transfer function 1/ As  in Eq. (5.18) is equivalent to integration. (Recall 
from App. 3A that multiplying the transform by  s  corresponds to differentiation of the 
function in the time domain, while dividing by s corresponds to integration in the time 
domain.) Therefore, the solution of Eq. (5.18) is 

    
h t h

A
Q t dts

t
( ) ( )� �

1
0∫  

 (5.19)   

 Clearly, if we increase the inlet flow to the tank, the level will increase because the out-
let flow remains constant. The excess volumetric flow rate into the tank accumulates, 
and the level rises. For instance, if a step change  Q ( t )  �   u ( t ) were applied to the system 
shown in  Fig. 5–3  the result would be 

    h t h t As( ) /� �   (5.20)  

The step response given by Eq. (5.20) is a ramp function that grows without limit. 
Such a system that grows without limit for a sustained change in input is said to have 

q (t )

h (t )

qo = constant

FIGURE 5–3
Liquid-level system with constant outlet flow.
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 CHAPTER 5  PHYSICAL EXAMPLES OF FIRST-ORDER SYSTEMS 105

 nonregulation.  Systems that have a limited change in output for a sustained change in 
input are said to have  regulation.  An example of a system having regulation is the step 
response of a first-order system, such as that shown in  Fig. 5–1 . If the inlet flow to the 
process shown in  Fig. 5–1  is increased, the level will rise until the outlet flow becomes 
equal to the inlet flow, and then the level stops changing. This process is said to be 
self-regulating. 

 The transfer function for the liquid-level system with constant outlet flow given 
by Eq. (5.18) can be considered as a special case of Eq. (5.8) as  R  →  � . 

    
lim

R

R

ARs As→ ∞





�

�
1

1

  

 The next example of a first-order system is a mixing process.  

  Mixing Process 

 Consider the mixing process shown in  Fig. 5–4  in which a stream of solution containing 
dissolved salt flows at a constant volumetric flow rate  q  into a tank of constant holdup 

volume  V.  The concentration of the salt in the entering 
stream  x  (mass of salt/volume) varies with time. It is 
desired to determine the transfer function relating the 
outlet concentration  y  to the inlet concentration  x.  

 If we assume the density of the solution to be 
constant, the flow rate in must equal the flow rate 
out, since the holdup volume is fixed. We may ana-
lyze this system by writing a transient mass balance 
for the salt; thus 

    

Flow rate of

salt in

Flow rate of

salt






−
out

Rate of accumulation

of salt in






=
ttank







  

 Expressing this mass balance in terms of symbols gives 

    
qx qy

d Vy

dt
V

dy

dt
� � �

( )
  

 (5.21)  

We will again introduce deviation variables as we have in the previous examples. At 
steady state, Eq. (5.21) may be written 

    qx qys s� � 0  
 (5.22)  

Subtracting Eq. (5.22) from Eq. (5.21) and introducing the deviation variables 

   

X x x

Y y y

s

s

� �

� � 

 give 

   
qX qY V

dY

dt
� �

  

x(t)
q

y (t)

y (t)

q

V

FIGURE 5–4
Mixing process.
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106 PART 2 LINEAR OPEN-LOOP SYSTEMS

Taking the Laplace transform of this expression and rearranging the result give 

   

Y s

X s s

( )

( )
�

�

1

1t    (5.23)  

where  t   �   V / q.  
 This mixing process is, therefore, another 

first-order process for which the dynamics are 
now well known. 

 Our last example of a first-order system 
is a heating process.  

  Heating Process 

 Consider the heating process shown in  Fig. 5–5 . 
A stream at temperature  T   i   is fed to the tank. 
Heat is added to the tank by means of an elec-
tric heater. The tank is well mixed, and the 
temperature of the exiting stream is  T.  The flow 
rate to the tank is constant at  w  lb/h. 

 A transient energy balance on the tank 
yields 

    

Rate of

energy flow

into tank

Rate













−
of

energy flow

out of tank

Rate o













+
ff

energy flow in

from heater

Rate













=
oof

accumulation of

energy in tank















   

Converting this energy balance to symbols results in 

    wC T T wC T T q VC
d T T

dt
VCi � � � � �

�
�ref ref

ref( ) ( ) ( )r r ddT

dt   
(5.24)

  

where  T   ref  is the reference temperature and  C  is the heat capacity of the fluid. At steady 
state,  dT / dt  is zero, and Eq. (5.24) can be written 

    wC T T qis s s� � �( ) 0   (5.25)  

where the subscript  s  has been used to indicate steady state. Subtracting Eq. (5.25) from 
Eq. (5.24) gives 

    wC T T wC T T q q VC
d T T

dt
i is s s

s
� � � � � �

�( ) ( ) ( )r   (5.26)  

If we assume that  T   i   is constant (and so  T   i    �   T   is  ) and introduce the deviation variables 

    

T T T

Q q q

s

s

′ � �

� �  

q

Steam or 
electricity

w, Ti

w, T

FIGURE 5–5
Heating process.
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 CHAPTER 5  PHYSICAL EXAMPLES OF FIRST-ORDER SYSTEMS 107

 Eq. (5.26) becomes 

    
� � �wCT Q VC

dT

dt
′ ′r

  
 (5.27)  

Taking Laplace transforms of Eq. (5.27) gives 

    � � �wCT s Q s VCsT s′ ′( ) ( ) ( )r   (5.28)  

Rearranging Eq. (5.28) produces the following first-order transfer function relating 
 T  � ( s ) and  Q ( s ): 

    

T s

Q s

wC

V w s

K

s

′
( )

( )

( )
�

�
�

�

1

1 1

/

/r t  
 (5.29)  

Thus, this process exhibits first-order dynamics as the tank temperature  T  responds to 
changes in the heat input to the tank. 

Example 5.2.   Consider the mixed tank heater shown in  Fig. 5–6 . Develop a 
transfer function relating the tank outlet temperature to changes in the inlet tem-
perature. Determine the response of the outlet temperature of the tank to a step 
change in the inlet temperature from 60 to 70 � C. Before we proceed, intuitively 
what would we expect to happen? If the inlet temperature rises by 10 � C, we 
expect the outlet temperature to eventually rise by 10 � C if nothing else changes. 
Let’s see what modeling the process will tell us. 

 From Eq. (5.26) we can write the following simplified balance, realizing 
that  q   �   q   s  : 

    
wC T T wC T T VC

d T T

dt
i is s

s
� � � �

�( ) ( ) r ( )

  

 In terms of deviation variables, this becomes 

    
wCT wCT VC

dT

dt
i
′ � �′ ′r

  

 Transforming, we get 

   wCT s wCT s VCsT si ′ ′ ′( ) ( ) ( )� � r  

 and finally, after rearranging, 

   
T s

T s V w s si

′
( )

( )

( )′
�

�
�

�

1

1

1

1r t/   Heat input

Ti = 60°C 200 L/min
Water

T = 80°C 

q

V = 1,000 L

FIGURE 5–6
Mixed tank heater.
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108 PART 2 LINEAR OPEN-LOOP SYSTEMS

Substituting in numerical values for the variables, we obtain the actual transfer 
function for this mixed tank heater. 

    

t r
r u

� � � �
V

w

V

w

V

/

tank volume

volumetric flow ratte /min
min� �

�
�

1 000

200
5

1

5 1

,

( )

( )

L

L

T s

T s si

′
′    

If the inlet temperature is stepped from 60 to 70 � C,     T ti′( ) � � �70 60 10    and 
    T s si ′( ) .� 10/    Thus, 

    
T s

s s
′ 



( ) �

�

10 1

5 1  

 Inverting to the time domain, we obtain the expression for  T  � ( t ) 

    
T t e t′ ( )( ) /� � �10 1 5

   

and finally, we obtain the expression for  T ( t ), the actual tank outlet temperature. 

    
T t T T t es

t( ) ( ) /� � � � � �′ ( )80 10 1 5

  

 A plot of the outlet temperature (in deviation variables) is shown in the 
 Fig. 5–7 a.   The actual outlet temperature is shown in  Fig. 5–7 b.   Note that for 
the uncontrolled mixing tank, a step change of 10 � C in the inlet temperature 

5 10 15 20 5 10 15 20

Actual outlet temperature (°C)

0

1

2

3

4

5

6

7

8

9

10

250
Time (min) 

Outlet temperature (°C) 
deviation variables 

80

81

82

83

84

85

86

87

88

89

90

250
Time (min) 

(a) (b)

FIGURE 5–7
(a) Tank outlet temperature (deviation variable); (b) actual tank outlet 
temperature.
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 CHAPTER 5  PHYSICAL EXAMPLES OF FIRST-ORDER SYSTEMS 109

ultimately produces a 10 � C change in the outlet temperature, just as we predicted 
intuitively before we began our modeling. This result is just what we expected. 

  The three examples presented in this section are intended to show that the dynamic 
characteristics of many physical systems can be represented by a first-order transfer 
function. In the remainder of the book, more examples of first-order systems will appear 
as we discuss a variety of control systems. 

 In summarizing the previous examples of first-order systems, the time constant 
for each has been expressed in terms of system parameters; thus 

    

t

t

�

�

mC

hA
AR

for thermometer Eq 4 5

for liq

, . ( . )

uuid-level process Eq 5 8

for mixing

, . ( . )

t �
V

q
process Eq 5 23

for heating proce

, . ( . )

t r
�

V

w
sss Eq 5 29, . ( . )

       

  5.2 LINEARIZATION 

  Thus far, all the examples of physical systems, including the liquid-level system of 
 Fig. 5–1 , have been linear. Actually, most physical systems of practical importance are 
nonlinear. 

 Characterization of a dynamic system by a transfer function can be done only for 
linear systems (those described by linear differential equations). The convenience of 
using transfer functions for dynamic analysis, which we have already seen in applica-
tions, provides significant motivation for approximating nonlinear systems by linear 
ones. A very important technique for such approximation is illustrated by the following 
discussion of the liquid-level system of  Fig. 5–1 . 

 We now assume that the flow out of the tank follows a square root relationship 

    q Cho � 1 2/
   (5.30)  

where  C  is a constant. 
 For a liquid of constant density and a tank of uniform cross-sectional area  A,  a 

material balance around the tank gives 

    
q t q t A

dh

dt
o( ) ( )� �

  
 (5.31)  

Combining Eqs. (5.30) and (5.31) gives the nonlinear differential equation 

    
q Ch A

dh

dt
� �1 2/

  
 (5.32)  

At this point, we cannot proceed as before and take the Laplace transform. This is due 
to the presence of the nonlinear term  h  1/2 , for which there is no simple transform. This 
difficulty can be circumvented by linearizing the nonlinear term. 
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110 PART 2 LINEAR OPEN-LOOP SYSTEMS

 By means of a Taylor series expansion, the function  q   o  ( h ) may be expanded 
around the steady-state value  h   s  ; thus 

    
q q h q h h h

q h h h
o o s o s s

o s s
� � � �

�
� ( ) ( )( ) ( )( )′ ″ 2

2
. .. .

   

where     q ho s′ ( )    is the first derivative of  q   o   evaluated at     h q hs o s, ″ ( )    is the second deriva-
tive, etc. If we keep only the linear term, the result is 

    
q q h q h h ho o s o s s� ( ) ( )( )� �′

  
 (5.33)

  

Taking the derivative of  q   o   with respect to  h  in Eq. (5.30) and evaluating the derivative 
at  h   �   h   s   give 

    
q h Cho s s

′ ( ) �
�1

2

1 2/

  
 Introducing this into Eq. (5.33) gives 

    
q q

R
h ho o ss� � �

1

1
( )

  
 (5.34)

  

where     q q ho o ss � ( )   and     1 1
1
2

1 2
/R Ch

s
�

� /
.    

 Substituting Eq. (5.34) into Eq. (5.31) gives 

    
q q

h h

R
A

dh

dt
o

s
s� �

�
�

1   
(5.35)  

At steady state the flow entering the tank equals the flow leaving the tank; thus 

    q qs os�   (5.36)  

Introducing this last equation into Eq. (5.35) gives 

    
A

dh

dt

h h

R
q qs

s�
�

� �
1  

 (5.37)  

Introducing deviation variables  Q   �   q  �  q   s   and  H   �   h  �  h   s   into Eq. (5.37) and trans-
forming give 

    

H s

Q s

R

s

( )

( )
�

�

1

1t  
 (5.38)  

where 

    
R

h

C
R As

1

1 2

1
2

� �
/

t
  

 We see that a transfer function is obtained that is identical in form with that of the linear 
system, Eq. (5.8). However, in this case, the resistance  R  1  depends on the steady-state 
conditions around which the process operates. Graphically, the resistance  R  1  is the recip-
rocal of the slope of the tangent line passing through the point     q ho ss, ,( )    as shown in 
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Using MATLAB to Compare Nonlinear (Exact) Solutions and Linearized Solutions

For the tank draining models of Eqs. (5.32) and (5.38) we have the following systems:

Nonlinear model
 

q Ch A
dh

dt
� �1 2/

 
(5.32)

Linearized model
 

H s

Q s

R

s

( )

( )
�

�

1

1t 
(5.38)

where

 

R
h

C
R A

s
1

1 2

1

2
�

�

/

t 

 CHAPTER 5  PHYSICAL EXAMPLES OF FIRST-ORDER SYSTEMS 111

 Fig. 5–8 . Furthermore, the linear approximation given by Eq. (5.35) is the equation of 
the tangent line itself. From the graphical representation, it should be clear that the linear 
approximation improves as the deviation in  h  becomes smaller. If one does not have an 
analytic expression such as  h  1/2  for the nonlinear function, but only a graph of the func-
tion, the technique can still be applied by representing the function by the tangent line 
passing through the point of operation. 

 Whether or not the linearized result is a valid representation depends on the oper-
ation of the system. If the level is being maintained by a controller, at or close to a fixed 
level  h   s  , then by the very nature of the control imposed on the system, deviations in 
level should be small (for good control) and the linearized equation is adequate. On the 
other hand, if the level should change over a wide range, the linear approximation may 
be very poor and the system may deviate significantly from the prediction of the linear 
transfer function. In such cases, it may be necessary to use the more difficult methods of 
nonlinear analysis, some of which are discussed in Chaps. 24 and 25. We shall extend 
the discussion of linearization to more complex systems in Chap. 20. 

q (t)

h (t)

qo(t)

qo

0
0

qos qo = Ch1/2

hs
h

Nonlinear
resistance

Tangent line
Slope = =

dqo (hs)
dh

1
R1

FIGURE 5–8
Liquid-level system with nonlinear resistance.
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Consider the case where A � 3 ft2 and the steady-state height is 4 ft when the inlet flow is 16 cfm. 
Compare the linearized and nonlinear (exact) solutions for the transient response of the tank height 
to a step change in feed flow from 16 to 20 cfm.

Solution:

From Eq. (5.30),

 

q Ch

C

os s�

�

1 2

1 2

/

/( )16 cfm 4 ft

thus,

 C � 8 cfm ft1 2/
 

and

 

R
h

C

R A

s
1

1 2

1 2

1

2 2
0 5

0

� � �

� �

/

/ .
4 ft

8 cfm/ft

ft

cfm

t .. ( ) .5 1 5
ft

cfm
3 ft min2



 �

 

Substituting the numerical values into the nonlinear model, Eq. (5.32), yields

 
20 8 3 0� � �h

dh

dt
h( ) 4 ft

 

The MATLAB m-file necessary to simulate this equation is shown below.

% FILENAME is level.m

  function  hprime=level(t,h) 

  hprime=(20—8*sqrt(h))/3;

This file calculates the derivative dh/dt at any given t and h. We call the m-file using the numerical 
differential equation solver ODE45.

The linearized model, with numerical values substituted in, is

 

H s

Q s s

( )

( )

.

.
�

�

0 5

1 5 1 

112 PART 2 LINEAR OPEN-LOOP SYSTEMS

>> [t,h] = ode45(@level  ,   [0,10]   ,   [4]  );

Matrices that 
you want the 

answers returned 
into.

MATLAB 
routine to 

numerically 
solve ODE

m-file level.m 
contains the 

model

time span... 
tinitial to tfinal

initial condition 
h(0) must 

correspond to 
tinitial
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where

 

H h Q q

H s
s

� � � �

�

4 16

4

deviation variables

( ) 





sstep change
by 4 cfmQ

s s�

0 5

1 5 1

2.

. (�
�





 11 5 1. )s �

 
Inverting gives

 

H t e

h t e

t

t

( )

( )

/ .

/ .

� �

� � �

�

�

2 1

4 2 1

1 5

1 5

( )
( )

linearizzed solution

 

Entering this equation into MATLAB yields

>>  hlin � 4 � 2*(1 � exp (�t/1.5));

Plot the linearized and nonlinear solutions on the same axes using MATLAB (see Fig. 5–9).

>>plot(t,h,t,hlin);

>> xlabel(’Time’);

>> ylabel(’h’);

>> title(’Comparison of Nonlinear and Linearized Solutions’);
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0 1 2 3 4 5 6 7 8 9

Comparison of Nonlinear and Linearized Solutions

Time

h

Linear solution 

Nonlinear solution 

4

4.5

5

5.5

6

6.5

FIGURE 5–9
Comparison of nonlinear and linearized solutions for tank draining.
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114 PART 2 LINEAR OPEN-LOOP SYSTEMS

 In general, the linearization of a nonlinear function is accomplished using a 
Taylor series expansion truncated to include only the linear terms. Thus for a single-
variable function 

    
f x f x

df

dx
x xs

xs

s( ) ( ) (� � � �( ) higher-order terms))
   

(5.39)  

For functions of two variables, we have 

    

f x y f x y
f

x
x x

f

y
s

x ys
s

x

( , ) ( , ) ( )
( , ) (

� � � �s
s

∂
∂

∂
∂ ss ys

sy y
, )

( )

( )

�

�  higher-order terms  

 (5.40)  

Consider the differential equation describing the dynamics of a system 

    

dy

dt
f y x t� �( ) ( )

nonlinear
term

�

  

 (5.41)  

Linearizing the nonlinear term gives 

    

dy

dt
f y

f

y
y ys

ys

s� � �( ) ( )
∂
∂

linearized approximattion
� ����� �����

� x t( )

  

 (5.42)  

Writing this equation again for the steady-state case gives 

    

dy

dt
f y

f

y
y y xs

s

ys

s s s� � � �( ) ∂
∂

( )
   

(5.43)
  

Subtracting the steady-state case in Eq. (5.43) from Eq. (5.42), we can convert the origi-
nal differential equation to deviation variables: 

    

d y y

dt

f

y
y y x x

dY

dt

f

y
Y X

s

ys

s s

ys

( )
( )

�
� � � �

� �

∂
∂

∂
∂

   

where  X   �   x  �  x   s   and  Y   �   y  �  y   s  . Note that the  f  ( y   s  ) term is eliminated in the process 
of forming deviation variables, and we are left with only linear terms in the equation 
which is now amenable to solution using Laplace transforms.    
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 CHAPTER 5  PHYSICAL EXAMPLES OF FIRST-ORDER SYSTEMS 115

   SUMMARY 

 In this chapter, we demonstrated several physical examples of first-order systems. 
Transfer functions were developed for those physical systems and placed into the stan-
dard form for first-order systems. We will see more examples of first-order systems as 
we discuss control systems in later chapters. 

 We have also characterized, in an approximate sense, a nonlinear system by a lin-
ear transfer function. In general, this technique may be applied to any nonlinearity that 
can be expressed in a Taylor series (or, equivalently, has a unique slope at the operating 
point). Since this includes most nonlinearities arising in process control, we have ample 
justification for studying linear systems in considerable detail.  

  PROBLEMS 

    5.1.  Derive the transfer function  H ( s )/ Q ( s ) for the liquid-level system of  Fig. P5–1  when
    (a)  The tank level operates about the steady-state value of  h   s    �  1 ft  

   (b)   The tank level operates about the steady-state 
value of  h   s    �  3 ft    

     The pump removes water at a constant rate of 
10 cfm (cubic feet per minute); this rate is inde-
pendent of head. The cross-sectional area of the 
tank is 1.0 ft 2 , and the resistance  R  is 0.5 ft/cfm.  

   5.2.   A liquid-level system, such as the one shown in 
 Fig. 5–1 , has a cross-sectional area of 3.0 ft 2 . The 
valve characteristics are 

    q h� 8   

   where  q   �  flow rate, cfm, and  h   �  level above the 
valve, ft. Calculate the time constant for this system 
if the average operating level above the valve is   
 (a)  3 ft  
   (b)  9 ft     

   5.3.   A tank having a cross-sectional area of 2 ft 2  is 
operating at steady state with an inlet flow rate of 
2.0 cfm. The flow-head characteristics are shown 
in  Fig. P5–3 . 
    (a)  Find the transfer function  H ( s )/ Q ( s ).  
   (b)   If the flow to the tank increases from 2.0 to 

2.2 cfm according to a step change, calculate the 
level  h  two minutes after the change occurs.    

   5.4.   Develop a formula for finding the time constant of 
the liquid-level system shown in  Fig. P5–4  when 
the average operating level is  h  0 . The resistance 
 R  is linear. The tank has three vertical walls and 
one that slopes at an angle  a from the vertical as 
shown. The distance separating the parallel walls 
is 1. 

R
h(t)

2 ft

q, ft3/min

FIGURE P5–1

0.3 1.0

Outlet flow

h (ft)

2.4

1.0q o
 (f

t3 /m
in

)

FIGURE P5–3

q

R

α

B

h0

FIGURE P5–4
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116 PART 2 LINEAR OPEN-LOOP SYSTEMS

    5.5.   Consider the stirred-tank reactor shown in 
 Fig. P5–5 . 

  The reaction occurring is 

    A B→    

 and it proceeds at a rate 

    r kCo�   

  where  r   �  (moles  A  reacting)/(volume)(time)    

   k   �  reaction rate constant  

      C   o   ( t )  �  concentration of  A  in reactor at any time  t  (mol  A /volume)  

      V   �  volume of mixture in reactor   

 Further, let 

    

F

C ti

�

�

constant feed rate volume/time

conc

,

( ) eentration of in feed stream, moles/volumA ee  
  Assuming constant density and constant volume  V,  derive the transfer function relating the 

concentration in the reactor to the feed-stream concentration. Prepare a block diagram for 
the reactor. Sketch the response of the reactor to a unit-step change in  C   i  .  

  5.6. A thermocouple junction of area  A,  mass  m,  heat capacity  C,  and emissivity  e  is located in 
a furnace that normally is at  T   is   � C. At these temperatures convective and conductive heat 
transfer to the junction is negligible compared with radiative heat transfer. Determine the 
linearized transfer function between the furnace temperature  T   i   and the junction temperature 
 T  0 . For the case 

    

m

C

e

A

Tis

�

� �

�

�

0 1

0 12

0 7

0 1 2

.

. ( )

.

.

g

cal/ g C

cm

i

�� �1100 C  
  plot the response of the thermocouple to a 10 � C step change in furnace temperature. Com-

pare this with the true response obtained by integration of the differential equation.  

   5.7.  A liquid-level system has the following properties:
    Tank dimensions: 10 ft high by 5-ft diameter  
   Steady-state operating characteristics:   

Ci, F

Co, F

Volume V

FIGURE P5–5

Inflow, gal/h Steady-state level, ft

0 0
5,000 0.7

10,000 1.1
15,000 2.3
20,000 3.9
25,000 6.3
30,000 8.8
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 CHAPTER 5  PHYSICAL EXAMPLES OF FIRST-ORDER SYSTEMS 117

        (a)  Plot the level response of the tank under the following circumstances: The inlet flow 
rate is held at 300 gal/min for 1 h and then suddenly raised to 400 gal/min.  

   (b)  How accurate is the steady-state level calculated from the dynamic response in part 
( a ) when compared with the value given by the table above?  

   (c)  The tank is now connected in series with a second tank that has identical operating char-
acteristics, but which has dimensions 8 ft high by 4-ft diameter. Plot the response of the 
original tank (which is upstream of the new tank) to the change described in part ( a ) 
when the connection is such that the tanks are (1) interacting and (2) noninteracting. (See 
Chap. 6.)     

   5.8. A mixing process may be described as follows: A stream with solute concentration  C   i   
(pounds/volume) is fed to a perfectly stirred tank at a constant flow rate of  q  (volume/time). 
The perfectly mixed product is withdrawn from the tank, also at the flow rate  q  at the same 
concentration as the material in the tank  C  0 . The total volume of solution in the tank is 

constant at  V.  Density may be considered to be inde-
pendent of concentration. 

  A trace of the tank concentration versus 
time appears as shown in  Fig. P5–8 . 
    (a)   Plot on this same figure your best guess 

of the  quantitative  behavior of the inlet 
concentration versus time. Be sure to 
label the graph with  quantitative  infor-
mation regarding times and magnitudes 
and any other data that will demonstrate 
your understanding of the situation.  

   (b)   Write an equation for  C   i   as a function of 
time.   

    Data: tank dimensions: 8 ft high by 5-ft diameter  
   Tank volume  V:  700 gal  
   Flow rate  q:  100 gal/min  
   Average density: 70 lb/ft 3     

    5.9.   The liquid-level process shown in  Fig. P5–9  
is operating at steady state when the following 
disturbance occurs: At time  t   �  0, 1 ft 3  water 
is added suddenly (unit impulse) to the tank; at 
 t   �  1 min, 2 ft 3  of water is added suddenly to 
the tank. Sketch the response of the level in the 
tank versus time, and determine the level at 
 t   �  0.5, 1, and 1.5 min. 

    5.10.   A tank having a cross-sectional area of 2 ft 2  
and a linear resistance of  R   �  1 ft/cfm is 
operating at steady state with a flow rate of 
1 cfm. At time 0, the flow varies as shown in 
 Fig. P5–10 . 
    (a)   Determine  Q ( t ) and  Q ( s ) by combining 

simple functions. Note that  Q  is the devi-
ation in flow rate.  

   (b)   Obtain an expression for  H ( t ) where  H  is 
the deviation in level.  

   (c)  Determine  H ( t ) at  t   �  2 and  t   �   � .    

FIGURE P5–10

2.1

2.0

1.9

1.8

1.7
6:52 
A.M.

6:30 
A.M.

Time

C
 (

Ib
/g

al
)

FIGURE P5–8

0

1

2

0 21

q 
(c

fm
)

3
t (min)

h

R = 0.5

= 1 min

Disturbance10 cfm

FIGURE P5–9
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118 PART 2 LINEAR OPEN-LOOP SYSTEMS

   5.11.   Determine  y ( t   �  5) if  
Y ( s )  �   e  �3 s  / s (7 s   �  1).  

  5.12.  Derive the transfer function  H/Q  for the 
liquid-level system shown in  Fig. P5–12 . 
The resistances are linear;  H  and  Q  are 
deviation variables. Show clearly how 
you derived the transfer function. You are 
expected to give numerical values in the 
transfer function. 

   5.13.  The liquid-level system shown in  Fig. 
P5–13  is initially at steady state with the 
inlet flow rate at 1 cfm. At time 0, 1 ft 3  
of water is suddenly added to the tank; at 
 t   �  1, 1 ft 3  is added; etc. In other words, a 
train of unit impulses is applied to the tank 
at intervals of 1 min. Ultimately the output 
wave train becomes periodic as shown in 
the sketch. Determine the maximum and 
minimum values of this output. 

    5.14.  The two-tank mixing process shown in  Fig. P5–14  contains a recirculation loop that trans-
fers solution from tank 2 to tank 1 at a flow rate of  a   q   o  . 

h

R2 = 5 ft/cfmR1 = 2 ft/cfm

A = 2 ft2q ft3/min

FIGURE P5–12

h

R = 1

A = 1 ft21 cfm

0 n
i

n+1 n+2 n+3

Hmin

Hmax

H

Train of impulses

FIGURE P5–13

1 ft3

x(t) = feed
concentration

c1

1 ft3

c2

q0 = 1 cfm

q0 

αq0 

FIGURE P5–14
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 CHAPTER 5  PHYSICAL EXAMPLES OF FIRST-ORDER SYSTEMS 119

    (a)  Develop a transfer function that relates the concentration  c  2  in tank 2 to the concen-
tration  x  in the feed, that is,  C  2  ( s )/ X ( s ) where  C  2  and  X  are deviation variables. For 
convenience, assume that the initial concentrations are  x   �   c  1   �   c  2   �  0.  

   (b)  If a unit-step change in  x  occurs, determine the time needed for  c  2  to reach 60 percent 
of its ultimate value for the cases where  �   �  0, 1, and  � .  

   (c)  Sketch the response for  a   �   � .   

  Assume that each tank has a constant holdup volume of 1 ft 3 . Neglect transportation lag in 
the line connecting the tanks and the recirculation line. Try to answer parts ( b ) and ( c ) by 
intuition.  

  5.15. Dye for our new line of blue jeans is being blended in a mixing tank. The desired color of 
blue is produced using a concentration of 1500 ppm blue dye, with a minimum acceptable 
concentration of 1400 ppm. At 9  A.M.  today the dye injector plugged, and the dye flow was 
interrupted for 10 min, until we realized the problem and unclogged the nozzle. For how 
many minutes was the flow leaving the mixer off-specification (< 1400 ppm)? How many 
gallons of off-spec dye were made? See  Fig. P5–15 . 

20 gal/min

Concentrated 
dye injector

20 gal/min aqueous dye for jeans 
(1500 ppm blue dye)

V = 100 gal

Water

FIGURE P5–15

5 L/min
CA0 = 1 mol/L  

5 L/min
CA0 = 0.2 mol/L  

Reaction : 2A       B
Rate law : -rA = kCA

2

Volume = 50 L

FIGURE P5–16

    5.16.  For the reactor (CSTR) shown in  Fig. P5–16 , determine the transfer function that relates 
the exit concentration from the reactor to changes in the feed concentration. If we instanta-
neously double the feed concentration from 1 to 2 mol/L, what is the new exiting concen-
tration 1 min later? What is the new steady-state reactor concentration? 

  The rate constant is 

    
k �

2

( )( )mol/L min  
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120 PART 2 LINEAR OPEN-LOOP SYSTEMS

   The reaction rate law is � r   A    �   kC   A   
2 , where  r   A   is the production rate of  A  in moles per liter 

per minute. 

    5.17.   The Antoine equation for the vapor pressure of a liquid at a given temperature is given by 

   P eA B T C* / ( )� � �  
  The constants for benzene are 

   

A

B

C

�

�

�

15 9008

2788 51

220 80

.

.

.

°
°

C

C    
  for the vapor pressure in millimeters of mercury (mmHg). Linearize the equation about a 

temperature of 40 � C. 
    Compare the actual vapor pressure (from the Antoine equation) at 45 and 60 � C 

with the vapor pressure calculated from the linearized equation. What is the percent differ-
ence in each case? Comment on the suitability of the linearized equation.  

   5.18.  Find the transfer function that relates the height in the vessel ( Fig. P5–18 ) to changes in the 
inlet flow rate. 

qi (cfm)

θ = 30°
h

q0 (cfm)

 (valve resistance)

R1

FIGURE P5–18
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     CHAPTER

5
CAPSULE SUMMARY 

 Here are some physical examples of first-order systems:   

System Transfer function

q (t)

h (t)

A = area

q0(t)
R

Figure 5–1 Liquid 
level system

H s

Q s

R

ARs

( )

( )
�

� 1

x(t)
q

y (t)

y (t)

q

V

Figure 5–4 Mixing 
process

Y s

X s V q s

( )

( ) ( )
�

�

1

1/

q

Steam or 
electricity

w, Ti

w, T

Figure 5–5 Heating 
process

T s

Q s

wC

V w s

′
( )

( )

( )

( )
�

�

1

1

/

/r

(continued)
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122 PART 2 LINEAR OPEN-LOOP SYSTEMS

System Transfer function

Fluid

x = fluid temperature

y = thermometer
      reading

Mercury Glass wall

Figure 4–1a 
Thermometer

Y s

X s mc hA s

( )

( )
�

�

1

1/( )

    TAYLOR SERIES EXPANSIONS FOR LINEARIZING 
NONLINEAR TERMS 

   
Functions of a single variable:     f x f x

df

dx
x xs

xs
s( ) ( )� � �( )

     

  Functions of two variables:    

  

f x y f x y
f

x
x x

f

y
s s

xs ys
s

xs ys

( , ) ,
, ,

� � � �( ) ∂
∂

( ) ∂
∂( ) (( )

( )y ys�
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 CHAPTER 

 6 

   6.1 INTRODUCTORY REMARKS 

  Very often, a physical system can be represented by several first-order processes con-
nected in series. To illustrate this type of system, consider the liquid-level systems 
shown in  Fig. 6–1  in which two tanks are arranged so that the outlet flow from the first 
tank is the inlet flow to the second tank. 

 Two possible piping arrangements are shown in  Fig. 6–1 . In  Fig. 6–1 a   the outlet 
flow from tank 1 discharges directly into the atmosphere before spilling into tank 2, and 
the flow through  R  1  depends only on  h  1 . The variation in  h  2  in tank 2 does not affect the 
transient response occurring in tank 1. This type of system is referred to as a  noninter-
acting  system. In contrast to this, the system shown in  Fig. 6–1 b   is said to be  interacting  
because the flow through  R  1  now depends on the difference between  h  1  and  h  2 . We will 
consider first the noninteracting system of  Fig. 6–1 a.   

        6.2 NONINTERACTING SYSTEM 

  As in the previous liquid-level example, we shall assume the liquid to be of constant 
density, the tanks to have uniform cross-sectional area, and the flow resistances to be 
linear. Our problem is to find a transfer function that relates  h  2  to  q,  that is,  H  2 ( s )/ Q ( s ). 
 The approach will be to obtain a transfer function for each tank,  Q  1 ( s )/ Q ( s ) and  H  2 ( s )/
 Q  1 ( s ), by writing a transient mass balance around each tank; these transfer functions 
will then be combined to eliminate the intermediate flow  Q  1 ( s ) and produce the desired 
transfer function. A balance on tank 1 gives

     
q q A

dh

dt
− 1 � 1

1

   
(6.1)  

 RESPONSE OF FIRST-ORDER 
SYSTEMS IN SERIES 
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124 PART 2 LINEAR OPEN-LOOP SYSTEMS

A balance on tank 2 gives

     
q q A

dh

dt
1 2 2

2
� �

  

 (6.2)
  

The flow-head relationships for the two linear resistances are given by the expressions

     
q

h

R
1

1

1
�

  
 (6.3)

  

     
q

h

R
2

2

2
�

   
(6.4)  

Combining Eqs. (6.1) and (6.3) in exactly the same manner as was done in Chap. 5 and 
introducing deviation variables give the transfer function for tank 1

     

Q s

Q s
1

1

1

1

( )

( )
�

�t s  
 (6.5)  

where     Q q q Q q qs s1 1 1� � � �, ,    and  t  1   �   R  1  A  1 . 
 In the same manner, we can combine Eqs. (6.2) and (6.4) to obtain the transfer 

function for tank 2

     

H s

Q s

R

s
2

1

2

2 1

( )

( )
�

�t  
 (6.6)

  

where     H h h s2 2 2� �    and  t    2   �   R  2  A  2 . 
 Having the transfer function for each tank, we can obtain the overall transfer 

function  H  2 ( s )/ Q ( s ) by multiplying Eqs. (6.5) and (6.6) to eliminate  Q  1 ( s ):

     

H s

Q s s

R

s
2

1

2

2

1

1 1

( )

( )
�

� �t t  
 (6.7)

  

Notice that the overall transfer function of Eq. (6.7) is the product of two first-order transfer 
functions, each of which is the transfer function of a single tank operating  independently 

q (t)

h1

A1

R1

R2

q2

q1

(a)

h2

A2

q (t)

h1

A1

R1
R2

q2

q1

(b)

h2

A2

FIGURE 6–1
Two-tank liquid-level system: (a) Noninteracting; (b) interacting.
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 CHAPTER 6  RESPONSE OF FIRST-ORDER SYSTEMS IN SERIES 125

of the other. In the case of the interacting system of  Fig. 6–1 b,   the overall transfer function 
 cannot  be found by simply multiplying the separate transfer functions; this will become 
apparent when the interacting system is analyzed later. 

Example 6.1.   Two noninteracting tanks are connected in series as shown in  
Fig. 6–1 a.   The time constants are  t   2   �  1 and  t   1   �  0.5;  R  2   �  1. Sketch the 
response of the level in tank 2 if a unit-step change is made in the inlet flow rate 
to tank 1. 

 The transfer function for this system is found directly from Eq. (6.7); thus

     

H s

Q s

R

s s
2 2

1 21 1

( )

( )
�

� �t t( )( )
  

 (6.8)  

For a unit-step change in  Q,  we obtain

     
H s

s

R

s s
2

2

1 2

1

1 1
( )

( )( )
�

� �t t  
 (6.9)  

Inversion by means of partial fraction expansion gives

     
H t R e et t

2 2
1 2

1 2 2

1

1

21
1 1

( ) � �
�

�� �t t
t t t t

t t/ /









   

(6.10)
  

Substituting in the values of  t  1 ,  t  2 , and  R  2  gives

     H t e et t
2

21 2( ) � � �� �( )   (6.11)  

A plot of this response is shown in  Fig. 6–2 . Notice that the response is S-shaped 
and the slope  dH  2 / dt  at the origin is zero. If the change in flow rate were intro-
duced into the second tank, the response would be first-order and is shown for 
comparison in  Fig. 6–2  by the dotted curve. 

Two tanks

One tank

32
t

10

1.0

H
2(

t)

0.5

0

FIGURE 6–2
Transient response of liquid-level system (Example 6.1).
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MATLAB/Simulink Simulation of the Transient Response in Fig. 6–2

It’s quite easy to verify the result in Fig. 6–2 using Simulink (Fig. 6–3). The model is shown below 
at the left, and the output from the model is shown in the graph.

Feed, Q

Tank 2 Feed, Q Tank 2 only

Tank 1

1

0.5s+1

1

s+1

1
s+1

Tank 2
Response 0.5

0
1 3

One Tank

Two Tanks

420

1

FIGURE 6–3
Simulink simulation of one tank and two tanks in series.

126 PART 2 LINEAR OPEN-LOOP SYSTEMS

      From Example 6.1, notice that the step response of a system consisting of two first-
order systems is S-shaped and that the response changes very slowly just after introduc-
tion of the step input. This sluggishness or delay is sometimes called  transfer lag  and 
is always present when two or more first-order systems are connected in series. For 
a single first-order system, there is no transfer lag; i.e., the response begins immedi-
ately after the step change is applied, and the rate of change of the response (slope of 
response curve) is maximal at  t   �  0. 

  Generalization for Several Noninteracting Systems in Series 

 We have observed that the overall transfer function for two noninteracting first-order 
systems connected in series is simply the product of the individual transfer functions. 
We may now generalize this concept by considering  n  noninteracting first-order sys-
tems as represented by the block diagram of  Fig. 6–4 . 

X0 XnX1 X2 Xi�1k1

t1s�1

k2

t2s�1

ki

tis�1

kn

tns�1

FIGURE 6–4
Noninteracting first-order systems.

     The block diagram is equivalent to the relationships

     

X s

X s

k

s

X s

X s

k

s

1

0

1

1

2

1

2

2

1

1

( )

( )

( )

( )

�
�

�
�

t

t   

etc.

     

X s

X s

k

s
n

n

n

n

( )

( )�
�

�1 1t   
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MATLAB/Simulink Simulation of Noninteracting First-Order Systems in Fig. 6–5

Let’s reproduce the response in Fig. 6–5 for four tanks in series using Simulink (Fig. 6–6). Note how 
simple the model is and that the result is identical to Fig. 6–5.

Tank 1 Tank 2 Tank 3 Tank 4

Response

Input

1
s+1

1
s+1

1
s+1

1
s+1

0.2

0
0 4 62

1

0.4

0.6

0.8

FIGURE 6–6
Simulink diagram for noninteracting first-order systems in series.

 CHAPTER 6  RESPONSE OF FIRST-ORDER SYSTEMS IN SERIES 127

To obtain the overall transfer function, we simply multiply the individual transfer func-
tions; thus

     

X s

X s

k

s
n

i

n
i

i

( )

( )0 1 1
�

��
∏ t   

(6.12)
  

To show how the transfer lag is increased as the number of stages increases,  Fig. 6–5  
gives the unit-step response curves for several systems containing one or more first-
order stages in series.    

FIGURE 6–5
Step response of noninteracting first-order systems in series.

543

u(t) Y(t)

21

1.0

0.8

0.6

0.4

0.2

0
0

n = 1

n =
 2

n =
 3

n =
 4Y

(t
)

1 n
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128 PART 2 LINEAR OPEN-LOOP SYSTEMS

  6.3 INTERACTING SYSTEM 

  To illustrate an interacting system, we will derive the transfer function for the system 
shown in  Fig. 6–1 b.   The analysis is started by writing mass balances on the tanks as 
was done for the noninteracting case. The balances on tanks 1 and 2 are the same as 
before and are given by Eqs. (6.1) and (6.2).

     
Tank 1 q q A

dh

dt
� �1 1

1

  
  (6.1)   

               
(6.2)   

However, the flow-head relationship for  R  1  is now

     
q

R
h h1

1
1 2

1
� �( )

  
 (6.13)  

The flow-head relationship for  R  2  is the same as before [Eq. (6.4)].

     
q

h

R
2

2

2
�

  
  (6.4)   

A simple way to combine Eqs. (6.1), (6.2), (6.4), and (6.13) is to first express them in 
terms of deviation variables, transform the resulting equations, and then combine the 
transformed equations to eliminate the unwanted variables. 

 At steady state, Eqs. (6.1) and (6.2) can be written

     q qs s� �1 0   (6.14)  

     q qs s1 2 0� �   (6.15)  

Subtracting Eq. (6.14) from Eq. (6.1) and Eq. (6.15) from Eq. (6.2) and introducing 
deviation variables give

        
(6.16)  

        
(6.17)

  

Expressing Eqs. (6.13) and (6.4) in terms of deviation variables gives

     
Valve 1 Q

H H

R
1

1 2

1
�

�

   
(6.18)  

       
 
(6.19)  

Tank 2 q q A
dh

dt
1 2 2

2
� �Tank 2 q q A

dh

dt
1 2 2

2
� �

Tank 1 Q Q A
dH

dt
� �1 1

1Tank 1 Q Q A
dH

dt
� �1 1

1

Tank 2 Q Q A
dH

dt
1 2 2

2
� �Tank 2 Q Q A

dH

dt
1 2 2

2
� �

Valve 2 Q
H

R
2

2

2
�Valve 2 Q

H

R
2

2

2
�
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 CHAPTER 6  RESPONSE OF FIRST-ORDER SYSTEMS IN SERIES 129

Transforming Eqs. (6.16) through (6.19) gives

     Tank 1 Q s Q s A sH s( ) ( ) ( )� �1 1 1   (6.20)  

     Tank 2 Q s Q s A sH s1 2 2 2( ) ( ) ( )� �   (6.21)  

     Valve 1 R Q s H s H s1 1 1 2( ) ( ) ( )� �   (6.22)  

     Valve 2 R Q s H s2 2 2( ) ( )�   (6.23)  

The analysis has produced four algebraic equations containing five unknowns: 
 Q,   Q  1 ,  Q  2 ,  H  1 , and  H  2 . These equations may be combined to eliminate  Q  1 ,  Q  2 , and  H  1  
and to arrive at the desired transfer function:

     

H s

Q s

R

s A R s
2

1 2 1

( )

( ) 1
�

� � � �

2
2

2 1 2t t t t( )  
 (6.24)  

Notice that the product of the transfer functions for the tanks operating separately, 
Eqs. (6.5) and (6.6), does not produce the correct result for the interacting system. 
The difference between the transfer function for the noninteracting system, Eq. (6.7), 
and that for the interacting system, Eq. (6.24), is the presence of the cross-product 
term  A  1  R  2  in the coefficient of  s.  

 The term  interacting  is often referred to as  loading.  The second tank of  Fig. 6–1 b   
is said to  load  the first tank. 

 To understand the effect of interaction on the transient response of a system, con-
sider a two-tank system for which the time constants are equal ( t   1   �   t    2   �   t ). If the 
tanks are noninteracting, the transfer function relating inlet flow to outlet flow is

     

Q s

Q s s
2

21

1

( )

( )
�

�t




   

(6.25)
  

The unit-step response for this transfer function can be obtained by the usual procedure 
to give

     
Q t e

t
et t

2 1( ) � � �� �/ /t t
t   

(6.26)
  

If the tanks are interacting, the overall transfer function, according to Eq. (6.24), is 
(assuming further that  A  1   �   A  2 )

     

Q s

Q s s s
2

2 2
1

3 1

( )

( )
�

� �t t  
 (6.27)

  

By application of the quadratic formula, the denominator of this transfer function can 
be written as

     

Q s

Q s s s
2 1

0 38 1 2 62 1

( )

( ) ( . )( . )
�

� �t t
   

(6.28)  
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130 PART 2 LINEAR OPEN-LOOP SYSTEMS

For this example, we see that the effect of interaction has been to change the effective 
time constants of the interacting system. One time constant has become considerably 
larger and the other smaller than the time constant  t  of either tank in the noninteract-
ing system. The response of  Q  2 ( t ) to a unit-step change in  Q ( t ) for the interacting case 
[Eq. (6.28)] is

     Q t e et t
2

0 38 2 621 0 17 1 17( ) . .. .� � �� �/ /t t   (6.29)   

 In  Fig. 6–7 , the unit-step responses [Eqs. (6.26) and (6.29)] for the two cases are 
plotted to show the effect of interaction. From this figure, it can be seen that interaction 
slows up the response. This result can be understood on physical grounds in the follow-
ing way: If the same size step change is introduced into the two systems of  Fig. 6–1 , 
the flow from tank 1 ( q  1 ) for the noninteracting case will not be reduced by the increase 
in level in tank 2. However, for the interacting case, the flow  q  1  will be reduced by the 
buildup of level in tank 2. At any time  t  1  following the introduction of the step input,  q  1  
for the interacting case will be less than for the noninteracting case with the result that 
 h  2  (or  q  2 ) will increase at a slower rate. 

Interacting

Noninteracting

1.0

0.8

0.6

0.4

0.2

0
3210

1 1 Q2
Q = u(t)

1 1 Q2Q = u(t)

Q
2/

Q

FIGURE 6–7
Effect of interaction on step response of two-tank system.

 In general, the effect of interaction on a system containing two first-order lags 
is to change the ratio of effective time constants in the interacting system. In terms of 
the transient response, this means that the interacting system is more sluggish than the 
noninteracting system.    
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 CHAPTER 6  RESPONSE OF FIRST-ORDER SYSTEMS IN SERIES 131

   SUMMARY 

 In this chapter we discussed the response of first-order systems in series. We observed 
that the nature of the response is dependent upon whether the first-order systems in 
series form a noninteracting or an interacting system. We used MATLAB to visual-
ize and analyze the response of these two different types of systems and to study their 
behavior. 

 This chapter concludes our specific discussion of first-order systems. We will 
make continued use of the material developed here in the succeeding chapters.  

  PROBLEMS 

    6.1.  Determine the transfer function  H ( s )/ Q ( s ) for the liquid-level system shown in  Fig. P6–1 . 
Resistances  R  1  and  R  2  are linear. The flow rate from tank 3 is maintained constant at  b  by 
means of a pump; i.e., the flow rate from tank 3 is independent of head  h.  The tanks are 
noninteracting. 

    6.2.  The mercury thermometer in Chap. 4 was considered to have all its resistance in the convec-
tive film surrounding the bulb and all its capacitance in the mercury. A more detailed analy-
sis would consider both the convective resistance surrounding the bulb and that between the 
bulb and the mercury. In addition, the capacitance of the glass bulb would be included. Let

    A   i    �  inside area of bulb, for heat transfer to mercury  
   A   o    �  outside area of bulb, for heat transfer from surrounding fl uid  
   m   �  mass of mercury in bulb  
   m   b    �  mass of glass bulb  

q (t) A1

R1

R2

A2

A3

Tank 3

Tank 2

Tank 1

qo = b
h

FIGURE P6–1
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132 PART 2 LINEAR OPEN-LOOP SYSTEMS

   C   �  heat capacity of mercury  
   C   b    �  heat capacity of glass bulb  
   h   i    �  convective coeffi cient between bulb and mercury  
   h   o    �  convective coeffi cient between bulb and surrounding fl uid  
   T   �  temperature of mercury  
   T   b    �  temperature of glass bulb  
   T   f    �  temperature of surrounding fl uid   

Determine the transfer function between  T   f   and  T.  What is the effect of the bulb resistance 
and capacitance on the thermometer response? Note that the inclusion of the bulb results 
in a pair of interacting systems, which give an overall transfer function somewhat differ-
ent from that of Eq. (6.24).  

  6.3. There are  N  storage tanks of volume  V  arranged so that when water is fed into the first tank, 
an equal volume of liquid overflows from the first tank into the second tank, and so on. Each 
tank initially contains component  A  at some concentration  C   o   and is equipped with a perfect 
stirrer. At time 0, a stream of zero concentration is fed into the first tank at a volumetric rate  q.  
Find the resulting concentration in each tank as a function of time.  

  6.4.    ( a )  Find the transfer functions  H  2 / Q  and  H  3 / Q  for the three-tank system shown in  Fig. P6–4  
where  H  2 ,  H  3 , and  Q  are deviation variables. Tank 1 and tank 2 are interacting. 

   ( b )  For a unit-step change in  q  (that is,  Q   �  1/ s ), determine  H  3 (0) and  H  3 ( � ), and sketch 
 H  3 ( t ) versus  t.      

q
A1 = 1 A2 = 1

A3 = 0.5

R1 = 2

h2

h3

R2 = 2

R3 = 4

Tank 1 Tank 2

Tank 3

FIGURE P6–4

   6.5.  Three identical tanks are operated in series in a noninteracting fashion as shown in  Fig. P6–5 . 
For each tank,  R   �  1 and  t   �  1. The deviation in flow rate to the first tank is an impulse 
function of magnitude 2. 
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 CHAPTER 6  RESPONSE OF FIRST-ORDER SYSTEMS IN SERIES 133

   ( a ) Determine an expression for  H ( s ) where  H  is the deviation in level in the third tank.  
  ( b )  Sketch the response  H ( t ).  
  ( c ) Obtain an expression for  H ( t ). 

C

Tank 2Tank 1 

3 ft3/min
X

FIGURE P6–6

h

FIGURE P6–5

     6.6. In the two-tank mixing process shown in  Fig. P6–6 ,  x  varies from 0 lb salt/ft 3  to 1 lb salt/ft 3  
according to a step function. At what time does the salt concentration in tank 2 reach 
0.6 lb salt/ft 3 ? The holdup volume of each tank is 6 ft 3 . 
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134 PART 2 LINEAR OPEN-LOOP SYSTEMS

   6.7. Starting from first principles, derive the transfer functions  H  1 ( s )/ Q ( s ) and  H  2 ( s )/ Q ( s ) for the 
liquid-level system shown in  Fig. P6–7 . The resistances are linear and  R  1   �   R  2   �  1. Note 
that two streams are flowing from tank 1, one of which flows into tank 2. You are expected 
to give numerical values of the parameters in the transfer functions and to show clearly how 
you derived the transfer functions.     

q(t)

h2

R2 = 1

A2 = 1 ft2

A2 = 2 ft2

Tank 2

h1

R1 = 1Ra = 2

Tank 1

FIGURE P6–7
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CHAPTER 

6
CAPSULE SUMMARY

 Noninteracting systems For two systems in series, if the output from sys-
tem 1 is not affected by the output from system 2, the systems are said to be 
noninteracting.

q (t)

h1

A1

R1

R2

q2

q1

h2

A2

X0 XnX1 X2 Xn�1
GnG2G1

X s

X s
G

n

i

n

i
( )

( )0 1

�
�
∏

H s

Q s s

R

s
2

1

2

2

1

1 1

( )

( )
�

� �t t

Interacting systems The output from system 1 is affected by the output from 
system 2. The overall transfer function for the process is not merely the prod-
uct of the transfer functions in series.

X s

X s
G

n

i

n

i
( )

( )0 1

�
�
∏

q (t)

h1

A1

R1
R2

q2

q1

h2

A2

cou9789x_ch06_123-136.indd   135cou9789x_ch06_123-136.indd   135 8/30/08   3:43:38 PM8/30/08   3:43:38 PM



Confirming Pages

136 PART 2 LINEAR OPEN-LOOP SYSTEMS

For the interacting two-tank system, the transfer function is

H s

Q s

R

s A R s

2 2

1 2
2

1 2 1 2 1

( )

( ) ( )
�

� � � �t t t t

Note the presence of the cross- product 
term in the denominator.

This term has the effect of slowing down the response of the process.

Interacting

Noninteracting

1.0

0.8

0.6

0.4

0.2

0
3210

1 1 Q2
Q = u(t)

1 1 Q2Q = u(t)

Q
2/

Q
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 CHAPTER 

 7 

   7.1 SECOND-ORDER SYSTEM 

   Transfer Function 

 This section introduces a basic system called a  second-order system  or a  quadratic lag.  
Second-order systems are described by a second-order differential equation that relates 
the ouput variable  y  to the input variable  x  (the forcing function) with time as the inde-
pendent variable.  

    
A

d y

dt
B

dy

dt
Cy x t

2

2 � � � ( )
   

(7.1)  

 A second-order system can arise from two first-order systems in series, as we saw 
in Chap. 6. Some systems are inherently second-order, and they do not result from a 
series combination of two first-order systems. Inherently second-order systems are not 
extremely common in chemical engineering applications. Most second-order systems 
that we encounter will result from the addition of a controller to a first-order process. 
Let’s examine an inherently second-order system and develop some terminology that 
will be useful in our analysis of the control of chemical processes. 

 Consider a simple manometer as shown in  Fig. 7–1 . The pressure on both legs of 
the manometer is initially the same. The length of the fluid column in the manometer 
is  L.  At time  t   �  0, a pressure difference is imposed across the legs of the manometer. 
Assuming the resulting flow in the manometer to be laminar and the steady-state fric-
tion law for drag force in laminar flow to apply at each instant, we will determine the 
transfer function between the applied pressure difference � P  and the manometer read-
ing  h.  If we perform a momentum balance on the fluid in the manometer, we arrive at 
the following terms: 

    ( ) (Sum of forces causing fluid to move Rate� of change of momentum of fluid)   (7.2)  

 HIGHER-ORDER SYSTEMS: 
SECOND-ORDER AND 

TRANSPORTATION LAG 
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138 PART 2 LINEAR OPEN-LOOP SYSTEMS

where 

    

Sum of forces

causing fluid to move

Un





�
bbalanced pressure forces

causing motion












�
Frictional forces

opposing motion
    

    

Unbalanced pressure forces

causing motion






( )� � �P P
D

gh
D

1 2

2 2

4 4

p r p

    

    

Frictional forces

opposing motion

Skin





�
friction

at wall

Shear stress

at wall






�












�
Area in contact

with wall
    

    

Frictional forces

opposing motion
Wal







� t ll p
m p m pDL

V

D
DL

D

dh

dt
DL( ) ( ) 









� �

8 8 1

2
( ))

 

   The term for the skin friction at the wall is obtained from the Hagen-Poiseuille relation-
ship for laminar flow (McCabe, Smith and Harriott, 2004). Note that V is the average 
velocity of the fluid in the tube, which is also the velocity of the interface, which is 
equal to   12 dh dt/       (see  Fig. 7–2 ). 

After (Final)Before (Initial)

L

h h/2

h/2

D
Reference level

t = 0

P1 = 0 P1 P2P2 = 0

FIGURE 7–1
Manometer.
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 CHAPTER 7  HIGHER-ORDER SYSTEMS: SECOND-ORDER AND TRANSPORTATION LAG 139

 The rate of change of momentum of the fluid [the right side of Eq. (7.2)] may be 
expressed as 

    

( ) (Rate of change of momentum mass veloc� �
d

dt
iity momentum correction factor�

�

)

r pD
L

2

4







( )







( )





b

r p b

dV

dt

D
L

d h

dt
�

2 2

24

1

2
 

   The momentum correction factor  b  accounts for the fact that the fluid has a parabolic 
velocity profile in the tube, and the momentum must be expressed as  b    m V for laminar 
flow (see McCabe, Smith and Harriott, 2004). The value of  b  for laminar flow is 4/3. Sub-
stituting the appropriate terms into Eq. (7.2) produces the desired force balance equation 
for the manometer.  

    
r p pD

L
d h

dt
P P

2 2

2 1 2
4

4

3

1

2



















( )� �
DD

gh
D

D

dh

dt
DL

2 2

4 4

8 1

2
� �r p m p









 (

  
 (7.3)

  

 Rearranging Eq. (7.3), we obtain 

    

r p mD
L

d h

dt D

2 2

24

4

3

1

2

8

















+ 









 ( ) ( )1

2 4 4

2

1 2

2dh

dt
DL gh

D
P P

Dp r p p
� � �

   

and finally, dividing both sides by  r  g ( p    D  2 /4), we arrive at the standard form for a 
second-order system.  

FIGURE 7–2
Average velocity of the fluid in the manometer.

h

V

V h/2

h/2

Reference level

t = 0

P1 P2
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140 PART 2 LINEAR OPEN-LOOP SYSTEMS

    

2

3

162

2 2
1 2L

g

d h

dt

L

D g

dh

dt
h

P P

g

P

g
� � �

�
�

m
r r r

∆
  

 (7.4)  

 (A more detailed version of the analysis of the manometer can be found in Bird et al., 
1960). Note that as with first-order systems, standard form has a coefficient of 1 on the 
dependent variable term,  h  in this case. Second-order systems are described by a second-
order differential equation. We may rewrite this Eq. (7.4) in general terms as 

    
t zt2

2

2 2
d Y

dt

dY

dt
Y X t� � � ( )

   
(7.5)

  

where 

    
t 2 2

3
�

L

g  
 (7.6)   

    
2

16
2zt m

r
�

L

D g  
 (7.7)

   

    
X t

P

g
Y h( ) � �

∆
r

and
   

(7.8)   

 Solving for  t  and  z  from Eqs. (7.6) and (7.7) gives 

    
t �

2

3

L

g
s

   
(7.9)   

    
z m

r
�

8 3

22D

L

g
dimensionless

   
(7.10)   

 By definition, both  t  and  z  must be positive. The reason for introducing  t  and  z  in the 
particular form shown in Eq. (7.5) will become clear when we discuss the solution of 
Eq. (7.5) for particular forcing functions  X ( t ). 

 Equation (7.5) is written in a standard form that is widely used in control theory. 
If the fluid column is motionless ( dY / dt   �  0) and located at its rest position ( Y   �  0) 
before the forcing function is applied, the Laplace transform of Eq. (7.4) becomes 

    t zt2 2 2s Y s sY s Y s X s( ) ( ) ( ) ( )� � �  
 (7.11)   

 From this, the transfer function follows: 

    

Y s

X s s s

( )

( )
�

� �

1

2 12 2t zt   
(7.12)   

 The transfer function given by Eq. (7.12) is written in standard form, and we will show 
later that other physical systems can be represented by a transfer function having the 
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 CHAPTER 7  HIGHER-ORDER SYSTEMS: SECOND-ORDER AND TRANSPORTATION LAG 141

denominator of  t  2  s  2   �  2 z  t    s   �  1. All such systems are defined as second-order. Note 
that it requires two parameters,  t  and  z , to characterize the dynamics of a second-order 
system in contrast to only one parameter for a first-order system. We now discuss the 
response of a second-order system to some of the common forcing functions, namely, 
step, impulse, and sinusoidal.  

  Step Response 

 If the forcing function is a unit-step function, we have 

    
X s

s
( ) �

1
   

(7.13)   

 In terms of the manometer shown in  Fig. 7–1 , this is equivalent to suddenly applying a 
pressure difference [such that  X ( t )  �  � P / r  g   �  1] across the legs of the manometer at 
time  t   �  0. 

 Superposition will enable us to determine easily the response to a step function of 
any other magnitude. 

 Combining Eq. (7.13) with the transfer function of Eq. (7.12) gives 

    
Y s

s s s
( ) �

� �

1 1

2 12 2t zt   
(7.14)   

 The quadratic term in this equation may be factored into two linear terms that contain 
the roots 

    
sa � � �

�z
t

z
t

2 1
   

(7.15)   

    
sb � � �

�z
t

z
t

2 1

  
 (7.16)   

 Equation (7.14) can now be written 

    
Y s

s s s s sa b
( ) �

� �

1 2/t
( )( )   

(7.17)   

 The response of the system  Y ( t ) can be found by inverting Eq. (7.17). The roots  s   a   and 
 s   b   will be real or complex depending on value of the parameter  z . The nature of the 
roots will, in turn, affect the form of  Y ( t ). The problem may be divided into the three 
cases shown in  Table 7.1 . Each case will now be discussed. 

TABLE 7–1

Step response of a second-order system

Case  y Nature of roots Description of response

I < 1 Complex Underdamped or oscillatory
II �  1 Real and equal Critically damped

III > 1 Real Overdamped or nonoscillatory
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142 PART 2 LINEAR OPEN-LOOP SYSTEMS

  CASE I STEP RESPONSE FOR y < 1.   For this case, the inversion of Eq. (7.17) yields 
the result 

    
Y t e

tt( ) tan� �
�

� �
�� �1

1

1

1
2

2 1
2

z
z
t

z
z

z t/ sin 1










   
(7.18)   

 To derive Eq. (7.18), use is made of the techniques of Chap. 3. Since  z  < 1, Eqs. (7.15) 
to (7.17) indicate a pair of complex conjugate roots in the left half-plane and a root at 
the origin. In terms of the symbols of Fig. 3–1, the complex roots correspond to  s  2  and   
s2

*   and the root at the origin to  s  6 . 
 The reader should realize that in Eq. (7.18), the argument of the sine function is in 

radians, as is the value of the inverse tangent term. 
 By referring to Table 3.1, we see that  Y ( t ) has the form 

    
Y t C e C

t
C

tt( ) � � � � ��
1 2

2
3

21 1z t z
t

z
t

/ cos sin



  

 (7.19)   

 The constants  C  1 ,  C  2 , and  C  3  are found by partial fractions. The resulting equation is 
then put in the form of Eq. (7.18) by applying the trigonometric identity used in Chap. 4, 
Eq. (4.26). The details are left as an exercise for the reader. It is evident from Eq. (7.18) 
that  Y ( t ) → 1 as  t  →  � . 

 The nature of the response can be understood most clearly by plotting the solution 
to Eq. (7.17) as shown in  Fig. 7–3 , where  Y ( t ) is plotted against the dimensionless vari-
able  t / t  for several values of  z , including those above unity, which will be considered 
in the next section. Note that for  z  < 1 all the response curves are oscillatory in nature 
and become less oscillatory as  z  is increased. The slope at the origin in  Fig. 7–3  is 
zero for all values of  z . The response of a second-order system for  z  < 1 is said to be 
 underdamped.      

 What is the physical significance of an underdamped response? Using the manom-
eter as an example, if we step-change the pressure difference across an underdamped 
manometer, the liquid levels in the two legs will oscillate before stabilizing. The oscil-
lations are characteristic of an underdamped response.  

  CASE II STEP RESPONSE FOR  y   �  1.   For this case, the response is given by the 
expression 

    
Y t

t
e t( ) /� � � �1 1

t
t



   

(7.20)   

 This is derived as follows: Equations (7.15) and (7.16) show that the roots  s  1  and  s  2  are 
real and equal. By referring to Fig. 3–1 and Table 3.1, it is seen that Eq. (7.20) is the 
correct form. The constants are obtained, as usual, by partial fractions. 

 The response, which is plotted in  Fig. 7–3 , is nonoscillatory. This condition, 
 z   �  1, is called  critical damping  and allows the most rapid approach of the response to 
 Y    �  1 without oscillation.  
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 CHAPTER 7  HIGHER-ORDER SYSTEMS: SECOND-ORDER AND TRANSPORTATION LAG 143

  CASE III STEP RESPONSE FOR  z  > 1.   For this case, the inversion of Eq. (7.17) gives 
the result 

    
Y t e

t tt( ) /� � � � ��1 1
1

12
2

2z t z
t

z

z
z

t
cosh sinh

−











   

(7.21)  

where the hyperbolic functions are defined as 

    

sinh

cosh

a
e e

a
e e

a a

a a

�
�

�
�

�

�

2

2 
   The procedure for obtaining Eq. (7.21) is parallel to that used in the previous cases. 

 The response has been plotted in  Fig. 7–3  for several values of  z . Notice that the 
response is nonoscillatory and becomes more “sluggish” as  z  increases. This is known 
as an  overdamped  response. As in previous cases, all curves eventually approach the 
line  Y   �  1. 

0.8

1.0

1.2

1.4

1.6

0.6

Y
(t

)

0.4

0.2

0
0 2 4 6 8 10

t/

0.2
0.4
0.6

ζ = 0.8

ζ = 1.0

1.4
1.2

FIGURE 7–3
Response of a second-order system to a unit-step forcing function.
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144 PART 2 LINEAR OPEN-LOOP SYSTEMS

  Using MATLAB/Simulink to Determine the Step Response of the Manometer 

 Consider a manometer as illustrated in  Fig. 7–1 . The manometer is being used to determine the 
pressure difference between two instrument taps on an air line. The working fluid in the manometer 
is water. Determine the response of the manometer to a step change in pressure across the legs of 
the manometer.    

  Data 
          L   �  200  cm  

        g   �  980  cm/s 2   

            

       

∆P

g

t

tr
�

�

�

0 0

10 0

for

cm for


      

          D   �  0.11 cm, 0.21 cm, 0.31 cm (Three Cases)    

  Solution.   From Eq. (7.4), we have the governing differential equation for the manometer: 
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



ee working fluid water,

 Actually, the response for  z  > 1 is not new. We saw it previously in the discussion 
of the step response of a system containing two first-order systems in series, for which 
the transfer function is 

    

Y s

X s s s

( )

( )
�

� �

1

1 11 2t t( )( )   
(7.22)   

 This is true for  z  > 1 because the roots  s  1  and  s  2  are real, and the denominator of Eq. 
(7.12) may be factored into two real linear factors. Therefore, Eq. (7.12) is equivalent to 
Eq. (7.22) in this case. By comparing the linear factors of the denominator of Eq. (7.12) 
with those of Eq. (7.22), it follows that 

    
t z z t1

2 1� � �( )   
(7.23)   

    
t z z t2

2 1� � �( )   
(7.24)   

 Note that if  t   1   �   t     2 , then  t   �   t    1   �   t     2  and  z   �  1. The reader should verify these results.   
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 CHAPTER 7  HIGHER-ORDER SYSTEMS: SECOND-ORDER AND TRANSPORTATION LAG 145

In terms of transformed deviation variables, this becomes 

    t zt2 2 2s Y s sY s Y s X s( ) ( ) ( ) ( )� � �  

 wher e

   

Y h h X
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∆ ∆
r r
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
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2

8
2

33

2

L
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Let’s calculate the time constant for the manometer. 

    
t � � �

2

3

2 200

3 980
0 3692

L

g

( )

( )
.

cm

cm /s
s

   
and the damping coefficient for the three different tube diameters 

    
z m

r
� �

�8 3

2

8 0 01

1 02 3D

L

g D

[ . ( )]

( . )(

g/ cm s

g/cm 22 2 2
3 200

2 980

0 0443

)

( )

( )

.cm

cm/s
�

D  

Diameter (cm) �

0.11 3.66
0.21 1.00
0.31 0.46

    
   Clearly we have one underdamped system ( z  < 1), one critically damped system ( z   �  1), and 

one overdamped system ( z   > 1). One method of obtaining the responses is to substitute the values 
of  t  and  z  into Eqs. (7.18), (7.20), and (7.21) and plot the resulting equations, realizing that the forc-
ing function is 10 times a unit step. Another way to obtain the responses is to use MATLAB and 
Simulink to obtain the response of the transfer function  Y/X  to the forcing function input  X.  

    

Y s

X s s s
X

s

( )

( )
�

� �
�

1

2 1

10
2 2t zt

and
  

   The three necessary transfer functions are as follows:   

Diameter (cm) s z s 2 2zs Transfer function

0.11 0.369 3.66 0.136 2.70 1

0 136 2 70 12. .s s� �

0.21 0.369 1.00 0.136 0.738 1

0 136 0 738 12. .s s� �

0.31 0.369 0.46 0.136 0.340 1

0 136 0 340 12. .s s� �

(continued)
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146 PART 2 LINEAR OPEN-LOOP SYSTEMS

   The Simulink model for simulating the transfer functions is shown in  Fig. 7–4 , and the response is 
shown in  Fig. 7–5 . 

FIGURE 7–4
Simulink diagram for manometer simulation.

0.136s2 + 2.70s + 1

0.136s2 + 0.738s + 1

1

Critically damped manometer

Overdamped manometer

Pressure forcing
function
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Scope

1

0.136s2 + 0.340s + 1

1

Underdamped manometer

FIGURE 7–5
Manometer response to step input.
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 CHAPTER 7  HIGHER-ORDER SYSTEMS: SECOND-ORDER AND TRANSPORTATION LAG 147

 Substituting the values for  t  and  z  into Eqs. (7.18), (7.20), and (7.21), we get 

    

Y t e
tt( ) 10 1

1

1
� �

�
� �

�� �

z
z
t

z
z

z t
2

2 1
2

1
1/ sin tan























underdamped manometer

10 1 1.1� � 33 1.93
1.09 rad

e tt� �
�1 25 1

2 41. sin . tan� �� ��


































Y t
t

e t( ) 10 1 1 /� � � �

t
t �� � � �10

0 369
0 3691 1 critical

t
e t

.
/ .











lly damped manometer

( )Y t e t� � ��10 1 12z t z/ cosh
tt t

t
z

z
z

t
�

�
�

2
2

1
1sinh























overdampeed manometer

1 cosh(9.54 ) 1.04 si� � ��10 9 92e tt. nnh(9.54 )t[ ]{ }
  

   Plotting these responses gives the same results as the Simulink model. 
 On a practical note, notice that  t  increases with the total length of the fluid column and that  z  

increases with the viscosity of the fluid. If the damping coefficient  z  is small (< < 1.0), the response 
of the manometer to a change in pressure can be very oscillatory, and it becomes difficult to obtain 
accurate readings of the pressure. To dampen the oscillations, it is common practice to place a 
restriction on the bend of the tube. This increases the drag force of the fluid and is equivalent to 
increasing  m  in the equation for  z . Such a restriction (a partially open valve) is called a snubber.    

  Terms Used to Describe an Underdamped System 

 Of these three cases, the underdamped response occurs most frequently in control sys-
tems. Hence a number of terms are used to describe the underdamped response quan-
titatively. Equations for some of these terms are listed below for future reference. In 
general, the terms depend on  z  and/or  t . All these equations can be derived from the 
time response as given by Eq. (7.18); however, the mathematical derivations are left to 
the reader as exercises. 

   1.  Overshoot.  Overshoot is a measure of how much the response exceeds the ultimate 
value following a step change and is expressed as the ratio  A/B  in  Fig. 7–6 . 

  The overshoot for a unit step is related to  z  by the expression 

    
Overshoot exp�

�

�

pz

z1 2









   

(7.25)   

  This relation is plotted in  Fig. 7–7 . The overshoot increases for decreasing  z . 
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148 PART 2 LINEAR OPEN-LOOP SYSTEMS

  Why are we concerned about overshoot? Perhaps the temperature in our chemical 
reactor cannot be allowed to exceed a specified temperature to protect the catalyst 
from deactivation, or if it’s a level control system, we don’t want the tank to over-
flow. If we know these physical limitations, we can determine allowable values of 
 z  and choose our control system parameters to be sure to stay within those limits.  

  2.  Decay ratio.  The decay ratio is defined as the ratio of the sizes of successive peaks 

and is given by  C/A  in  Fig. 7–6 . The decay ratio is related to  z  by the expression 

    
Decay ratio exp overshoot�

�

�
�

2

1 2

pz

z











( )22

   
(7.26)  

 which is plotted in  Fig. 7–7 . Notice that larger  z  means greater damping, hence 
greater decay.  

FIGURE 7–6
Terms used to describe an underdamped second-order response.
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FIGURE 7–7
Characteristics of a step response of an underdamped second-order system.
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 CHAPTER 7  HIGHER-ORDER SYSTEMS: SECOND-ORDER AND TRANSPORTATION LAG 149

  3.  Rise time.  This is the time required for the response to first reach its ultimate value 
and is labeled  t   r   in  Fig. 7–6 . The reader can verify from  Fig. 7–3  that  t   r   increases 
with increasing  z .  

  4.  Response time.  This is the time required for the response to come within  �  5 
percent of its ultimate value and remain there. The response time is indicated in 
 Fig. 7–6 . The limits  �  5 percent are arbitrary, and other limits can be used for 
defining a response time.  

  5.  Period of oscillation.  From Eq. (7.18), the radian frequency (radians/time) is the 
coefficient of  t  in the sine term; thus, 

    
radian frequency w

z
t

�
�1 2

   
(7.27)

   

  Since the radian frequency  w  is related to the cyclical frequency  f  by  w   �  2 p  f,  it 
follows that 

    
f

T
� �

�1 1

2

1 2

p
z
t  

 (7.28)  

 where  T  is the period of oscillation (time/cycle). In terms of  Fig. 7–6 ,  T  is the time 
elapsed between peaks. It is also the time elapsed between alternate crossings of 
the line  Y   �  1.  

  6.  Natural period of oscillation.  If the damping is eliminated [ B   �  0 in Eq. (7.1), or 
 z   �  0], the system oscillates continuously without attenuation in amplitude. Under 
these “natural” or undamped conditions, the radian frequency is 1/ t , as shown by 
Eq. (7.27) when  z   �  0. This frequency is referred to as the  natural frequency   w      n  : 

    
w

t
n �

1
   

(7.29)   

  The corresponding natural cyclical frequency  f   n   and period  T   n   are related by the 
expression 

    
f

T
n

n
� �

1 1

2pt   
(7.30)   

  Thus,  t  has the significance of the undamped period. 
  From Eqs. (7.28) and (7.30), the natural frequency is related to the actual frequency 

by the expression 

    

f

fn
� �1 2z

  

  which is plotted in  Fig. 7–7 . Notice that for  z  < 0.5 the natural frequency is nearly 
the same as the actual frequency.    

In summary, it is evident that  z  is a measure of the degree of damping, or the 
oscillatory character, and  t  is a measure of the period, or speed, of the response of a 
second-order system.  

cou9789x_ch07_137-162.indd   149cou9789x_ch07_137-162.indd   149 8/14/08   5:59:02 PM8/14/08   5:59:02 PM

user
Highlight

user
Highlight

user
Highlight

user
Highlight



Confirming Pages

150 PART 2 LINEAR OPEN-LOOP SYSTEMS

  Impulse Response 

 If a unit impulse  d   ( t ) is applied to the second-order system, then from Eqs. (7.12) and 
(3A.1) the transform of the response is 

    
Y s

s s
( ) �

� �

1

2 12 2t zt   
(7.31)   

 As in the case of the step input, the nature of the response to a unit impulse will depend 
on whether the roots of the denominator of Eq. (7.31) are real or complex. The problem 
is again divided into the three cases shown in  Table 7.1 , and each is discussed below.    

  CASE I IMPULSE RESPONSE FOR y < 1.    The inversion of Eq. (7.31) for  z  < 1 yields 
the result 

    
Y t e

tt( )
1

1
sin 1�

�
��1

2
2

t z
z
t

z t/

   
(7.32)  

which is plotted in  Fig. 7–8 . The slope at the origin in  Fig. 7–8  is 1.0 for all values of  z . 
 A simple way to obtain Eq. (7.32) from the step response of Eq. (7.18) is to take 

the derivative of Eq. (7.18) with respect to  t  (remember from App. 3A that the deriva-
tive of the unit-step function is the impulse function). Comparison of Eqs. (7.14) and 
(7.31) shows that 

    Y s sY s( ) ( ) impulse step�    (7.33)   
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Y
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)
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FIGURE 7–8
Response of a second-order system to a unit-impulse forcing function.
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 CHAPTER 7  HIGHER-ORDER SYSTEMS: SECOND-ORDER AND TRANSPORTATION LAG 151

 The presence of  s  on the right side of Eq. (7.33) implies differentiation with respect to  t  
in the time response. In other words, the inverse transform of Eq. (7.31) is 

    
Y t

d

dt
Y t( ) ( ) impulse step� ( )  

 (7.34)   

 Application of Eq. (7.34) to Eq. (7.18) yields Eq. (7.32). This principle also yields the 
results for the next two cases.      

  CASE II IMPULSE RESPONSE FOR y    �  1.   For the critically damped case, the response 
is given by 

    
Y t te t( ) /� �1

2t
t

   
(7.35)

  

which is plotted in  Fig. 7–8 .  

  CASE III IMPULSE RESPONSE FOR  y     > 1.   For the overdamped case, the response is 
given by 

    

Y t e
tt( ) /�

�
��1 1

1
1

2
2

t z
z

t
z t sinh

   

(7.36)

  

which is also plotted in  Fig. 7–8 . 
 To summarize, the impulse–response curves of  Fig. 7–8  show the same general 

behavior as the step response curves of  Fig. 7–3 . However, the impulse response always 
returns to zero. Terms such as  decay ratio, period of oscillation,  etc., may also be used 
to describe the impulse response. Many control systems exhibit transient responses 
such as those of  Fig. 7–8 .   

  Sinusoidal Response 

 If the forcing function applied to the second-order system is sinusoidal 

    X t A t( ) � sinw  

 then it follows from Eqs. (7.12) and (4.23) that 

    
Y s

A

s s s
( ) �

� � �

w
w t zt2 2 2 2 2 1( )( )   

(7.37)  

The inversion of Eq. (7.37) may be accomplished by first factoring the two quadratic 
terms to give 

    
Y s

A

s j s j s s s sa b
( ) �

� � � �

w t
w w

/ 2

( )( )( )( )   
(7.38)   
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152 PART 2 LINEAR OPEN-LOOP SYSTEMS

 Here  s   a   and  s   b   are the roots of the denominator of the transfer function and are given by Eqs. 
(7.15) and (7.16). For the case of an underdamped system ( z  < 1), the roots of the denomi-
nator of Eq. (7.38) are a pair of pure imaginary roots ( 1  j  w , � j  w ) contributed by the forc-

ing function and a pair of complex roots     � � � � � �z t z t z t z t/ / , / /j j1 12 2(
We may write the form of the response  Y ( t ) by referring to Fig. 3–1 and Table 3.1; thus 

       

(7.39)   

 The constants are evaluated by partial fractions. Notice in Eq. (7.39) that as  t  →  � , only 
the first two terms do not become zero. These remaining terms are the ultimate periodic 
solution; thus 

    Y t C t C tt( )→� � �1 2cos sinw w    (7.40)   

 The reader should verify that Eq. (7.40) is also true for  z   �  1. From this little 
effort, we see already that the response of the second-order system to a sinusoidal driv-
ing function is ultimately sinusoidal and has the same frequency as the driving function. 
If the constants  C  1  and  C  2  are evaluated, we get from Eqs. (4.26) and (7.40) 

    

Y t
A

t

t( ) �

� �

�

1 22 2 2w zwt
w f

( )  ( )
( )sin

   

(7.41)  

where 

   
f zwt

wt
� �

�

�tan 1
2

2

1 ( )    
By comparing Eq. (7.41) with the forcing function 

   
X t A t( ) � sinw

  it is seen that   

1. The ratio of the output amplitude to the input amplitude is 

    

Amplitude ratio
output amplitude

input ampli
�

ttude
�

� �

1

1 22 2 2wt zwt( )  ( )
     

 It will be shown in Chap. 15 that this may be greater or less than 1, depending upon 
the values of  z  and  w   t . This is in direct contrast to the sinusoidal response of the 
 first-order  system, where the ratio of the output amplitude to the input amplitude is 
always  less than  1.  

  2. The output lags the input by phase angle | f  |. 

    
f zwt

wt
� � �

�

�phase angle tan
2

1
1

( )2
   

Y t t C t e C
t

Ct( ) C1
2� � � � ��cos sin cos si/w w z
t

z t
2 3 41 nn 1 � z

t
2 t



Y t t C t e C

t
Ct( ) C1

2� � � � ��cos sin cos si/w w z
t

z t
2 3 41 nn 1 � z

t
2 t




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 CHAPTER 7  HIGHER-ORDER SYSTEMS: SECOND-ORDER AND TRANSPORTATION LAG 153

 It can be seen from Eq. (7.41), and will be shown in Chap. 15, that | f  | approaches 
180° asymptotically as  w  increases. The phase lag of the first-order system, on the 
other hand, can never exceed 90°. Discussion of other characteristics of the sinu-
soidal response will be deferred until Chap. 15.     

We now have at our disposal considerable information about the dynamic behav-
ior of the second-order system. It happens that many control systems that are not truly 
second-order exhibit step responses very similar to those of  Fig. 7–3 . Such systems are 
often characterized by second-order equations for approximate mathematical analysis. 
Hence, the second-order system is quite important in control theory, and frequent use 
will be made of the material in this chapter.    

  7.2 TRANSPORTATION LAG 

  A phenomenon that is often present in flow systems is the  transportation lag.  Syn-
onyms for this term are  dead time  and  distance velocity lag.  As an example, consider 
the system shown in  Fig. 7–9 , in which a liquid flows through an insulated tube of uni-

form cross-sectional area  A  and length  L  at a 
constant volumetric flow rate  q.  The density  r  
and the heat capacity  C  are constant. The tube 
wall has negligible heat capacity, and the veloc-
ity profile is flat (plug flow). 

 The temperature  x  of the entering fluid 
varies with time, and it is desired to find the 
response of the outlet temperature  y ( t ) in terms 
of a transfer function. 

 As usual, it is assumed that the system is initially at steady state; for this system, 
it is obvious that the inlet temperature equals the outlet temperature; i.e., 

    
x ys s�

  
 (7.42)   

 If a step change were made in  x ( t ) at  t   �  0, the change would not be detected at the 
end of the tube until  t  s later, where  t  is the time required for the entering fluid to pass 
through the tube. This simple step response is shown in  Fig. 7–10 . 

 If the variation in  x ( t ) were some arbitrary function, as shown in  Fig. 7–10 , the 
response  y ( t ) at the end of the pipe would be identical with  x ( t ) but again delayed by  t  

L 

Cross-sectional area = A

x(t)
q

y(t)
q

FIGURE 7–9
System with transportation lag.

L 

Cross-sectional area = A

x(t)
q

y(t)
q

FIGURE 7–9
System with transportation lag.
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0 t
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y(t)

τ 0 t
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y(t)

τ

τ

FIGURE 7–10
Response of transportation lag to various inputs.
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154 PART 2 LINEAR OPEN-LOOP SYSTEMS

units of time. The transportation lag parameter  t  is simply the time needed for a particle 
of fluid to flow from the entrance of the tube to the exit, and it can be calculated from 
the expression 

    
t �

volume of tube

volumetric flow rate  
 

or 
    

t �
AL

q  
 (7.43)   

 It can be seen from  Fig. 7–10  that the relationship between  y ( t ) and  x ( t ) is 

    y t x t( ) � � t( )   
(7.44)   

 Subtracting Eq. (7.42) from Eq. (7.44) and introducing the deviation variables  X   �   x  �  x   s   
and  Y   �   y  �  y   s   give 

    Y t X t( ) � � t( )    (7.45)   

 If the Laplace transform of  X ( t ) is  X ( s ), then the Laplace transform of  X ( t  �  t ) is  e  � s  t    X ( s ). 
This result follows from the theorem on translation of a function, which was discussed 
in App. 3A. Equation (7.45) becomes 

    Y s e X ss( ) ( )� � t
  

 or 

    

Y s

X s
e s( )

( )
� � t

  

 (7.46)   

 Therefore, the transfer function of a transportation lag is  e  � s  t  . 
 The transportation lag is quite common in the chemical process industries where 

a fluid is transported through a pipe. We shall see in a later chapter that the presence of 
a transportation lag in a control system can make it much more difficult to control. In 
general, such lags should be avoided if possible by placing equipment close together. 
They can seldom be entirely eliminated.      

  APPROXIMATION OF TRANSPORT LAG.   The transport lag is quite different from the 
other transfer functions (first-order, second-order, etc.) that we have discussed in that it 
is not a rational function (i.e., a ratio of polynomials.) As shown in Chap. 13, a system 
containing a transport lag cannot be analyzed for stability by the Routh test. The trans-
port lag can also be difficult to simulate by computer. For these reasons, several approx-
imations of transport lag that are useful in control calculations are presented here. 

 One approach to approximating the transport lag is to write  e  � t   s   as 1/ e   t   s   and to 
express the denominator as a Taylor series; the result is 

    
e

e s s s
s

s
� � �

� � � �

t
t t t t
1 1

1 2 32 2 3 3/ / ! �  
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 CHAPTER 7  HIGHER-ORDER SYSTEMS: SECOND-ORDER AND TRANSPORTATION LAG 155

   Keeping only the first two terms in the denominator gives 

    
e

s
s�

�
t

t
�

1

1  
 (7.47)   

 This approximation, which is simply a first-order lag, is a crude approximation of a 
transport lag. An improvement can be made by expressing the transport lag as 

    
e

e

e
s

s

s
�

�

�t
t

t

/

/

2

2
  

   Expanding numerator and denominator in a Taylor series and keeping only terms of 
first-order give 

    
e

s

s
s� �

�
t t

t
�

1 2

1 2

/

/
first-order Padé

   
(7.48)   

 This expression is also known as a  first-order Padé  approximation. 
 Another well-known approximation for a transport lag is the second-order Padé 

approximation: 

    
e

s s

s s
s� � �

� �

t t t
t t

�
1 2 12

1 2 12

2 2

2 2
/ /

/ /
second-ordeer Padé

   
(7.49)   

 Equation (7.48) is not merely the ratio of two Taylor series; it has been optimized to 
give a better approximation. 

 The step responses 
of the three approximations 
of transport lag presented 
here are shown in  Fig. 7–11 . 
The step response of  e  � t  s   is 
also shown for comparison. 
Notice that the response for 
the first-order Padé approxi-
mation drops to �1 before ris-
ing exponentially toward  � 1. 
The response for the second-
order Padé approximation 
jumps to  � 1 and then descends 
to below 0 before returning 
gradually back to  � 1.   

 Although none of the 
approximations for  e  � t  s   is 
very accurate, the approxima-

tion for  e  � t   s   is more useful when it is multiplied by several first-order or second-order 
transfer functions. In this case, the other transfer functions filter out the high-frequency 
content of the signals passing through the transport lag, with the result that the transport 
lag approximation, when combined with other transfer functions, provides a satisfactory 
result in many cases. The accuracy of a transport lag can be evaluated most clearly in 
terms of frequency response, a topic covered later in this book.      

FIGURE 7–11
Step response to approximation of the transport lag e�ts:

 (1) 
1

1ts �
;  (2) first-order Padé; (3) second-order Padé ; (4) e�ts.

0
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156 PART 2 LINEAR OPEN-LOOP SYSTEMS

   SUMMARY 

 After studying the material in this chapter, we now have at our disposal considerable 
information about the dynamic behavior of the second-order systems and transportation 
lags. We noted that even though many control systems are not truly second-order, they 
frequently exhibit step responses very similar to what we have observed in this chapter. 
Such systems are often characterized by second-order equations for an approximate 
mathematical analysis. Therefore, the second-order system is quite important in control 
theory, and we will make use of this material often in future chapters.  

  PROBLEMS 

    7.1.  A step change of magnitude 4 is introduced into a system having the transfer function 

    

Y s

X s s s

( )

( ) .
�

� �

10

1 6 42

  
    Determine    

 ( a ) Percent overshoot  

   ( b ) Rise time  

   ( c ) Maximum value of  Y ( t )  

   ( d ) Ultimate value of  Y ( t )  

   ( e ) Period of oscillation     

   7.2.   The two-tank system shown in  Fig. P7–2  is 
operating at steady state. At time  t   �  0,  10 ft 3  
of water is quickly added to the first tank. Using 
appropriate figures and equations in the text, 
determine the maximum deviation in level (feet) 
in both tanks from the ultimate steady-state 
values and the time at which each maximum 
occurs. Data: 

             

   7.3.   The two-tank liquid-level system shown in Fig. 
P7–3 is operating at steady state when a step 
change is made in the flow rate to tank 1. The 
transient response is critically damped, and it 
takes 1.0 min for the change in level of the sec-
ond tank to reach 50 percent of the total change.   
       If the ratio of the cross-sectional areas of the 
tanks is  A  1 / A  2   �  2, calculate the ratio  R  1 / R  2 . Cal-
culate the time constant for each tank. How long 
does it take for the change in level of the first 
tank to reach 90 percent of the total change?     

FIGURE P7–2
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20 ft3/min 10 ft3

h1

h2

A1

A2

R1

R2

A A

R

R

1 2
2

1

2

� �

�

�

10 ft

0 1 ft/cfm

0 35 ft/cfm

.

.

A A

R

R

1 2
2

1

2

� �

�

�

10 ft

0 1 ft/cfm

0 35 ft/cfm

.

.

q

h1

h2

A1

A2

R1

R2

FIGURE P7–3
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FIGURE P7–3
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 CHAPTER 7  HIGHER-ORDER SYSTEMS: SECOND-ORDER AND TRANSPORTATION LAG 157

7.4.  Use Simulink to solve Prob. 7.3.  

   7.5.  Design a mercury manometer that will measure pressures up to 2 atm absolute and will give 
responses that are slightly underdamped (that is,  z   �  0.7).  

   7.6.  Verify Eqs. (7.18), (7.20), and (7.21).  

   7.7.  Verify Eqs. (7.25) and (7.26).  

   7.8.  Verify Eq. (7.41).  

   7.9.  If a second-order system is overdamped, it is more difficult to determine the parameters  z  
and  t  experimentally. One method for determining the parameters from a step response has 
been suggested by R. C. Oldenbourg and H. Sartorius ( The Dynamics of Automatic Con-
trols.  ASME, p. 78, 1948), as described below. 
   ( a ) Show that the unit-step response for the overdamped case may be written in the form 

   
S t

r e r e

r r

r t r t

( ) � �
�

�
1 1 2

1 2

2 1

  

 where  r  1  and  r  2  are the (real and negative) roots of 

   t zt2 2 2 1 0s s� � �      
( b ) Show that  S ( t ) has an inflection point at 

    
t

r r

r r
i �

ln 2 1

1 2

/

/

( )
        

( c ) Show that the slope of the step response at the inflection point 

    

dS t

dt
S t

t ti
i

( )

�

� 	( )
   

 has the value 

    

S t r e r e

r
r

r

i
r ti r ti

r r

	 � � � �

� �

( )







1 2

1
2

1

1 2

1 1/ ��r2( )

        
( d ) Show that the value of the step response at the inflection point is 

    
S t

r r

r r
S ti iA B � �

�
	1 1 2

1 2
( )

  
  and that hence 

    

1 1 1

1 2

�

	
� �

S t

S t r r
i

i

( )
( )  

     ( e ) On a typical sketch of a unit-step response, show distances equal to 

    

1 1

S t

S t

S ti

i

i	

�

	( )
( )

( )and
  

  and hence present two simultaneous equations resulting from a graphical method for 
determination of  r  1  and  r  2 .     

(  f   ) Relate  z  and  t  to  r  1  and  r  2 .    
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158 PART 2 LINEAR OPEN-LOOP SYSTEMS

   7.10.  Determine  Y (0),  Y (0.6), and  Y ( � ) if 

    
Y s

s

s

s s
( ) �

�

� �

1 25 1

2 252
( )

  

      7.11.   In the liquid-level system shown in Fig. P7–11, the deviation in flow rate to the first tank 
is an impulse function of magnitude 5. The following data apply:  A  1   �  1 ft 2 ,  A  2   �   A  3   � 
 2 ft 2 ,  R  1   �  1  ft /cfm, and  R  2   �  1.5 ft /cfm. 

   ( a ) Determine expressions for  H  1 ( s ),  H  2 ( s ), and  H  3 ( s ) where  H  1 ,  H  2 , and  H  3  are deviations 
in tank level for tanks 1, 2, and 3.  

  ( b ) Sketch the responses of  H  1  ( t ),  H  2  ( t ), and  H  3  ( t ). (You need show only the shape of the 
responses; do not plot.)  

  ( c ) Determine  H  1  (3.46),  H  2  (3.46), and  H  3  (3.46). For  H  2  and  H  3 , use graphs in Chap. 7 
of this text after first finding values of  t and  z  for an equivalent second-order system.    

   7.12.  Sketch the response  Y ( t ) if  Y ( s )  �   e  �2 s  /[ s  2   �  1.2 s   �  1]. Determine  Y ( t ) for  t   �  0, 1, 5, and  � .  

   7.13.  The two tanks shown in Fig. P7–13 are connected in an interacting fashion. The system is 
initially at steady state with  q   �  10  cfm. The following data apply to the tanks:  A  1   �  1 ft 2 ,
  A  2   �  1.25 ft 2 ,  R  1   �  1 ft/cfm, and  R  2   �  0.8 ft/cfm. 

Tank 1

Tank 2

Tank 3

Constant flow

A3

A2

A1

R1

R2

h1

h2

h3

Q(t) = 5  (t)δ

FIGURE P7–11

FIGURE P7–13

h1

A1

R1

q

h2

A2

R2
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 CHAPTER 7  HIGHER-ORDER SYSTEMS: SECOND-ORDER AND TRANSPORTATION LAG 159

   ( a ) If the flow changes from 10 to 11 cfm according to a step change, determine  H  2 ( s ), i.e., 
the Laplace transform of  H  2 ( t ), where  H  2  is the deviation in  h  2 .  

  ( b ) Determine  H  2 (1),  H  2 (4), and  H  2 ( � ).  
  ( c ) Determine the initial levels (actual levels)  h  1 (0) and  h  2 (0) in the tanks.  
  ( d ) Obtain an expression for  H  1 ( s ) for the unit-step change described above.    

   7.14.  From figures in this chapter, determine  Y (4) for the system response expressed by 

    
y s

s

s

s s
( )

.
�

�

� �

2 2 4

4 0 8 12
  

      7.15.  A step change of magnitude 3 is introduced into the transfer function    
Y s

X s s s

( )

( ) . .
�

� �

10

2 0 3 0 52

   
  Determine the overshoot and the frequency of oscillation.      
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CHAPTER

 7 
CAPSULE SUMMARY 

  STANDARD FORM FOR A SECOND-ORDER 
SYSTEM:  

    
t zt2

2

2 2
d Y

dt

dY

dt
Y X t� � � ( )

    

    t
z

�

�

Time constant

Damping coefficient magn( iitude of this parameter determines the natuure of the response)  
 

        TERMS TO DESCRIBE AN UNDERDAMPED 
(OSCILLATORY) SECOND-ORDER RESPONSE  

    

Overshoot exp�
�

�
�

pz

z1 2













A

B
    

    

Decay ratio exp overshoot�
�

�
�

2

1 2

pz

z










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( )22 �
C
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w�
�

�
1 2

n yy �
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    SINUSOIDAL RESPONSE OF A SECOND-
ORDER SYSTEM  
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 CHAPTER 

 8 

   8.1 INTRODUCTION 

  In previous chapters, the dynamic behavior of several basic systems was examined. 
With this background, we can extend the discussion to a complete control system and 
introduce the fundamental concept of feedback. To work with a familiar system, the 
treatment will be based on a stirred-tank heater. 

  Figure 8–1  is a sketch of the apparatus. To orient the reader, the physical descrip-
tion of the process will be reviewed. A liquid stream at a temperature  T   i   enters an insu-
lated, well-stirred tank at a constant flow rate  w  (mass/time). It is desired to maintain 
(or control) the temperature in the tank at  T   R   by means of the controller. If the measured 
tank temperature  T   m   differs from the desired temperature  T   R  , the controller senses the 
difference or  error   ε   �   T   R    �   T   m   and changes the heat input in such a way as to reduce 
the magnitude of  e . If the controller changes the heat input to the tank by an amount that 
is proportional to  e , we have  proportional  control. 

 In  Fig. 8–1 , it is indicated that the source of heat input  q  may be electricity or 
steam. If an electrical source were used, the final control element might be a variable 
transformer that is used to adjust current to a resistance heating element; if steam were 
used, the final control element would be a control valve that adjusts the flow of steam. 
In either case, the output signal from the controller should adjust  q  in such a way as to 
maintain control of the temperature in the tank.   

  8.2 COMPONENTS OF A CONTROL SYSTEM 

  The system shown in  Fig. 8–1  may be divided into the following components:

   1. Process (stirred-tank heater).  
  2. Measuring element (thermometer).  
  3. Controller.  
  4. Final control element (variable transformer or control valve).   

 THE CONTROL SYSTEM 
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166 PART 3 LINEAR CLOSED-LOOP SYSTEMS

Each of these components can be readily identified as a separate physical item in the 
process. In general, these four components will constitute most of the control systems 
that we consider in this text; however, the reader should realize that more complex con-
trol systems exist in which more components are used. For example, some processes 
require a cascade control system in which two controllers and two measuring elements 
are used. A cascade system is discussed in Chap. 17.   

  8.3 BLOCK DIAGRAM 

  For computational purposes, it is convenient to represent the control system of  Fig. 8–1  
by means of the block diagram shown in  Fig. 8–2 . Such a diagram makes it much easier 
to visualize the relationships among the various signals. New terms, which appear in 
 Fig. 8–2 , are  set point  and  load.  The set point is a synonym for the desired value of the 
controlled variable. The load refers to a change in any variable that may cause the con-
trolled variable of the process to change. In this example, the inlet temperature  T   i   is a 
load variable. Other possible loads for this system are changes in flow rate and heat loss 
from the tank. (These loads are not shown on the diagram.) 

Desired
temperature

(set point, TR)

 Tm

 q

Temperature
measuring
element

Controller

Process

Final control
elementElectrical power

or steam

 w, Ti

 w, Ti

FIGURE 8–1
Control system for a stirred-tank heater.

 TR

 Tm

Measured variable

Controller
Set point

Comparator

Controller mechanism

Process
+

+

Error

Measuring 
element

Final
control
element

T
Controlled

variable
_

+

 Ti, load

FIGURE 8–2
Block diagram of a simple control system.
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 CHAPTER 8  THE CONTROL SYSTEM 167

 The control system shown in  Fig. 8–2  is called a  closed-loop  system or a feed-
back system because the measured value of the controlled variable is returned or “fed 
back” to a device called the  comparator.  In the comparator, the controlled variable is 
compared with the desired value or  set point.  If there is any difference between the 
measured variable and the set point, an error is generated. This error enters a  controller,  
which in turn adjusts the  final control element  to return the controlled variable to the 
set point.  

   Negative Feedback Versus Positive Feedback 

 Several terms have been used that may need further clarification. The feedback prin-
ciple, which is illustrated by  Fig. 8–2 , involves the use of the controlled variable  T  to 
maintain itself at a desired value  T   R  . The arrangement of the apparatus of  Fig. 8–2  is 
often described as  negative feedback  to contrast with another arrangement called posi-
tive feedback. Negative feedback ensures that the difference between  T   R   and  T   m   is used 
to adjust the control element so that the tendency is to reduce the error. For example, 
assume that the system is at steady state and that  T    �   T   m    �   T   R  . If the load  T   i   should 
increase,  T  and  T   m   would start to increase, which would cause the error  e to become 
negative. With proportional control, the decrease in error would cause the control-
ler and final control element to  decrease  the flow of heat to the system, with the result 
that the flow of heat would eventually be reduced to a value such that  T  approaches  T   R  . 
A verbal description of the operation of a feedback control system, such as the one 
just given, is admittedly inadequate, for this description necessarily is given as a 
sequence of events. Actually all the components operate simultaneously, and the only 
adequate description of what is occurring is a set of simultaneous differential equa-
tions. This more accurate description is the primary subject matter of the present and 
succeeding chapters. 

 If the signal to the comparator were obtained by adding  T   R   and  T   m  , we would have 
a  positive feedback  system, which is inherently unstable. To see that this is true, again 
assume that the system is at steady state and that  T   �   T   m    �   T   R  . If  T   i   were to increase,  T  
and  T   m   would increase, which would cause the signal from the comparator ( e  in  Fig. 8–2 ) 
to increase, with the result that the heat to the system would increase. However, this 
action, which is just the opposite of that needed, would cause  T  to increase further. It 
should be clear that this situation would cause  T  to “run away” and control would not 
be achieved. For this reason, positive feedback would never be used intentionally in 
the system of  Fig. 8–2 . However, in more complex systems it may arise naturally. An 
example of this is discussed in Chap. 20.  

  Servo Problem Versus Regulator Problem 

 The control system of  Fig. 8–2  can be considered from the point of view of its abil-
ity to handle either of two types of situations. In the first situation, which is called the 
servomechanism-type (or servo) problem, we assume that there is no change in load 
 T   i   and that we are interested in changing the bath temperature according to some pre-
scribed function of time. For this problem, the set point  T   R   would be changed in accor-
dance with the desired variation in bath temperature. If the variation is sufficiently 
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168 PART 3 LINEAR CLOSED-LOOP SYSTEMS

slow, the bath temperature may be expected to follow the variation in  T   R   very closely. 
There are occasions when a control system in the chemical industry will be operated in 
this manner. For example, one may be interested in varying the temperature of a reactor 
according to a prescribed time-temperature pattern. However, the majority of problems 
that may be described as the servo type come from fields other than the chemical indus-
try. The tracking of missiles and aircraft and the automatic machining of intricate parts 
from a master pattern are well-known examples of the servo-type problem. The servo 
problem can be viewed as trying to follow a moving target (i.e., the changing set point). 
The other situation will be referred to as the regulator problem. In this case, the desired 
value  T   R   is to remain fixed, and the purpose of the control system is to maintain the 
controlled variable at  T   R   in spite of changes in load  T   i  . This problem is very common in 
the chemical industry, and a complicated industrial process will often have many self-
contained control systems, each of which maintains a particular process variable at a 
desired value. These control systems are of the regulator type. 

 In considering control systems in the following chapters, we will frequently dis-
cuss the response of a linear control system to a change in set point (servo problem) sep-
arately from the response to a change in load (regulator problem). However, it should 
be realized that this is done only for convenience. The basic approach to obtaining the 
response of either type is essentially the same, and the two responses may be superim-
posed to obtain the response to any linear combination of set point and load changes.    

  8.4 DEVELOPMENT OF BLOCK DIAGRAM 

  Each block in  Fig. 8–2  represents the functional relationship existing between the input 
and output of a particular component. In previous chapters, such input-output relations 
were developed in the form of transfer functions. In block diagram representations of 
control systems, the variables selected are  deviation variables,  and inside each block 
is placed the transfer function relating the input-output pair of variables. Finally, the 
blocks are combined to give the overall block diagram. This is the procedure to be fol-
lowed in developing  Fig. 8–2 .  

   Process 

 Consider first the block for the process. This block will be seen to differ somewhat from 
those presented in previous chapters in that two input variables are present; however, 
the procedure for developing the transfer function remains the same. 

 An unsteady-state energy balance around the tank gives 

    
q wC T T wC T T CV

dT

dt
i o o� � � � �( ) ( ) r

  
 (8.1)  

where  T   o   is the reference temperature. 

 [Note: In this analysis, it is assumed that the flow rate of heat  q  is instantaneously available and independent 
of the temperature in the tank. In some stirred-tank heaters, such as a jacketed kettle,  q  depends on both the 
temperature of the fluid in the jacket and the temperature of the fluid in the kettle. In this introductory chapter, 
systems (electrically heated tank or direct steam-heated tank) are selected for which this complication can be 
ignored. In Chap. 20, the analysis of a steam-jacketed kettle is given in which the effect of kettle temperature 
on  q  is taken into account.] 
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 CHAPTER 8  THE CONTROL SYSTEM 169

 At steady state,  dT/dt  is zero, and Eq. (8.1) can be written 

    q wC T T wC T Ts i o s os� � � � �( ) ( ) 0   (8.2)  

where the subscript  s  has been used to indicate steady state. 
 Subtracting Eq. (8.2) from Eq. (8.1) gives 

    q q wC T T T T CV
d T T

dt
s i i s

s
s� � � � � �

�( ) ( )[ ] ( )r  
 (8.3)  

Notice that the reference temperature  T   o   cancels in the subtraction. If we introduce the 
deviation variables 

    T T Ti i is� � �   (8.4)   

    Q q qs� �   (8.5)   

    T T Ts� � �   (8.6)  

Eq. (8.3) becomes 

    
Q wC T T CV

dT

dt
i� � � � �

�( ) r
   

(8.7)
  

Taking the Laplace transform of Eq. (8.7) gives 

    Q s wC T s T s CVsT si( ) ( ) ( )[ ] ( )� � � � � �r   (8.8)  

or 

    
T s

V

w
s

Q s

wC
T si� � � � �( ) 





( ) ( )r
1

   
(8.9)  

This last expression can be written 

     
   Stirred heater transfer function

/
T s

wC
� �( ) 1

tt ts
Q s

s
T si

�
�

�
�

1

1

1
( ) ( )   

 
(8.10)  

where 
    

t r
� � �

V

w
[ ] [ ]kg

kg min
min

/   

The gain for  Q ( t ) is 

    

1 1

wC kg C

C
�

� �

�
�[ ]





 [ ]

[ ]
kg

min
kJ/ /min( ) kJ

   

Note that if we multiply this gain by a heat input with units of kilojoules per minute, we 
obtain a quantity with units of degrees Celsius, as we would expect. From Eq. (8.10) we 
can see that two independent quantities, the heater input and the inlet temperature, can 
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170 PART 3 LINEAR CLOSED-LOOP SYSTEMS

cause changes in the outlet temperature. The effects of these two quantities are additive 
(a consequence of linear equations and superposition). 

 If there is a change in  Q ( t ) only, then   T ti� �( ) 0   and the transfer function relating 
 T  �  to  Q  is 

    

T s

Q s

wC

s

�
�

�

( )
( )

1

1

/

t  
 (8.11)  

If there is a change in     T ti
�( )     only, then  Q ( t )  �  0 and the transfer function relating  T  �  

to   Ti
�   is 

    

T s

T s si

�

�
�

�

( )
( )

1

1t  

 

(8.12)   

 Equation (8.10) is represented by the block diagram shown in  Fig. 8–3  a.  This diagram 
is simply an alternate way to express Eq. (8.10) in terms of the transfer functions of 
Eqs. (8.11) and (8.12). Superposition makes this representation possible. Notice that 
in  Fig. 8–3  we have indicated summation of signals by the symbol shown in  Fig. 8–4 , 
which is called a  summing junction.  Subtraction can also be indicated with this symbol 
by placing a minus sign at the appropriate input. The summing junction was used previ-
ously as the symbol for the comparator of the controller (see  Fig. 8–2 ). This symbol, 
which is standard in the control literature, may have several inputs but only one output. 

 A block diagram that is equivalent to  Fig. 8–3  a  is shown in  Fig. 8–3  b.  That this 
diagram is correct can be seen by rearranging Eq. (8.10); thus 

        
T s

wC
Q s T s

si� � � �
�

( ) ( ) ( )





1 1

1t   
 (8.13)

  

FIGURE 8–3
Block diagram for process.

 T ′i(s)

 T ′i(s)

 T ′(s) T ′(s)
 Q(s)  Q(s)

(b)(a)

 1
s + 1

 1
s + 1

C
s + 1

 1

C
 1

+
+

++

OutputInput

+

+

Input

FIGURE 8–4
Summing junction.

In  Fig. 8–3  b,  the input variables (1/ wC )  Q ( s ) 
and     T si

�( )    are summed before being oper-
ated on by the transfer function 1/( t  s   �  1). 
Note that in all cases the units in the block 
diagram must be consistent. The quantities 
being combined at a summing junction must 
have the same units. The readers should 
convince themselves that this is indeed the 
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 CHAPTER 8  THE CONTROL SYSTEM 171

case. We will see this again and again as we 
develop more complex block diagrams in 
future chapters. Note that the rearrangement 
in Eq. (8.13) is merely for mathematical 
convenience, and not what actually hap-
pens. Physically the two inputs (heat and 
inlet temperature) have independent effects 
on the outlet temperature. 

 The physical situation that exists for 
the control system ( Fig. 8–1 ) if steam heat-

ing is used requires more careful analysis to show that  Fig. 8–3  is an equivalent block 
diagram. Assume that a supply of steam at constant conditions is available for heating 
the tank. One method for introducing heat to the system is to let the steam flow through 
a control valve and discharge directly into the water in the tank, where it will condense 
completely and become part of the stream leaving the tank (see  Fig. 8–5 ). 

 If the flow of steam,   f  (lb/time) is small compared with the inlet flow  w,  the total 
outlet flow is approximately equal to  w.  When the system is at steady state, the heat 
balance may be written 

    
wC T T wC T T f H Hi o s o s g ls s� � � � � �( ) ( ) ( ) 0

  
 (8.14)  

where     T   o     �   reference temperature used to evaluate enthalpy of all streams entering 
and leaving tank  

   H   g    �  specific enthalpy of steam supplied, a constant  
                                enthalpy of condensed steam flowing out at  T   s  , as part of total 

                   stream   

The term     Hls   may be expressed in terms of heat capacity and temperature (assuming no 
phase change occurs between  T   s   and  T   o  ). 

    H C T Tls s o� �( )   (8.15)  

From this, we see that if the steady-state temperature changes,     Hls   changes. In Eq. (8.14),
    f H Hs g ls( )�    is equivalent to the steady-state input  q   s   used previously, as can be seen 
by comparing Eq. (8.2) with Eq. (8.14). 

 Now consider an  unsteady-state  operation in which  f  is much less than  w  and the 
temperature  T  of the bath does not deviate significantly from the steady-state tempera-
ture  T   s  . For these conditions, we may write the unsteady-state balance approximately; 
thus 

    
wC T T wC T T f H H CV

dT

dt
i o o g ls� � � � � �( ) ( ) ( ) r

  
 (8.16)   

Hls � specificHls � specific

FIGURE 8–5
Supplying heat by steam.

w + f ≅ w

w, Ti

T

f Steam at
constant
conditions
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 In a practical situation for steam,  H   g   will be about 1000 Btu/lb  m  . If the tempera-
ture of the bath  T  never deviates from  T   s   by more than 10 � , the error in using the term     
 f H Hg ls�( )    instead of  f ( H   g    �   H   l  ) will be no more than 1 percent. Under these con-
ditions, Eq. (8.16) represents the system closely, and by comparing Eq. (8.16) with 
Eq. (8.1), it is clear that 

    
q f H Hg ls� �( )

   
(8.17)  

Therefore,  q  is proportional to the flow of steam  f,  which may be varied by means 
of a control valve. It should be emphasized that the analysis presented here is only 
approximate. Both  f  and the deviation in  T  must be small. The smaller they become, the 
more closely Eq. (8.16) represents the actual physical system. An exact analysis of the 
problem leads to a differential equation with time-varying coefficients, and the transfer-
function approach does not apply. The problem becomes considerably more difficult. 
A better approximation will be discussed in Chap. 20, where linearization techniques 
are used. 

Example 8.1.   Stirred-tank heater model.   Let’s revisit the stirred-tank heater 
introduced in Example 5.2 ( Fig. 8–6 ). 

   ( a ) Determine the response of the outlet temperature of the tank to a step change 
in the inlet temperature from 60� to 70 � C.  

  ( b ) Determine the response of the outlet temperature of the tank to a step increase 
in the heat input of 42 kW.  

  ( c ) Determine the response of the outlet temperature of the tank to a simultane-
ous step change in the inlet temperature from 60� to 70 � C and a step increase 
in the heat input of 42 kW.   

 The energy balance for the stirred-tank heater is Eq. (8.10): 

    
T s

wC

s
Q s

s
T si� �

�
�

�
�( ) ( ) ( )1

1

1

1

/

t t    
(8.10)   

FIGURE 8–6
Stirred-tank heater revisited.

Heat input

Ti = 60°C 
200 L/min

Water

T = 80°C 

q

V = 1,000 L
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 CHAPTER 8  THE CONTROL SYSTEM 173

Substituting in numerical values for the variables, we obtain the actual transfer 
function for this stirred-tank heater. 

        

    

1 1

200wC
�

��

L

min

1 kg

L

4 184 kJ

kg C












.











1

1

14min

60 s

C

kJ/s

C

14 kW
�

�
�

�

  
  

    
T s

s
T s

s
Q si� �

�
� �

�

�
( ) ( ) ( )

1

5 1

1

5 1

C

14 kW






    

 The block diagram for the tank is shown in  Fig. 8–7 . 

 Remember that    T Ti� �, ,    and  Q ( s ) 
are deviation variables: 
      

 

The steady-state heat input  q   s   may be found from the steady-state energy balance, 
Eq. (8.2). 

           

Thus, 

    Q q q qs� � � � 280 kW    

  Solution 

   ( a ) If the inlet temperature is stepped from 60� to 70 � C, then    T ti
� � � �( ) 70 60 10   

and    T s si
� �( ) .10/   

 Note that  Q   �  0. Thus, 

    
T s

s s
� � �

�
( )

10 1

5 1   
 Inverting to the time domain, we obtain the expression for  T  � ( t ). 

    T t e t� � � �( ) ( )/10 1 5
   

t r
r u

� � � �
V

w

V

w

V

/

tank volume

volumetric flow ratte

L

L/min
min� �

1 000

200
5

,t r
r u

� � � �
V

w

V

w

V

/

tank volume

volumetric flow ratte

L

L/min
min� �

1 000

200
5

,

T T

T T

Q q q
i i

s

� � �

� � �

� �

80

60

T T

T T

Q q q
i i

s

� � �

� � �

� �

80

60

q wC T T wC T T

q wC T T

s is o s o

s s is

� � � � �

� � �

( ) ( )

( )

0

200
kgg

min

min

60 s

kJ

kg C


















1
4 184.

��  ( )80 60� � � �C C 280 kW

q wC T T wC T T

q wC T T

s is o s o

s s is

� � � � �

� � �

( ) ( )

( )

0

200
kgg

min

min

60 s

kJ

kg C


















1
4 184.

��  ( )80 60� � � �C C 280 kW

 T ′i

 T ′ Q  1

 5s + 1 14
 1

+
+

FIGURE 8–7
Block diagram for stirred-tank heater (tank and heater only).

(8.2)
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 and finally, we obtain the expression for  T ( t ), the actual tank outlet temperature. 

    
T t T T t es

t( ) ( ) ( )/� � � � � � �80 10 1 5

   
 A plot of the outlet temperature (in deviation variables) is shown in  Fig. 8–8  a.  The 

actual outlet temperature is shown in  Fig. 8–8  b.  Note that for the uncontrolled mixing 
tank, a step change of 10 � C in the inlet temperature ultimately produces a 10 � C change 
in the outlet temperature. This result is just what we would expect after considering the 
physics of the situation.      

  ( b ) For a step increase in the heat input of 42 kW,  Q   �  42/ s.  Note that    Ti
� � 0   for this 

case. The expression for  T  �  is given by 

    
T s

s s
� � �

�
( )

42 1

14

1

5 1   
 Inverting to the time domain, we obtain the expression for  T  � ( t ). 

    
T t e t� � � �( ) ( )/3 1 5

  
  and finally, we obtain the expression for  T ( t ), the actual tank outlet temperature. 

    
T t T T t es

t( ) ( ) ( )/� � � � � � �80 3 1 5

   
 Qualitatively, this response is the same as for part ( a ); however, the ultimate tempera-

ture change due to the increased heat input is 3 � C.  
  ( c ) If both changes occur simultaneously, the expression for  T  � ( t ) is given by 

    

T s
s s

T

� � �
�

�

( )
42

due to change in heat

1

14

1

5 1
∆ input due to change i

� ��� ���
� �

�
�

10 1

5 1s s
T∆ nn inlet temperature

� �� ��

   

151050 20 25
80
81
82
83
84
85

86
87
88
89
90

Time (min) 

Actual Outlet  
Temperature (°C)

151050 20 25
0
1
2
3
4
5

6
7
8
9

10

Time (min) 

(a) (b) 

Outlet Temperature (°C)
Deviation 
Variable

FIGURE 8–8
Outlet temperature from stirred-tank heater. (a) Deviation variable; (b) actual temperature.
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 CHAPTER 8  THE CONTROL SYSTEM 175

 Inverting, we obtain 

    

T t e

T t T T t e

t

s
t

� � �

� � � � � �

�

�

( ) ( )

( ) ( ) (

/

/

13 1

80 13 1

5

55 )   
 As we can see, because the system is linear, the principle of superposition applies and 

the effects are additive.        

Measuring Element 

 The temperature measuring element, which senses the bath temperature  T  and transmits 
a signal  T   m   to the controller, may exhibit some dynamic lag. From the discussion of the 
mercury thermometer in Chap. 4, we observed this lag to be first-order. In this exam-
ple, we will assume that the temperature measuring element is a first-order system, for 
which the transfer function is 

    

Measuring element transfer function
T s

T
m� ( )
��

�
�s sm( )

1

1t
   

(8.18)  

where the input-output variables  T  �  and    Tm
�   are deviation variables, defined as 

    

T T T

T T T

s

m m ms

� � �

� ��

   

Note that when the control system is at steady 
state,    T Tm ss � ,     which means that the tempera-
ture measuring element reads the true bath tem-
perature. The transfer function for the measuring 
element may be represented by the block dia-
gram shown in  Fig. 8–9 .      

Thermocouples, commonly used temper-
ature sensing devices in industry, have time constants on the order of 6 to 20 seconds 
(Riggs, 2007). The size of the time constant depends on the mass (size) of the thermo-
couple. Sometimes thermocouples are installed inside a protective sleeve called a ther-
mowell that extends into the pipe or tank. The thermowell provides a protective barrier 
for the thermocouple against corrosion and abrasion, but can increase the effective time 
constant for the sensor. 

  Example 8.2. The temperature sensing element for the stirred-tank heater in 
Example 8.1 is a thermocouple. The manufacturer’s specifications state that 
the thermocouple has a response time of 45 s (with the response time defined 
by the manufacturer as the time required for the thermocouple’s reading to be 
90 percent complete after a step change). Assuming that the thermocouple 
behaves as a first-order system, determine the transfer function for the tempera-
ture measuring element. 

 T ′m(s)T ′(s)
 1

ms + 1

FIGURE 8–9
Block diagram of measuring element.
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 The model for the sensor is first-order. If  T  � ( s )  �  1/ s,  a unit-step change, then 
the sensor response is 

    
T s

s s
m

m

� �
�

( )
1 1

1t






   

Inverting gives 

    
T t em

t m� � �( ) ( )/1 t

   

Since the ultimate value of     Tm�    is 1, we know from the manufacturer’s specifica-
tions that we can expect the response to be 90 percent complete at  t   �  45 s, which 
enables us to determine  t   m  . 

    

0 9 1

45
2 303

19 5 0 33

45. ( )

.

. .

/� �

�

� �

e m

m

m

s

s

s

t

t
t mmin   

Therefore, the transfer function relating the actual temperature in the tank  T  �  to 
the measured or indicated temperature      Tm

�    is 

    

T s

T s s
m�

�
�

�

( )
( )

1

0 33 1.    

The block diagram for the stirred-tank heater, including the thermocouple, is 
shown in  Fig. 8–10 .  

Example 8.3.   For a step change in the inlet temperature to the stirred tank of 
10 � C (no change in heat input  Q   �  0), plot the actual tank temperature and the 
temperature indicated by the thermocouple in Example 8.2 as a function of time. 

 We can solve the equations by hand to obtain: 

    T t e t� � � �( ) ( ) ( . )/10 1 5 from Example 8 1   

and 

    
T s

s s s s s
m
� �

� �
�

�
�( )

.

.

.

.10

0 33 1 5 1

0 71

3 03

10 71

( )( ) ��
�

0 2

10

. s   

Inverting to get    T tm� ( )   yields 

    T t e em
t t� � �� � �( ) . .. .10 0 71 10 713 03 0 2

  

 Plotting  T  �  and    Tm� ,   we obtain  Fig. 8–11 . From the graphs, it is clear that    Tm� ,   
lags behind  T  � . 

cou9789x_ch08_163-185.indd   176cou9789x_ch08_163-185.indd   176 8/13/08   4:10:30 PM8/13/08   4:10:30 PM

user
Highlight

user
Sticky Note
HEAVISIDE: A = 1, B = -τm

Τm(s) = 1/s - τm/(τm*s+1) = 
= 1/s - 1/(s + 1/τm)

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight



Confirming Pages

 CHAPTER 8  THE CONTROL SYSTEM 177

 T ′i

 T ′ Q  1

 5s + 1 14
 1

+
+  T ′m 1

 0.33s + 1

FIGURE 8–10
Block diagram for stirred-tank heater and measuring element.

FIGURE 8–11
Comparison of temperature response for measured and actual temperatures in the stirred-
tank heater. (a) Complete response; (b) expanded time scale for short times.
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FIGURE 8–12
Simulink block diagram for Example 8.3.
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FIGURE 8–13
Scope output from Simulink simulation of Example 8.3.
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FIGURE 8–14
MATLAB plot of output for stirred-tank heater reponse.

 We can also obtain these plots easily using Simulink (see  Figs. 8–12  and  8–13 ). 
 If we choose not to use the Scope, we can plot from the MATLAB workspace and 
obtain the same graph that we did previously ( Fig. 8–14 ). 

   plot(temps.time,temps.signals.values)   
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    Controller and Final Control Element 
 For convenience, the blocks representing the controller and the final control element 
are combined into one block. In this way, we need be concerned only with the overall 
response between the error in the temperature and the heat input to the tank. Also, it 
is assumed that the controller is a proportional controller. (In Chap. 9, the response of 
other controllers, which are commonly used in control systems, will be described.) The 
relationship for a proportional controller is 

    q K Ac� �e   (8.19)  

where     e � �T TR M    

    T   R    �  set point temperature  
   K   c    �  proportional sensitivity or controller gain  
     A   �   heat input when  e   �  0, also called the  bias  value (shortly we will show that 

 A   �   q   s  , the steady-state heat input)   

At steady state, it is assumed that the set point, the process temperature, and the mea-
sured temperature are all equal to one another; thus 

    T T TR s ms s� �   (8.20)  

Let e  �  be the deviation variable for error; thus 

    e e e� � � s   (8.21)  

where    es Rs msT T� � .    

 Since    T TR m ss s� �, e 0   and Eq. (8.21) becomes 

    e e e� � � �0   (8.22)  

This result shows that  e  is itself a deviation variable. 
 Since at steady state there is no error, and  A  is the heat input for zero error, we see 

from Eq. (8.19) that 

    q K A A As c s� � � � �e 0   

 Note:  The steady-state heat input  q   s   is the heat required to raise the steady-state inlet 
temperature from    Tis   to     TRs ,   the desired steady-state set point temperature. The steady-
state output from the controller/heater is termed the  bias value.  It is the output from the 
controller when the error is zero (i.e., steady state). It is simply calculated in this case 
from     q wC T Ts Rs is� �( ),    which is easily deduced from Eq. (8.2). 

 Equation (8.19) may now be written in terms of  q   s  ; thus 

    q K qc s� �e   

or     Q Kc� e   (8.23)  

where  Q   �   q   �   q   s  . 
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180 PART 3 LINEAR CLOSED-LOOP SYSTEMS

 The transform of Eq. (8.23) is simply 

    Proportional controller transfer function Q ss K sc( ) ( )� e   (8.24)  

Note that  e , which is also equal to  e   � , may be expressed as 

    e � � � �T T T TR Rs m ms( )   (8.25)  

or 
    

e � �� �T TR m
  

 (8.26)  

Equation (8.25) follows from the definition of  e  and the fact that     T TRs ms� .   Taking 

the transform of Eq. (8.26) gives 

    
Error definition for stirred heater e s TR( ) � �� ��s T sm( ) ( )

  
 (8.27)   

 The transfer function for the proportional controller given by Eq. (8.24) and the defini-
tion of the error given by Eq. (8.27) may be expressed by the block diagram shown in 
 Fig. 8–15 . 

 We have now completed the development of the separate blocks. If these are 
combined according to  Fig. 8–2 , we obtain the block diagram for the complete control 
system shown in  Fig. 8–16 . The reader should verify this figure. Note that when we con-
struct a block diagram, it is indicating the flow of information around the control loop. If 
a line in the block diagram splits, the information in that line is merely being sent to two 
different places–there is not a process “stream” that is being divided in any way. 

T ′R(s)

 T ′m(s)

 Kc  Q(s)
(s)

_

+

FIGURE 8–15
Block diagram of proportional controller.

FIGURE 8–16
Block diagram of control system.

 T ′i(s)

T ′R(s)

 T ′m(s)
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 CHAPTER 8  THE CONTROL SYSTEM 181

  Example 8.4 Using the numerical values given in Examples 8.1 and 8.2 and a 
value of 20 for the proportional gain ( K   c    �  20), plot the response of the tank tem-
perature to a change in the set point (or desired temperature)   TR

�    of 5 � C. 
 At this point, we have not yet learned how to handle the block diagram alge-

bra required to obtain this response by a hand calculation (this will be the topic 
of Chaps. 11 and 12). However, Simulink provides us with a very easy means of 
determining the response. 

 We merely construct the block diagram in Simulink exactly as written (see 
 Fig. 8–17 ). The plot of the response of the tank temperature to a change in the set 
point is shown in  Fig. 8–18 . 

FIGURE 8–17
Simulink model of stirred tank control system.

1
5s+1

+_
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temps
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0.071420
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Actual tank
 temp. T'

FIGURE 8–18
Response of stirred tank heater control system for proportional control only to a step change in the 
set point of 5�C (Kc � 20).
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182 PART 3 LINEAR CLOSED-LOOP SYSTEMS

        SUMMARY 

 It has been shown that a control system can be translated to a block diagram that includes 
the transfer functions of the various components. It should be emphasized that a block 
diagram is simply a systematic way of writing the simultaneous differential and alge-
braic equations that describe the dynamic behavior of the components. In the present 
case, these were Eqs. (8.10), (8.18), (8.24), and (8.27). The block diagram clarifies the 
relationships among the variables of these simultaneous equations. Another advantage 
of the block diagram representation is that it clearly shows the feedback relationship 
between measured variable and desired variable and how the difference in these two 
signals (the error  e  ) is used to maintain control. A set of equations generally does not 
clearly indicate the relationships shown by the block diagram. 

 In the next several chapters, tools will be developed that will enable us to reduce 
a block diagram such as the one in  Fig. 8.16  to a single block that relates  T  � ( s ) to Ti�      or 
   TR� .   We will then obtain the transient response of the control system shown in  Fig. 8.16  
to some specific changes in    Ti�   and    TR� .   However, first we pause in Chap. 9 to look 
more carefully at the controller and control element blocks, which have been skimmed 
over in this chapter.  

  PROBLEMS 

    8.1.  The two-tank heating process shown in Fig. P8–1 consists of two identical, well-stirred 
tanks in series. A flow of heat can enter tank 2. At time  t   �  0, the flow rate of heat to tank 2 
suddenly increases according to a step function to 1,000 Btu/min, and the temperature of the 
inlet water  T   i   drops from 60 to 52 � F according to a step function. These changes in heat flow 
and inlet water temperature occur simultaneously.

   ( a ) Develop a block diagram that relates the outlet temperature of tank 2 to the inlet tem-
perature to tank 1 and the flow of heat to tank 2.  

  ( b ) Obtain an expression for    T s2
� ( )   where    T2�   is the deviation in the temperature of tank 2. 

This expression should contain numerical values of the parameters.  
  ( c ) Determine  T  2 (2) and T 2  ( � ).  
  ( d ) Sketch the response   T t2� ( )   versus  t.    

 Initially,  T   i    �   T  1   �   T  2   �  60 � F and  q   �  0. The following data apply:
     w   �  250 lb/min  
   Holdup volume of each tank  �  5 ft 3   
   Density of fluid  �  50 lb/ft 3   
   Heat capacity of fluid  �  1 Btu/(lb ·  � F)     

Tank 1 Tank 2

T2

T1

Ti

w w

q

FIGURE P8–1

cou9789x_ch08_163-185.indd   182cou9789x_ch08_163-185.indd   182 9/5/08   9:52:49 AM9/5/08   9:52:49 AM



Confirming Pages

 CHAPTER 8  THE CONTROL SYSTEM 183

   8.2.  The two-tank heating process shown in Fig. P8–2 consists of two identical, well-stirred 
tanks in series. At steady state,  T   a    �   T   b    �  60 � F. At time  t   �  0, the temperature of each 
stream entering the tanks changes according to a step function, that is,     T u ta� � 10 ( )    and     
T u tb� � 20 ( )     where     Ta�    and    Tb�   are deviation variables.
   ( a ) Develop the block diagram that relates  T2

�,   the deviation in temperature in tank 2, to    Ta
�   

and     Tb�.     
  ( b ) Obtain an expression for    T s2� ( ).    
  ( c ) Determine  T  2 (2). 

  The following data apply:    

 w  1   �   w  2   �  250 lb/min  

   Holdup volume of each tank  �  10 ft 3   

   Density of fluid  �  50 lb/ft 3   

   Heat capacity of fluid  �  1 Btu/(lb ·  � F) 

FIGURE P8 –2

Tank 1 Tank 2

w3 = w1 + w2 w1

T1

w1

Ta T2

w2

Tb

          8.3.  The heat transfer equipment shown in Fig. P8–3 consists of two tanks, one nested inside the 
other. Heat is transferred by convection through the wall of the inner tank. The contents of 
each tank are well mixed. The following data and information apply:
   1. The holdup volume of the inner tank is 1 ft 3 . The holdup of the outer tank is 1 ft 3 .  
  2. The cross-sectional area for heat transfer between the tanks is 1 ft 2 .  
  3. The overall heat-transfer coefficient for the flow of heat between the tanks is 10 Btu/

(h · ft 2  ·  � F).  
  4. The heat capacity of fluid in each tank is 1 Btu/(lb ·  � F). The density of each fluid is 50 

lb/ft 3 .   

 Initially the temperatures of the feed stream to the outer tank and the contents of the outer 
tank are equal to 100 � F. The con-
tents of the inner tank are initially 
at 100 � F. At time zero, the flow of 
heat to the inner tank  Q  is changed 
according to a step change from 0 
to 500 Btu/h.
   ( a ) Obtain an expression for the 

Laplace transform of the tem-
perature of the inner tank  T ( s ).  

  ( b ) Invert  T ( s ) and obtain  T  for 
time  �  0, 5 h, 10 h, and  � . 

FIGURE P8 –3

Outer tank

Inner tankQ

T

10 lb/h
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        CHAPTER 

8 
CAPSULE SUMMARY 

FIGURE 8–2
Block diagram of a simple control system.

 TR

 Tm

Measured variable

Controller
Set point

Comparator

Controller mechanism

Process
+

+

Error

Measuring 
element

Final
control
element

T
Controlled

variable
_

+

 Ti, load

    Closed loop:  The measured value of the controlled variable is fed back to the 
controller.  

   Controller:  A device that outputs a signal to the process or final control ele-
ment based on the magnitude of the error signal. A proportional controller 
outputs a signal proportional to the error.  

   Deviation variable:  The difference between the actual value of a variable and 
its steady-state value. Block diagrams are  always  constructed using deviation 
variables.  

   Error:  The difference between the value of the set point and that of the mea-
sured variable.  

   Final control element:  A device that provides a modulated input to the process 
in response to a signal from the controller. For example, this may be a heater, 
a control valve, or a variety of other devices.  

   Load:  The change in any process variable that can cause the controlled variable 
to change.  

   Measuring element:  A sensor used to determine the value of the controlled 
variable and to send it to the comparator/controller. Examples include a ther-
mocouple (temperature), a strain gage (pressure), a gas chromatograph (com-
position), and a pH electrode (acidity). These sensors typically have some 
dynamic behavior associated with them and can affect the design of the con-
trol system.  
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 CHAPTER 8  THE CONTROL SYSTEM 185

   Negative feedback:  The error is the difference between the set point and the 
measured variable (this is usually the desired configuration).  

   Positive feedback:  The measured variable is added to the set point. (This is 
usually an undesirable situation, and frequently it leads to instability.)  

   Regulator problem:  The goal of a control system for this type of problem is to 
enable the system to compensate for load changes and maintain the controlled 
variable at the set point.  

   Servo problem:  The goal of a control system for this type of problem is to 
force the system to “track” the requested set point changes.  

   Set point:  The desired value of the controlled variable         .
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  In Chap. 8, the block diagram representation of a simple control system (Fig. 8–2) was 
developed. This chapter will focus attention on the controller and final control ele-

ment and will discuss the dynamic characteristics of some of these components that are 
in common use. As shown in Fig. 8–2, the input signal to the controller is the error, and 
the output signal of the controller is fed to the final control element. In many process 
control systems, this output signal is an air pressure, and the final control element is a 
pneumatic valve that opens and closes as the air pressure on the diaphragm changes. 

 For the mathematical analysis of control systems, it is sufficient to regard the 
controller as a simple computer. For example, a proportional controller may be thought 
of as a device that receives the error signal and puts out a signal proportional to it. Simi-
larly, the final control element may be regarded as a device that produces corrective 
action on the process. The corrective action is regarded as mathematically related to the 
output signal from the controller. However, it is desirable to have some appreciation 
of the actual physical mechanisms used to accomplish this. For this reason, we begin 
this chapter with a physical description of a pneumatic control valve and a simplified 
description of a proportional controller. 

 Up to about 1960, most controllers were pneumatic. Although pneumatic control-
lers are still in use and function quite well in many installations, the controllers being 
installed today are electronic or computer-based instruments. For this reason, the propor-
tional controller to be discussed in this chapter will be electronic or computer-based. The 
transfer functions that are presented in this chapter apply to either type of  controller, and 

 CONTROLLERS AND FINAL 
CONTROL ELEMENTS 

CHAPTER

9
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 CHAPTER 9 CONTROLLERS AND FINAL CONTROL ELEMENTS 187

the discussion is in no way restrictive. Other pneumatic devices, such as control valves, 
are found throughout chemical processing plants and are a very important part of chemi-
cal process control systems. 

 After the introductory discussion, transfer functions will be presented for simpli-
fied or idealized versions of the control valve and the conventional controllers. These 
transfer functions, for practical purposes, will adequately represent the dynamic behav-
ior of control valves and controllers. Hence, they will be used in subsequent chapters 
for mathematical analysis and design of control systems.  

   9.1 MECHANISMS 

   Control Valve 

 The control valve shown in  Fig. 9–1  contains a pneumatic device (valve motor) that 
moves the valve stem as the pressure on a spring-loaded diaphragm changes. The stem 
positions a plug in the orifice of the valve body. In the air-to-close valve, as the air 
pressure increases, the plug moves downward and restricts the flow of fluid through the 
valve. In the air-to-open valve, the valve opens and allows greater flow as the valve-top 
air pressure increases. The choice between air-to-open and air-to-close is usually made 
based on safety considerations. If the instrument air pressure fails, we would like the 
valve to fail in a safe position for the process. For example, if the control valve were on 
the cooling water inlet to a cooling jacket for an exothermic chemical reactor, we would 
want the valve to fail open so that we do not lose cooling water flow to the reactor. In 
such a situation, we would choose an air-to-close valve. 

 Valve motors are often constructed so that the valve stem position is proportional 
to the valve-top pressure. Most commercial valves move from fully open to fully closed 
as the valve-top pressure changes from 3 to 15 psig. 

 In general, the flow rate of fluid through the valve depends upon the upstream and 
downstream fluid pressures and the size of the opening through the valve. The plug and 
seat (or orifice) can be shaped so that various relationships between stem position and 
size of opening (hence, flow rate) are obtained. In our example, we assume for simplic-
ity that at  steady state  the flow (for fixed upstream and downstream fluid pressures) is 

Air

Motorp

ValveStem

Air-to-close
Plug

Air

Motorp

ValveStem

Air-to-open

(b)(a)

Plug

FIGURE 9–1
Pneumatic control valves. (a) Air to close; (b) air to open.
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188 PART 3 LINEAR CLOSED-LOOP SYSTEMS

proportional to the valve-top pneumatic pressure. A valve having this relation is called 
a  linear valve.  A more complete discussion of control valves is presented in Chap. 19. 

   Controller 

 The control hardware required to control the temperature of a stream leaving a heat 
exchanger is shown in  Fig. 9–2 . This hardware consists of the following components 
listed here along with their respective conversions:

   Transducer (temperature-to-current)  
Computer/  Controller (current-to-current)  
  Converter (current-to-pressure)  
  Control valve (pressure-to-flow rate)   

 Figure 9–2  shows that a thermocouple is used to measure the temperature; the signal 
from the thermocouple is sent to a transducer, which produces a current output in the 
range of 4 to 20 mA, which is a linear function of the input. The output of the transducer 
enters the controller where it is compared to the set point to produce an error signal. The 
computer/controller converts the error to an output signal in the range of 4 to 20 mA in 
accordance with the computer control algorithm. The only control algorithm we have 
considered so far has been proportional. Later in this chapter other control algorithms 
will be described. The output of the computer/controller enters the converter, which 
produces an output in the range of 3 to 15 psig, as a linear function of the input. Finally, 
the air pressure output of the converter is sent to the top of the control valve, which 
adjusts the flow of steam to the heat exchanger. We assume that the valve is  linear and 

FIGURE 9–2
Schematic diagram of control system.
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 CHAPTER 9 CONTROLLERS AND FINAL CONTROL ELEMENTS 189

is the air-to-open type. The external power (120 V) needed for each component is also 
shown in  Fig. 9–2 . Electricity is needed for the transducer, computer/controller, and 
converter. A source of 20 psig air is also needed for the converter. 

     To see how the components interact with one another, consider the process to be 
operating at steady state with the outlet temperature equal to the set point. If the tem-
perature of the cold process stream decreases, the following events occur: After some 
delay the thermocouple detects a decrease in the outlet temperature and produces a 
proportional change in the signal to the controller. As soon as the controller detects the 
drop in temperature, relative to the set point, the controller output increases according 
to proportional action. The increase in signal to the converter causes the output pressure 
from the converter to increase and to open the valve wider to admit a greater flow of the 
hot process stream. The increased flow of hot stream will eventually increase the output 
temperature and move it toward the set point. From this qualitative description, we see 
that the flow of signals from one component to the next is such that the outlet tem-
perature of the heat exchanger should return toward the set point. An equivalent P&ID 
(piping and instrumentation diagram) for this control system is shown in  Fig. 9–3  (for 
other P&ID symbols, see App. 9A). In a well-tuned control system, the response of the 

TE

TRC

I

P

Cold 
process stream

Hot 
process stream

Air-to-open  
control valve

Temperature  
element

Temperature 
recording controller

Heat 
exchanger

Temperature 
transmitter

Current-to-pressure 
converter

TT

FIGURE 9–3
Piping and instrumentation diagram for control system of Fig. 9–2.
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190 PART 3 LINEAR CLOSED-LOOP SYSTEMS

 temperature will oscillate around the set point before coming to steady state. We will 
give considerable attention to the transient response of a control system in the remain-
der of this book. Further discussion will also be given on control valves in Chap. 19. 

     For convenience in describing various control laws (or algorithms) in the next 
part of this chapter, the transducer, controller, and converter will be lumped into one 
block, as shown in  Fig. 9–4 . 

 This concludes our brief introduction to valves and controllers. We now present 
transfer functions for such devices. These transfer functions, especially for controllers, 
are based on ideal devices that can be only approximated in practice. The degree of 
approximation is sufficiently good to warrant use of these transfer functions to describe 
the dynamic behavior of controller mechanisms for ordinary design purposes. 

FIGURE 9–4
Equivalent block for transducer, controller, and converter.

Transducer

Measured 
variable

x

x

Controller

(a)

''Controller''

(b)

Converter

mAmA psig
p

p

     9.2 IDEAL TRANSFER FUNCTIONS 

   Control Valve 

 A pneumatic valve always has some dynamic lag, which means that the stem position 
does not respond instantaneously to a change in the applied pressure from the control-
ler. From experiments conducted on pneumatic valves, it has been found that the rela-
tionship between flow and valve-top pressure for a linear valve can often be represented 
by a first-order transfer function; thus

      

Control valve
first-order

transfer function

Q s(( )
( )P s

K

s
v

v
�

�t 1
 

 (9.1)

  

where  K   v   is the steady-state gain, i.e., the constant of proportionality between the steady-
state flow rate and the valve-top pressure, and  t   v   is the time constant of the valve. 

 In many practical systems, the time constant of the valve is very small when 
compared with the time constants of other components of the control system, and the 
transfer function of the valve can be approximated by a constant.

     

Control valve
fast dynamics

transfer functi
( )

oon

Q s

P s
Kv

( )
( ) �

  

 (9.2)
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 CHAPTER 9 CONTROLLERS AND FINAL CONTROL ELEMENTS 191

Under these conditions, the valve is said to contribute negligible dynamic lag. 
 To justify the approximation of a fast valve by a transfer function, which is sim-

ply  K   v  , consider a first-order valve and a first-order process connected in series, as 
shown in  Fig. 9–5 . 

FIGURE 9–5
Block diagram for first-order valve and a first-order process.

Kv Kp
P Y

Value Process

  vs+1    Ps+1

     According to the discussion of Chap. 6, if we assume no interaction (which is generally 
valid for this case), the relationship between the air pressure to the valve and the output 
from the process (perhaps a reactor temperature) is

     

Y s

P s

K K

s s
v P

v P

( )
( ) ( )( )�

� �t t1 1   

For a unit-step change in the valve-top pressure  P, 

     
Y

s

K K

s s
v P

v P
�

� �

1

1 1t t( )( )   

the inverse of which is

     
Y t K K e ev P

v P

v P P

t v

v

t P( ) 



� �

�
�� �1

1 1t t
t t t t

t t/ /






   

If  t   v   V  t   P  , this equation is approximately

     
Y t K K ev P

t P( ) ( )� � �1 /t

   

The last expression is the unit-step response of the transfer function

     

Y s

P s
K

K

s
v

P

P

( )
( ) �

�t 1   

so that the combination of process and valve is essentially first-order. This clearly dem-
onstrates that when the time constant of the valve is much smaller than that of the pro-
cess, the valve transfer function can be taken as  K   v  . 

 A typical pneumatic valve has a time constant of the order of 1 s. Many indus-
trial processes behave as first-order systems or as a series of first-order systems having 
time constants that may range from a minute to an hour. For these systems we have 
shown that the lag of the valve is negligible, and we will make frequent use of this 
approximation.  
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192 PART 3 LINEAR CLOSED-LOOP SYSTEMS

  Controllers 

 In this section, we present the transfer functions for the controllers frequently used in 
industrial processes. Because the transducer and the converter will be lumped together 
with the controller for simplicity, the result is that the input will be the measured vari-
able  x  (e.g., temperature and fluid level) and the output will be a pneumatic signal  p.  
(See  Fig. 9–4 .) Actually this form ( x  as input and  p  as output) applies to a pneumatic 
controller. For convenience, we will refer to the lumped components as the controller 
in the following discussion, even though the actual electronic controller is but one of 
the components. 

  PROPORTIONAL CONTROL.   The simplest type of controller is the proportional con-
troller. (The ON/OFF control is really the simplest, but it is a special case of the pro-
portional controller as we’ll see shortly.) Our goal is to reduce the error between the 
process output and the set point. The proportional controller, as we will see, can reduce 
the error, but cannot eliminate it. If we can accept some residual error, proportional 
control may be the proper choice for the situation. 

 The proportional controller has only one adjustable parameter, the controller gain. 
The proportional controller produces an output signal (pressure in the case of a pneu-
matic controller, current, or voltage for an electronic controller) that is proportional to 
the error e. This action may be expressed as

     

Proportional
controller

p K pc s� �e
  

 (9.3)
  

where     p   �  output signal from controller, psig or mA  
    K   c    �  proportional gain, or sensitivity  
 e    �  error  �  (set point)  �  (measured variable)  
    p   s    �    a constant, the steady-state output from the controller [the bias value, see 

Eqs. (8.19) and (8.23)]   

The error e, which is the difference between the set point and the signal from the mea-
suring element, may be in any suitable units. However, the units of the set point and 
the measured variable must be the same, since the error is the difference between these 
quantities. 

 In a controller having adjustable gain, the value of the gain  K   c   can be varied by 
entering it into the controller, usually by means of a keypad (or a knob on older equip-
ment). The value of  p   s   is the value of the output signal when e is zero, and in most con-
trollers  p   s   can be adjusted to obtain the required output signal when the control system 
is at steady state and e  �  0. 

 To obtain the transfer function of Eq. (9.3), we first introduce the deviation 
variable

     P p ps� �   

into Eq. (9.3). At time  t   �  0, we assume the error e  s   to be zero. Then e is already a 
deviation variable. Equation (9.3) becomes
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 CHAPTER 9 CONTROLLERS AND FINAL CONTROL ELEMENTS 193

     P t K tc( ) ( )� e   (9.4)  

Taking the transform of Eq. (9.4) gives the transfer function of an ideal proportional 
controller.

     

Proportional controller
transfer function

P s( ))
( )e s

Kc�
  

 (9.5)
  

The actual behavior of a proportional controller is depicted in  Fig. 9–6 . The 
controller output will saturate (level out) at  p  max   �  15 psig or 20 mA at the upper end 
and at  p  min   �  3 psig or 4 mA at the lower end of the output. The ideal transfer func-
tion Eq. (9.5) does not predict this saturation phenomenon. 

     The next example will help to clarify the concept of controller gain. 

Example 9.1.   A pneumatic proportional controller is used in the process shown 
in  Fig. 9–2  to control the cold stream outlet temperature within the range of 60 to 
120 � F. The controller gain is adjusted so that the output pressure goes from 3 psig 
(valve fully closed) to 15 psig (valve fully open) as the measured temperature goes 
from 71 to 75 � F with the set point held constant. Find the controller gain  K   c  .

     
Gain

psig psig

F F
psi/ F� �

�

� � �
� �

∆
∆

p

e
15 3

75 71
3

   

Now assume that the gain of the controller is changed to 0.4 psi/ � F. Find the error in 
temperature that will cause the control valve to go from fully closed to fully open.

     
∆ ∆

T
p

� �
�

� �
gain

psi

psi/ F
F

12

0 4
30

.    

FIGURE 9–6
Proportional controller output as a function of error input to the controller. (a) Ideal behavior; 
(b) actual behavior.

(a) (b)

p  

0 ε

ε

 

0  
ps = bias value

 

slope = Kc 

Proportional controller—Ideal behavior  

Saturation

p  

0
0

ps = bias value

Proportional controller—actual behavior

pmin

Saturation
pmax
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194 PART 3 LINEAR CLOSED-LOOP SYSTEMS

At this level of gain, the valve will be fully open if the error signal reaches 30 � F. 
The gain  K   c   has the units of psi per unit of measured variable. [Regarding the 
units on controller gain, if the actual controller of  Fig. 9–4  is considered, both 
the input and the output units are in milliamperes. In this case the gain will be 
dimensionless (i.e., mA/mA).]   

  ON/OFF CONTROL.   A special case of proportional control is on/off control. If the gain 
 K   c   is made very high, the valve will move from one extreme position to the other if the 
process deviates only slightly from the set point. This very sensitive action is called on/
off action because the valve is either fully open (on) or fully closed (off); i.e., the valve 
acts as a switch. This is a very simple controller and is exemplified by the thermostat 
used in a home-heating system. In practice, a dead band is inserted into the controller. 
With a dead band, the error reaches some finite positive value before the controller 
“turns on.” Conversely, the error must fall to some finite negative value before the 
controller “turns off.” This behavior is shown in  Fig. 9–7 . Expanding the width of the 
dead band makes the controller less sensitive to noise and prevents the phenomenon 
of  chattering,  where the controller will rapidly cycle on and off as the error fluctuates 
about zero. Chattering is detrimental to equipment performance. 

     For various reasons, it is often desirable to add other modes of control to the basic 
proportional action. These modes, integral and derivative action, are discussed below 
with the objective of obtaining the ideal transfer functions of the expanded controllers. 
The reasons for introducing these modes will be discussed briefly at the end of this 
chapter and in greater detail in later chapters.  

  PROPORTIONAL-INTEGRAL (PI) CONTROL.   If we cannot tolerate any residual error, 
we will have to introduce an additional control mode: integral control. If we add integral 
control to our proportional controller, we have what is termed PI, or proportional-integral 

FIGURE 9–7
Output from on/off controller as a function of error input to the controller. (a) Ideal on/off 
controller; (b) on/off controller with dead band.

(b)(a)

p  

0

0  

On/off controller with dead band

 
p  

0

0  

Ideal on/off controller 

pmax
pmax

pmin
pmin

Slope = Kc = infinite

Dead band

εε
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 CHAPTER 9 CONTROLLERS AND FINAL CONTROL ELEMENTS 195

control. The integral mode ultimately drives the error to zero. This controller has two 
adjustable parameters for which we select values, the gain and the integral time. Thus 
it is a bit more complicated than a proportional controller, but in exchange for the addi-
tional complexity, we reap the advantage of no error at steady state. 

 PI control is described by the relationship

   

Proportional-integral
controller

p K
K

c
c

I
� �e

t
 eedt ps+∫0

t

    
 (9.6)

  

where     K   c    �  proportional gain  
    t   I    �  integral time, min  
    p   s    �  constant (the bias value)   

In this case, we have added to the proportional action term  K   c  e another term that 
is proportional to the integral of the error. The values of  K   c   and  t   I   are both adjustable. 

 To visualize the response of this controller, consider the response to a unit-step 
change in error, as shown in  Fig. 9–8 . This unit-step response is most directly obtained 
by inserting e  �  1 into Eq. (9.6), which yields

     
p t K

K
t pc

c

I
s( ) � � �

t  
 (9.7)   

τI

Kc

Kc

ps

p

t
0

0

1

}

FIGURE 9–8
Response of a PI controller to a unit-step change in error.

 Notice that  p  changes suddenly by an amount  K   c   and then changes linearly with time at 
a rate  K   c  / t   I  . 

 To obtain the transfer function of Eq. (9.6), we again introduce the deviation vari-
able  P   �   p   �   p   s   into Eq. (9.6) and then take the transform to obtain

     

Proportional-integral
controller

transfer funcction

P s

s
K

s
c

I

( )
( )





e t

� �1
1

  

 (9.8)  
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196 PART 3 LINEAR CLOSED-LOOP SYSTEMS

Some manufacturers prefer to use the term  reset rate,  which is defined as the reciprocal 
of  t   I  . The integral adjustment on a controller may be denoted by integral time or reset 
rate (carefully check the specific controller to be sure which value to enter). The cali-
bration of the proportional and integral action is often checked by observing the jump 
and slope of a step response, as shown in  Fig. 9–8 .  

  PROPORTIONAL-DERIVATIVE (PD) CONTROL.   Derivative control is another mode 
that can be added to our proportional or proportional-integral controllers. It acts upon 
the derivative of the error, so it is most active when the error is  changing  rapidly. It 
serves to reduce process oscillations. 

 This mode of control may be represented by

     

Proportional-derivative
controller

p K Kc c D� �e t dd

dt
ps

e
�

   
(9.9)  

where     K   c    �  proportional gain  
    t   D    �  derivative time, min  
    p   s    �  constant (bias value)   

In this case, we have added to the proportional term another term  K   c    t   D    d e/ dt,  which is 
proportional to the derivative of the error. The values of  K   c   and  t   D   are both adjustable. 
Other terms that are used to describe the derivative action are  rate control  and  anticipa-
tory control.  

 The action of this controller can be visualized by considering the response to a 
linear change in error as shown in  Fig. 9–9 . 

FIGURE 9–9
Response of a PD controller to a ramp input in error.

AKc
Derivative

alone

Proportional alone

A

1

1

ps

p

t
0

0

}
AKc  D

 This response is obtained by introducing the linear function e ( t )  �   At  into Eq. (9.9) to 
obtain

     p t AK t AK pc c D s( ) � � �t   

Notice that  p  changes suddenly by an amount  AK   c    t   D   as a result of the derivative action 
and then changes linearly at a rate  AK   c  . The effect of derivative action in this case is to 
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 CHAPTER 9 CONTROLLERS AND FINAL CONTROL ELEMENTS 197

anticipate the linear change in error by adding output  AK   c    t   D   to the proportional action. 
The controller is taking preemptive action to counter the anticipated change in the error 
that it predicted from the slope of the error versus time curve. 

 To obtain the transfer function from Eq. (9.9), we introduce the deviation variable 
 P   �   p   �   p   s   and then take the transform to obtain

     

Proportional-derivative
controller

transfer fuunction

P s

s
K sc D

( )
( ) ( )
e

t� �1

  

 (9.10)

    

  PROPORTIONAL-INTEGRAL-DERIVATIVE (PID) CONTROL.   This mode of control 
is a combination of the previous modes and is given by the expression

     

Proportional-integral-derivative
controller

p �� � � �K K
d

dt

K
dt pc c D

c

I

t

se t e
t

e
0∫  

 (9.11)  

In this case, all three values  K   c  ,  t   D  , and tI   can be adjusted in the controller. The transfer 
function for this controller can be obtained from the Laplace transform of Eq. (9.11); thus

   

Proportional-integral-derivative
controller

trransfer function

P s

s
K s

s
c D

I

( )
( )





e

t
t

� � �1
1


     

(9.12)   

 Derivative action is based on how rapidly the error is changing, not the magni-
tude of the error or how long the error has persisted. It is based on the slope of the error 
versus time curve at any instant in time. Therefore, a rapidly changing error signal will 
induce a large derivative response. “Noisy” error signals cause significant problems for 
derivative action because of the rapidly changing slope of the error caused by noise. 
Derivative control should be avoided in these situations unless the error signal can be 
filtered to remove the noise.   

  Motivation for Addition of Integral and Derivative Control Modes 

 Having introduced ideal transfer functions for integral and derivative modes of con-
trol, we now wish to indicate the practical motivation for use of these modes. The 
curves of  Fig. 9–10  show the behavior of a typical feedback control system using 
different kinds of control when it is subjected to a permanent disturbance. This may 
be visualized in terms of the stirred-tank temperature control system of Chap. 8 after 
a step change in  T   i  . The value of the controlled variable is seen to rise at time zero 
owing to the disturbance. With no control, this variable continues to rise to a new 
steady-state value. With control, after some time the control system begins to take 
action to try to maintain the controlled variable close to the value that existed before 
the disturbance occurred. 
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198 PART 3 LINEAR CLOSED-LOOP SYSTEMS

 With proportional action only, the control system is able to arrest the rise of the 
controlled variable and ultimately bring it to rest at a new steady-state value. The dif-
ference between this new steady-state value and the original value (the set point, in this 
case) is called  offset.  For the particular system shown, the offset is seen to be only about 
20 percent of the ultimate change that would have been realized for this disturbance in 
the absence of control. 

 As shown by the PI curve, the addition of integral action eliminates the offset; the 
controlled variable ultimately returns to the original value. This advantage of integral 
action is balanced by the disadvantage of a more oscillatory behavior. 

 The addition of derivative action to the PI action gives a definite improvement 
in the response. The rise of the controlled variable is arrested more quickly, and it is 
returned rapidly to the original value with little or no oscillation. Discussion of the PD 
mode is deferred to a later chapter. 

 The selection among the control systems whose responses are shown in  Fig. 9–10  
depends on the particular application. If an offset of about 20 percent is tolerable, pro-
portional action would likely be selected. If no offset were tolerable, integral action 
would be added. If excessive oscillations had to be eliminated, derivative action might 
be added. The addition of each mode means, as we will see in later chapters, more dif-
ficult controller adjustment. Our goal in forthcoming chapters will be to present the 
material that will enable the reader to develop curves such as those of  Fig. 9–10  and 
thereby to design efficient, economic control systems.     

   SUMMARY 

 In this chapter we have presented a brief discussion of control valves and controllers. In 
addition, we presented ideal transfer functions to represent their dynamic behavior and 
some typical results of using these controllers. 

Control action
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None 
Proportional 
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FIGURE 9–10
Response of a typical control system showing the effects of various modes of control.
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 CHAPTER 9 CONTROLLERS AND FINAL CONTROL ELEMENTS 199

 The ideal transfer functions actually describe the action of many types of con-
trollers, including pneumatic, electronic, computer-based, hydraulic, mechanical, and 
electrical systems. Hence, the mathematical analyses of control systems to be presented 
in later chapters, which are based upon first- and second-order systems, transportation 
lags, and ideal controllers, generalize to many branches of the control field. After study-
ing this text on process control, the reader should be able to apply the knowledge to, 
e.g., problems in mechanical control systems. All that is required is a preliminary study 
of the physical nature of the systems involved.  

  PROBLEMS 

    9.1.  A pneumatic PI temperature controller has an output pressure of 10 psig when the set point 
and process temperature coincide. The set point is suddenly increased by 10 � F (i.e., a step 
change in error is introduced), and the following data are obtained:   

Time, s psig

0� 10
 0�  8
20  7
60  5
90  3.5

  Determine the actual gain (psig per degree Fahrenheit) and the integral time.  

   9.2.  A unit-step change in error is introduced into a PID controller. If  K   c    �  10,  t   I    �  1, and 
 t   D    �  0.5, plot the response of the controller  P ( t ).  

   9.3.  An ideal PD controller has the transfer function

     
P

K sc D
e

t� � 1( )   

 An actual PD controller had the transfer function

     
P

K
s

s
c

D

De
t
t b

�
�

�

1

1( )/   

 where  b  is a large constant in an industrial controller. 

      If a unit-step change in error is introduced into a controller having the second transfer 
function, show that

     P t K Aec
t D( ) ( )� � �1 b t/

   

 where  A  is a function of  b  which you are to determine. For  b   �  5 and  K   c    �  0.5, plot  P ( t ) versus 
 t / t   D  . As  b  →  � , show that the unit-step response approaches that for the ideal controller.  

   9.4.  A PID temperature controller is at steady state with an output pressure of 9 psig. The set 
point and process temperature are initially the same. At time  t   �  0, the set point is increased 
at the rate of 0.5 � F/min. The motion of the set point is in the direction of  lower  temperatures. 
If the current settings are
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Kc

i

D

� �

�

�

2

1 25

0 4

psig/ F

min

min

t
t

.

.   

 plot the output pressure versus time.  

   9.5.  The input e to a PI controller is shown in  Fig. P9–5 . Plot the output of the controller if  
K   c    �  2 and  t   I    �  0.50 min. 

1

0.5

0
0 1

2 3

4
t, min

−0.5

−1

ε

FIGURE P9–5

    9.6.  A PI controller has the transfer function

     G
s

s
c �

�5 10
   

 Determine the values of  K   c   and  t   I  .  
   9.7.  Dye for our new line of blue jeans is being blended in a mixing tank. The desired color of blue 

is produced using a concentration of 1500 ppm blue dye, with a minimum acceptable con-
centration of 1400 ppm. At 9  A.M.  today the dye injector plugged, and the dye flow was inter-
rupted for 10 min, until we realized the problem and unclogged the nozzle. see  Fig. P9–7 . 

20 gal/min

Concentrated 
dye injector

20 gal/min aqueous dye for jeans 
(1500 ppm blue dye)  

V = 100 gal

Water

Color analyzer

PI  

FIGURE P9–7

  Plot the controller ouput from 9  A.M.  to 9:10  A.M.  The steady-state controller output (the bias 
value) is 8 psig. Does the controller output saturate (output range is 3 to 15 psig)? If so, at what 
time does it occur? The controller is a PI controller with  K   c    �  0.001 psig/ppm and  t   I    �  1 min.      
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CHAPTER 

9 
CAPSULE SUMMARY 

  CONTROL VALVES 

     Two basic types of control valves are 
air-to-close and air-to-open. The air pres-
sure (pneumatic) signal is usually 3 to 
15 psig. The dynamics of the valves are 
adequately modeled as first-order sys-
tems. The time constant is on the order 
of 1 s.

Controller type Time domain model Transfer function

Proportional (P) p � Kc e� ps
P s

s
Kc

( )
( )e

�

Proportional-integral (PI) p K
K

dt pc
c

I

t
s� � �e

t
e

0∫ P s

s
K

s
c

I

( )
( )





e t

� �1
1

Proportional-derivative (PD) p K K
d

dt
pc c D s� � �e t e P s

s
K sc D

( )
( ) ( )
e

t� �1

Proportional-integral-
derivative (PID)

p K K
d

dt

K
dt pc c D

c

I

t
s� � � �e t e

t
e

0∫
P s

s
K s

s
c D

I

( )
( )





e

t
t

� � �1
1

              
   

  CONTROLLERS    

Control valuve
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s
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( )
( ) �

�t 1
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P s
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s
v

v

( )
( ) �
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( )
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(Figure 9.10 Response of a typical control system showing the effects of various modes of control.)
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LAH

LAL

LT

LE

LIC  

LCV

LY

Tank 
T-101

FIGURE 9A–1
Example of a level control loop using P&ID symbols.

     CHAPTER 9 APPENDIX 

 PIPING AND INSTRUMENTATION 
DIAGRAM SYMBOLS 

  Piping and instrumentation diagrams (P&IDs) are used by the chemical process industry 
to document the control systems for their processes. The Instrument Society of America 
(ISA) produces a standards document [ISA-5.1-1984-(R1992)]   “Instrument Symbols 
and Identification” that establishes a uniform means of designating instruments, control 
systems, and sensors used for measurement and control in a process. The standard is 
suitable for use in the chemical, petroleum, power generation, air conditioning, metal 
refining, and numerous other process industries.  Table 9A.1  shows some common con-
ventions used for identifying process instrumentation and control on process drawings. 
 Figure 9A–1  shows an example of a level control loop for a process tank. The operation 
is as follows. The tank level is measured using a sensor, perhaps a differential pressure 
cell, indicated by the bubble containing LE on the diagram. The sensor is connected to 
a level transmitter, LT, that sends an electrical signal (4 to 20 mA) to a level indicating 
controller LIC. Level alarms high and low, LAH and LAL, “monitor” the signal from 
the level transmitter and indicate an alarm situation if necessary. Notice from the sym-
bols (the line through the bubble) that LIC, LAH, and LAL are all located in the control 
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room, while LE and LT are mounted in the field. The level indicating controller deter-
mines the necessary signal to send to the valve, based on the current level in the tank, 
the set point, and the selected control algorithm being used (P or PID, for example). 
LY computes the necessary control air pressure signal (3 to 15 psig) to send to the level 
control valve LCV to properly respond to the controller output signal from LIC. 

    TABLE 9A.1

Common   symbols used on P&IDs [Instrument Society of America Standard, 
ISA-5.1-1984 (R1992)] 

    

Common Identification Letters Used in Instrument Symbols

First Letter (A) Second or Third Letter (B)

A Analysis Alarm
B Burner, combustion
C User choice (sometimes conductivity) Control
D User choice (sometimes density or specific gravity)
E Voltage Sensor element
F Flow rate
G User choice Glass, viewing device
H Hand High
I Current (electrical) Indicate
J Power
K Time or time schedule Control station
L Level Light or low
M User choice (sometimes moisture or humidity) Middle or intermediate
O Orifice, restriction
P Pressure, vacuum Point
Q Quantity
R Radioactivity or ratio Record
S Speed or frequency Switch
T Temperature Transmit
V Viscosity or vibration Valve, damper or louver
W Weight or force Well
Y Event Relay, compute, convert
Z Position Drive

Instrument Location and Identification

Instrument located in plant

Instrument located on front of panel in control room

Instrument located on back of panel in control room.

Instrument accessible as part of a distributed control system

ABB

ABB

ABB

Instrument Line Symbols

Instrument supply or piping connection to 
process (capillary)

Pneumatic

............................... Electrical

Software signal

ABB
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 CHAPTER 

 10 

  To tie together the principles developed thus far and to illustrate further the procedure 
for reduction of a physical control system to a block diagram, we consider in this 

chapter the two-tank chemical-reactor control system of  Fig. 10–1 . This entire chapter 
serves as an example and may be omitted by the reader with no loss in continuity.  

 BLOCK DIAGRAM OF A 
CHEMICAL-REACTOR 

CONTROL SYSTEM 

Set point 
composition

Controller

Composition 
measuring 
element

Sample 
stream

Product 
stream

Heating 
coil

F + 
F

m FrA

c0

 ≅ 

Pure A

m

V, T1, c1, k1 V,  T2, c2, k2

  FIGURE 10–1   
 Control of a stirred-tank chemical reactor.  
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   10.1 DESCRIPTION OF SYSTEM 

  A liquid stream enters tank 1 at a volumetric flow rate  F  cfm and contains reactant  A  
at a concentration of  c  0  mol  A /ft 3 . Reactant  A  decomposes in the tanks according to the 
irreversible chemical reaction

     A B→   

The reaction is first-order and proceeds at a rate

     r kcA � �   

where     r   A    �  rate of formation of  A,  (mol  A )/(ft 3  · time)  
     c     �  concentration of  A,  mol  A /ft 3   
      k     �   reaction rate constant (a function of temperature), time  � 1  ( k  1  ≡ tank 1,  

k  2  ≡ tank 2)    

 The reaction is to be carried out in a series of two continuous stirred-tank reac-
tors. The tanks are maintained at different temperatures. The temperature in tank 2 is to 
be greater than the temperature in tank 1, with the result that  k  2 , the reaction rate con-
stant in tank 2, is greater than that in tank 1,  k  1 . We will neglect any changes in physical 
properties due to chemical reaction. 

 The purpose of the control system is to maintain  c  2 , the concentration of  A  leav-
ing tank 2, at some desired value in spite of variations in the inlet concentration  c  0 . This 
will be accomplished by adding a stream of pure  A  to tank 1 through a control valve. 
We wish to produce a block diagram for the process so that we can simulate its response 
to changes in inlet concentration.   

  10.2 REACTOR TRANSFER FUNCTIONS 

  We begin the analysis by making a material balance on  A  around tank 1; thus

       
 
(10.1)

  

where     m     �  molar flow rate of pure  A  through valve, (lb · mol/min)  
    r   A     �  density of pure  A  (lb · mol/ft 3 )  

    V    �  holdup volume of tank, a constant (ft 3 )   

It is assumed that the volumetric flow of  A  through the valve  m / r   A   is much less than the 
inlet flow rate  F,  with the result that Eq. (10.1) can be written

     
V

dc

dt
F k V c Fc m1

1 1 0� � � �( )
   

(10.2)  

V
dc

dt
Fc m
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1
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of into
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A A
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reaction rate
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K Vc
� ��� ���

� 1 1
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�V
dc

dt
Fc m

A

1
0

accumulation of
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� �
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A A
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c� �� �� � �
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
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
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 CHAPTER 10   BLOCK DIAGRAM OF A CHEMICAL-REACTOR CONTROL SYSTEM  207

This last equation may be written in the form

     

V

F k V

dc

dt
c

F

F k V
c

F k V
m

dc

dt
c

�
� �

�
�

�

� �

1

1
1

1
0

1

1
1

1

1

1t
11

1

11
0

1�
�

�k
c

F

k
m

t t
/

  
 (10.3)  

where     t   �  residence time for each                            (time)  

    t  1   �  effective time constant for tank                                                       (time)   

At steady state,  dc  1 / dt   �  0, and Eq. (10.3) becomes

     
c

k
c

F

k
ms s s1

1
0

1

1

1

1

1
�

�
�

�t t   
(10.4)

  

where  s  refers to steady state. 
 Subtracting Eq. (10.4) from Eq. (10.3) and introducing the deviation variables

     

C c c

C c c

M m m

s

s

s

1 1 1

0 0 0

� �

� �

� �   

give

     
t

t t
1

1
1

1
0

1

1

1

1

1

dC

dt
C

k
C

F

k
M� �

�
�

�   
(10.5)  

Taking the transform of Eq. (10.5) yields the transfer function of the first reactor:

     

Transfer
function for

tank 1

/ 1
C s

k
1

1

1

1( ) ( )
�

� t
t ss

C s
F

M s
�

�
1

1
0 ( ) ( )





  

 (10.6)  

A material balance on  A  around tank 2 gives

     

V
dc

dt
Fc

A

2
1
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flow���
�

of
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flow of
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A A
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(10.7)  

Rearranging gives

     

V
dc

dt
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 (10.7 a )  
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208 PART 3 LINEAR CLOSED-LOOP SYSTEMS

As with tank 1, Eq. (10.7 a ) can be written in terms of deviation variables and arranged 
to give

     
t

t
2

2
2

2
1

1

1

dC

dt
C

k
C� �

�   
(10.8)

  

where  C  2  is the deviation variable for tank 2,     C c c s2 2 2� � ,   and  t  2  is the effective 
time constant for tank 2,

     
t t

t
2

2 2 21 1
�

�
�

�
�

�

V

F k V

V F

k V F k( )   

Taking the transform of Eq. (10.8) gives the transfer function for the second reactor:

     

Transfer
function for

tank 2

/
C s

k
2

21 1( ) �
� tt

t
( ) ( )

2
1

1s
C s

�
  

 (10.9)   

 To obtain some numerical results, we will assume the following data to apply to 
the system:

   MW A    �  100 lb/lb · mol  A  (molecular weight of  A )  

   r   A    �  0.8 lb · mol/ft 3   

          

   F   �  100 cfm  

          

          

   V   �  300 ft 3   

           

From Eq. (10.4), we can calculate the steady-state concentration of  A  in tank 1.
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We can calculate the steady-state concentration of  A  in tank 2 by using Eq. (10.7 a ) writ-
ten at steady state (when  dc  2 / dt   �  0).

     
c

k
cs s2

2
1 2

3

1

1

1

1 3
0 0733 0 0244�

�
�

�
�

�

t ( )( )
( . ) .

lb mool

ft3
      

c Aos � �0 1. lb mol /ft3c Aos � �0 1. lb mol /ft3

m Note
m

s
s

A
� � �

�
1 0

1 0
.

.
lb mol/min :

lb mol/min

0.r 88 lb mol/ft
cfm3�

� 1 25.






m Note
m

s
s

A
� � �

�
1 0

1 0
.

.
lb mol/min :

lb mol/min

0.r 88 lb mol/ft
cfm3�

� 1 25.






k

k
k k T T

1
1
6

1

1
2
3

1 2 1 2
�

�
� �

�

�

min

min
because






11

k

k
k k T T

1
1
6

1

1
2
3

1 2 1 2
�

�
� �

�

�

min

min
because






11

t � � �
V

F

300 ft

100 cfm
min

3

3t � � �
V

F

300 ft

100 cfm
min

3

3

cou9789x_ch10_205-217.indd   208cou9789x_ch10_205-217.indd   208 8/14/08   8:58:27 AM8/14/08   8:58:27 AM

user
Sticky Note
Εδώ, τ2 είναι η χαρακτηριστική χρονική σταθερά του δοχείου 2, που είναι άλλη από την τ1, γιατί μεταβάλλεται η κινητική σταθερά k2 της αντίδρασης.

user
Sticky Note
Ο χρόνος παραμονής τ = V/F είναι ο ίδιος όπως στον 1ο αντιδραστήρα, γιατί οι όγκοι των δύο αντιδραστήρων δίνονται ίσοι και η παροχή δε μεταβάλλεται.

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Sticky Note
C1(s) = 0,667*Co(s)/(2s+1) + 0,00667*M(s)/(2s+1)

user
Sticky Note
C2(s) = 0,333*Co(s)/(s+1)

user
Highlight



Confirming Pages

 CHAPTER 10   BLOCK DIAGRAM OF A CHEMICAL-REACTOR CONTROL SYSTEM  209

  10.3 CONTROL VALVE 

  The air-to-open control valve selected for the process has the following characteristics. 
The flow of  A  through the valve varies linearly from 0 to 2 cfm as the valve-top pres-
sure varies from 3 to 15 psig. The time constant  t   v   of the valve is so small compared 
with the other time constants in the system that its dynamics can be neglected. From 
Eq. (10.2) the transfer function for a fast valve is

     

Q s

P s
Kv

( )

( )
�
    

(10.2)   

From this relationship, and remembering that  Q  and  P  are deviation variables, we can 
compute the valve gain using the given data

     

Kv � �
�

�
�

∆
∆

Flow cfm

Pressure psi

cfm( )

( )

2 0

15 3

1

6 ppsi
   

Since  m   s   / r   A    �  1.25 cfm, the normal operating pressure on the valve is

     ps � � � �3
1 25

2
15 3 10 5

.
.( ) psig   (10.10)   

 Since our mole balances for the tanks are written in terms of molar flow rates 
instead of volumetric flow rates (cfm), we would like the valve equation to be written in 
terms of molar flow rates as well. Realizing that the volumetric flow rate (cfm) can be 
written as  m / r   A  , we can write the equation for the control valve as (see  Fig. 10–2 )

     

m

p
KA

v
/r �

�
�

1 25

10 5

.

.   

and finally,

     m K pv A� � �1 25 10 5. ( . )[ ]r    (10.11)  

In terms of deviation variables, this can be written

     M K Pv A� r   (10.12)  

where

     

M m m

P p

A� � � �

� �

1 25 1 0

10 5

. .

.

r

   

Taking the transform of Eq. (10.12) gives

       

 (10.13)

  

as the valve transfer function.   
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210 PART 3 LINEAR CLOSED-LOOP SYSTEMS

  10.4 MEASURING ELEMENT 

  For illustration, assume that the measuring element converts the concentration of  A  to 
an electronic signal. Specifically, the output of the measuring element varies from 4 to 
20 mA as the concentration of  A  varies from 0.01 to 0.05 lb · mol  A /ft 3 . We will assume 
that the concentration measuring device is linear and has negligible lag. The sensitivity 
(or gain) of the measuring device is therefore

     
Km �

�

�
�

�

20 4

0 05 0 01
400 3. .

mA

lb mol/ft   

Since     c s2    is 0.0244 lb · mol/ft 3 , the normal signal from the measuring device is

     

0 0244 0 01

0 05 0 01
20 4 4 0 5 76 4 0 9 7

. .

. .
. . . .

�

�
� � � � �( ) 66 mA

   

The equation for the measuring device is therefore

      

  (10.14)  

where  b  is the output current (milliamperes) from the measuring device. In terms of 
deviation variables, Eq. (10.14) becomes

b K cm� � � � �
�

9 76 0 0244 9 76 4002. . .( ) mA
mA

lb mol/ft33 2
30 0244c � �. lb mol/ft( )b K cm� � � � �

�
9 76 0 0244 9 76 4002. . .( ) mA
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lb mol/ft33 2
30 0244c � �. lb mol/ft( )
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Fl
ow

 (
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m
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Control Valve Sensitivity 
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 FIGURE 10–2 
 Control valve sensitivity. 
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     B K Cm� 2   (10.15)  

where  B   �   b   �  9.76 and     C c c s2 2 2� � .    

 The transfer function for the measuring device is therefore

     

B s

C s
Km

( )
( )2

�
  

 (10.16)  

A measuring device that changes the type of signal between its input and output is 
called a  transducer;  in the present case, the concentration signal is changed to a current 
signal. A thermocouple is another example of a transducer. It changes an input tempera-
ture signal to an output electrical signal (millivolts).   

  10.5 CONTROLLER 

  For convenience, we will assume the controller to have proportional action and produce 
a current output signal. The relation between the controller output signal (milliamperes) 
and the error (milliamperes) is

     p p K c b p Ks c R s c� � � � �( ) e   (10.17)  

where     c   R    �  desired current signal (or set point), mA  
       K   c    �  controller gain, mA/mA  
       e  �  error  �   c   R    �   b,  mA   

In terms of deviation variables, Eq. (10.17) becomes

     P Kc� e   (10.18)  

The transform of this equation gives the transfer function of the controller

     

P s

s
Kc

( )
( )e

�

  

 (10.19)  

Assuming the set point and the signal from the measuring device to be the same when 
the system is at steady state under normal conditions, we have for the reference value 
of the set point

     
c bRs s� � 9 76. mA

   

The corresponding deviation variable for the set point is

     
C c cR R Rs

� �
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212 PART 3 LINEAR CLOSED-LOOP SYSTEMS

  10.6 CONTROLLER TRANSDUCER 

  The output from the controller is an electronic current signal ranging from 4 to 20 mA. 
The signal that the control valve requires is a pneumatic signal of 3 to 15 psig. A trans-
ducer is required to convert the current signal from the controller to the pneumatic 
signal required by the control valve. We will assume that the transducer is linear and 
has negligible lag. The transfer function for the transducer is merely a gain that is given 
by Eq. (10.20).

     

P s

P s
KT

T
( )

( )

( )

( )
.� �

�

�
�

15 3

20 4
0 75

psig

mA

psig

mmA  
 (10.20)

     

  10.7 TRANSPORTATION LAG 

  A portion of the liquid leaving tank 2 is continuously withdrawn through a sample line, 
containing a concentration measuring element, at a rate of 0.1 cfm. The measuring ele-
ment must be remotely located from the process, because rigid ambient conditions must 
be maintained for accurate concentration measurements. The sample line has a length 
of 50 ft, and the cross-sectional area of the line is 0.001 ft 2 . 

 The sample line can be represented by a transportation lag with parameter

     
t d � � �

volume

flow rate
min

( )( . )

.
.

50 0 001

0 1
0 5

   

The transfer function for the sample line is, therefore,

     e ed s s� ��t 0 5.
      

  10.8 BLOCK DIAGRAM 

  We have now completed the analysis of each component of the control system and have 
obtained a transfer function for each. These transfer functions can now be combined so 
that the overall system is represented by the block diagram in  Fig. 10–3 . 

CR

C0

C1
C2

C'R
Km

Km e−τds−

Kc
P

B

MPT

psig
KT KvρAmA mA

mA

+
+

+

−

F
1

M
F

lb.moles
min

1
1 + k1τ
τ1s + 1

1
1 + k2τ
τ2s + 1

 FIGURE 10–3 
 Block diagram for a chemical-reactor control system. 
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 CHAPTER 10   BLOCK DIAGRAM OF A CHEMICAL-REACTOR CONTROL SYSTEM  213

 An equivalent diagram is shown in  Fig. 10–4  in which some of the blocks have 
been combined. 

 FIGURE 10–4 
 Equivalent block diagram for a chemical-reactor control system ( C   R   is now in concentration units). 

+

−

CR

+
+

C0

C2

e−τds

KKc

1
(1 + k1τ)(1 + k2τ)K1 =

1
(τ1s + 1)(τ2s + 1)

τ1 = 2, τ2 = 1, τd = 0.5, K1 = 
4.5
1

KmKTKvρA
F(1 + k1τ)(1 + k2τ)

Open-loop gain = KKc = Kc = 0.09 Kc

 Numerical quantities for the parameters in the transfer functions are given in 
 Fig. 10–4 . It should be emphasized that the block diagram is written for deviation 
variables. The true steady-state values, which are not given by the diagram, must be 
obtained from the analysis of the problem. 

 The example analyzed in this chapter will be used later in discussion of control 
system design. The design problem will be to select a value of  K   c   that gives satisfactory 
control of the composition  C  2  despite the rather long transportation lag involved in get-
ting information to the controller. In addition, we will want to consider possible use of 
other modes of control for the system.    

   SUMMARY 

 We have now learned how to analyze a physical system and develop mathematical 
models for the various components of the system and then use those models to construct 
a block diagram of the model. We will make extensive use of these skills in upcoming 
chapters as we study control systems in greater depth.  

  PROBLEMS 

    10.1.  In the process shown in Fig. P10–1, the concentration of salt leaving the second tank is 
controlled using a proportional controller by adding concentrated solution through a con-
trol valve. The following data apply:
   ( a ) The controlled concentration is to be 0.1 lb salt/ft 3  solution. The inlet concentration  c   i   

is always less than 0.1 lb/ft 3 .  
  ( b ) The concentration of concentrated salt solution is 30 lb salt/ft 3  solution.  
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  ( c ) Transducer: The output of the transducer varies linearly from 3 to 15 psig as the con-
centration varies from 0.05 to 0.15 lb/ft 3 .  

  ( d ) Controller: The controller is a pneumatic, direct-acting, proportional controller.  
  ( e ) Control valve: As valve-top pressure varies from 3 to 15 psig, the flow through the 

control valve varies linearly from 0 to 0.005 cfm.  
  (   f   ) It takes 30 s for the solution leaving the second tank to reach the transducer at the end 

of the pipe.   
Draw a block diagram of the control system. Place in each block the appropriate transfer 
function. Calculate all the constants and give the units. 

  FIGURE P10–1  

Controller

Zero lengthSalt solution
1 ft3/min

Concentrated solution

Set point

Transducer
c1

ci

c2

V1 = 3 ft3 V2 = 4 ft3

 Use the process shown in  Figs. 10–3  and  10–4  for Prob. 10.2 to 10.5.  

   10.2.  Verify the values of  t  1  and  t  2 .  

   10.3.  Determine the steady-state value of the controller output  p   s   in milliamperes.  

   10.4.  Use Simulink to simulate the open-loop response of the two chemical reactors to a step 
change in the feed concentration  C  0  from 0.1 to 0.25 lb · mol  A /ft 3 .  

   10.5.  The open-loop process has an upset such that the flow rate to the process instantaneously 
rises to 120 cfm (from the original 100 cfm). How does the open-loop block diagram 
change? Plot the outlet concentration of A in   both reactors as a function of time.  

   10.6.  Two isothermal stirred-tank reactors (Fig. P10–6) are connected by a long pipe that acts 
as a pure time delay between the two tanks (no reaction takes place in the pipe). CSTR 1 
is at a higher temperature than CSTR 2, but both temperatures remain constant. Assume 
constant throughputs and holdups (volumes) and a first-order, irreversible reaction taking 
place in each CSTR ( A  →  B ). The flow rate through the system is 4 ft 3 /min, and the delay 
time in the pipe is 30 s. The inlet concentration to CSTR 1 is initially at steady state at 
1 lb · mol/ft 3  and is increased at time 0 through a step change to 2 lb · mol/ft 3 .
   ( a ) Draw the block diagram for the process, and be sure to include all necessary 

constants.  
  ( b ) Use Simulink to plot the exit concentration of  A  from each of the reactors.  
  ( c ) Use Simulink to plot the exit concentration of  B  from each of the reactors.   
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DATA

CSTR 1 CSTR 2

Rate constant (min�1) 0.3 0.15
Volume (ft3) 25 15

      

Reactor 1 Reactor 2
Dead time = 30 s

  FIGURE P10–6  

cou9789x_ch10_205-217.indd   215cou9789x_ch10_205-217.indd   215 8/14/08   8:58:32 AM8/14/08   8:58:32 AM



Confirming Pages

216

CAPSULE SUMMARY 

 A model for a two CSTRs in series was developed. The reaction that occurs in each 
vessel is  A  →  B.  The rate of formation of  A  is given by  r   A    �  � kc.  A process schematic 
is shown below. 

  CHAPTER 

10 

 A block diagram for the process is as follows:
 

CR

C0

C1
C2

C'R
Km

Km e−τds

Kc
P

B

MPT

psig
KT KvρAmA mA

mA

+
+

+

−

F
1

M
F

lb.moles
min

1
1 + k1τ
τ1s + 1

1
1 + k2τ
τ2s + 1

 FIGURE 10–3 
 Block diagram for a chemical-reactor control system. 

       FIGURE 10–1   
 Control of a stirred-tank chemical reactor.   

Set point 
composition

Controller

Composition 
measuring 
element

Sample 
stream

Product 
stream

Heating 
coil

F +
F

m FrA

c0

≅

Pure A

m

V, T1, c1, k1
V, T2, c2, k2
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 Numerical values for the process are given below. 

   MW  A    �  100 lb/lb · mol  A   

   r   A    �  0.8 lb · mol/ft 3   

          

   F   �  100 cfm  

   m   s    �  1.0 lb · mol/min  

          

          

   V   �  300 ft 3   

          

          

          

          

   t   d    �  0.5 min  

          

          

          

   m   s    �  1.0 lb · mol/min  

   b   s    �  9.76 mA  

   p   s    �  14 mA     

   
  

     
  

     
  

       
   
 

c Aos � �0 1 3. lb mol /ftc Aos � �0 1 3. lb mol /ft

ms

Ar
�

�

�
�

1 0

0 8
1 253

.

.
.

lb mol/min

lb mol/ft
cfm

ms

Ar
�

�

�
�

1 0

0 8
1 253

.

.
.

lb mol/min

lb mol/ft
cfm

k

k
k k T T

1
1
6

1

2
2
3

1 2 1 2
�

�
� �

�

�

min

min
because






11

k

k
k k T T

1
1
6

1

2
2
3

1 2 1 2
�

�
� �

�

�

min

min
because






11

t t t� � � � �
V

F

300

100
3 2 1

3

1 2
ft

cfm
min min m, , iint t t� � � � �

V

F

300

100
3 2 1

3

1 2
ft

cfm
min min m, , iin

Kv �
1

6

cfm

psig
Kv �

1

6

cfm

psig

KT � 0 75.
psig

mA
KT � 0 75.

psig

mA

Km �
�

400 3
mA

lb mol/ft
Km �

�
400 3

mA

lb mol/ft

c s1
30 01� �. lb mol/ftc s1
30 01� �. lb mol/ft

c s2
30 0244� �. lb mol/ftc s2
30 0244� �. lb mol/ft

pTs � 10 5. psigpTs � 10 5. psig
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     11.1 STANDARD BLOCK-DIAGRAM SYMBOLS 

  In Chap. 8, a block diagram was developed for the control of a stirred-tank heater 
(Fig. 8–2). In  Fig. 11–1 , the block diagram has been redrawn and incorporates some 
standard symbols for the variables and transfer functions, which are widely used in 
the control literature. These symbols are defined as follows:

    R   �  set point or desired value  

   C   �  controlled variable  

  e  �  error  

   B   �  variable produced by measuring element  

   M   �  manipulated variable  

   U   �  load variable or disturbance  

   G   c    �  transfer function of controller  

   G  1   �  transfer function of final control element  

   G  2   �  transfer function of process  

   H   �  transfer function of measuring element   

R

 B

Gc G1

H

G2 C

U

+

M
_

+ +

FIGURE 11–1
Standard control system nomenclature.

CHAPTER

11
CLOSED-LOOP TRANSFER FUNCTIONS
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 CHAPTER 11  CLOSED-LOOP TRANSFER FUNCTIONS 219

In some cases, the blocks labeled  G   c   and  G  1  will be lumped together into a single 
block. The series of blocks between the comparator and the controlled variable, which 
consist of  G   c  ,  G  1 , and  G  2 , is referred to as the  forward path.  The block  H  between the 
controlled variable and the comparator is called the  feedback path.  The use of  G  for a 
transfer function in the forward path and  H  for one in the feedback path is a common 
convention. 

       The product  GH,  which is the product of all transfer functions ( G   c   G  1  G  2  H ) in the 
loop, is called the  open-loop transfer function.  We call  GH  the open-loop transfer func-
tion because it relates the measured variable  B  to the set point  R  if the feedback loop 
(of  Fig. 11–1 ) is disconnected (i.e., opened) from the comparator. The subject of this 
chapter is the closed-loop transfer function, which relates two variables when the loop 
of  Fig. 11–1  is closed. 

 In more complex systems, the block diagram may contain several feedback paths 
and several loads. An example of a multiloop system, which is shown in  Fig. 11–2 , is 
cascade control. Several multiloop systems of industrial importance are presented in 
Chap. 17. 

R

 B1

 B2

 Inner loop

Gc2
Gc1

G1

H2

H1

G2 G3 C

U1

+
+

_ _

+ + +

U2

+

FIGURE 11–2
Block diagram for a multiloop, multiload system.

          11.2  OVERALL TRANSFER FUNCTION 
FOR SINGLE-LOOP SYSTEMS 

  Once a control system has been described by a block diagram, such as the one shown in 
 Fig. 11–1 , the next step is to determine the transfer function relating  C  to  R  or  C  to  U.  
We refer to these transfer functions as  overall  transfer functions because they apply to 
the entire system. These overall transfer functions are used to obtain considerable infor-
mation about the control system, as will be demonstrated in the succeeding chapters. 
For the present it is sufficient to note that they are useful in determining the response of 
 C  to any change in  R  and  U.  

 The response to a change in set point  R,  obtained by setting  U   �  0, represents the 
solution to the servo problem. The response to a change in load variable  U,  obtained 
by setting  R   �  0, is the solution to the regulator problem. A systematic approach for 
obtaining the overall transfer function for set point change and load change will now 
be presented.  
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220 PART 3 LINEAR CLOSED-LOOP SYSTEMS

   Overall Transfer Function for Change in Set Point 

 For this case,  U   �  0 and  Fig. 11–1  may be simplified or reduced as shown in  Fig. 11–3 . 
In this reduction, we have made use of a simple rule of block diagram reduction which 
states that a block diagram consisting of several transfer functions in series can be sim-
plified to a single block containing a transfer function that is the product of the indi-
vidual transfer functions. 

FIGURE 11–3
Block diagram reduction to obtain overall transfer function.

(a) (b) (c)

R

B

Gc G1

H

G2 C
_

+
R C

G

1 + GH
R

B

G

G = GcG1G2H

C
_

+

 This rule can be proved by considering two noninteracting blocks in series as shown in 
 Fig. 11–4 . This block diagram is equivalent to the equations

     

Y

X
G

Z

Y
GA B� �

   

Multiplying these equations gives

     

Y

X

Z

Y
G GA B�

   

which simplifies to

     

Z

X
G GA B�
    

FIGURE 11–4
Two noninteracting blocks in series.

GA GB ZX
Y

       Thus, the intermediate variable  Y  has been eliminated, and we have shown the overall 
transfer function  Z/X  to be the product of the transfer functions  G   A   G   B  . This proof for 
two blocks can be easily extended to any number of blocks to give the rule for the gen-
eral case. This rule was developed in Chap. 7 for the specific case of several noninter-
acting, first-order systems in series. 

 With this simplification the following equations can be written directly from 
 Fig. 11–3  b. 

     C G� e   (11.1)  

     B HC�   (11.2)  
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 CHAPTER 11  CLOSED-LOOP TRANSFER FUNCTIONS 221

     e � �R B   (11.3)  

Since there are four variables and three equations, we can solve the equations simulta-
neously for  C  in terms of  R  as follows:

     

C G R B

C G R HC

C GR GHC

� �

� �

� �

( )
( )

   

or finally

     
C

R

G

GH
�

�1   (11.4)  

This is the overall transfer function relating  C  to  R  and may be represented by an equiv-
alent block diagram as shown in  Fig. 11–3  c.   

  Overall Transfer Function for Change in Load 

 In this case  R   �  0, and  Fig. 11–1  is drawn as shown in  Fig. 11–5  a.  From the diagram 
we can write the following equations:

     C G U M� �2( )   (11.5)  

     M G Gc� 1e   (11.6)  

     e � �B   (11.7)  

    B HC�    (11.8)   

FIGURE 11–5
Block diagram for change in load.

(a) (b)

R = 0
M

U

B

G2G1

H

Gc C

_

+
U C

G2

1+GH

       Again the number of variables ( C, U, M, B,  e) exceeds by 1 the number of equations, 
and we can solve for  C  in terms of  U  as follows:

     

C G U G G

C G U G G HC

c

c

� �

� � �

2 1

2 1

e( )
( )[ ]   

or finally

     
C

U

G

GH
�

�

2

1   
(11.9)
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222 PART 3 LINEAR CLOSED-LOOP SYSTEMS

where  G   �   G   c   G  1  G  2 . Notice that the transfer functions for load change or set point 
change have denominators that are identical, 1  �   GH.  

 Another approach to finding the closed-loop transfer functions from the block 
diagram is a “brute-force” technique that involves “breaking the loop” and working 
your way across the block diagram. 

FIGURE 11–6
Modified block diagram for determining closed-loop transfer function.

R
M

U

CH

G2G1

H≈ ≈

Gc C

_

+

+

       Starting at the left edge of the modified block diagram in  Fig. 11–6 , we can work our 
way across the diagram and develop the following equation.

     R CH G G U G Cc� � �( )[ ]1 2   

Solving this equation for  C,  we obtain (after a bit of algebra)

     

C
G G G

G G G H
R

G

G G G H
U

G

GH
c

c c
�

�
�

�
�

�

1 2

1 2

2

1 21 1 1
closed loop

transfer function
relating andC R

� ��� ����
R

G

GH
�

�

2

1
closed loop

transfer function
relaating andC U

U
� ��� ���

   

This result is the same as the individual results for  C/R  and  C/U  that we found 
previously. 

 The following simple rule serves to generalize the results for the single-loop feed-
back system shown in  Fig. 11–1 : The transfer function relating any pair of variables  X, 
Y  is obtained by the relationship

     

Y

X
�

�

p
p

forward

loop
negative feedback

1    
(11.10)  

where p  forward   �   product of transfer functions in forward path between locations of 

 X  and  Y   
p     loop   �   product of all transfer functions in loop (i.e., in  Fig. 11–1 ,  p  loop   �  

 G   c   G  1  G  2  H  )    
 If this rule is applied to finding  C/R  in  Fig. 11–1 , we obtain
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 CHAPTER 11  CLOSED-LOOP TRANSFER FUNCTIONS 223

     
C

R

G G G

G G G H

G

GH
c

c
�

�
�

�

1 2

1 21 1   

which is the same as before. For positive feedback, the reader should show that the fol-
lowing result is obtained:

     

Y

X
�

�

p
p

forward

loop
positive feedback

1   
 (11.11)   

Example 11.1.   Determine the transfer functions  C/R,   C / U  1 , and  B / U  2  for the sys-
tem shown in  Fig. 11–7 . Also determine an expression for  C  in terms of  R  and  U  1  for 
the situation when both set point change and load change occur simultaneously. 

FIGURE 11–7
Block diagram for Example 11.1.

R

U1

B

G3G1 G2

H2 H1

Gc C

_

+ +

+ +

U2

+

 Using the rule given by Eq. (11.10), we obtain by inspection the results

     
C

R

G G G G

G
c

�
�

1 2 3

1  
 (11.12)  

     
C

U

G G

G1

2 3

1
�

�   
(11.13)  

     
B

U

G H H

G2

3 1 2

1
�

�  
 (11.14)  

where  G   �   G   c   G  1  G  2  G  3  H  1  H  2 . The reader should check one or more of these 
results by the direct method of solution of simultaneous equations and the method 
described in  Fig. 11–6 . 

 For separate changes in  R  and  U  1 , we may obtain the response  C  from Eqs. 
(11.12) and (11.13); thus

     
C

G G G G

G
Rc

�
�

1 2 3

1  
 (11.15)  

and

     
C

G G

G
U�

�

2 3
1

1   
 (11.16)  
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224 PART 3 LINEAR CLOSED-LOOP SYSTEMS

If both  R  and  U  1  occur simultaneously, the principle of superposition requires that 
the overall response be the sum of the individual responses; thus

     
C

G G G G

G
R

G G

G
Uc

�
�

�
�

1 2 3 2 3
1

1 1   (11.17)       

  11.3  OVERALL TRANSFER FUNCTION 
FOR MULTILOOP CONTROL SYSTEMS 

  To illustrate how one obtains the overall transfer function for a multiloop system, con-
sider the next example in which the method used is to reduce the block diagram to a sin-
gle-loop diagram by application of the rules summarized by Eqs. (11.10) and (11.11). 

Example 11.2.   Determine the transfer function  C/R  for the system shown in 
 Fig. 11–8 . This block diagram represents a cascade control system, which will be 
discussed later. 

FIGURE 11–8
Block diagram reduction. (a) Original diagram; (b) first reduction; (c) final block diagram.

 (a)

 (b)  (c)

R

Inner loop

Gc2
Gc1

G1

H2

H1

G2 G3 C

U1

++

_ _

+
+ +

U2

+

R CGc1

H1

_

+ Gc2
G1

Ga = Gb = G2G31 + Gc2
G1H2

R C
Gc1

GaGb

1 + Gc1
GaGbH1

       Obtaining the overall transfer function  C/R  for the system represented by  Fig. 11–8  a  
is straightforward if we first reduce the inner loop (or minor loop) involving     
G Gc2 , ,1    and  H  2  to a single block, as we have just done in the case of  Fig. 11–1 . 
For convenience, we may also combine  G  2  and  G  3  into a single block. These 
reductions are shown in  Fig. 11–8  b.   Figure 11–8  b  is a single-loop block diagram 
that can be reduced to one block, as shown in  Fig. 11–8  c.  

 It should be clear without much detail that to find any other transfer func-
tion such as  C / U  1  in  Fig. 11–8  a,  we proceed in the same manner, i.e., first reduce 
the inner loop to a single-block equivalent.     
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 CHAPTER 11  CLOSED-LOOP TRANSFER FUNCTIONS 225

   SUMMARY 

 In this chapter, we have illustrated the procedure for reducing the block diagram of a 
control system to a single block that relates one input to one output variable. This pro-
cedure consists of writing, directly from the block diagram, a sufficient number of lin-
ear algebraic equations and solving them simultaneously for the transfer function of the 
desired pair of variables. For single-loop control systems, a simple rule was developed 
for finding the transfer function between any desired pair of input-output variables. 
This rule is also useful in reducing a multiloop system to a single-loop system. 

 It should be emphasized that regardless of the pair of variables selected, the 
denominator of the closed-loop transfer function will always contain the same term, 
1  �   G,  where  G  is the open-loop transfer function of the single-loop control system. 
In the succeeding chapters, frequent use will be made of the material in this chapter to 
determine the overall response of control systems.  

  PROBLEMS 

    11.1.   Determine the transfer function  Y ( s )/ X ( s ) for the block diagrams shown in  Fig. P11–1 . 
Express the results in terms of  G   a  ,  G   b  , and  G   c  . 

FIGURE P11–1

(a)

(b)

Ga

_

+ Gb Gc YX
+

+

Gb

Gc

Ga

Gc Ga YX
+

+
_

+

FIGURE P11–2

YX
_

+  1  0.5

 2
+ 1+

+

          11.2.  Find the transfer function  Y ( s )/ X ( s ) of the system shown in  Fig. P11–2 . 
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226 PART 3 LINEAR CLOSED-LOOP SYSTEMS

          11.3.  For the control system shown in  Fig. P11–3  determine the transfer function  C ( s )/ R ( s ). 

FIGURE P11–3

CR
_

+

_

+

_

+ 1
 s 

 2  2

FIGURE P11–4

YX
+

_

+

+

 1 1
 s 

 1 1
 s 

 25

 2

    11.4.  Derive the transfer function  Y/X  for the control system shown in  Fig. P11–4 . 

    11.5.   Derive the transfer function  T  � / T  �  R    for the temperature control system shown in 
Fig. 8–16.  

  11.6.  Derive the transfer functions  C  2 / C  0  and  C  2 / C   R   for the reactor control system shown in 
Fig. P10–3.    
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  CHAPTER 

11 
CAPSULE SUMMARY 

    R   �  set point or desired value 
        C   �  controlled variable  
  e  �  error  
   B   �  variable produced by measuring element  
   M   �  manipulated variable  
   U   �  load variable or disturbance  
   G   c    �  transfer function of controller  
   G  1   �  transfer function of final control element  
   G  2   �  transfer function of process  
   H   �  transfer function of measuring element  
   G   �    G   c    G  1  G  2  (the product of the transfer functions in the forward path between 

 R  and  C )   

    Closed-loop process  Process in which the feedback loop is connected to the 
comparator.  

   Closed-loop transfer function  Transfer functions relating two variables in the 
process when the feedback loop is connected to the comparator.  

   Feedback path  The path that connects the controlled variable and the 
comparator.  

   Forward path  The transfer functions that lie between two signals in the block diagram 
moving left to right as drawn in the block diagram above. The complete forward path 
consists of  G   �   G   c    G  1  G  2 . The forward path between  U  and  C  is  G  2  only.  

   Open-loop process  Process in which the feedback loop is disconnected from 
the comparator.  

   Open-loop transfer function  Product of all transfer functions in the loop relat-
ing  B  and  R  when the feedback loop is disconnected from the comparator.      

Closed-loop formula 
(negative feedback)

Y

X
�

�

p
p

forward

loop1

Closed-loop formula 
(positive feedback)

Y

X
�

�

p
p

forward

loop1

p  forward   �   product of transfer functions in forward path between locations of  X  
and  Y   

p     loop   �   product of all transfer functions in loop (i.e., from figure above,  
p  loop   �   G   c   G  1  G  2  H )     

FIGURE 11.1
Standard control system nomenclature.

R

 B

Gc G1

H

G2 C

U

+

M_
+ +
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 CHAPTER 

 12 

  In this chapter the results of all the previous chapters will be applied to determining 
the transient response of a simple control system to changes in set point and load. 

Considerable use will be made of the results of Chaps. 4 through 7 (Part 2) because the 
overall transfer functions for the examples presented here reduce to first- and second-
order systems. 

 Consider the control system for the heated, stirred tank that we previously dis-
cussed and is represented by  Fig. 12–1 . The reader may want to refer to Chap. 8 for a 
description of this control system. 

(d)

(a) (b) (c)

(e)

Steam

Steam or
electricity

q

T' T'R  T'R

 T'i

Gc G1
1

s + 1wC
1+ +

+−
1

Electrical
power

Power 
controller

T'i

T'

A = 1/wC

1
s + 1

+

−

+
+Gc A

w,Ti

w, T

FIGURE 12–1
   Block diagram of temperature control system. 
FIGURE 12–1
   Block diagram of temperature control system. 

 TRANSIENT RESPONSE OF SIMPLE 
CONTROL SYSTEMS 
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 CHAPTER 12 TRANSIENT RESPONSE OF SIMPLE CONTROL SYSTEMS 229

       In  Fig. 12–1  a,  the sketch of the apparatus is drawn in such a way that the source 
of heat (electricity or steam) is not specified. To make this problem more realistic, we 
have shown in  Fig. 12–1  b  that the source of heat is steam that is discharged directly 
into the water, and in  Fig. 12–1  c  the source of heat is electrical. In the latter drawing, a 
device known as a power controller provides electric power to a resistance heater pro-
portional to the signal from the controller. 

 The block diagram is shown in  Fig. 12–1  d.  The block representing the process is 
taken directly from Fig. 8–3. To reduce the number of symbols, 1/ wC  has been replaced 
by  A  in  Fig. 12–1  e.  

 Throughout this chapter, we will assume that the valve does not have any dynamic 
lag, for which case the transfer function of the valve ( G  1  in  Fig. 12–1 ) will be taken as 
a constant  K   v  . This assumption was shown to be reasonable in Chap. 9. To simplify 
the discussion further,  K   v   has been taken as 1. (If  K   v   were other than 1, we may simply 
replace  G   c   by  G   c   K   v   in the ensuing discussion.) 

 In the first part of the chapter, we will also assume that there is no dynamic lag 
in the measuring element ( t   m    �  0), so that it may be represented by a transfer function 
that is simply the constant 1. A bare thermocouple will have a response that is so fast 
that for all practical purposes it can be assumed to follow the slowly changing tank tem-
perature without lag. When the feedback transfer function is unity, the system is called 
a  unity-feedback  system. 

 Introducing these assumptions leads to the simplified block diagram of  Fig. 12–1  e,  
for which we will obtain overall transfer functions for changes in set point and load when 
proportional control and proportional-integral control are used.  

   12.1  PROPORTIONAL CONTROL FOR SET 
POINT CHANGE (SERVO PROBLEM—
SET POINT TRACKING) 

  The goal of the control system for this case is to force the system to “track” the desired 
set point changes. For proportional control,  G   c    �   K   c  . By using the methods developed 
in Chap. 11, the overall transfer function in  Fig. 12–1   e  is 

    

T

T
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s K AR
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�

�
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 (12.1)
  

This may be rearranged in the form of a first-order lag to give 
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where 
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230 PART 3 LINEAR CLOSED-LOOP SYSTEMS

According to this result, the response of the tank temperature to a change in set point is 
first-order. The time constant for the closed-loop control system  t  1  is less than that of 
the stirred tank itself  t . This means that one of the effects of feedback control is to speed 
up the response. We may use the results of Chap. 4 to find the response to a variety of 
inputs. 

 The response of the system to a unit-
step change in set point  T   R   �  is shown in 
 Fig. 12–2 . (We have selected a unit change in 
set point for convenience; responses to steps 
of other magnitudes are obtained by super-
position.) Remember, the goal of a control 
system is to force the system to track the set 
point. Thus, the desired ultimate value of  T  � , 
which is  T  �  ( � ), is of course 1. For the case of 
a unit-step change in set point,  T  �  approaches 
 A  1   �   K   c   A /(1  �   K   c   A ), a fraction of unity. The 
desired change is, of course, 1. Thus, the ulti-

mate value of the temperature  T  �  ( � ) does not match the desired change. This discrep-
ancy is called  offset  and is defined as 

    Offset � � � � � �T TR ( ) ( )   (12.3)  

The offset is actually the steady-state value of the error (for the case of unity feedback). 
In terms of the particular control system parameters 

    
Offset � �

�
�

�
1

1

1

1

K A

K A K A
c

c c   
(12.4)

  

This difference or discrepancy between set point and tank temperature at steady state 
is characteristic of proportional control. In some cases offset cannot be tolerated. How-
ever, notice from Eq. (12.4) that the offset decreases as  K   c   increases, and in theory the 
offset could be made as small as desired by increasing  K   c   to a sufficiently large value. 

    

Proportional control : As OffsetKc ↑ ↓

    
 To give a full answer to the problem of eliminating offset by high controller gain 

requires a discussion of stability and the response of the system when other lags, which 
have been neglected, are included in the system. Both these subjects are to be covered 
later. For the present we simply say that whether or not proportional control is satisfac-
tory depends on the amount of offset that can be tolerated, the speed of response of the 
system, and the amount of gain that can be provided by the controller without causing 
the system to go unstable. 

A1

T'R

T'

t

1

Offset

0
0

FIGURE 12–2
Unit-step response for set point change 
(P control).
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Example 12.1.   Proportional control of a 
stirred tank heater for set point tracking.   Con-
sider the stirred-tank heater that we exam-
ined in Chap. 8 (Examples 8.1 to 8.3), shown 
in  Fig. 12–3 . 
       Determine the response of a closed-loop 
proportional control system for  K   c    �  5, 10, 
20, and 100 for a set point change of 5 � C. 
Determine the offset for each value of  K   c  . 

 As before, we define 

    

T T

T T

q q

i i

R R

� � �

� � �

� ��

60

80

280 kW

deviat




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



iion variables

L
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mint � � �

1 000

200
5

1,
A

wC
��

�
�

�1

14

0 0714C

kW

C

kW

.

   

If we assume that the thermocouple that senses the tank exiting temperature has 
fast dynamics compared to the tank, a Simulink block diagram for the process is 
shown in  Fig. 12–4 . 

Heat input
q

Ti = 60°C

T

200 L/min
Water

V = 1,000 L

TR = 80°C 
TC

FIGURE 12–3
Stirred-tank heater control system.

Thermocouple

temps

Out1

Scope

1

Out2

2

To workspace

Measured temp, Tm

Feed temp, Ti

Proportional gain Tank

Heater gain

0.0714−+ ++kc
Error Q(kW)

Set point Tr

Set point

Actual tank
temp, T

Kc

1

1

1

5s+1

FIGURE 12–4
Simulink model for Example 12.1.
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 We can program a MATLAB m-file to run this Simulink model (named: 
'example12_1') for each value of  K   c   and then to plot the results on the same graph. 
The m-file that calls the model is shown below: 

  % M-file that calls Simulink Model 'Example12_1'

for i = 1:4

  z = [5,10,20,100];

  kc = z(1,i);

% the variable y in the 'sim' statement is taken from the 

outport in the model

  [t,x,y] = sim('example12_1',15);

  plot(t,y(:,1)

  hold on

% the last row in y contains the final values of the 

setpoint and the tank temp

  [norow,nocol] = size(y);

  offset(i,1) = y(norow,2)-y(norow,1);

  kcplot(i,1) = kc;

end

grid

title('Temp vs time for Kc = 5,10,20,100');

hold off

figure;

plot(kcplot,offset);

title('Offset vs Kc');  

 The results are shown in  Figs. 12–5  and  12–6 . 
           A hand calculation verifies the offset results obtained by MATLAB for the 

specified values of  K   c  .    

 

Kc Offset �
�

�
�

5

1

5

1 0 0714KcA Kc.

5 3.69
10 2.92
20 2.06

100 0.614

 Note that as the proportional gain  K   c   increases, the process more closely 
approaches the desired set point (5 � C in deviation variables, actually 85 � C ). For a 
gain of 100, the outlet temperature is 4.386 � C (deviation variable; the actual outlet 
temperature is 84.386 � C) with an offset of 0.614 � C.    
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Deviation in Tank Temperature vs Time for Kc = 5,10,20,100
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FIGURE 12–5
Response of stirred-tank temperature for proportional control—set point tracking.
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FIGURE 12–6
Effect of controller gain on offset for stirred-tank proportional control—set point tracking.
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234 PART 3 LINEAR CLOSED-LOOP SYSTEMS

  12.2  PROPORTIONAL CONTROL FOR LOAD 
CHANGE (REGULATOR PROBLEM—
DISTURBANCE REJECTION) 

  The same control system shown in  Fig. 12–1  e  is to be considered. This time the set 
point remains fixed; that is,  T   R   �   �  0. We are interested in the response of the system to a 
change in the inlet stream temperature, i.e., to a load change. Remember that the goal of 
the control system in this case is to reject the effect of disturbances (changes in the inlet 
temperature  T   i   �  for this process) and maintain the controlled variable, the tank tempera-
ture, at the set point. Since the set point has not changed from its steady-state value for 
this case ( T   R   �   �  0), we want  T  �  ( � )  �  0. 

 By using the methods of Chap. 11, the overall transfer function becomes 

    

T
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�
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� �
�

� �

1 1

1 1

1

1

/
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t
t t

( )
( )  

 (12.5)  

This may be arranged in the form of the first-order lag; thus 

    
T

T

A

si
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�
�

�

2

1 1t  
 
(12.6)  

where            

           

As for the case of set point change, we have an overall response that is first-order. The 
overall time constant  t  1  is the same as for set point changes. For a step change in inlet 
temperature, let us examine the response of the controlled process and how effectively 
the disturbance is rejected. 

 Thus for  T   i    �  1/ s,  

    
T

s

K A

K A s
c

c
� �
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1 1 1

1 1

/

/

( )
( )[ ]t    

and the ultimate (steady-state) value of  T  �  is 

    

T sT s
K As c
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�

( ) ( )lim
→ 0

1

1

   

The response of the system to a unit-step 
change in inlet temperature  T   i   �  is shown in 
 Fig. 12–7 . 
 It may be seen that  T  �  approaches 1/(1 
 �   K   c     A ). To demonstrate the benefit of con-
trol, we have shown the response of the tank 
temperature (open-loop response) to a unit-
step change in inlet temperature if no control 
were present, that is,  K   c    �  0. In this case, the 

A
K Ac

2
1

1
�

�
A

K Ac
2

1

1
�

�

t t
1

1
�

� K Ac
t t

1
1

�
� K Ac

Offset

1

1
1+KcA

0
0 t

T
'

With control (KcA = 2)

Without control
(Kc = 0)

FIGURE 12–7
Unit-step response for load change (P control).
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major advantage of control lies in the reduction of offset. From Eq. (12.3), the offset 
becomes 

    

Offset

Offset

� � � � � � �
�

� �
�

�T T
K A

K A

R
c

c

( ) ( ) 0
1

1

1

1
  

 (12.7)

  

As for the case of a step change in set point, the absolute value of the offset is reduced 
as controller gain  K   c   is increased. 

Example 12.2.   Proportional control of a stirred-tank heater for disturbance 
rejection.   Determine the response of a closed-loop proportional control system in 
Example 12.1 for  K   c    �  5, 10, 20, and 100 for a disturbance of 5 � C (i.e., the feed tempera-
ture increases by 5 � C from 60 to 65 � C). Determine the offset for each value of  K   c  . 

 We can use the same Simulink model for this analysis. We just have the step 
change enter the process as the disturbance and leave the set point set to zero. 

 The results are as follows.  Figure 12–8  shows the tank temperature (plotted 
as a deviation variable) versus time, and  Fig. 12–9  shows the offset plotted as a 
function of  K   c  . 
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FIGURE 12–8
Response of stirred-tank temperature for proportional control—disturbance 
rejection.
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FIGURE 12–9
Effect of controller gain on offset for stirred-tank proportional control—disturbance rejection.

       Note the results are qualitatively the same as for set point tracking. As  K   c   
increases for proportional control, the system does a better job at rejecting the 
disturbance and bringing the tank temperature back to the original set point (0 � C 
in deviation variables, or 80 � C). The final temperature is closer to zero, and the 
offset also approaches zero.    

  12.3  PROPORTIONAL-INTEGRAL 
CONTROL FOR LOAD CHANGE 

  Again, for the case of a load change, the desired goal is the rejection of the disturbance, 
and the desired final value is zero (since the set point remains unchanged). For PI con-
trol, we replace  G   c   in  Fig. 12–1  e  by  K   c   (1  �  1/ t   I    s ). The overall transfer function for 
load change is therefore 

    

T

T

s
K s A

s
i c I

�

�
�

�

�
�

�

1 1

1
1 1

1

/
/

t
t

t

( )
( )
  

 (12.8)

  

Rearranging this gives 
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Since the denominator contains a quadratic expression, the transfer function may be 
written in the standard form of a second-order system to give 
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 (12.9)  

where 
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 For a unit-step change in load,  T   i   �   �  1/ s.  Combining this with Eq. (12.9) gives 

    

T
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12 1t zt
  

 
(12.10)  

Equation (12.10) shows that the response of the tank temperature to a step change in 
 T   i   �  is equivalent to the response of a second-order system to an impulse function of 
magnitude  A  1 . Since we have studied the impulse response of a second-order system 
in Chap. 7, the solution to the present problem is already known. This justifies in part 
some of our previous work on transients. By using Eq. (7.32), the impulse response for 
this system may be written for  z  �1 as 
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(12.11)   

       Although the response of the system can be determined from Eq. (12.11) or Fig. 
7–8, the effect of varying  K   c   and  t   I   on the system response can be seen more clearly 
by plotting response curves, such as those shown in  Fig. 12–10 . From  Fig. 12–10  a,  we 
see that an increase in  K   c  , for a fixed value of  t   I  , improves the response by decreasing 
the maximum deviation and by making the response less oscillatory. The formula for 
 z  in Eq. (12.9) shows that  z  increases with  K   c  , which indicates that the response is less 
oscillatory.  Figure 12–10  b  shows that, for a fixed value of  K   c  , a decrease in  t   I   decreases 
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the maximum deviation and period. However, a decrease in  t   I   causes the response to 
become more oscillatory, which means that  z  decreases. This effect of  t   I   on the oscilla-
tory nature of the response is also given by the formula for  z  in Eq. (12.9).    

 

Summary for Proportional-Integral Control—Response to Step Change in Load

For fixed value of t I: As Kc ↑, z ↑ Max. deviation ↓ Oscillations ↓

For fixed value of Kc: As t I ↓, z ↓ Max. deviation ↓ Oscillations ↑

 For this case, the offset as defined by Eq. (12.3) is zero; thus 

    

Offset � � � � � �

� � �

T TR ( ) ( )
0 0 0    

 One of the most important advantages of PI control is the elimination of offset.     

  

Key Point Proportional-Integral Control ã No offset

Example 12.3.   Proportional-integral control of a stirred tank heater for distur-
bance rejection. 

   ( a ) Determine the response of a closed-loop proportional control system in Example 12.1 
for  K   c    �  5, 10, 20, and 100 for a disturbance of 5 � C (i.e., the feed temperature increases 
by 5 � C from 60 to 65 � C). Use a value of 2 min for  t   I  .  

  ( b ) Repeat part ( a ), using a constant value of 20 for  K   c   and values of 1, 2, 5, and 10 min 
for  t   I  .   

 We can use nearly the same Simulink model for this analysis. We just change 
the gain block that we used for the proportional controller to a PID block (see 
 Fig. 12–11 ). Within the PID block, the controller algorithm is given as  P   �   I / s   
�   Ds.  Comparing this with our standard PID equation, we conclude that  P   �   K   c  ,  I  
 �   K   c  / t   I  , and  D   �   K   c   t   D  . So that we can vary the model parameters with a MAT-
LAB m-file, we insert the variable  kc  for  P  and  kc/taui       for I.  

Kc = 8.2

0
0

0.2

0

0.2

1
2

t t
3 0 1 2 3

(a) (b)

Kc = 2.0

T
'

T
'

 = 1
A = 1

 = 1
A = 1

Kc = 3.5
Kc = 3.5 I = 0.25

I = 0.25

I = 0.125

I = 0.5

FIGURE 12–10
Unit-step response for load change—disturbance rejection (PI control).
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       For a disturbance change only, the step change enters the process as the distur-
bance, and we leave the set point input set to zero. The m-file that we use to drive 
the model is shown below. 

  clear

% the variable h can be used to plot each line in a

  different color

h(1,:) =  ' g-  ' ;

h(2,:)=   ' r-. ' ;

h(3,:) =  ' b:  ' ;

h(4,:) =  ' k-- ' ;

h(5,:) =  ' k-  ' ;

taui = 2

for i = 1:4

  z = [5,10,20,100];

  kc = z(1,i);

% the variable y in the 'sim' statement is taken from the

  outport in the model

 [t,x,y] = sim('example12_3',50);

  plot(t,y(:,1),h(i,:))

     hold on

end

grid

hold off  

 The result for a constant  t   I   of 2 min is shown in  Fig. 12–12 . 

FIGURE 12–11
Simulink PID block parameters for Example 12.3.
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FIGURE 12–12
Stirred-tank disturbance rejection using PI control, for tI � 2 min.
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FIGURE 12–13
Stirred-tank disturbance rejection using PI control, for Kc � 20.

 The result for a constant value of  K   c    �  20 is shown in  Fig. 12–13 . 
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           12.4  PROPORTIONAL-INTEGRAL 
CONTROL FOR SET POINT CHANGE 

  Again, the controller transfer function is  K   c  (1  �  1/ t   I   s ), and we obtain from  Fig. 12–1  e  
the transfer function 

    

T
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c I
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1 1 1 1

1 1 1 1
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(12.12)

  

This equation may be reduced to the standard quadratic form to give 
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2 11
2 2

1
   

(12.13)  

where  t  1  and  z  are the same functions of the parameters as in Eq. (12.9). Introducing a 
unit-step change ( T   R   �   �  1/ s ) into Eq. (12.13) gives 
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s s
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2 11
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(12.14)  

To obtain the response of  T  �  in the time domain, Eq. (12.14) is expanded into two 
terms: 
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2 2
12 1

1 1

2 1   
(12.15)  

The first term on the right is equivalent to the response of a second-order system to 
an impulse function of magnitude  t   I  . The second term is the unit-step response of a 
 second-order system. It is convenient to use Figs. 8–3 and 8–6 to obtain the response for 
Eq. (12.15). For  z  �1, an analytic expression for  T  �  is 
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 (12.16)  

The last expression was obtained by combining Eqs. (7.18) and (7.32). A typical response 
for  T  �  is shown in  Fig. 12–14 . The offset as defined by Eq. (12.3) is zero; thus 

    
Offset � � � � � �

� � �

T TR ( ) ( )
1 1 0

   

Again notice that the integral action in the controller has  eliminated the offset.  
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242 PART 3 LINEAR CLOSED-LOOP SYSTEMS

Example 12.4.         Proportional-integral control of a stirred-tank heater for set 
point tracking 

   (a) Determine the response of a closed-loop proportional control system in Example 
12.1 for  K   c    �  5, 10, 20, and 100 for a set point change of 5 � C. Use a value of 2 min 
for  t   I  .  

  (b) Repeat part ( a ) using a constant value of 20 for  K   c   and values of 1, 2, 5, and 10 min 
for  t   I  .   

 By proceeding as before using the Simulink model driven with a MATLAB m-
file, these results are obtained, shown in  Figs. 12–15  and  12–16 . 
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Stirred Tank set Point Tracking with Pl Control, for  I = 2

Kc = 10

FIGURE 12–15
Stirred-tank set point tracking with PI control (tI � 2 min).
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FIGURE 12–14
Unit-step response for set point change (PI control).
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 CHAPTER 12 TRANSIENT RESPONSE OF SIMPLE CONTROL SYSTEMS 243

       Note that there is no offset with PI control. Eventually each system levels out at 
the desired set point of 5 � C.    

  12.5  PROPORTIONAL CONTROL OF 
SYSTEM WITH MEASUREMENT LAG 

  In the previous examples the lag in the measuring element was assumed to be negligible 
(the feedback transfer function was taken as 1). We now consider the same control sys-
tem, the stirred-tank heater of  Fig. 12–1 , with a first-order measuring element having a 
transfer function 1/( t   m   s   �  1). 

 The block diagram for the modified system is now shown in  Fig. 12–17 . 
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FIGURE 12–16
Stirred-tank set point tracking with PI control (Kc � 20).
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FIGURE 12–17
Control system with measurement lag.
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244 PART 3 LINEAR CLOSED-LOOP SYSTEMS

 By the usual procedure, the transfer function for set point changes may be 
written 
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(12.17)  

where 
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We will not obtain an expression for the transient response for this case, for it will be 
of the same form as Eq. (12.16). Adding the first-order measuring lag to the control 
system of  Fig. 12–1  produces a second-order system even for proportional control. This 
means there will be an oscillatory response for an appropriate choice of the parameters 
 t ,  t   m  ,  K   c  , and  A.  To understand the effect of gain  K   c   and measuring lag  t   m   on the behav-
ior of the system, response curves are shown in  Fig. 12–18  for various combinations of 
 K   c   and  t   m   for a fixed value of  t   �  1. In general, the response becomes more oscillatory, 
or less stable, as  K   c   or  t   m   increases. 

Kc = 8
 = 1

A = 1

Kc = 4

Kc = 2

Kc = 8

0
0

1

1 2 3 4 50
0

1

1 2 3 4 5 t

(a) (b)

(c)

t

T
'

T
'

 T'R  T' Kc
1

s + 1

1
ms + 1

−

+

T'R =m = 1

m = 2

  m = 0

m = 1
= 1

T'R = 1
s

1
s

m = 0.5

FIGURE 12–18
Effect of controller gain and measurement lag on system response for unit-step change in set point.

       For a fixed value of  t   m    �  1,  Fig. 12–18  a  shows that the offset is reduced as  K   c   
increases; however, this improvement in steady-state performance is obtained at the 
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 CHAPTER 12 TRANSIENT RESPONSE OF SIMPLE CONTROL SYSTEMS 245

expense of a poorer transient response. As  K   c   increases, the overshoot becomes exces-
sive, and the response becomes more oscillatory. In general, we will find that a control 
system having proportional control will require a value of  K   c   that is based on a compro-
mise between low offset and satisfactory transient response. 

 For a fixed value of controller gain ( K   c    �  8),  Fig. 12–18  b  shows that an increase 
in measurement lag produces a poorer transient response in that the overshoot becomes 
greater and the response more oscillatory as  t   m   increases. This behavior illustrates a 
general rule that the measuring element in a control system should respond quickly if 
satisfactory response is to be achieved. 

Example 12.5   Effect of measurement lag on the proportional-integral control of a 
stirred-tank heater for set point tracking.   Let’s examine the effect of measurement 
lag on the PI control of the stirred-tank heater. We just concluded that as mea-
surement lag increases, a proportional control only system becomes more oscilla-
tory. What happens with PI control? The Simulink model is modified to include 
measurement lag (see  Fig. 12–19 ). We’ll fix  K   c   at 20 and  t   I    �  2, which gave us 
reasonably good results in Example 12.4. 

Thermocouple

temps

Out1

Scope

1

Out2

2

To workspace

Measured Temp. Tm

Feed Temp. Ti

PID Controller Tank

Heater Gain

0.0714−+ ++PID
Error Q(kW)

Set point Tr

Set point

Actual
tank

temp. T 

1
taum s + 1

1

5s+1

FIGURE 12–19
Simulink model for Example 12.5.

       For values of  t   m    �  0.33, 1.0, 2.0, and 5.0, determine the nature of the response 
to a set point change of 5 � C.  Figure 12–20  shows the results. It is clear that as 
the measurement lag increases, the response becomes more oscillatory and less 
stable. 
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246 PART 3 LINEAR CLOSED-LOOP SYSTEMS

             SUMMARY 

 In this chapter, we confined our attention to the response of simple control systems that 
were either first-order or second-order. This means that the transient response can be 
found by referring to Chaps. 4 and 7. However, if integral action were added to the con-
troller in the system of  Fig. 12–17 , the overall transfer function would have a third-order 
polynomial in the denominator. Incorrect selection of controller parameters can lead to 
a response with increasing amplitude. These unstable responses can occur in all systems 
with third- or higher-order polynomials in the denominator of the overall transfer func-
tion. Inversion would require factoring a cubic, which is generally a difficult task by 
hand, but a routine task using a computer. Actually, systems with denominator polynomi-
als of order greater than 2 are the rule rather than the exception. Hence, we will develop 
in forthcoming chapters convenient techniques for studying the response of higher-order 
control systems. These techniques will be of direct use in control system design. 

 Unstable responses can occur in all systems with third- or higher-order polyno-
mials in the denominator of the overall transfer function. In Chap.13 we will present a 
concrete definition of stability and begin the development of methods for determining 
stability in control systems.  

  PROBLEMS 

    12.1.   The set point of the control system shown in  Fig. P12–1  is given a step change of 0.1 unit. 
Determine
   ( a ) The maximum value of  C  and the time at which it occurs  
  ( b ) The offset  
  ( c ) The period of oscillation   
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FIGURE 12–20
Effect of measurement lag on PI control of stirred-tank heater.
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Draw a sketch of  C ( t ) as a function of time. 

+

−
R CK = 1.6

5

(s + 1)(2s + 1)

FIGURE P12–1

    12.2.  The control system shown in  Fig. P12–2  contains a PID controller.
   ( a ) For the closed loop, develop formulas for the natural period of oscillation  t  and the 

damping factor  z  in terms of the parameters  K,   t   D  ,  t   I  , and  t  1 . 
 For the following parts,  t   D    �   t   I    �  1 and  t  1   �  2,  
  ( b ) Calculate  z  when  K  is 0.5 and when  K  is 2.  
  ( c ) Do  z  and  t  approach limiting values as  K  increases, and if so, what are these values?  
  ( d  ) Determine the offset for a unit-step change in load if  K  is 2.  
  ( e ) Sketch the response curve ( C  versus  t ) for a unit-step change in load when  K  is 0.5 and 

when  K  is 2.  
  (  f  ) In both cases of part ( e ) determine the maximum value of  C  and the time at which it 

occurs.    

+

−

R

U

+
+

CK 1 +   Ds + 1
 1s + 1

1
τIs 

FIGURE P12–2

    12.3.  The location of a load change in a control loop may affect the system response. In the 
block diagram shown in  Fig. P12–3 , a unit-step change in load enters at either location 1 
or location 2.
   ( a ) What is the frequency of the transient response when the load enters at location 1 and 

when the load enters at location 2?  
  ( b ) What is the offset when the load enters at location 1 and when it enters at location 2?  
  ( c ) Sketch the transient response to a step change in  U  1  and to a step change in  U  2 . 

FIGURE P12–3
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−
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U1 U2
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248 PART 3 LINEAR CLOSED-LOOP SYSTEMS

       12.4.  Consider the liquid-level control system shown in  Fig. P12–4 . The tanks are noninteract-
ing. The following information is known:

   • The resistances on the tanks are linear. These resistances were tested separately, and 
it was found that if the steady-state flow rate  q  cfm is plotted against steady-state tank 
level  h  ft, the slope of the line  dq/dh  is 2 ft 2 /min.  

  • The cross-sectional area of each tank is 2 ft 2 .  
  • The control valve was tested separately, and it was found that a change of 1 psi in pressure 

to the valve produced a change in flow of 0.1 cfm.  
  • There is no dynamic lag in the valve or the measuring element.    

   ( a ) Draw a block diagram of this control system, and in each block give the transfer func-
tion, with numerical values of the parameters.  

  ( b ) Determine the controller gain  K   c   for a critically damped response.  
  ( c ) If the tanks were connected so that they were interacting, what is the value of  K   c   needed 

for critical damping?  
  ( d ) Using 1.5 times the value of  K   c   determined in part ( c ), determine the response of the 

level in tank 2 to a step change in set point of 1 in of level.    

Water
supply

Proportional
controller

q

R1

R2

FIGURE P12–4

    12.5.  A PD controller is used in a control system having a first-order process and a measurement 
lag as shown in  Fig. P12–5 .
   ( a ) Find expressions for  z  and  t  for the closed-loop response.  
  ( b ) If  t  1   �  1  min and  t   m    �  10 s, find  K   c   so that  z   �  0.7 for the two cases (1)  t   D    �  0 s and 

(2)  t   D    �  3 s.  
  ( c ) Compare the offset and period realized for both cases, and comment on the advantage 

of adding the derivative mode. 

FIGURE P12–5
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       12.6.  The thermal system shown in  Fig. P12–6  is controlled by a PD controller. These data are 
given: 

    

w

V

V

V

�

�

�

�

250

4 3

2

3

lb/min

62.5 lb/ft

ft

5 ft

3

1

3

r

��

� ��

6 ft

Btu/ lb F

3

C 1 ( )   
A change of 1 psi from the controller changes the flow rate of heat  q  by 500 Btu/min. The 
temperature of the inlet stream may vary. There is no lag in the measuring element.
   ( a ) Draw a block diagram of the control system with the appropriate transfer function in 

each block. Each transfer function should contain numerical values of the parameters.  
  ( b ) From the block diagram, determine the overall transfer function relating the tempera-

ture in tank 3 to a change in set point.  
  ( c ) Find the offset for a unit-step change in inlet temperature if the controller gain  K   c   is 

3 psi/ � F of temperature error and the derivative time is 0.5 min. 

Final
control
element

PD controller

psi

q

w V1 V2 V3

°F

FIGURE P12–6

       12.7.     ( a )  For the control system shown in  Fig. P12–7 , obtain the closed-loop transfer function 
 C/U.   

  ( b ) Find the value of  K   c   for which the closed-loop response has a  z  of 2.3.  
  ( c ) Find the offset for a unit-step change in  U  if  K   c    �  4. 

C
+

+

R Kc

U

−

+ 1
s

s + 1
0.25s + 1

FIGURE P12–7

       12.8.  For the control system shown in  Fig. P12–8 , determine
   ( a )  C ( s )/ R ( s )  
  ( b )  C ( � )  
  ( c ) Offset  
  ( d )  C (0.5)  
  ( e ) Whether the closed-loop response is oscillatory 
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250 PART 3 LINEAR CLOSED-LOOP SYSTEMS

       12.9.  For the control system shown in  Fig. P12–9 , determine an expression for  C ( t ) if a unit-step 
change occurs in  R.  Sketch the response  C ( t ) and compute  C (2). 

+
+

R = 2

U = 0

−

+
Cs(s + 1)

22
s

FIGURE P12–8

CR 1

−

+
1 + 1

s

FIGURE P12–9

    12.10.  Compare the responses to a unit-step change in set point for the system shown in  Fig. P12–10  
for both negative feedback and positive feedback. Do this for  K   c   of 0.5 and 1.0. Compare 
these responses by sketching  C ( t ). 

C
+
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R Kc

−+

1
s + 1

FIGURE P12–10
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       CHAPTER

12
CAPSULE SUMMARY 

    Offset:  The difference (at steady state) between the desired value of the con-
trolled variable (set point) and the actual value of the controlled variable.  

   Measurement lag:  The response time of the sensor used to measure the value of 
the controlled variable and send it to the controller. It usually appears in the feedback 
loop of the control system.   

  TRANSIENT RESPONSE OF A 
 PROPORTIONAL-ONLY  CONTROL SYSTEM 

  Key Point  - With proportional-only control there will always be some offset and 

    As OffsetKc ↑ ↓     

  TRANSIENT RESPONSE OF A 
 PROPORTIONAL-INTEGRAL  CONTROL 
SYSTEM 

  Key Point  - With proportional-integral control there is no offset. However, the 
addition of the integral action in the controller can cause the system response to become 
more oscillatory and increase the maximum deviation (or overshoot) of the response. 

    PI Control No offset, but may be oscillator� yy     

  TRANSIENT RESPONSE OF A SYSTEM WITH 
MEASUREMENT LAG 

 The larger the measurement lag in a control system, the poorer the control performance. 
As measurement lag increases, the response of the system will degrade and will become 
more oscillatory.    
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   13.1 CONCEPT OF STABILITY 

  In Chap. 12, the overall response of the control system was no higher than second-order. 
For these systems, the step response must resemble those of Fig. 4–7 or of Fig. 7–3. 
Hence, the system is inherently  stable.  In this chapter we consider the problem of sta-
bility in a control system ( Fig. 13–1 ) only slightly more complicated than any studied 
previously. This system might represent proportional control of two stirred-tank heat-
ers with measuring lag. In this discussion, only set point changes are to be considered. 
From the methods developed in Chap. 11 for determining the overall transfer function, 
we have from  Fig. 13–1  

     

C

R

G G

G G H
�

�

1 2

1 21

  
 

(13.1)  

U

R C_

+
+ G1 = Kc

+
 1

G2 =

 1
H =

 ( 3s + 1)

 ( 1s + 1) ( 2s + 1)

FIGURE 13–1
Third-order control system.

 CHAPTER 

 13 
 STABILITY 
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 In terms of the particular transfer functions shown in  Fig. 13–1 ,  C / R  becomes, after 
some rearrangement,

     

C

R

K s

s s s K
c

c
�

�

� � � �

t
t t t

3

1 2 3

1

1 1 1

( )
( )( )( )   

(13.2)   

 The denominator of Eq. (13.2) is a third-order polynomial. For a unit-step change in  R,  
the transform of the response is

     
C

s

K s

s s s K
c

c
�

�
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1 1

1 1 1
3

1 2 3

t
t t t

( )
( )( )( )  

 (13.3)   

 To obtain the transient response  C(t),  it is necessary to find the inverse of Eq. (13.3). 
This requires obtaining the roots of the denominator of Eq. (13.2), which is third-order. 
We can no longer find these roots as easily as we did for the second-order systems by 
use of the quadratic formula. However, in principle they can always be obtained by 
algebraic methods or through the use of computer software such as MATLAB. 

 It is apparent that the roots of the denominator depend upon the particular values 
of the time constants and  K   c  . These roots determine the nature of the transient response, 
according to the rules presented in Fig. 3–1 and Table 3.1. It is of interest to examine 
the nature of the response for the control system of  Fig. 13–1  as  K   c   is varied, assuming 
the time constants  t  1 , t  2 , and  t  3  to be fixed. To be specific, consider the step response 

for     t t1 2
1
21� �, ,    and     t 3

1
3�    for several values of  K   c  . Without going into the 

detailed calculations at this time, the results of inversion of Eq. (13.3) are shown as 
response curves in  Fig. 13–2 . From these response curves, it is seen that as  K   c   increases, 
the system response becomes more oscillatory. In fact, beyond a certain value of  K   c  , the 
successive amplitudes of the response grow rather than decay; this type of response is 
called  unstable.  Evidently, for some values of  K   c  , there is a pair of roots corresponding 
to  s  4  and     s4

*   of Fig. 3–1. As control system designers, we are clearly interested in being 
able to determine quickly the values of  K   c   that give unstable responses, such as that cor-
responding to  K   c    �  12 in  Fig. 13–2 . 

0

0
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C
 (

t)

Kc = 3

Kc = 9

Kc = 6

Kc = 12

4 6
t

8

Unit step

10

FIGURE 13–2
Response of control system of Fig. 13–1 for a unit-step change in set point.
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254 PART 3 LINEAR CLOSED-LOOP SYSTEMS

 If the order of Eq. (13.2) had been higher than 3, the hand calculations necessary to 
obtain  Fig. 13–2  would have been even more difficult. In this chapter, the focus is on 
developing a clearer understanding of the concept of stability. In addition, we develop a 
quick test for detecting roots having positive real parts, such as  s  4  and     s4

*   in Fig. 3–1.   

  13.2  DEFINITION OF STABILITY (LINEAR 
SYSTEMS) 

  For our purposes, a  stable  system will be defined as one for which the output response 
is bounded for all bounded inputs. A system exhibiting an unbounded response to a 
bounded input is unstable. This definition, although somewhat loose, is adequate for 
most of the linear systems and simple inputs that we shall study. 

   STABLE SYSTEM  →  a   b  ounded   i  nput produces a   b  ounded   o  utput (BIBO)   

 A bounded input function is a function of time that always falls within certain bounds 
during the course of time. For example, the step function and sinusoidal function are 
bounded inputs. The function  f ( t )  �   t  is obviously unbounded. 

 Although the definition of an unstable system states that the output becomes 
unbounded, this is true only in the mathematical sense. An actual physical system always 
exhibits bounds or constraints. A linear mathematical model (set of linear differential 
equations describing the system) from which stability information is obtained is mean-
ingful only over a certain range of variables. For example, a linear control valve gives 
a linear relation between flow and valve-top pressure only over the range of pressure 
(or flow) corresponding to values between which the valve is shut tight or wide open. 
When the valve is wide open, for example, further change in pressure to the diaphragm 
will not increase the flow. We often describe such a limitation by the term  saturation.  A 
physical system, when unstable, may not follow the response of its linear mathematical 
model beyond certain physical bounds but rather may saturate. However, the prediction 
of stability by the linear model is of utmost importance in a real control system since 
operation with the valve shut tight or wide open is clearly unsatisfactory control.   

  13.3 STABILITY CRITERION 

  The purpose of this section is to translate the stability definition into a simpler criterion, 
one that can be used to ascertain the stability of control systems of the form shown in 
 Fig. 13–3 .    

+
+

+

−

G2G1

H
B

U

CR

FIGURE 13–3
Basic single-loop control system.
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 CHAPTER 13  STABILITY 255

  CHARACTERISTIC EQUATION.    From the block diagram of the control system 
( Fig. 13–3 ), we obtain by the methods of Chap. 12

     
C

G G

G G H
R

G

G G H
U�

�
�

�

1 2

1 2

2

1 21 1  
 (13.4)   

 To simplify the nomenclature, let  G   �   G  1  G  2  H.  We call  G  the  open-loop transfer func-
tion  because it relates the measured variable  B  to the set point  R  if the feedback loop of 
 Fig. 13–3  is disconnected from the comparator (i.e., if the loop is opened). In terms of 
the open-loop transfer function  G,  Eq. (13.4) becomes

     
C

G G

G
R

G

G
U�

�
�

�

1 2 2

1 1  
 (13.5)   

 In principle, for given forcing functions  R ( s ) and  U ( s ), Eq. (13.5) may be inverted to 
give the control system response. 

 To determine under what conditions the system represented by Eq. (13.5) is sta-
ble, it is necessary to test the response to a bounded input. Suppose a unit-step change 
in set point is applied. Then

     

C s
G G

G s

G G F s

s s r s r s rn
( ) ( )

( )( )( )�
�

�
� � �

1 2 1 2

1 21

1

  

 (13.6)  

where  r  1 , r  2 , . . . ,  r   n   are the  n  roots of the equation

     1 0� �G s( )   (13.7)  
and  F ( s ) is a function that arises in the rearrangement to the right-hand form of 
Eq. (13.6). Equation (13.7) is called the  characteristic equation  for the control system 
of  Fig. 13–3 . For example, for the control system of  Fig. 13–1  the step response is

     

C s
G G

s G

K s s

s K
c

c

( ) ( )
( )( )[ ]

�
�

�
� �

�

1 2

1 2

1

1

1 1

1

/

/

t t
t ss s s� � �1 1 12 3( )( )( )[ ]t t   

which may be rearranged to

     

C s
K s

s s s

c( ) ( )
( )

�
�

� � � �

t
t t t t t t t t t

3

1 2 3
3

1 2 1 3 2 3
2

1

tt t t1 � � � �2 3 1( ) ( ) s Kc
    

 This is equivalent to

     
C s

K s

s s r s r s r
c( ) ( )

( )( )( )�
�

� � �

t t t t3 1 2 3

1 2 3

1 /

   

where  r  1 ,  r  2 , and  r  3  are the roots of the characteristic equation
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256 PART 3 LINEAR CLOSED-LOOP SYSTEMS

        (13.8)   

 Evidently, for this case the function  F ( s ) in Eq. (13.6) is

     
F s

s s s( ) ( )( )( )
�

� � �t t t
t t t

1 2 3

2 3

1 1 1

1    

 In Chap. 3, the qualitative nature of the inverse transforms of equations such as 
Eq. (13.6) was discussed. It was shown that (see Fig. 3–1 and Table 3.1) if there are 
any of the roots  r  1 ,  r  2 , . . . ,  r   n   in the right half of the complex plane, the response  C ( t ) 
will contain a term that grows exponentially in time and the system is unstable. If there 
are one or more roots of the characteristic equation at the origin, there is an  s   m   in the 
denominator of Eq. (13.6) (where  m   �  2) and the response is again unbounded, growing 
as a polynomial in time. This condition specifies  m  as greater than or equal to 2, not 1, 
because one of the  s  terms in the denominator is accounted for by the fact that the input is 
a unit step (1/ s ) in Eq. (13.6). (Note that a 1/ s  term will invert to a constant, while a 1/ s  2  
term will invert to a term of the form  C  1  t,  which is unbounded.) Additionally, if there is 
a pair of conjugate roots of the characteristic equation on the imaginary axis, the contri-
bution to the overall step response is a pure sinusoid, which is bounded. However, if the 
bounded input is taken as sin  w  t,  where  w  is the imaginary part of the conjugate roots, 
the contribution to the overall response is a sinusoid with an amplitude that increases 
as a polynomial in time [the response will have a term of the form  C  1  t  sin( w  t   �   f )]. 
Thus, if a root lies on the imaginary axis, there is the potential for repeating the root 
of a bounded input (such as a step input or a sinusoid input), and the response will be 
unstable. Therefore, the right-half plane, including the imaginary axis, is the unstable 
region for location of roots of the characteristic equation. It is evident from Eq. (13.5) 
that precisely the same considerations apply to a change in the load  U,  as we just dis-
cussed for set point changes, since they have the same characteristic equation. 

Therefore, the definition of stability for linear systems may be translated to the 
following criterion: A linear control system is unstable if any roots of its char-
acteristic equation are on, or to the right of, the imaginary axis. Otherwise the 
system is stable.

 It is important to note that the characteristic equation of a control system, which 
determines its stability, is the same for set point or load changes. The stability depends 
only upon  G ( s ), the open-loop transfer function. Furthermore, although the rules derived 
above were based on a step input, they are applicable to any input. This is true, first, 
by the definition of stability and, second, because if there is a root of the characteristic 
equation in the right half-plane, it contributes an unbounded term in the response to any 
input. This follows from Eq. (13.5) after it is rearranged to the form of Eq. (13.6) for 
the particular input. 

t t t t t t t t t t t t1 2 3
3

1 2 1 3 2 3
2

1 2 3 1s s s K� � � � � � � �( ) ( ) cc( ) � 0t t t t t t t t t t t t1 2 3
3

1 2 1 3 2 3
2

1 2 3 1s s s K� � � � � � � �( ) ( ) cc( ) � 0
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 CHAPTER 13  STABILITY 257

 Therefore, the stability of a control system of the type shown in  Fig. 13–3  is deter-
mined solely by its open-loop transfer function through the roots of the characteristic 
equation. This behavior is shown graphically in  Fig. 13–4 , which relates the nature of 
the response to the location of the roots of the characteristic equation. 

Example 13.1.   In terms of  Fig. 13–3 , a control system has the transfer functions

     

G
s

s

G
s

1

2

10
0 5 1

1

2 1

�
�

�
�

.
(

(

PI controller)

stirred tank)

measuring element without lag)H � 1 (     
 We have suggested a physical system by the components placed in parentheses. 
Find the characteristic equation and its roots, and determine whether the system 
is stable. 

 The first step is to write the open-loop transfer function

     
G G G H

s

s s
� �

�

�
1 2

10 0 5 1

2 1

.( )
( )    

FIGURE 13–4
Stability of typical roots of the characteristic equation.
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258 PART 3 LINEAR CLOSED-LOOP SYSTEMS

 The characteristic equation is therefore

     
1

10 0 5 1

2 1
0�

�

�
�

. s

s s

( )
( )   

which is equivalent to

     s s2 3 5 0� � �    

 Solving by the quadratic formula gives

     
s �

�
�

�3

2

9 20

2   

or

     

s j

s j

1

2

3

2

11

2

3

2

11

2

�
�

�

�
�

�
    

 Since the real part of  s  1  and  s  2  is negative  (�3/2), the system is stable.      

  13.4 ROUTH TEST FOR STABILITY 

  The Routh test is a purely algebraic method for determining how many roots of the 
characteristic equation have positive real parts; from this it can also be determined 
whether the system is stable, for if there are no roots with positive real parts, the system 
is stable. The test is limited to systems that have polynomial characteristic equations. 
This means that it cannot be used to test the stability of a control system containing a 
transportation lag. The procedure for application of the Routh test is presented without 
proof. The proof is available elsewhere (Routh, 1905) and is mathematically beyond the 
scope of this text. 

 The procedure for examining the roots is to write the characteristic equation in 
the form

     a s a s a s an n n
n0 1

1
2

2 0� � � � �� � . . .
   (13.9)  

where  a  0  is positive. (If  a  0  is originally negative, both sides are multiplied by �1.) In 
this form, it is  necessary  that all the coefficients

     a a a a an n0 1 2 1, , , ... , ,�   

be positive if all the roots are to lie in the left half-plane. If any coefficient is nega-
tive, the system is definitely unstable, and the Routh test is not needed to answer the 
question of stability. (However, in this case, the Routh test will tell us the number of 
roots in the right half-plane.) If all the coefficients are positive, the system may be 
stable or unstable. It is then necessary to apply the following procedure to determine 
stability.  
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 CHAPTER 13  STABILITY 259

   Routh Array 

 Arrange the coefficients of Eq. (13.9) into the first two rows of the Routh array as 
follows:   

  

Row

1 a0 a2 a4 a6

2 a1 a3 a5 a7

3 b1 b2 b3

4 c1 c2 c3

5 d1 d2

6 e1 e2

7 f1
n � 1 g1

 The array has been filled in for  n   �  7 to simplify the discussion. For any other value 
of  n,  the array is prepared in the same manner. In general, there are  n   �  1 rows. For  n  
even, the first row has one more element than the second row. 

 The elements in the remaining rows are found from the formulas

     

b
a a a a

a
b

a a a a

a

c
b a a b

1
1 2 0 3

1
2

1 4 0 5

1

1
1 3 1 2

�
�

�
�

�
�

...

bb
c

b a a b

b1
2

1 5 1 3

1
�

� ...
    

 The elements for the other rows are found from formulas that correspond to those just 
given. The elements in any row are always derived from the elements of the two pre-
ceding rows. During the computation of the Routh array, any row can be divided by a 
positive constant without changing the results of the test. (The application of this rule 
often simplifies the arithmetic.) 

 Having obtained the Routh array, we can apply the following theorems to deter-
mine stability. 

  THEOREMS OF THE ROUTH TEST    

Theorem 13.1.  The necessary and sufficient condition for all the roots of the character-
istic equation [Eq. (13.9)] to have negative real parts (stable system) is that all elements of 
the first column of the Routh array ( a  0 ,  a  1 ,  b  1 ,  c  1 , etc.) be positive and nonzero. 

  Theorem 13.2.  If some of the elements in the first column are negative, the number 
of roots with a positive real part (in the right half-plane) is equal to the number of sign 
changes in the first column. 

  Theorem 13.3.  If  one  pair of roots is on the imaginary axis, equidistant from the origin, 
and all other roots are in the left half-plane, then all the elements of the  n th row will van-
ish and none of the elements of the preceding row will vanish. The location of the pair of 
imaginary roots can be found by solving the equation

     Cs D2 0� �   (13.10)  

where the coefficients  C  and  D  are the elements of the array in the ( n  – 1)st row as read 
from left to right, respectively. 
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260 PART 3 LINEAR CLOSED-LOOP SYSTEMS

 The algebraic method for determining stability is limited in its usefulness in that 
all we can learn from it is whether a system is stable. It does not give us any idea of the 
degree of stability or the roots of the characteristic equation. 

Example 13.2.   Given the characteristic equation

     s s s s4 2 23 5 4 2 0� � � � �   

determine the stability by the Routh criterion. 

 Since all the coefficients are positive, the system may be stable. To test this, 
form the following Routh array:      

Row

1 1 5 2
2 3 4
3 11/3 6/3
4 26/11 0
5 2

The elements in the array are found by applying the formulas presented in the 
rules; for example,  b  1 , which is the element in the first column, third row, is 
obtained by

     
b

a a a a

a
1

1 2 0 3

1
�

�

   

or in terms of numerical values,

     
b1

3 5 1 4

3

15

3

4

3

11

3
�

�
� � �

( )( ) ( )( )

    

 Since there is no change in sign in the first column, there are no roots having posi-
tive real parts, and the system is stable.  

    Example 13.3. ( a ) Using     t t1 2
1
21� �, ,   and     t 3

1
3� ,   determine the values 

of  K   c   for which the control system in  Fig. 13–1  is stable. ( b ) For the value of  K   c   
for which the system is on the threshold of instability, determine the roots of the 
characteristic equation with the help of Theorem 13.3.   

  Solution 

   ( a ) The characteristic equation 1  �   G ( s )  �  0 becomes

     
1

1 2 1 3 1
0�

� � �
�

K

s s s
c

( )( )( )/ /   
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 CHAPTER 13  STABILITY 261

 Rearrangement of this equation for use in the Routh test gives

     s s s Kc
3 26 11 6 1 0� � � � �( )   (13.11)  

 The Routh array is    

Row

1 1 11
2 6 6(1 � Kc)
3 10 � Kc

4 6(1 � Kc)

 Since the proportional sensitivity of the controller  K   c   is a positive quantity, we see that 
the fourth entry in the first column, 6(1  �   K   c  ), is positive. According to Theorem 13.1, 
all the elements of the first column must be positive for stability; hence

     

10 0

10

� �

�

K

K

c

c   
 It is concluded that the system will be stable only if  K   c   � 10, which agrees with 

 Fig. 13–2 .  

Using MATLAB to Determine the Roots of a Polynomial

The MATLAB command roots(C) computes the roots of the polynomial whose coefficients are 
the elements of the vector C. If C has n � 1 elements, the polynomial is

 C x C x C x C x C x Cn n n
n n n1 2

1
3

2
1

2
1� � � � � �� �

� �. . .
 

For the characteristic equation of Example 13.2, s4 � 3s2 � 5s2 � 4s � 2 � 0, the vector C would be

 C � [ , , , , ]1 3 5 4 2 

The MATLAB command and the resulting solution are shown below.
roots([1,3,5,4,2])

ans =

  -1.0000 � 1.0000i

  -1.0000 � 1.0000i

  -0.5000 � 0.8660i

  -0.5000 � 0.8660i

The real parts of all four roots are negative. Thus, the roots all lie in the left half-plane (LHP), and 
the system is stable. This is the same result that we obtained using the Routh test.
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262 PART 3 LINEAR CLOSED-LOOP SYSTEMS

  ( b ) At  K   c    �  10, the system is on the verge of instability, and the element in the  n th (third) 
row of the array is zero. According to Theorem 13.3, the location of the imaginary 
roots is obtained by solving

     Cs D2 0� �   
 where  C  and  D  are the elements in the ( n  � 1)st row. For this problem, with  K   c    �  10, 

we obtain

     

6 66 0

11

2s

s j

� �

� �   
 Therefore, two of the roots on the imaginary axis are located at     11    and     � 11.    

 The third root can be found by expressing Eq. (13.11) in factored form    

s s s s s s� � � �1 2 3 0( )( )( )    (13.12)  

 where  s  1 ,  s  2 , and  s  3  are the roots. Introducing the two imaginary roots (    s j1 11�    
and     s j2 11��   ) into Eq. (13.12) and multiplying out the terms give

     s s s s s3
3

2
311 11 0� � � �   

 Comparing this equation with Eq. (13.11), we see that  s  3   �  �6. The roots of the char-
acteristic equation are therefore     s j s j1 211 11� � �, ,    and  s  3   �  �6.   

Using MATLAB and s3 � 6s2 � 11s � 6(1 � Kc) � 0 with Kc � 10, we can use the roots 
command as follows.
roots([1,6,11,66])

ans =

-6.0000

0.0000 + 3.3166i

0.0000 – 3.3166i  The result is the same, 11 3 3166� . .

Example 13.4.       Determine the stability of the system shown in  Fig. 13–1  for 
which a PI controller is used. Use     t t t1 2

1
2 3

1
31 5� � � �, , , ,Kc   and 

 τ   I    �  0.25. 

  Solution 
 Characteristic equation is

     1
1

1 1
1 2 3

1 2
�

�

� �

K s

s s s
c I

I

/

/ /

t t t t
t t t

( )( )
( )[ ] ( )[ ] ss �

�
1

0
3/ t( )[ ]   

Using the parameters given above in this equation leads to

     s s s s4 3 26 11 36 120 0� � � � �    
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 CHAPTER 13  STABILITY 263

 Notice that the order of the characteristic equation has increased from three to four as a 
result of adding integral action to the controller. The Routh array becomes     

Row

1 1 11 120
2 6 36
3 5 120
4 �108
5 120

 Because there are two sign changes in the first column, we know from Theorem 13.2 of 
the Routh test that two roots have positive real parts. From Example 13.3 we know that 
for  K   c    �  5 the system is stable with proportional control. With integral action present, 
however, the system is unstable for  K   c    �  5.        

Employing MATLAB to help us again yields

roots([1,6,11,36,120])

ans =

  -3.7953 + 0.8664i

  -3.7953 - 0.8664i

   0.7953 + 2.6992i

   0.7953 - 2.6992i 

Note the two roots in the RHP (with the positive real parts of 0.7953). The system is unstable. This 
is the same result we obtained with the Routh test.

   SUMMARY 

 A definition of stability for a control system has been presented and discussed. This def-
inition was translated into a simple mathematical criterion relating stability to the loca-
tion of roots of the characteristic equation. Briefly, it was found that a control system 
is stable if all the roots of its characteristic equation lie in the left half of the complex 
plane. The Routh criterion, a simple algebraic test for detecting roots of a polynomial 
lying in the right half of the complex plane, was presented and applied to control system 
stability analysis. This criterion suffers from two limitations: (1) It is applicable only to 
systems with polynomial characteristic equations, and (2) it gives no information about 
the actual location of the roots and, in particular, their proximity to the imaginary axis. 

 This latter point is quite important, as can be seen from  Fig. 13–2  and the results 
of Example 13.3. The Routh criterion tells us only that for  K   c   � 10 the system is stable. 
However, from  Fig. 13–2  it is clear that the value  K   c    �  9 produces a response that is 
undesirable because it has a response time that is too long. In other words, the controlled 
variable oscillates too long before returning to steady state. It will be shown later that 
this happens because for  K   c    �  9 there is a pair of roots close to the imaginary axis. 
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264 PART 3 LINEAR CLOSED-LOOP SYSTEMS

 In Chap. 14 tools will be developed for obtaining more information about the 
actual location of the roots of the characteristic equation. This will enable us to predict 
the form of the curves of  Fig. 13–2  for various values of  K   c  . The advantage of these 
tools is that they are graphical and are easy to apply compared with standard algebraic 
solutions of the characteristic equation. 

 There are two distinct approaches to this problem: root locus methods and 
frequency-response methods. The former are discussed in Chap. 14 and the latter in 
Chaps. 15 and 16. These groups of chapters are written in parallel, and the reader may 
study one or both groups in either order. As a guide to making this decision, here are 
some general comments concerning the two approaches. 

 Root locus methods allow rapid determination of the location of the roots of the 
characteristic equation as functions of parameters such as  K   c   of  Fig. 13–1 . However, 
they are difficult to apply to systems containing transportation lags. Also, they require a 
reasonably accurate knowledge of the theoretical process transfer function. 

 Frequency-response methods are an indirect solution to the location of the roots. 
They utilize the sinusoidal response of the open-loop transfer function to determine 
values of parameters such as  K   c   that keep these roots a “safe distance” from the right 
half-plane. The actual transient response for a given value of  K   c   can be only crudely 
approximated. However, frequency-response methods are easily applied to systems 
containing transportation lags and may be used with only experimental knowledge of 
the unsteady-state process behavior. 

 A mastery of control theory requires knowledge of both methods because they 
are complementary. However, the reader may choose to study only frequency response 
and still be adequately prepared for most of the material in the remainder of this book. 
The choice of studying only root locus will be more restrictive in terms of preparation 
for subsequent chapters. In addition, much of the literature on process dynamics relies 
heavily on frequency-response methods.  

  PROBLEMS 

    13.1.  Write the characteristic equation and construct the Routh array for the control system 
shown in  Fig. P13–1 . Is the system stable for ( a )  K   c    �  9.5, ( b )  K   c    �  11, and ( c )  K   c    � 12?  

R CKc
+

−

3
s + 3

 1
(s + 1)(0.5s + 1)

FIGURE P13–1

   13.2.  By means of the Routh test, determine the stability of the system shown in  Fig. P13–2  
when  K   c    �  2.  
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 CHAPTER 13  STABILITY 265

   13.3.  In the control system of Prob. 12.6, determine the value of gain (psi/ 	 F) that just causes the 
system to be unstable if ( a )  t   D    �  0.25  min and ( b )  t   D    �  0.5  min.  

   13.4.  Prove that if one or more of the coefficients  a  0 ,  a  1 , . . . ,  a   n   of the characteristic equation 
[Eq. (13.9)] is negative or zero, then there is necessarily an unstable root.  Hint:  First show 
that  a  1 / a  0  is minus the sum of all the roots,  a  2 / a  0  is plus the sum of all possible products of 
two roots,  a   j   / a  0  is (�1)   j   times the sum of all possible products of  j  roots, etc.  

   13.5.  Prove that the converse statement of Prob. 13.4—that an unstable root implies that one or 
more of the coefficients will be negative or zero—is untrue for all  n  > 2.  Hint:  To prove that 
a statement is untrue, it is only necessary to demonstrate a single counterexample.  

   13.6.  Deduce an extension of the Routh criterion that will detect the presence of roots with real 
parts greater than �  σ  for any specified  s  � 0.  

   13.7.  Show that any complex number  s  satisfying | s | � 1 yields a value of

     
z

s

s
�

�

�

1

1   
 that satisfies

     Re z( ) � 0    
  ( Hint:  Let  s   �   x   �   jy;   z   �   u   �   jv.  Rationalize the fraction, and equate real and imag-

inary parts of  z  and the rationalized fraction. Now consider what happens to the circle 
 x  2   �   y  2   �  1. To show that the  inside  of the circle goes over to the right half-plane, consider 
a convenient point inside the circle.) 

  On the basis of this transformation, deduce an extension of the Routh criterion that will 
determine whether the system has roots inside the unit circle. Why might this information 
be of interest? How can the transformation be modified to consider circles of other radii?  

R Kc(1 + −)+

−
C2Kv = 1 3

s

1

0.2s2 + 0.4s +1

FIGURE P13–2

C

U

R _
+ +

+
1

  1s 

  3 s + 1

1
 ( 1s + 1) ( 2 s + 1)

1
  4 s + 1

FIGURE P13–8
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266 PART 3 LINEAR CLOSED-LOOP SYSTEMS

   13.8.  Given the control diagram shown in  Fig. P13–8 , deduce by means of the Routh criterion 
those values of  τ   I   for which the output  C  is stable for all inputs  R  and  U.         

   13.9.  In the control system shown in  Fig. P13–9 , find the value of  K   c   for which the system is on 
the verge of instability. The controller is replaced by a PD controller, for which the transfer 
function is  K   c   ( tD   s   �  1). If  K   c    �  10, determine the range of  t   D   for which the system is 
stable. 

CR
+

−

Kc
1

 (s + 1)3

FIGURE P13–9

       

   13.10.      ( a )  Write the characteristic equation for the control system shown in  Fig. P13–10 .  
  ( b ) Use the Routh test to determine if the system is stable for  K   c    �  4.  
  ( c ) Determine the ultimate value of  K   c   above which the system is unstable.     

C

U

R

−

+
+

+Kc (1 +  −) s
2 1

1
s + 1

2s + 1

FIGURE P13–10

   13.11.  For the control system in  Fig. P13–11 , the characteristic equation is

     s s s s K4 3 24 6 4 1 0� � � � � �( )   

   ( a ) Determine the value of  K  above which the system is unstable.  
  ( b ) Determine the value of  K  for which two of the roots are on the imaginary axis, and 

determine the values of these imaginary roots and the remaining two roots.    

   

CR

−

+
K

1
s + 1

1

(s + 1)3

FIGURE P13–11
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  CHAPTER 

13 
CAPSULE SUMMARY 

  STABLE SYSTEM  →  
A   b  ounded   i  nput produces a   b  ounded   o  utput 
(BIBO).  

    Characteristic equation:  1  �   G ( s )  �  0, where 
1  �   G ( s ) is the denominator of the closed-loop transfer 
function for the process.  

   Routh stability test:  A test to determine the sta-
bility of a linear control system. To apply the Routh test, 
rewrite the characteristic equation as

      
 

                                                                         
(13.9)

   

where  a  0  is positive. Form the following array by using the coefficients:   

       

Row

1 a0 a2 a4 a6

2 a1 a3 a5 a7

3 b1 b2 b3

4 c1 c2 c3

5 d1 d2

6 e1 e2

7 f1

n � 1 g1

The other elements are found from the formulas

 

b
a a a a

a
b

a a a a

a

c
b a a b

1
1 2 0 3

1
2

1 4 0 5

1

1
1 3 1 2

�
�

�
�

�
�

. . .

bb
c

b a a b

b1
2

1 5 1 3

1
�

� . . .

      

a s a s a s an n n
n0 1

1
2

2 0� � � � �� � . . .a s a s a s an n n
n0 1

1
2

2 0� � � � �� � . . .

Imaginary
axisStable Region

Left Half-Plane (LHP)
Unstable Region

Right Half-Plane (RHP)

Real
axis

(–a2, –b2)

(–a1, 0)

s2
*

s3
*

s4
*

(–a2, b2)
(0, b3)

(0, –b3)

(0, 0)

s2

(a4, b4)
s4

s3

(a4, –b4)

s6

(a5, 0)
s5

1.5

0

0.5

1

0.10 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

s1

2

–2

0.5
–1

–1.5

1
1.5

0

0.10 0.20.30.40.50.60.70.80.9 1

2.5

2

0.5

1

1.5

0.50 1 1.5 2 2.5 3 3.5 4 4.5 5

1.5
1

–1
–0.5

0.5
0

0 0.5 1 1.5 2 2.5

2

–2

0.5

–1.5

1

1.5

0

0.10 0.20.30.40.50.60.70.80.9 1

12

–8

0

–4
–6

–2

6

10
8

2
4

0.10 0.20.30.40.50.60.70.80.9 1

10

1

5

3
2

4

9
8

6
7

0.10 0.20.30.40.50.60.70.80.9 1

FIGURE 13–4
Stability of typical roots of the characteristic 
equation.
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268 PART 3 LINEAR CLOSED-LOOP SYSTEMS

  THEOREMS OF THE ROUTH TEST  

 Theorem 13.1.  The necessary and sufficient condition for all the roots of the charac-
teristic equation [Eq. (13.9)] to have negative real parts (stable system) 
is that all elements of the first column of the Routh array ( a  0 ,  a  1 ,  b  1 ,  c  1 , 
etc.) be positive and nonzero. 

 Theorem 13.2.  If some of the elements in the first column are negative, the number of 
roots with a positive real part (in the right half-plane) is equal to the 
number of sign changes in the first column. 

 Theorem 13.3.  If  one  pair of roots is on the imaginary axis, equidistant from the origin, 
and all other roots are in the left half-plane, all the elements of the  n th 
row will vanish and none of the elements of the preceding row will van-
ish. The location of the pair of imaginary roots can be found by solving 
the equation

     Cs D2 0� �    (13.10)  

where the coefficients  C  and  D  are the elements of the array in the 
( n  – 1)st row as read from left to right, respectively.    

 

cou9789x_ch13_252-268.indd   268cou9789x_ch13_252-268.indd   268 8/14/08   8:04:20 AM8/14/08   8:04:20 AM



Confirming Pages

269

 CHAPTER 

 14 

  In Chap. 13 on stability, Routh’s criterion was introduced to provide an algebraic 
method for determining the stability of a simple feedback control system (Fig. 13–3) 

from the characteristic equation of the system [Eq. (13.7)]. This criterion also yields the 
number of roots of the characteristic equation that are located in the right half of the 
complex plane. In this chapter, we develop a graphical method for finding the actual 
values of the roots of the characteristic equation, from which we can obtain the transient 
response of the system to an arbitrary forcing function.  

   14.1 CONCEPT OF ROOT LOCUS 

  In Chap. 13, the response of the simple feedback control system, shown again in 
 Fig. 14–1 , was given by the expression

     
C

G G

G
R

G

G
U�

�
�

�

1 2 2

1 1  
 (14.1)  

where  G   �   G  1   G  2   H.  The factor in the denominator, 1  �   G,  when set equal to zero, is 
called the characteristic equation of the closed-loop system. The roots of the character-
istic equation determine the form (or character) of the response  C ( t ) to any particular 
forcing function  R ( t ) or  U ( t ). 

 The  root locus  method is a graphical procedure for finding the roots of 1  �   G   �  0, 
as one of the parameters of  G  varies continuously. In our work, the parameter that will 
be varied is the gain (or sensitivity)  K   c   of the controller. We can illustrate the concept 

 ROOT 
LOCUS 
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+
+

+

−
G2G1

H

U

CR

FIGURE 14–1
Simple feedback control system.

of a root locus diagram by considering the example presented in Fig. 13–1, which is 
represented by the block diagram of  Fig. 14–1  with
  

    

G K

G
s s

H
s

c1

2
1 2

3

1

1 1

1

1

�

�
� �

�
�

t t

t

( )( )

For this case, the open-loop transfer function is

 
G

K

s s s
c

�
� � �t t t1 2 31 1 1( )( )( )   

which may be written in the alternate form

     
G s

K

s p s p s p
( ) ( )( )( )�

� � �1 2 3  
 (14.2)  

   

where
         

           

The terms  p  1 ,  p  2 , and  p  3  are called the  poles  of the open-loop transfer function. A  pole  
of  G ( s ) is any value of  s  for which  G ( s ) approaches infinity. For example, it is clear 
from Eq. (14.2) that if  s   �   p  1 , the denominator of Eq. (14.2) is zero and therefore  G ( s ) 
approaches infinity. Hence  p  1   �  �1/ t  1  is a pole of  G ( s ). 

 The characteristic equation for the  closed-loop  system is

     
1 0

1 2 3
�

� � �
�

K

s p s p s p( )( )( )   

This expression may be written

     s p s p s p K� � � � �1 2 3 0( )( )( )   (14.3)  

K
Kc

�
t t t1 2 3

K
Kc

�
t t t1 2 3

p p p1
1

2
2

3
3

1 1 1
� � � � � �
t t t

p p p1
1

2
2

3
3

1 1 1
� � � � � �
t t t
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Using the same numerical values for the poles that were used at the beginning of Chap. 
13 (�1, �2, �3) gives

     s s s K� � � � �1 2 3 0( )( )( )   (14.4)  

where     K Kc� 6    

Expanding the product of this equation gives

     s s s K3 26 11 6 0� � � � �   (14.5)  

which is third-order. For any particular value of controller gain  K   c  , we can obtain the 
roots of the characteristic equation [Eq. (14.5)]. For example, if  K   c    �  4.41 ( K   �  26.5), 
Eq. (14.5) becomes

     s s s3 26 11 32 5 0� � � �.   

Solving this equation for the three roots gives

     

r

r j

r j

1

2

3

5 10

0 45 2 5

0 45 2 5

� �

� � �

� � �

.

. .

. .     

Note: MATLAB can easily be used to find the roots of a polynomial:

>> c�[1,6,11,32.5]; %placing the coefficients of the equation into a 

vector

>> roots(c); %finding the roots 

ans =     

-5.0931     

-0.4534 + 2.4851i     

TABLE 14.1

Roots of the characteristic equation (s � 1)(s � 2)(s � 3) � K � 0

K  �  6 Kc  r1  r2  r3

0 �3 �2 �1
0.23 �3.10 �1.75 �1.15
0.39 �3.16 �1.42 �1.42
1.58 �3.45 �1.28 � j0.75 �1.28 � j0.75
6.6 �4.11 �0.95 � j1.5 �0.95 � j1.5

26.5 �5.10 �0.45 � j2.5 �0.45 � j2.5
60.0 �6.00 0.0 � j3.32 0.0 � j3.32

100.0 �6.72 0.35 � j4 0.35 � j4

By selecting other values of  K,  other sets of roots are obtained, as shown in  Table 14.1 . 
If the roots are all real, the response will be nonoscillatory. 
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272 PART 3 LINEAR CLOSED-LOOP SYSTEMS

 For convenience, we may plot the roots  r  1 ,  r  2 , and  r  3  on the complex plane as 
 K  changes continuously. Such a plot is called a  root locus diagram  and is shown in 
 Fig. 14–2 . Notice that there are three loci or  branches  corresponding to the three roots 
and that they “emerge” or begin (for  K   �  0) at the poles of the open-loop transfer func-
tion (�1, �2, �3). The direction of increasing  K  (remember, K is our controller gain, 
which we can adjust) is indicated on the diagram by an arrow. Also the values of  K  are 
marked on each locus. The root locus diagram for this system and others to follow is 
symmetric with respect to the real axis, and only the portion of the diagram in the upper 
half-plane need be drawn. This follows from the fact that the characteristic equation 
for a physical system contains coefficients that are real, and therefore complex roots of 
such an equation must appear in conjugate pairs. 

 The root locus diagram has the distinct advantage of giving at a glance the char-
acter of the response as the gain of the controller is continuously changed. The diagram 
of  Fig. 14–2  reveals two critical values of  K;  one is at  K  2  where two of the roots become 
equal, and the other is at  K  3  where two of the roots are pure imaginary. It should be 
clear from the discussion in Chap. 13 that the nature of the response  C ( t ) will depend 
only on the roots  r  1 ,  r  2 ,  r  3 . Thus, if the roots are all real, which occurs for  K  < 0.39 in 
 Fig. 14–2 , the response will be nonoscillatory. 

 If two of the roots are complex and have negative real parts ( K  2  <  K  <  K  3 ), the 
response will include damped sinusoidal terms, which will produce an oscillatory 
response. If we adjust the controller gain such that  K  >  K  3 , two of the roots are complex 
and have positive real parts, and the response is a growing sinusoid. Some of these 
types of responses were shown in Fig. 13–2. 

K3 = 60

K3 = 60

K2 = 0.39

K3 = 60

j

100

3

2

1

210.23

0.23

0.23

0.39
1.58

6.6

26.5

6.626.5100

1.58

−1

−2

−8 −6 −4

−3

FIGURE 14–2
Root locus diagram for (s � 1)(s � 2)(s � 3) � K� 0.
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MATLAB can also be used to quickly and easily construct a root locus diagram for the system. We 
enter the open-loop transfer function in the form of Eq. (14.2) with K � 1, and MATLAB generates 
the root locus diagram:

>> num � [1]; 

>> den � [1 6 11 6]; 

>> sys � tf(num,den)

Transfer function:

1 

sˆ3 + 6 sˆ2 + 11 s + 6 

>> rlocus(sys)

FIGURE 14–3
Root locus diagram for (s � 1)(s � 2)(s � 3) � K � 0 generated using MATLAB.
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(a)
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xi
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Root Locus

− 8
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−1

0

1
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−7 − 6 −5 − 4 −3 −2 −1 0 1
Real Axis

Im
ag

 A
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−8

−5

−4

−3

−2

−1

0

1

2

3

4

5

−7 −6 −5 −4 −3 −2 −1 0 1

System: sys
Gain: 60

Pole: 0.00117 + 3.32i
Damping: -0.000354
Over shoot (%): 100

Frequency (rad/s): 3.32

System: sys
Gain: 0.385
Pole: -1.41

Damping: 1
Over shoot (%): 0

Frequency (rad/s): 1.41

System: sys
Gain: 60

Pole: 0.00117-3.32i
Damping: -0.000354
Over shoot (%): 100

Frequency (rad/s): 3.32

(b)

By clicking on one of the branches of the diagram in Fig. 14–3a with the 

mouse, MATLAB displays information regarding that particular root 

location, as shown in Fig. 14–3b.
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274 PART 3 LINEAR CLOSED-LOOP SYSTEMS

 Additionally MATLAB has a graphical tool (SISO tool) that can be used to plot 
and manipulate root locus diagrams. The command for this case is     

sisotool(sys)

The root locus diagram pops up in an interactive window (see Fig. 14–4). The root 
locations (the heavy blocks) can be dragged along the branches, and the value of K is 
displayed as the Current Compensator in the upper left-hand corner of the window.

FIGURE 14–4
Root locus diagram generated using MATLAB SISO tool.
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 As another example of a root locus diagram, let the proportional controller be 
replaced with a PI controller, for which case  G  1  in  Fig. 14–1  is

     
G K

s
c

I
1 1

1
� �

t






   

For this case, the open-loop transfer function is

     
G s

K s

s s s s
c I

I
( ) ( )

( )( )( )�
�

� � �

t
t t t t

1

1 1 11 2 3   

which may be written in an alternate form

     

G s
K s z

s s p s p s p
( ) ( )

( )( )( )�
�

� � �

1

1 2 3

   

(14.6)  

   where         

          

 

The term  z  1  is called a  zero  of the open-loop transfer function. A zero of  G ( s ) is any 
value of  s  for which  G ( s ) approaches zero. By comparing Eq. (14.6) with Eq. (14.2), we 
see that the addition of integral action contributes to the open-loop transfer function one 
 zero  at  z  1  and one additional pole at the origin. 

 The characteristic equation corresponding to Eq. (14.6) is

     
1 01

1 2 3
�

�

� � �
�

K s z

s s p s p s p

( )
( )( )( )  

 (14.7)  

This expression may be written

     s s p s p s p K s z� � � � � �1 2 3 1 0( )( )( ) ( )   (14.8)  

As a specific example of the root locus diagram corresponding to Eq. (14.8), let 
t t t1 2

1
2 3

1
31� � �, , ,  and     t I � 1

4 .    These parameters are the same as those 
used in Example 13.4. The root locus diagram is shown in  Fig. 14–5 . 

K
Kc

�
t t t1 2 3

K
Kc

�
t t t1 2 3

z1
1

� �
t I

z1
1

� �
t I

p p p1
1

2
2

1
3

1 1 1
� � � � � �
t t t

, ,p p p1
1

2
2

1
3

1 1 1
� � � � � �
t t t

, ,
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The MATLAB commands for constructing the root locus diagram for this system are

>> num1 = [1 4]; 

>> den1 = [1 6 11 6 0]; 

>> sys1 = tf(num1,den1)

Transfer function:

s + 4 

sˆ4 + 6 sˆ3 + 11 sˆ2 + 6 s

>> rlocus(sys1)

Real Axis

Im
ag

e 
A

xi
s

Root Locus

0

−8 −6 −4 −2 0 2 4

−8

−6

−4

−2

2

4

6

8

FIGURE 14–6
Reproduction of root locus diagram of Fig. 14–5 using MATLAB.
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 Notice that for this case there are four loci corresponding to the four roots and that they 
emerge (at  K   �  0) from the open-loop poles (0, �1, �2, �3). One of the loci moves 
toward the open-loop zero at �4 as  K  approaches infinity. The MATLAB box shows 
the commands for reproducing the root locus diagram in  Fig. 14–5 . The resulting MAT-
LAB graph is shown in  Fig. 14–6 . The diagram in  Fig. 14–5  should be compared with 
the one in  Fig. 14–2  to see the effect of adding integral action to the control system. 
Notice that the value of  K   �  3.84, above which the roots move into the right half-plane, 
is lower than the corresponding value of  K   �  60 for proportional control. The effect 
of adding integral action has been to destabilize the system in terms of the amount of 
proportional action that can be used before instability occurs. 

 We can verify the points at which the loci cross the imaginary axis by using the 
Routh test (Theorem 13.3) of Chap. 13. The characteristic equation for proportional 
control from Eq. (14.4) is

     s s s K� � � � �1 2 3 0( )( )( )   
or

     s s s K3 26 11 6 0� � � � �   
from which we can write the Routh array:   

Row

1 1 11
2 6 K � 6
3 b1

   The theorem states that if one pair of roots is on the imaginary axis and all others are 
in the left half-plane, then all the elements of the  n th row must be zero. From this we 
obtain for the element  b  1 

K = 3.84

K = 3.84
K = 0.74K = 114

K = 3.384
K = 0.28

K = 3.84

j

3

2

1

−1

−2

−3

−6 −5 −4 −3 −2 −1 1 2

FIGURE 14–5
Root locus diagram for s(s � 1)(s � 2)(s � 3) � K(s � 4) � 0; K � 6Kc.
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b

K
1

6 11 6

6
0�

� �
�

( )( ) ( )

    

 Solving for  K  gives

     K � 60    

as we found previously (  Fig. 14–2 ). A root on the imaginary axis is expressed as simply 
 ja.  Substituting  s   �   ja  and  K   �  60 into the polynomial gives

     

� � � � �

� � � �

ja a aj

a a a j

3 2

2 3

6 11 66 0

66 6 11 0( ) ( )
   

Equating the real part or the imaginary part to zero gives

     a � � � �11 3 32.   

Therefore the loci intersect the imaginary axis at  � 3.32 j  and �3.32 j  (which we also 
found previously). 

Example 14.1   Consider the block diagram for the control system shown in 
 Fig. 14–7 . This system may represent a two-tank, liquid-level system having a 
PID controller and a first-order measuring lag. The open-loop transfer function is

     
G K

s s

s s s
c�

� �

� � �

1 2 3 1 3

20 1 10 1 0 5 1

/ /

( )( )( ).   

Rearranging this into the standard form gives

     
G

K s z s z

s s p s p s p
�

� �

� � �

1 2

1 2 3

( )( )
( )( )( )   

    where     K   �   K   c  /150  
   z  1   �  �0.5  
   z  2   �  �1  
   p  1   �  �0.05  
   p  2   �  �0.1  
   p  3   �  �2    

R C

+

−

1
0.5s + 1

 1
(20s + 1) (10s + 1)Kc(1 + − s + − )2

3
1
3s

FIGURE 14–7
Block diagram for Example 14.1.
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 In this case, there are four poles at 0, �0.05, �0.1, and �2, and two zeros at �0.5 
and �1. These are plotted in  Fig. 14–8 . Note that the PID controller contributes 
the pole at the origin and the zeros at �0.5 and �1. 

 The two values of gain  K  which give a pair of roots of the characteristic equation 
that lie on the imaginary axis (and the corresponding roots) are

     

K K s j

K K s j

c

c

� � � �

� � � �

0 004 0 6 0 1

2 4 360 1 1

. . .

. .

or

or    

From these results, we conclude that the system will oscillate with constant 
amplitude with a frequency  w   �  0.1 rad/time when  K   c    �  0.6. It will also oscillate 
at constant amplitude with  w   �  1.1 when  K   c    �  360. The system is unstable for 
0.6 <  K   c   < 360. The system is stable for  K   c   < 0.6 and for  K   c   > 360. The complete 
root locus diagram is sketched in  Fig. 14–8 .     

   SUMMARY 

 In this chapter, root locus diagrams have been presented and applied to a control sys-
tem. MATLAB can be used to generate the complete root locus diagrams quickly and 
easily. It should be emphasized that the basic advantage of this method is the speed and 
ease with which the loci can be obtained. Once the roots are available, the response of 
the system to any forcing function can be obtained by the usual procedures of partial 
fractions and inversion given in Chap. 3.  

1

j
j

2

0.10

−1

−2 −1

Asymptote

−0.5

−0.10

−0.10 −0.05

0.5

FIGURE 14–8
Root locus diagram for Example 14.1.
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  PROBLEMS 

    14.1.  Draw the root locus diagram for the system shown in  Fig. P14–1  where 

  G   c    �  K   c   (1  �  0.5 s   �  1/ s ). 

 

R CGc
+

−

 1

(s + 1) (2s + 1)

FIGURE P14–1

   14.2.  Draw the root locus diagram for the system shown in Fig. P13–4 for ( a )  t   I    �  0.4 min and 
( b )  t   I    �  0.2 min. (The proportional controller is replaced by a PI controller.) Determine the 
controller gain that just causes the system to become unstable. The values of parameters of 
the system are

     

K

K

v

m

�

�

valve constant 0 070 cfm/psi

transduce

.

rr constant 6 74/ ft of tank level

0 55

.

.

( )
R2 � fft level/cfm

time constant of tank 1 2 0t1 � � . min

time constant of tank 2 0 5 mint 2 � � .    
  The controller gain  K   c   has the units of pounds per square inch (psi).  

   14.3.  Construct the root locus diagram for the system shown in Fig. P13–2. If the system is 
unstable at higher values of  K   c  , find the roots on the imaginary axis and the corresponding 
value of  K   c  .  

   14.4.  Construct the root loci for the following equations.

   ( a )     1
1 2 1

0�
� �

�
K

s s( )( )     

  ( b )     1
1 2 1

0�
� �

�
K

s s s( )( )     

  ( c )     1
4 1

1 2 1
0�

�

� �
�

K s

s s s

( )
( )( )     

  ( d )     1
1 5 1

1 2 1
0�

�

� �
�

K s

s s s

.( )
( )( )     

  ( e ) 1
0 5 1

1 2 1
0�

�

� �
�

K s

s s s

.( )
( )( )     

  On your diagrams you should locate quantitatively all poles and zeros. In addition show the 
parameter that is being varied along the locus and the direction in which the loci travel as 
this parameter is increased.  
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   14.5.  The control system is shown in  Fig. P14–5 . There are two cases: case 1: t D � 2
3      and 

case 2:        t D � 1
9 .

R C
+

−

 1
(s + 1)(s/2 + 1)

s/3 + 1
1

Kc(1 +   D s)

FIGURE P14–5

   ( a ) Sketch the root locus diagram in each case.  
  ( b ) If the system can go unstable, find the value of  K   c   that just causes instability.  
  ( c ) Using Theorem 13.3 of the Routh test, find the locations (if any) at which the loci cross 

into the unstable region.    

   14.6.  Draw the root locus diagram for the control system shown in  Fig. P14–6 .
   ( a ) Determine the value of  K   c   needed to obtain a root of the characteristic equation of the 

closed-loop response which has an imaginary part 0.75.  
  ( b ) Using the value of  K   c   found in part ( a ), determine all the other roots of the characteris-

tic equation from the root locus diagram.  
  ( c ) If a unit impulse is introduced into the set point, determine the response of the system  C ( t ).     

2
R C+

− 0.5s + 1

2

0.5s2 + s + 1Kc(1 + 3/s)

FIGURE P14–6

   14.7.  Plot the root locus diagram for the system shown in  Fig. P14–7 . We may consider this 
system to consist of a process having negligible lag; an underdamped, second-order mea-
suring element; and a PD controller. This system may approximate the control of flow rate, 
in which case the block labeled  K   p   would represent a valve having no dynamic lag. The 
feedback element would represent a flow measuring device, such as a mercury manom-
eter placed across an orifice plate. Mercury manometers are known to have underdamped, 
second-order dynamics. Plot the diagram for t D � 1

3 .      

 

R C+

−

0.2s2 + 0.8s + 1

1

Kc(1 +   D s) Kp =  0.2

FIGURE P14–7
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282 PART 3 LINEAR CLOSED-LOOP SYSTEMS

   14.8.  Draw the root locus diagram for the proportional control of a plant having the transfer 
function 2/( s   �  1) 3 . Determine the roots on the imaginary axis and the corresponding value 
of  K   c  .  

   14.9.     ( a )  Show how you would adopt the usual root locus method for variation in controller gain 
to the problem of obtaining the root locus diagram for variation in  t   D   for the control 
system shown in  Fig. P14–9  for  Kc       �  2.  

  ( b ) Plot the root locus diagram for variation in  t   D   with  K   c    �  2.  
  ( c ) Determine the response of the system  C ( t ) for a unit-step change in  R  for t  D        �  0.5 and 

 K   c    �  2. Sketch the response. What is the ultimate value of  C ( t )? 

   

R C
+

−

 1
(s + 1) (2s + 1)

Kc(1 +   D s)

FIGURE P14–9

  Hint:  Rearrange the open-loop transfer function to be in the form

     
G s

s

s s
D( ) �

� �

t
2 1 5 1 5. .   

 Then apply the usual root locus rules with  t   D   taking the place of  K   c  .    
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  CHAPTER 

14 
CAPSULE SUMMARY 

   

FIGURE 14–1
Simple feedback control system.

+
+

+

−
G2G1

H

U

CR

    For this case, the open-loop transfer function is

     
G G G H

K

s s s
� �

� � �
1 2

1 2 31 1 1t t t( )( )( )   

or, in the alternate form,

     
G s

K

s p s p s p
( ) ( )( )( )�

�

� � �1 2 3   

   where     K K
� �
t t t1 2 3

    

      
p p p1

1
2

2
3

3

1 1 1
� � � � � �
t t t       

 Here  p  1 ,  p  2 , and  p  3  are called the  poles  of the open-loop transfer function. A  pole  of  G ( s ) 
is any value of  s  for which  G ( s ) approaches infinity (i.e., a root of the denominator). 

 The characteristic equation for the  closed-loop  system is

     
1 0

1 2 3
�

� � �
�

K

s p s p s p

'

( )( )( )   

or

     s p s p s p K� � � � �1 2 3 0( )( )( ) '   
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The root locus diagram is a plot of the location of the roots of this equation as  K  ' is 
varied. 

 MATLAB commands for generating the root locus diagram are  
 % set up the open loop transfer function with  K'  =  1 
 >> num  =  [1]; %coefficients of numerator polynomial 

 >> den  =  [1 6 11 6]; %coeffs. of denom. polynomial 

 >> sys  =  tf(num,den);       

>> rlocus(sys)

 

Real Axis
(a)

Im
ag

 A
xi

s

Root Locus

− 8

−5

− 4

−3

−2

−1

0

1

2

3

4

5

−7 − 6 −5 − 4 −3 −2 −1 0 1
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CHAPTER

15

Chapters 4 and 7 discussed briefly the response of first- and second-order systems 
to sinusoidal forcing functions. These frequency responses were derived by using 

the standard Laplace transform technique. In this chapter, a convenient graphical tech-
nique will be established for obtaining the frequency response of linear systems. The 
motivation for doing so will become apparent in Chap. 16, where it will be found that 
frequency response is a valuable tool in the analysis and design of control systems.

Many of the calculations in this chapter make use of complex numbers. The 
reader should review the two forms of complex numbers (rectangular and polar) and the 
basic operations used on complex numbers.

15.1 SUBSTITUTION RULE

A Fortunate Circumstance

Consider a simple first-order system with transfer function

 

G s
s

( ) �
�

1

1t
 

(15.1)

Substituting the quantity jw for s in Eq. (15.1) gives

 

G j
j

w
wt

( ) �
�

1

1
 

INTRODUCTION TO 
FREQUENCY RESPONSE
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We may convert this expression to polar form by multiplying numerator and denomina-
tor by the conjugate of jwt � 1; the result is

 

G j
j

j j
jw wt

wt wt w t
wt
w

( ) ( )( )�
� �

� � �
�

�
�

�

1

1 1

1

1 12 2 2tt 2

 
(15.2)

To convert a complex number in rectangular form (a � jb) to polar form Re jf, where 
R � magnitude and φ � angle, one uses the relationships

 
R a b

b

a
� � � �2 2 1and tanf

 

For visualization of the polar form, see Fig. 15–1.

a

b

R

Real axis

Imaginary axis

FIGURE 15–1
Complex number representations.

By fixing R and φ, we can define the complex number. Applying these relationships to 
Eq. (15.2) gives

 

G j

R

w
w t

wt
f

( ) ( )�
�

��1

12 2
1

� �� ��
�� ��� ���tan

 

(15.3)

The quantities on the right side of Eq. (15.3) are familiar. Recall Eqs. (4.27) and (4.28)

 

Y t
A

e
A

tt( ) �
�

�
�

��wt
t w t w

w ft
2 2 2 21 1

/ sin ( )
 

(4.27)

where

 
f wt� ��tan 1 ( )

 

As t → ∞, the first term on the right side of Eq. (4.27) vanishes and leaves only the 
ultimate periodic solution, which is sometimes called the steady-state solution and is 
shown in Fig. 15–2.

 

Y t
A

ts( ) ( )�
�

�
t w

w f
2 2 1

sin

 
(4.28)
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 CHAPTER 15 INTRODUCTION TO FREQUENCY RESPONSE 289

So, after sufficient time elapses, the response of a first-order system to a sinusoidal 
input of frequency w is also a sinusoid of frequency w. Furthermore, from Eq. (4.28) 

the ratio of the amplitude of the response to that of the input is 1 12 2/ ,w t �  and the 
phase difference between output and input is tan�1 (�wt).

Hence, we have shown here that for the frequency response of a first-order 
system,

 
Amplitude ratio AR

output amplitude

input
( ) �

aamplitude
� �G j Rw( )

 

 
Phase angle � �f w�G j( )

 

That is, to obtain the amplitude ratio AR and phase angle, one merely substitutes jw for 
s in the transfer function and then finds the magnitude and argument (or angle) of the 
resulting complex number, respectively.

Time

0
−2

−1.5

−1

−0.5

Input

Phase
lag

Output

0

0.5

AR

Si
gn

al
/A

1

1.5

2

1 2 3 4 5 6 7 8

Process

 Input
amplitude

Output amplitude

· AR · sin (  t +    )
Phase
angle

Output

Transients A+

Input

Time for transients to decay

A sin (   t)

FIGURE 15–2
Characteristics of a steady-state sinusoidal response.

cou9789x_ch15_285-322.indd   289cou9789x_ch15_285-322.indd   289 8/14/08   4:38:30 PM8/14/08   4:38:30 PM



Confirming Pages

290 PART 4 FREQUENCY RESPONSE

KEY FEATURES TO NOTE ABOUT THE FREQUENCY RESPONSE OF THE 
PROCESS

 • After transients die out, the output is a sine wave.
 • Input frequency � output frequency � w.
 • In general, the output is attenuated, that is, AR < 1.
 • The output is shifted in time (it lags the input by the phase angle φ). 
 • Amplitude ratio and phase angle are both functions of frequency.

Example 15.1 Rework Example 4.2. The pertinent transfer function is

 

G s
s

( ) �
�

1

0 1 1.
 

The frequency of the bath-temperature variation is given as 10/p cycles/min 
which is equivalent to w � (10 cycles/p min)(2p rad/cycle) � 20 rad/min. 
Hence, let

 s j j� �w 20 

to obtain

 
G j

j
20

1

2 1
( ) �

� 

In polar form, this is

 

G j20
1

5

1

5
63 5( ) � � � � �� �1 11 rad. .

 

which agrees with the previous result.

MATLAB Solution of Example 15.1 Using Simulink

The Simulink model of the process is shown in Fig. 15–3a. Once this Simulink model is run, we can 
use MATLAB to plot the process output and input as follows.

>> plot(temperature.time,temperature.signals.values)

The resulting output of this MATLAB command is shown in Fig. 15–3b.
The tabular output can be examined to verify the actual peak locations so that we can check our 

hand-calculated results from Example 15.1.
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>> x=[temperature.time,temperature.signals.values]

x =

[time] [output] [input]

       0       0       0

    ...      ...          ...       allow transients to decay...pick up data at 

t=1 min, (from graph)

  1.0200  0.3837 1.9996←   input peak

  1.0250  0.4624 1.9937

  1.0300  0.5365 1.9678

  1.0350  0.6053 1.9223

  1.0400  0.6680 1.8576

(continues)

T
em

pe
ra

tu
re

(F
)

Time (min)
0

−3

−2

−1

0

1

2

3

0.2 0.4 0.6 0.8 1

lag time = 0.055 minutes

steady state oscillationstransients decay

Output
Temperature

Input
Temperature

1.2

Scope

To Workspace

temperature

Transfer fcnSine wave

1

0.1s + 1

(a) Simulink model of first-order process for Example 15.1

(b) MATLAB generated response for first-order system of Example 15.1.

FIGURE 15–3
Using MATLAB and Simulink to solve Example 15.1.
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Example 15.2 Find the frequency response of the system with the general 
second-order transfer function, and compare the results with those of Chap. 7. 
The transfer function is

 

1

2 12 2t ts s� �ζ  

Putting s � jw yields

 

1

1 22 2� �t w zwtj 

which may be converted to polar form

 

1

1 2

2

12 2 2 2
1

2 2
( )� �

�

�

�

w t zwt

zwt
w t( )





� tan

 

Hence,

  1.0450  0.7241 1.7743

  1.0500  0.7729 1.6733

  1.0550  0.8140 1.5556

  1.0600  0.8469 1.4223

  1.0650  0.8714 1.2748

  1.0700  0.8872 1.1146

  1.0750  0.8941 0.9433← output peak

  1.0800  0.8921 0.7625

  1.0850  0.8812 0.5741

  1.0900  0.8614 0.3800

  1.0950  0.8331 0.1820

  1.1000  0.7964 -0.0177

Using the MATLAB output to check our previous results, we get

 
Amplitude ratio compare t� �

0 8941
1 9996

0 447
.
.

. oo check
1

5
0 447� . ( )

 

 
Phase lag

rad
min

0 055 min 1 11 ra� �20



 ( ). . dd check� �63 6. ( )

 

The procedure we have just discussed is general and can be used for other transfer 
functions with the important restriction that it applies only to systems whose transfer 
functions yield stable responses. A stable response is necessary so that the transients die 
out and we will be left with an oscillating, sinusoidal response. We prove the general 
result in the appendix at the end of this chapter for the reader who is interested.
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Amplitude ratio AR �

� �

1

1 22 2 2wt zwt( )  ( )
 

(15.4)

 

Phase angle tan
21� � �

�

�f zwt
wt1 2( )

 

which agree with Eq. (7.41).

Example 15.3. Consider a second-order transfer function, with t � 1 and 
z � 0.8, being disturbed with a sine wave input of 3 sin (0.5t) (Fig. 15–4). Deter-
mine the form of the response after the transients have decayed and steady-state 
oscillations are established.

1

s2 + 1.6s + 1

3 sin (0.5t)

FIGURE 15–4
Block diagram for Example 15.3.

The steady-state oscillations will have the form 3(AR) sin(0.5t � f), which is 
an attenuated (smaller-amplitude) sine wave of the same frequency as the input 
and shifted by a phase angle f. Thus, all we need to determine is AR and f. We 
can calculate both from Eq. (15.4).

 

AR �

� �

�
1

1 0 5 1 2 0 8 0 5 1

1

0 52 2 2. ( ) ( )( . )( . )( )
.[ ]{ } [ ] 6625 0 64

0 91

2 0 8 0 5 1

1 0 5
1

�
�

� �
�

�

.
.

( )( . )( . )( )

.
f tan

(( )

.

.
.

1

0 8

0 752
1

[ ]















� � � ��tan 0 8188 rad � � �46 8.

 

The form of the steady-state oscillations is therefore

 

3 AR sin 2 73 sin 0 818 rad

2

( ) ( . ) . ( . . )

.

0 5 0 5t t� � �

�

f

773 sin

2 73 sin

0 5 1 636

0 5 46 8

. .

. ( . . )

t

t

�

� � �

( )[ ]

 

We can easily verify this response by using MATLAB and Simulink.
The Simulink model for this problem is shown in Fig. 15–5a. 
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Once this Simulink model is run, we can use MATLAB to plot 

the process output and input as follows:

>> plot(Y.time,Y.signals.values)

The resulting output of this MATLAB command is shown in 

Fig. 15–5b.

>> x = [Y.time,Y.signals.values]

x =

   0         0        0

 0.1495   0.0008   0.2241

 0.2991   0.0059   0.4469

 ...       ...      ...      allow transients to decay

26.6008  -0.2285   2.0096

27.3739   0.8162   2.7011

28.1273   1.7195   2.9919 ← input peak

Scope

To workspace

Y

Transfer functionSine wave

1

s2 + 1.6s + 1

(a) Simulink model of first-order process for Example 15.3.

(b) MATLAB generated response for first-order system of Example 15.3.

Time (min)

outputinput

0
−4

−3

−2

−1

0

1

2

3

4

5 10 15 20 25 30 35 40 45 50

FIGURE 15–5
Using MATLAB and Simulink to solve Example 15.3.
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28.7632   2.2986   2.9108

29.3446   2.6274   2.5806

29.9062   2.7358   2.0556 ← output peak

30.4614   2.6324   1.3781

31.0193   2.3254   0.5911

31.5891   1.8266  -0.2594

32.1830   1.1507  -1.1226

...       ...      ...

47.4619  -2.1802  -2.9573

48.0523  -2.5667  -2.6825

48.6172  -2.7289  -2.2019

49.1731  -2.6774  -1.5583

49.7295  -2.4201  -0.7944

50.0000  -2.2260  -0.3971

Transportation Lag

The response of a transportation lag is not described by a standard nth-order differen-
tial equation (that yields standard transfer functions). Rather, a transportation lag is 
described by the relation

 Y t X t( ) ( )� � t (15.5)

which states that the output Y lags the input X by an interval of time t. If X is 
sinusoidal

 X A t� sinw 

then from Eq. (15.5)

 
Y A t A t� � � �sin sinw t w wt( ) ( )

 

It is apparent that the AR is unity and the phase angle is (�wt). To check the substitu-
tion rule of the previous section, recall that the transfer function for a transportation lag 
is given by

 
G s

Y s

X s
e s( ) ( )

( )� � �t

 

Putting s � jw gives

 
G j e Re Rj jw f wtwt f( ) ( )� � � � �� form of: , ,1

 

Then

 AR � ��e jwt 1 
(15.6)

 Phase angle � � ���e jwt wt 

and the validity of the rule is verified.
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Example 15.4. Consider a stirred-tank heater with a capacity of 15 gal. Water is 
entering and leaving the tank at the constant rate of 600 lb/min. The heated water 
that leaves the tank enters a well-insulated section of 6-in-ID pipe. Two feet from 
the tank, a thermocouple is placed in this line for recording the tank temperature, 
as shown in Fig. 15–6. The electrical heat input is held constant at 1000 kW.

1000 kW

Ti = 75 + 5 sin 46t
600 lb/min

600 lb/min

6" ID pipe2'

Tm

T

FIGURE 15–6
Tank temperature system for Example 15.4.

If the inlet temperature is varied according to the relation

 T ti � �75 5 46sin 
where Ti is in degrees Fahrenheit and t is in minutes, find the eventual behavior of 
the thermocouple reading Tm. Compare this with the behavior of the tank temper-
ature T. It may be assumed that the thermocouple has a very small time constant 
and effectively measures the true fluid temperature at all times.

The problem is to find the frequency response of Tm to Ti. Deviation variables 
must be used. Define the deviation variable T�i as

 
T T ti i� � � �75 5 46sin

 
To define a deviation variable for Tm, note that if Ti were held at 75˚F, Tm would 
come to the steady state satisfying

 
q wC T Ts m is s� �( )

 

This may be solved for Tms :

 

T
q

wC
Tm

s
is s� � �

( ) .1000 1000 0 0569kW
W

kW

Bt





uu/min

W

lb

min

Btu

lb F



















600 1 0.
�� 

� �� �75 170F F

 

Hence, define a deviation variable T�m as

 T Tm m� � � 170 
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1

0.203s + 1

T'i = 5 sin 46t

Tank Pipe

T'm
e−0.0397s

T'

FIGURE 15–7
Block diagram for Example 15.4.

To find the AR and phase lag, we merely substitute s � jw � 46j and find the 
magnitude and argument of the resulting complex number. However, note that 
we have previously derived the individual frequency responses for the first-order 
system and transportation lag. The overall transfer function is the product of the 
individual transfer functions; hence, its magnitude will be the product of the 
magnitudes and its argument the sum of the arguments of the individual transfer 

Now, the overall system between T�i and T�m is made up of two components in 
series: the tank and the 2-ft section of pipe. The transfer function for the tank is

 
G s

s
1

1

1

1
( ) �

�t  

where, as we have seen before, t1 is given by

 

t r
1

360 8 15

600
� �

V

w

.
lb

ft
gal

lb

min





 ( )











7 48

0 203

3.
.

gal

ft

min�

 

The transfer function of the 2-ft section of pipe, which corresponds to a transpor-
tation lag, is

 G s e s
2

2( ) � �t
 

where t2 is the length of time required for the fluid to traverse the length of pipe. 
This is

 

t 2

3 2

2
600

60 8 0 196

� �
L

v

ft
lb/min

lb/ft ft. .( )( ))
� 0 0397. min

 

The factor 0.196 is the cross-sectional area of the pipe in square feet.
Since the two systems are in series, the overall transfer function between 

T�    and Tm�  is

 

T

T
e

s

e

s

m

i

s s�

�
�

�
�

�

� �t

t

2

1

0 0397

1 0 203 1

.

. 

Notice that we must use the same time units throughout, minutes in this case. We 
are now ready to construct the block diagram for the process, which is shown in 
Fig. 15–7.

i
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functions. In general, if we have several transfer functions in series, the overall 
transfer function is

 
G s G s G s G sn( ) ( ) ( ) ( )� 1 2 �

 

and substituting s � jw, we obtain

 G j G j G j G jnw w w w( ) ( ) ( ) ( )� 1 2 � 

or, in polar form,

 

Re R e R e R e R R Rj j j
n

j
n

nf f f f� �1 2 1 2
21

product of

. � �
individual

magnitudes

( )

su

1 2

� �� ��
�e j nf f f� � �

mm of individual
phase angles

� ��� ���

 

then

 
G j G j G j G jnw w w w( ) ( ) ( ) ( )� 1 2 �

 

 
� � � � �G j G j G j G jnw w w w( ) ( ) ( ) ( )� � � �1 2

 

This rule makes it very convenient to find the frequency response of a number of 
systems in series.

Using Eq. (15.3) for the tank,

 

AR �
� �

� �
1

46 0 203 1

1

9 39
0 107

2( . ) .
.

 

 
Phase angle tan� � � � ��1 46 0 203 84( )( )[ ].

 

For the section of pipe, AR is unity, so that the overall AR is just 0.107. The 
phase lag due to the pipe may be obtained from Eq. (15.6) as

 
Phase angle 1 82 rad� � � � � � � �wt 2 46 0 0397 1( )( ). . 004�

 

The overall phase lag from T�i to T�m is the sum of the individual lags,

 
�

T

T

m

i

�

�
� � � � � �84 104 188

 

Hence

 
T tm � � � �170 5 0 107 46 188.( ) ( )sin

 

For comparison, a plot of T�i, T�m, and T� is given in Fig. 15–8, where

 T� � � �tank temperature F170 
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These temperatures are shown on a block diagram in Fig. 15–9.
It should be emphasized that this plot applies only after sufficient time has 

elapsed for the complementary solution to become negligible (i.e., the transients 
have decayed). This restriction applies to all the forthcoming work on frequency 
response. Also, note that, for convenience of scale (so that we easily can see them 
on the same axes), the tank and thermocouple temperatures have been plotted as 
2T� and 2T�m, respectively.

Time

Thermocouple
temp. (2T'm)

Tank
temp.
(2T' )

Inlet
temperature

(T'i)

Tank lag, Transport lag,

Zero
line

U

B

Overall lag, 188°

84° 104°

FIGURE 15–8
Temperature variation in Example 15.4.

1

0.203s +1

T'i = 5 sin 46t T' = 0.535 sin(46t − 84°) 3.28 rad

T'm = 0.535 sin (46t − 188°)

AR = 0.107 AR = 1.0

e−0.0397s

3.28/46

= 0.535 sin[46(t − 0.07133)]

= −104°= −84°

FIGURE 15–9
Response summary for Example 15.4.

A Control Problem

An interesting conclusion may be reached from a study of Fig. 15–8. Suppose that we 
are trying to control the tank temperature, using the deviation between the thermo-
couple reading and the set point as the error. A block diagram for proportional control 
might appear as in Fig. 15–10, where T�i is replaced by U, T� by C, and T�m by B to con-
form with our standard block diagram nomenclature. The variable R denotes the devia-
tion of the set point from 170˚F and is the desired value of the deviation C. The value 
of R is assumed to be zero in the following analysis (control at 170˚F). The following 
arguments, while not rigorous, serve to give some insight regarding the application of 
frequency response to control system analysis.
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If R � 0, then

 

Error

Heat input

e
e

� � � �

� � �

0 B B

Q K K Bc c 

Thus, the heat being added to the tank is given in deviation variables as �KcB. With 
reference to Fig. 15–8, which shows the response of the uncontrolled tank to a sinusoi-
dal variation in U, it can be seen that the peaks of U (which is T�i) and B (which is T�m) 
are almost exactly opposite because the phase difference is 188˚. This means that if the 
loop were closed, the control system would have a tendency to add more heat when the 
inlet temperature Ti was at its high peak, because B is then negative and �KcB becomes 
positive. (Recall that the set point R is held constant at zero.)

Conversely, when the inlet temperature is at a low point, the tendency will be for 
the control system to add less heat because B is positive. This is precisely opposite to the 
way the heat input should be controlled. Figure 15–11 clarifies this physical situation.

Therefore, the possibility of an unstable control system exists for this particular 
sinusoidal variation in frequency. Indeed, we shall demonstrate in Chap. 16 that if Kc 
is taken too large, the tank temperature will oscillate with increasing amplitude for all 
variations in U, and hence we have an unstable control system. The fact that such infor-
mation may be obtained by study of the frequency response (i.e., the particular solution 
for a sinusoidal forcing function) justifies further study of this subject.

15.2 BODE DIAGRAMS

Thus far, it has been necessary to calculate AR and phase lag by direct substitution 
of s � jw into the transfer function for the particular frequency of interest. It can be 
seen from Eqs. (15.3), (15.4), and (15.6) that the AR and phase lag are functions of 
frequency. There is a convenient graphical representation of their dependence on the 
frequency that largely eliminates direct calculation. This is called a Bode diagram and 
consists of two graphs: logarithm of AR versus logarithm of frequency, and phase angle 
versus logarithm of frequency (see Fig. 15–12). 

The Bode diagram will be shown in Chap. 16 to be a convenient tool for analyzing 
control problems such as the one discussed in the preceding section. The remainder of 
this chapter is devoted to developing this tool and presenting Bode diagrams for the 
basic components of control loops.

R

B = T'm

Q

U = T'i

C = T' 

−

+ +

+
Kc

 1 1
 ( 1s + 1)

e− 2s

 (wC )

FIGURE 15–10
Proportional control of heated, stirred tank.
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Time

Inlet Temp. too High

Thermocouple
temp. (2T'm)

Adding More Heat
Than Req'd for Set-point

Heater Response
(Q' = −KcT'm)

Adding Less Heat
Than Req'd for Set-point

Zero
line

Zero
line

Set Point

Inlet Temp. too Low

Inlet
temperature

 (T'i)

FIGURE 15–11
Illustration of possible unstable response of tank temperature system.

log AR

log

log

FIGURE 15–12
Bode diagram format.
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First-Order System

As we saw earlier [(Eq. (15.3)], the AR and phase angle for the sinusoidal response of 
a first-order system are

 
AR �

�

1

12 2t w 
(15.7)

 
Phase angle tan� ��1 wt( )

 (15.8)

It is convenient to regard these as functions of wt for the purpose of generality. From 
Eq. (15.7)

 
log AR log� � �1

2
2 1wt( ) 

 
(15.9)

The first part of the Bode diagram is a plot of Eq. (15.9). The true curve is shown as the 
solid line on the upper part of Fig. 15–13.

0.01
−90

−45

0
0.01 −40

−20

0

20

0.1

A
m

pl
itu

de
ra

tio

D
ec

ib
el

s

Ph
as

e
an

gl
e

1

10

0.1 1 10 100

Low-frequency
asymptote

High-frequency
asymptote

Corner frequency

True curve

FIGURE 15–13
Bode diagram for first-order system.

Some asymptotic considerations can simplify the construction of this plot. As wt → 0, 
Eq. (15.7) shows that AR → 1. This is indicated by the low-frequency asymptote on 
Fig. 15–13. As wt → ∞, Eq. (15.9) becomes asymptotic to

 
log AR log� � wt( )

 

which is a line of slope �1, passing through the point

 wt � �1 1AR 

This line is indicated as the high-frequency asymptote in Fig. 15–13. The frequency 
wc � 1/t, where the two asymptotes intersect, is known as the corner frequency; it may 

cou9789x_ch15_285-322.indd   302cou9789x_ch15_285-322.indd   302 8/14/08   4:38:44 PM8/14/08   4:38:44 PM



Confirming Pages

 CHAPTER 15 INTRODUCTION TO FREQUENCY RESPONSE 303

be shown that the deviation of the true AR curve from the asymptotes is a maximum at 
the corner frequency. Using wc � 1/t in Eq. (15.7) gives

 
AR � �

1

2
0 707.

 

as the true value, whereas the intersection of the asymptotes occurs at AR � 1. Since 
this is the maximum deviation and is an error of less than 30 percent, for engineering 
purposes it is often sufficient to represent the curve entirely by the asymptotes. Alter-
nately, the asymptotes and the value of 0.707 may be used to sketch the curve if greater 
accuracy is required. Computer packages (MATLAB, for example, see below) can also 
be used to generate the diagrams fairly easily.

In the lower half of Fig. 15–13, we have shown the phase curve as given by 
Eq. (15.8). Since

 f wt wt� � � �� �tan tan1 1( ) ( ) 

it is evident that f approaches 0˚ at low frequencies and �90˚ at high frequencies. 
This verifies the low- and high-frequency portions of the phase curve. At the corner 
frequency, wc � 1/t,

 
f w tc c� � � � � � �� �tan tan1 1 1 45( )

 

There are asymptotic approximations available for the phase curve, but they are not so 
accurate or so widely used as those for the AR. Instead, it is convenient to note that the 
curve is symmetric about �45˚.

It should be stated that, in a great deal of the literature on control theory, ampli-
tude ratios (or gains) are reported in decibels. The decibel (dB) is defined by

 
Decibels log AR� 20 ( ) 

Thus, an AR of unity corresponds to 0 dB, and an amplitude ratio of 0.1 corresponds to 
�20 dB. The value of the AR in decibels is given on the right-hand ordinate of Fig. 15–13.

Example 15.5. Using MATLAB to Generate a Bode Diagram for a First-Order 
System

To generate a Bode diagram, we must first form the transfer function in 
MATLAB.

>> num= [1];

>> den= [10 1];

>> sys= tf (num,den);%this statement generates a transfer 

function assigned to sys

Transfer function:

   1
_______

 

10 s + 1 

>> bode(sys);%the “bode” command generates the Bode diagram 

shown in Fig. 15–14
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A drawback of this built-in Bode command is that the magnitude plot is always 
generated in decibels. An m-file that will generate a Bode plot without converting 
to decibels is shown below as function m-file named mybode.m.

mybode.m file

function mybode(sys);

[mag,phase,w]=bode(sys);

figure

subplot(2,1,1)

loglog(w,squeeze(mag))

grid

ylabel('amplitude')

xlabel('frequency(rad/time)')

subplot(2,1,2)

semilogx(w,squeeze(phase))

grid

ylabel('phase(deg)')

xlabel('frequency (rad/time)')

The result of using mybode on the current system is shown in Fig. 15–15.

Note that in both Figs. 15–14 and 15–15 the asymptotes were added after the 
magnitude graph was generated to illustrate the slopes of 0 and �1 for the low- 
and high-frequency asymptotes, respectively.

Frequency (rad/s)

10−2
−90

−45

Ph
as

e 
(d

eg
)

M
ag

ni
tu

de
 (

dB
)

0
−25

−20

−15

−10

−5

0

10−1 100

Asymptote

FIGURE 15–14
Bode diagram for first-order system in Example 15.5.
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First-Order Systems in Series

The advantages of the Bode plot become evident when we wish to plot the frequency 
response of systems in series. As shown in Example 15.4, the rules for multiplication 
of complex numbers indicate that the AR for two first-order systems in series is the 
product of the individual ARs:

 

AR �
� �

1

1 12
1
2 2

2
2w t w t

 
(15.10)

Similarly, the phase angle is the sum of the individual phase angles

 
f wt wt� � � �� �tan tan1

1
1

2( ) ( )
 (15.11)

Since the AR is plotted on a logarithmic basis, multiplication of the ARs is accom-
plished by addition of logarithms on the Bode diagram (which, we shall see, is equiva-
lent to adding the slopes of the asymptotes of the individual curves to get the asymptote 
of the overall curve on log-log coordinates). The phase angles are added directly. The 
procedure is best illustrated by an example.

Frequency (rad/time)

Frequency (rad/time)

10−2
10−1

100

10−1 100

10−2 10−1 100

Ph
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m
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−100

−80

−60

−40

−20

0

FIGURE 15–15
Bode diagram for Example 15.5 generated using mybode m-file and MATLAB.
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Example 15.6. Plot the Bode diagram for the system whose overall transfer 
function is

 

1

1 5s s� �( )( ) 

To put this in the form of two first-order systems in series, it is rewritten as

 

1
5
1

51 1s s� �( )( )
 

(15.12)

The time constants are t1 � 1 and t 2
1
5� .  The factor 1

5
 in the numerator cor-

responds to the steady-state gain.

From Eqs. (15.12) and (15.10)

 

AR
/

overall �
� �

1
5

2 21 5 1w w( )
 

Hence,

 

log AR log log logoverall � � � �
1

5

1

2
1

1

2 5
2w w( ) 















2

1�

 

or

 
log AR log log AR log ARoverall 1

5� � �( ) ( )1 2 (15.13)

where (AR)1 and (AR)2 are the ARs of the individual first-order systems, each 
with unity gain. Equation (15.13) shows that the overall AR is obtained, on loga-
rithmic coordinates, by adding the individual ARs and a constant corresponding 
to the steady-state gain.

The individual ARs must be plotted as functions of log w rather than log (wt) 
because of the different time constants. This is easily done by shifting the curves 
of Fig. 15–13 to the right or left so that the corner frequency falls at w � 1/t. 
Thus, the individual curves of Fig. 15–16 are placed so that the corner frequen-
cies fall at wc1 1�  and wc2 5� .  These slopes of these curves are added to 
obtain the overall curve shown. Note that in this case the logarithms are negative 
and the addition is downward. To complete the AR curve, the factor log 1

5
 should 

be added to the overall curve. This would have the effect of shifting the entire 
curve down by a constant amount. Instead of doing this, the factor 1

5
 is incor-

porated by plotting the overall curve as AR /overall
1
5( )  instead of AR overall. This 

procedure is usually more convenient.
Asymptotes have also been indicated on Fig. 15–16. The sum of the slopes 

of the individual asymptotes gives the slope of the overall asymptote, which is 
seen to be a good approximation to the overall curve. The overall asymptote has 
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a slope of 0 below w � 1, �1 for w between 1 and 5, and �2 above w � 5. Its 
slope is obtained by simply adding the slopes of the individual asymptotes.

 + 1s
5
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1

1
s + 1

1
s + 1

1

s + 1
5
1

FIGURE 15–16
Bode diagram for 0.2/[(s � 1)(0.2s � 1)].

To obtain the phase angle, the individual phase angles are plotted and added 
according to Eq. (15.11). The factor 1

5
 has no effect on the phase angle, which 

approaches �180˚ at high frequency.

Graphical Rules for Bode Diagrams

Before we proceed to a development of the Bode diagram for other systems, it is desir-
able to summarize the graphical rules that were utilized in Example 15.5.

Consider a number of systems in series. As shown in Examples 15.4 and 15.5, the 
overall AR is the product of the individual ARs, and the overall phase angle is the sum 
of the individual phase angles. Therefore,

 
log AR log AR log AR log ARoverall( ) ( ) ( ) ( )� � � �1 2 � n

 
(15.14)

and

 f f f foverall � � � �1 2 � n 
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where n is the total number of systems. Therefore, the following rules apply to the true 
curves or to the asymptotes on the Bode diagram:

1. The overall AR is obtained by adding the individual ARs. For this graphical addi-
tion, an individual AR that is above unity on the frequency response diagram is 
taken as positive; an AR that is below unity is taken as negative. To understand 
this, recall that the logarithm of a number greater than 1 is positive and the loga-
rithm of a number less than 1 is negative. If we are plotting the asymptotes of the 
individual curves, the asymptote of the overall curve is obtained by adding the 
slopes of the individual curves. 

2. The overall phase angle is obtained by addition of the individual phase angles.
3. The presence of a constant in the overall transfer function shifts the entire AR curve 

vertically by a constant amount and has no effect on the phase angle. It is usually 
more convenient to include a constant factor in the definition of the ordinate.

These rules will be of considerable value in later examples. Let us now proceed to 
develop Bode diagrams for other control system components.

Second-Order System

As shown in Example 15.2, the frequency response of a system with a second-order 
transfer function

 
G s

s s
( ) �

� �

1

2 12 2t zt 

is given by Eq. (15.4), repeated here for convenience,

 

AR �

� �

1

1 22 2 2 2w t zwt( ) ( )
 

(15.4)

 

Phase angle tan�
�

�

�1
2

2

1

zwt
wt( )

 

If wt is used as the abscissa for the general Bode diagram, it is clear that z will be a 
parameter. That is, there is a different curve for each value of z. These curves appear as 
in Fig. 15–17.

The calculation of phase angle as a function of w from Eq. (15.4) requires careful 
attention. The calculation can be done most clearly with the aid of a plot of tan�1 x (or 
arctan x), as shown in Fig. 15–18.

As wt goes from 0 to 1, we see from Eq. (15.4) that the argument of the arctan 
function goes from 0 to �∞ and the phase angle goes from 0 to �90˚ as shown by the 
branch from A to B in Fig. 15–18. As wt crosses unity from a value less than unity to 
a value greater than unity, the sign of the argument of the arctan function in Eq. (15.4) 
shifts from negative to positive. To preserve continuity in angle as wt crosses unity, the 
phase angle must go from �90 to �180˚ as wt goes from 1 to �∞ and the branch of the 
arctan function goes from C to D (in Fig. 15–18).
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FIGURE 15–17
Block diagram for second-order system 

1

2 12 2t zts s� �
.

The arctan function available in calculators and computers normally covers 
the principal branches of the arctan function, shown as BAE in Fig. 15–18. For this 
reason, one must be very careful in calculating the phase angle with Eq. (15.4). If a 
calculator programmed for the principal branches of the arctan function is used and 
the argument is positive, one obtains the correct phase angle by subtracting 180˚ 
from the answer given by the calculator. Notice that for wt � 1, the phase angle 
is �90˚, independent of z. This verifies that all phase curves intersect at �90˚, as 
shown in Fig. 15–17.

We may now examine the amplitude curves obtained from Eq. (15.4). For 
wt << 1, the AR, or gain, approaches unity. For wt → ∞, the only significant term in the 

denominator is wt( )4 ,  and the AR becomes asymptotic to the line

 

AR �
1

2wt( )
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This asymptote has slope �2 and intersects the line AR � 1 at wt � 1. The asymp-
totic lines are indicated on Fig. 15–17. For z � 1, we have shown that the second-
order system is equivalent to two first-order systems in series. The fact that the AR 
for z � 1 (as well as for z < 1) attains a slope of �2 and phase of �180˚ is, therefore, 
consistent.

Figure 15–17 also shows that, for z < 0.707, the AR curves attain maxima in the 
vicinity of wt � 1. This can be checked by differentiating the expression for the AR 
with respect to wt and setting the derivative to zero. The result is

 
wt z z( )max � � �1 2 0 7072 .

 
(15.15)

for the value of wt at which the maximum AR occurs. The value of the maximum AR, 
obtained by substituting (wt) max into Eq. (15.4), is

 

AR max( ) �
�

�
1

2 1
0 707

2z z
z .

 

A plot of the maximum AR versus z is given in Fig. 15–19. The frequency at which 
the maximum AR is attained is called the resonant frequency and is obtained from 
Eq. (15.15),

 
w

t
zr � �

1
1 2 2

 
(15.16)

−3
B

A

C 

D

E

−2 −1 1 2 3
0°

90°

−90°

−180°

−270°

180°

270°

tan−1x

x

FIGURE 15–18
Use of plot of tan�1 x for computing phase angle of second-order system.
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FIGURE 15–19
Maximum AR versus damping for a second-order system.

The phenomenon of resonance is frequently observed in our everyday experience. 
A vase may vibrate when the stereo is playing a particular note. As a car decelerates, 
perceptible vibrations may occur at particular speeds. A suspension bridge oscillates 
violently when soldiers march across, stepping at a certain cadence.

It may be seen that AR values exceeding unity are attained by systems for which 
z < 0.707. This is in sharp contrast to the first-order system, for which the AR is always 
less than unity.

The curves of Fig. 15–17 for z < 1 are not simple to construct, particularly in the 
vicinity of the resonant frequency. Fortunately, almost all second-order control system 
components for which we will want to construct Bode diagrams have z > 1. That is, they 
are composed of two first-order systems in series. Actually, the curves of Fig. 15–17 
are presented primarily because they are useful in analyzing the closed-loop frequency 
response of many control systems.

Transportation Lag

As shown by Eq. (15.6), the frequency response for G(s) � e�ts is

 

AR

rad or deg

�

� � � �

1

57 2958f wt f wt.
 

In this expression, w is in radians and 57.2958 is the number of degrees in 1 rad. There 
is no need to plot the AR since it is constant at 1.0. On logarithmic coordinates, the 
phase angle appears as in Fig. 15–20, where wt is used as the abscissa to make the 
figure general. The transportation lag contributes a phase lag, which increases without 
bound as w increases. Note that it is necessary to convert wt from radians to degrees to 
prepare Fig. 15–20.

Proportional Controller

A proportional controller with transfer function Kc has amplitude ratio Kc and phase 
angle zero at all frequencies. No Bode diagram is necessary for this component. 
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Proportional-Integral Controller

This component has the ideal transfer function

 
G s K

s
c

I
( ) 



� �1

1

t 

Accordingly, the frequency response is given by

 

AR

Phase

� � � � �

� �

G j K
j

K

G j

c
I

c
I

w
t w wt

w

( )
( )

( )

1
1

1
1

2

� �� 1
1 11� � ��

t w wtI Ij











tan

 

The Bode plot of Fig. 15–21 uses wtI as the abscissa. The constant factor Kc is included 
in the ordinate for convenience. Asymptotes with a corner frequency of wc � 1/tI are 
indicated. The verification of Fig. 15–21 is recommended as an exercise for the reader.

Proportional-Derivative Controller

The transfer function is

 
G s K sc D( ) ( )� �1 t

 

The reader should show that this has amplitude and phase behavior that are just the 
inverse of the first-order system

 

1

1ts �
 

Hence, the Bode plot is as shown in Fig. 15–22. The corner frequency is wc � 1/tD.
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FIGURE 15–20
Phase characteristics of transportation lag.
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FIGURE 15–21
Bode diagram for PI controller.
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FIGURE 15–22
Bode diagram for PD controller.
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This system is important because it introduces phase lead. Thus, it can be seen that 
using PD control for the tank temperature control system of Example 15.4 would 
decrease the phase lag at all frequencies. In particular, 180˚ of phase lag would not 
occur until a higher frequency. This may exert a stabilizing influence on the con-
trol system. In Chap. 16 we look in detail at designing stabilizing controllers using 
Bode diagram analysis. It is appropriate to conclude this chapter with a summarizing 
example.

Example 15.7 Plot the Bode diagram for the open-loop transfer function of the 
control system of Fig. 15–23. This system might represent PD control of three 
tanks in series, with a transportation lag in the measuring element.

R

−

+

+
Kc (1 +   Ds)

D = 1/2

+ 1s
10

s + 1

1
C 

e− s
10

Kc = 10

+

U

B

2

FIGURE 15–23
Block diagram of control system for Example 15.7.

The open-loop transfer function is

 

G s
s e

s s

s

( ) ( )
( ) ( )

�
�

� �

�10 0 5 1

1 0 1 1

10

2

.

.

/

 

The individual components are plotted as dashed lines in Fig. 15–24. Only the 
asymptotes are used on the AR portion of the graph. Here it is easiest to plot the 
factor (s � 1)�2 as a line of slope �2 through the corner frequency of 1. For the 
phase-angle graph, the factor (s � 1)�1 is plotted and added in twice to form the 
overall curve. The overall curves are obtained by the graphical rules previously 
presented. For comparison, the overall curves obtained without derivative action 
(i.e., by not adding in the curves corresponding to 0.5s � 1) are also shown. Note 
that on the asymptotic AR diagram, the slopes of the individual curves are added 
to obtain the slope of the overall curve.
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FIGURE 15–24
Block diagram for Example 15.7: (a) Amplitude ratio; (b) phase angle.
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15.3  APPENDIX—GENERALIZATION OF 
SUBSTITUTION RULE

The substitution rule (jw for s) is valid for transfer functions that yield stable systems. 
An nth-order linear system is characterized by an nth-order differential equation

 
a

d Y

dt
a

d Y

dt
a

dY

dt
a Y X tn

n

n n

n

n
� � � � ��

�

�1

1

1 1 0� ( )
 

(15.17)

where Y is the output variable and X(t) is the forcing function or input variable. For 
specific cases of Eq. (15.17), refer to Eq. (4.5) for a first-order system and Eq. (7.5) for 
a second-order system. If X(t) is sinusoidal

 
X t A t( ) � sin w

 

the solution of Eq. (15.17) will consist of a complementary solution and a particular 
solution of the form

 

Y t C t C tp ( ) � �1 2sin cosw w
 

(15.18)

If the system is stable, the roots of the characteristic equation of Eq. (15.17) all lie to the 
left of the imaginary axis, and the complementary solution will vanish exponentially in 
time. Then Yp is the quantity previously defined as the sinusoidal or frequency response. 
If the system is not stable, the complementary solution grows exponentially, and the 
term frequency response has no physical significance because Yp(t) is inconsequential.

The problem now is the evaluation of C1 and C2 in Eq. (15.18). Since we are 
interested in the amplitude and phase of YP(t), Eq. (15.18) is rewritten as

 
Y D t Dp � �1 2sin w( )

 (15.19)

as was done previously [compare to Eq. (4.25) and related equations].
It will be convenient to change X(t) and Yp(t) from trigonometric to exponential 

form, using the identity

 
sinq

q q
�

� �e e

j

j j

2 

Thus,

 

X t
A

j
e ej t j t( ) ( )� � �

2
w w

 

(15.20)

and from Eq. (15.19)

 

Y t
D

j
e ep

j t D j t D( ) ( )( ) ( )� �� � �1

2
2 2w w

 

(15.21)
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Substitution of Eqs. (15.20) and (15.21) into Eq. (15.17) yields

 

D e

j
a j a j a j a

j t D

n
n

n
n1

1
1

1

2

2

w
w w w

�

�
�

� � � �
( )

( ) ( ) ( )� 00

1
1

1
2

2







− ( ) ( )
( )D e

j
a j a j

j t D

n
n

n
n

w
w w

�

�
�

� � � �� �� � �a j a1 0w( )





 

 
� � �A

j
e ej t j t

2
w w( )

 
(15.22)

The coefficients of ejwt on both sides of Eq. (15.22) must be equal. Hence,

 
D e a j a j a j a AjD

n
n

n
n

1 1
1

1 0
2 w w w( ) ( ) ( )



� � � � ��

� �
 

(15.23)

Equation (15.23) will be satisfied if and only if

 
1

2
1

1
1 0

1

a j a j a j a

D

An n
nw w w( ) ( ) ( )� � � �

�
�

� � 
(15.24)

 

�
�

1

1
1

1 0
2

a j a j a j a
D

n
n

n
nw w w( ) ( ) ( )� � � �

�
�

�

 

But D1/A and D2 are the AR and phase angle of the response, respectively, as may 
be seen from Eq. (15.19) and the forcing function. Furthermore, from Eq. (15.17) the 
transfer function relating X and Y is

 

Y s

X s a s a s a s an
n

n
n

( )
( ) �

� � � ��
�

1

1
1

1 0�

 

(15.25)

Equations (15.24) and (15.25)* establish the general result.
* In writing this equation, it is assumed that X and Y have been written as deviation variables, so that initial 
conditions are zero.

SUMMARY

In this chapter the concept of frequency response was discussed. A graphical tool, the 
Bode diagram, was introduced to assist in the analysis of the frequency response char-
acteristics of various system elements. Bode plots were constructed manually as well as 
with MATLAB. We will use this tool in Chap. 16 in the design of control systems.
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PROBLEMS

15.1. For each of the following transfer functions, sketch the gain versus frequency, asymptotic 
Bode diagram. For each case, find the actual gain and phase angle at w � 10. Note: It is not 
necessary to use log-log paper; simply rule off decades on rectangular paper.

(a)

 

(b) 

(c) 

(d) 

(e) (10s � 1)2

(   f   ) (10 � s)2

15.2. A temperature bath in which the temperature varies sinusoidally at various frequencies 
is used to measure the frequency response of a temperature-measuring element B. The 
apparatus is shown in Fig. P15.2. A standard thermocouple A, for which the time con-
stant is 0.1 min for the arrangement shown in the sketch, is placed near the element to be 
measured. The response of each temperature-measuring element is recorded simultane-
ously on a two-channel recorder. The phase lag between the two chart records at different 
frequencies is shown in the table. From these data, show that it is reasonable to consider 
element B as a first-order process and calculate the time constant. Describe your method 
clearly.

100

10 1 1s s� �( )( )
100

10 1 1s s� �( )( )
10

1 0 1 1
2

s

s s� �( )( ).

10

1 0 1 1
2

s

s s� �( )( ).

s

s s

�

� �

1

0 1 1 10 1.( )( )
s

s s

�

� �

1

0 1 1 10 1.( )( )
s

s s

�

� �

1

0 1 1 10 1.( )( )
s

s s

�

� �

1

0 1 1 10 1.( )( )

BA

FIGURE P15–2

Frequency, 
cycles/min

Phase lag of 
B behind A, 

deg

0.1 7.1
0.2 12.9
0.4 21.8
0.8 28.2

1.0 29.8
1.5 26.0
2.0 23.6
3.0 18.0
4.0 14.2
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15.3. Plot the asymptotic Bode diagram for the PID controller

 
G s K s

s
c D

I
( ) 



� � �1

1t
t

 
where Kc � 10, tI � 1, and tD � 100. Label corner frequencies and give slopes of 
asymptotes.

15.4. One way of experimentally measuring the frequency response is to plot the output sine 
wave versus the input sine wave. The results of such a plot look like Fig. P15–4. This is the 
sinusoidal deviation in output versus sinusoidal deviation in input and appears as an ellipse 
centered at the origin. Show how to obtain the AR and phase lag from this plot.

Input

Output

FIGURE P15–4

15.5. For the transfer function shown below, sketch carefully the gain versus frequency portion 
of the asymptotic plot of the Bode diagram. Determine the actual (exact) value of gain and 
phase angle at w � 1. Determine the phase angle as w → ∞.

 
G s

s

s s
( ) ( )

( )
�

�

�

2 0 1 1

10 12

.

 
Indicate very clearly the slopes of the asymptotic Bode diagram of G(s).

15.6. (a) Plot accurately and neatly the Bode diagram for the process shown in Fig. P15–6, using 
log-log paper for gain versus frequency and semilog paper for phase versus frequency. Plot 
the frequency as radians per minute.
(b) Find the amplitude ratio and phase angle for Y/X at w � 1 rad/min and w � 4 rad/min.

5s + 1

7

2s + 1

1
Y X e−0.5s

FIGURE P15–6
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 15.7. For the system shown in Fig. P15–7, determine accurately the phase angle in degrees 
between Y(t) and X(t) for w � 0.5. Determine the lag between the input wave and the 
output wave.

X = 2 sin    t
9s2 + 0.5s + 1

3
Y 

FIGURE P15–7

 15.8. (a)  For the transfer function given below, sketch carefully the asymptotic approximation 
of gain versus frequency. Show details such as slopes of asymptotes.

 
G s

s

s
( ) ( )

�
�1

2

 
   (b) Find the actual (exact) value of gain and phase angle for w � 1 and for w � 2.

 15.9. Derive expressions for amplitude ratio and phase angle as functions of w for the transfer 
function G(s) � 1/(s2 � 1).

15.10. The data given in the following table represent experimental, frequency response data for 
a process consisting of a first-order process and a transportation lag. Determine the time 
constant and the transportation lag parameter. Write the transfer function for the process, 
giving numerical values of the parameters.

Frequency, cycles/min Gain Phase angle, deg

0.01 1.0 0.0
0.02 1.0 �2.0
0.04 1.0 �6.0
0.06 1.0 �7.0
0.08 1.0 �8.5

0.10 1.0 �11.0
0.15 1.0 �17.0
0.20 1.0 �23.0
0.30 1.0 �36.0
0.40 0.98 �48.0

0.60 0.94 �73.0
0.80 0.88 �96.0
1.00 0.83 �122.0
1.50 0.71 �180.0
2.00 0.61 �239.0

4.00 0.37 —
6.00 0.26 —
8.00 0.20 —

10.00 0.16 —
20.00 0.080 —
40.00 0.041 —
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CHAPTER 

15 
CAPSULE SUMMARY

Substitution Rule: Substitute (jw for s) in the transfer function to obtain a 
complex number. The magnitude of the resulting complex number is the amplitude 
ratio AR, while the angle of the complex number is the phase angle shift of the output 
response. This rule is valid for transfer functions that yield stable systems.

Time

0
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−0.5

Input

Phase
lag

Output

0
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Si
gn

al
/A
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2

1 2 3 4 5 6 7 8

Process

 Input
amplitude

Output amplitude

· AR · sin(  t +    )
Phase
angle

Output

Transients A+

Input

Time for transients to decay

A sin (   t)

 Amplitude ratio AR
output amplitude

input am
�

pplitude
� �G j Rw( ) 

 Phase angle f w� �G j( ) 

FIGURE 15–2
Characteristics of a steady-state sinusoidal response.
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Key Features to Note About the Frequency Response of the Process

 • After transients die out, the output is a sine wave.
 • Input frequency � output frequency � w.
 • In general, the output is attenuated, that is, AR < 1.
 • The output is shifted in time (it lags the input by the phase angle).
 • Amplitude ratio and phase angle are both functions of frequency.

Bode diagrams are plots of the amplitude ratio and the phase angle of the steady response 
as functions of the frequency of the input sine wave.

Characteristics of Bode plots for some common transfer functions

Transfer function Amplitude ratio AR
Phase angle (deg) 

e
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 CHAPTER  

 16 

  The purpose of this chapter is twofold. First, it is indicated that the stability of a 
control system can usually be determined from the Bode diagram of its open-loop 

transfer function. Then methods are presented for rational selection of controller param-
eters based on this Bode diagram. The material presented here is one of the more useful 
design aspects of the subject of frequency response.  

   16.1  TANK TEMPERATURE CONTROL 
SYSTEM 

  It was indicated in the discussion following Example 15.4 that the control system of 
 Fig. 16–1  might offer stability problems because of excessive phase lag. To review, this 

system represents proportional control of tank temperature with a delay in the feedback 

loop. The factor     1
600    is the process sensitivity 1/( wC ), which gives the ultimate change 

in tank temperature per unit change in heat input  Q. 

     

1 1

600 1 600wC
�

��

�
�

lb

min

Btu

lb F

F
Btu













 mmin

   
The proportional gain  K   c  , in Btu per minute per degree of temperature error, is to be 
specified by the designer. 

 The open-loop transfer function for this system is  

G s
K e

s
c

s

( ) �
�

�( / )

.

.600

0 203 1

0 0396

 

(16.1)

 CONTROL SYSTEM 
DESIGN BY FREQUENCY

RESPONSE 
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  The Bode diagram for  G ( s ) is plotted in  Fig. 16–2 . As usual, the constant factor  K   c  /600 
is included in the definition of the ordinate for AR. 

R

B = T ′m 

Kc /wC

= Kc /600

Q

wC

e−0.0396s

0.203s + 1
C = T ′

U = T ′i 

−

+ 1

FIGURE 16–1
Control system for stirred-tank heater of Example 15.4.
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FIGURE 16–2
Bode diagram for open-loop transfer function of control system for stirred-tank heater:

( / ) ./K wC e sc
s� �t t2

1 1  ( ) Block diagram is shown in Fig. 16–1.
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 At the frequency of 43 rad/min, the phase lag is exactly 180 ° and AR/( K   c  /600)  �  0.12.

     
AR � � �

K K Kc c c

600
0 12

600 0 12 5000




 ( ).

/ .   

Therefore, if a proportional gain of 5000 Btu/(min ·  ° F) is used,

     
AR � �

5000

5000
1

   

This is the AR between the signals  e  and  B.  Note that it is dimensionless, as  e  and  B  
both have the units of temperature. 

 The control system is redrawn for  K   c    �  5000 in  Fig. 16–3  a,  with the loop opened. 
That is, the feedback signal  B  is disconnected from the comparator. Imagine that a set 
point disturbance
     R t� sin 43    

is applied to the opened loop. Then, since the open-loop AR  �  1 and the phase 
lag  �  180 ° ,

     B t t� � � � �sin sin( )43 180 43   

Now imagine that, at some instant in time,  R  is set to zero and simultaneously the loop 
is closed.  Figure 16–3  b  indicates that the closed loop continues to oscillate indefinitely. 
 This oscillation is theoretically sustained even though both R and U are zero.  

U = 0

−

+
+

+

0.202s + 1

1

e−0.0396s

= sin 43t

R = sin 43t

(a)

C = sin (43t−83°)

B = −sin 43t

Loop open

Before
closing loop

8.33

U = 0

−

+
+

+

0.202s + 1

1

e−0.0396s

= sin 43t

R = 0

(b)

C = sin (43t−83°)

B = −sin 43t
After

closing loop

8.33

FIGURE 16–3
Sustained closed-loop oscillation.
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 Now suppose  K   c   is set to a slightly higher value and the same experiment 
repeated. This time, the signal  e  is amplified slightly each time it passes around the 
loop. Thus, if  K   c   is set to 5001, after the first time around the loop the signal  e  becomes 
(5001/5000) sin 43 t.  After the second time, it is (5001/5000) 2  sin 43 t,  etc. The phase 
angle is not affected by changing  K   c  . We thus conclude that, for  K   c   > 5000, the response 
is unbounded, since it oscillates with  increasing amplitude.  

 By using the definition of stability presented in Chap. 13, it is concluded that the 
control system is unstable for  K   c   > 5000 because it exhibits an unbounded response 
to the bounded input described above. (The bounded input is zero in this case, for 
 U   �   R   �  0.) The condition  K   c   > 5000 corresponds to

     AR � 1   

for the open-loop transfer function, at the frequency 43 rad/min, where the open-loop 
phase lag is 180 ° . 

 This argument is not rigorous. We know the response  B only if   e   remains constant 
in amplitude  because of the definition of frequency response. If, however, the change in 
 K   c   is very small, so that  e  is amplified infinitesimally, then  B  will closely approximate 
the frequency response. While this does not  prove  anything, it shows that we are justi-
fied in suspecting instability and that closer investigation is warranted. A rigorous proof 
of stability requires application of the Nyquist stability criterion [see Coughanowr and 
Koppel (1965) or Kuo (1987)], which uses the theory of complex variables. For our 
purposes, it is sufficient to proceed with heuristic arguments.   

  16.2 THE BODE STABILITY CRITERION 

  It is tempting to generalize the results of the analysis of the tank temperature control 
system to the following rule.  A control system is unstable if the open-loop frequency 
response exhibits an AR exceeding unity at the frequency for which the phase lag is  
180 ° . This frequency is called the  crossover frequency.  The rule is called the  Bode 
stability criterion.  

 Actually, since the discussion of Sec. 16.1 was based on heuristic arguments, 
this rule is not quite general. It applies readily to systems for which the gain and phase 
curves decrease continuously with frequency. However, if the phase curve appears as 
in  Fig. 16–4 , the more general Nyquist criterion must usually be used to determine sta-
bility. Other exceptions may occur. Fortunately, most process control systems can be 
analyzed with the simple Bode criterion, and it therefore finds wide application. 

 Application of the criterion requires nothing more than plotting the open-loop 
frequency response. This may be based on the theoretical transfer function, if it is avail-
able, as we have done for the tank temperature system. If the theoretical system dynam-
ics are not known, the frequency response may be obtained experimentally. To do this, 
the open-loop system is disturbed with a sine wave input at several frequencies. At each 
frequency, records of the input and output waves are compared to establish the AR and 
phase lag. The results are plotted as a Bode diagram. This experimental technique is 
illustrated in greater detail in Chap. 18. 

 For the remainder of this chapter, we accept the Bode stability criterion as valid 
and use it to establish the control system design procedure.   
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  16.3 GAIN AND PHASE MARGINS 

  Let us consider the general problem of selecting  G   c  ( s ) for the system of  Fig. 16–5 . 
Suppose the open-loop frequency response, when a particular controller  G   c  ( s ) is tried, 
is as shown in the Bode diagram of  Fig. 16–6 . The crossover frequency, at which the 
phase lag is 180°  , is noted as  wco   on the Bode diagram. At this frequency, the AR is  A.  
If  A  exceeds unity, we know from the Bode criterion that the system is unstable and that 
we have made a poor selection of  G   c  ( s ). In  Fig. 16–6  it is assumed that  A  is less than 
unity and therefore the system is stable. 

FIGURE 16–4
Phase behavior of a complex system for which the Bode criterion is not applicable.

0

−180

Ph
as

e,
 d

eg

Frequency

R

U

C

−

+
+

+
Gc

H

G1 G2

FIGURE 16–5
Block diagram for a general control system.

 It is necessary to ascertain to what degree the system is stable. Intuitively, if  A  
is only slightly less than unity, the system is “almost unstable” and may be expected 
to behave in a highly oscillatory manner even though it is theoretically stable. (Again, 
heuristic arguments are used. This statement is self-evident to the reader who has studied 
Chap. 14, where it is shown that the roots of the characteristic equation vary continuously 
with system parameters. Proof of the statement requires the Nyquist stability criterion.) 
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 Furthermore, the constant  A  is determined by the physical parameters of the sys-
tem, such as time constants. These can be only estimated and may actually change 
slowly with time because of wear or corrosion. Hence, a design for which  A  is close to 
unity does not have an adequate safety factor. 

 To assign some quantitative measure to these considerations, the concept of gain 
margin (GM) is introduced. Using the nomenclature of  Fig. 16–6 ,

     
Gain margin

AR
� �

�� �

1 1

180A φ   

 Typical specifications for design are that the gain margin should be greater than  1.7. 
This means that the AR at crossover could increase by a factor of 1.7 over the design 
value before the system became unstable.

     AR
GM

φ�� � � � �180
1 1

1 7
0 59

.
.  

So, for GM  �  1.7, AR  �  0.59 at the crossover frequency. The design value of 
the gain margin is really a safety factor that maintains the AR a “safe distance” away 
from AR  �  1 at  w   co  .  As such, its value varies considerably with the application and 
designer.  A gain margin of unity or less indicates an unstable system. 

 Another margin frequently used for design is the phase margin. As indicated in 
 Fig. 16–6 , it is the difference between 180° and the phase lag at the frequency for which 
the gain is unity.

     
Phase margin PM LAG AR

( ) � � �
�

180
1

f
   

FIGURE 16–6
Open-loop Bode diagram for a typical control system.
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The phase margin therefore represents the additional amount of phase lag required to 
destabilize the system, just as the gain margin represents the additional gain for desta-
bilization.  Typical design specifications are that the phase margin must be greater than  
30 ° . A negative phase margin indicates an unstable system. 

  Example 16.1.     Find a relation between relative stability (see below) and the 
phase margin for the control system of  Fig. 16–7 . A proportional controller is to 
be used. 

 This block diagram corresponds to the stirred-tank heater system, for which 
the block diagram has been given in Fig. 12–17. The particular set of constants is

     

t t� �

�

m

wC

1

1
1

   

These are to be regarded as fixed, while the proportional gain  K   c   is to be varied to 
give a satisfactory phase margin. 

R

U

C
−

+
+

+
Kc

1
s + 1

1
s + 1

FIGURE 16–7
Block diagram for Example 16.1.

 The  closed-loop  transfer function for this system is given by Eq. (12.17), rewrit-
ten for our particular case as

    

C

R

K

K

s

s s
c

c
�

�

�

� �1

1

2 12
2 2

2 2t t z 

 (16.2)  

where 
    

t z2 2
1

1

1

1
�

�
�

�K Kc c  
Since the closed-loop system is second-order, it can never be  unstable.  The shape 
of the response of the closed-loop system to a unit step in  R  must resemble the 
curves of Fig. 7–3. The meaning of  relative stability  is illustrated by Fig. 7–3. 
The lower  z  2  is made, the more oscillatory and hence the “less stable” will be the 
response. Therefore, a relationship between phase margin and  z  2  will give the 
relation between phase margin and relative stability. 
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 To find this relation the open-loop Bode diagram is prepared and is shown 
in  Fig. 16–8 . The simplest way to proceed from this diagram is as follows: 
Consider a typical frequency  w   �  4. If the open-loop gain were 1 at this fre-
quency, then since the phase angle is  � 152 ° , the phase margin would be 28 ° . To 
make the open-loop gain 1 at w   �  4, it is required that

    
Kc � �

1

0 062
16 1

.
.

  

Then

     
z 2

1

1
0 24�

�
�

Kc
.

   

Hence, a point on the curve of  z  2  versus phase margin is

     z 2 0 24 28� � �. phase margin   

Other points are calculated similarly at different frequencies, and the resulting 
curve is shown in  Fig. 16–9 . From this figure it is seen that  z2  decreases with 
decreasing phase margin and that if the phase margin is less than 30 ° , then  z  2  
is less than 0.26. From Fig. 7–3, it can be seen that the response of this system 
for  z  2  < 0.26 is highly oscillatory, hence relatively unstable, compared with a 
response for the system with phase margin 50 °  and  z  2   �  0.4. 

 For the particular system of Example 16.1, it was shown that the response 
became more oscillatory as the phase margin was decreased. This result general-
izes to more complex systems. Thus, the phase margin is a useful design tool for 
application to systems of higher complexity, where the transient response cannot 
be easily determined and a plot such as  Fig. 16–9  cannot be made. To repeat, the 
rule of thumb is that the phase margin must be greater than 30 ° . 

FIGURE 16–8
Open-loop Bode diagram for system of Example 16.1, G � 1/(s � 1)2.
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 A similar statement can be made about the gain margin. As the gain mar-
gin is increased, the system response generally becomes less oscillatory, hence 
more stable. A control system designer will often try to make  both  the gain and 
phase margins equal to or greater than specified minimum values, typically 1.7 
and 30 ° . Note that, for the case of Example 16.1, the gain margin is always infi-
nite because the phase lag never quite reaches 180 ° . However, the phase margin 
requirement of 30 °  necessitates that  z  2  > 0.26, hence  K   c   < 14, which means that 
an offset of     1

15    [see Eq. (16.2)] must be accepted. This illustrates the importance of 
considering both margins. The reader should refer to  Fig. 16–6  to see that both 
margins exist simultaneously.  

  Example 16.2.     Specify the proportional gain  K   c   for the control system of 
Fig. 15–23, reproduced as  Fig. 16–10 . 

 The gain is to be specified for the two cases:   

Proportional gain  tD Open-loop transfer function

Case 1 (PD control) Kc 0.5 min G s
K s e

s s

c
s

( ) ( )
( ) ( )

�
�

� �

�0 5 1

1 0 1 1

10

2

.

.

/

Case 2 (P control only) Kc 0 min G s
K e

s s

c
s

( )
( ) ( )

�
� �

� /

.

10

21 0 1 1

+
+

−

Kc (1 +   Ds) C 

e− s
10

Kc = 10

+

U

B

R
+ 1s

10s + 1

1
2

D = 1/2

FIGURE 16.10
Block diagram of control system for Example 15.6.
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R
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FIGURE 16.10
Block diagram of control system for Example 15.6.

FIGURE 16–9
Damping versus phase margin for system of Fig. 16–7.
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We’ll use MATLAB to generate the exact Bode diagrams (we sketched the 
asymptotes in Chap. 15) for the two cases. We first need to generate the transfer 
function in MATLAB. For case 1, the MATLAB commands to produce the Bode 
diagram are as follows:  

 num =[0.5 1]  ;         % the coefficients of the polynomial 

in the numerator of G(s);

 den=conv([1 2 1],[0.1 1])     %conv multiplies the 2 

polynomials in the denominator 

of G(s); 

den =

    0.1000    1.2000    2.1000    1.0000    

% thus the resulting polynomial in the denominator is  

0 1 1 2 2 1 13 2. . .s s s+ + +  

 sys=tf(num,den,'iodelay',0.1)   

 

Transfer function:

                        0.5 s + 1

exp(-0.1*s) * 

              0.1 s^3 + 1.2 s^2 + 2.1 s + 1   

% Now we can generate the Bode diagram(Fig.16–11) using 

mybode (discussed in Chap. 15).

 mybode(sys)      
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FIGURE 16–11
Bode diagram for Example 16.2, case 1 PD control.
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 We can examine the data used to generate  Fig. 16–11  as follows. 

  Solution 
   Case 1.   Consider first the gain margin. The crossover frequency for the curve with deriva-
tive action is 8.62 rad/min. At this frequency, the open-loop gain is 0.0445 if the value of 
 K   c   is unity. (Including the factor of     1

10    in the ordinate is actually equivalent to plotting 
the case  K   c    �  1.) Therefore, according to the Bode criterion, the value of  K   c   necessary to 
destabilize the loop is 1/0.0445, or 22.5. To achieve a gain margin of 1.7,  K   c   must be taken 
as 22.5/1.7, or 13.2. To achieve proper phase margin, note that the frequency for which the 
phase lag is 150 °  (phase margin is 30 ° ) is 5.52 rad/min. At this frequency, a value for  K   c   of 
1/0.0815, or 12.3, will cause the open-loop gain to be unity. Since this is lower than 13.2, 
we use 12.3 as the design value of  K   c  . The resulting gain margin is then 1.83. 

 The numerical data for the Bode diagram can be output to Excel and also calculated 
in Excel by using the formulas for magnitude and phase angle. Goal Seek can also be used 
in Excel to determine the frequency and magnitude at the phase angles of interest ( � 180°   
and  � 150 ° ). With Goal Seek, you have Excel vary the value of the frequency until the 
phase angle equals  � 180 °  or  � 150 ° . The Excel formulas to calculate the magnitude and 
phase angle are:  

Magnitude = (SQRT(frequency^2/4+1))/(frequency^2+1)/

(SQRT((0.1*frequency)^2+1))

Phase Angle =(2*ATAN(-frequency)+ATAN(-0.1*frequency)

            +ATAN(0.5*frequency)+(-frequency/10))*180/3.14159  

(The data exported from the MATLAB bode function are shown in the  Fig. 16–12  for 
comparison purposes.)       

frequency magnitude magnitude phase angle phase angle Using Goal Seek ...  

matlab Excel matlab Excel frequency magnitude phase angle

0.1 0.9913 0.9913 �9.7047 �9.7047 8.6223706 0.0445 �180.0000

0.1184 0.9878 0.9878 �11.4688 �11.4736 5.5290187 0.0815 �150.0000

 ...  ... ... ... ... 

4.8187 0.097 0.0970 �142.4299 �142.4304

5.7029 0.0783 0.0783 �151.8055 �151.8054

6.7494 0.0627 0.0627 �162.339 �162.3387

7.988 0.0496 0.0496 �174.1712 �174.1712

9.4539 0.0388 0.0388 �187.4274 �187.4278

11.1887 0.03 0.0300 �202.2378 �202.2378

 ...  ...  ...  ...  ... 

60.3237 0.0014 0.0014 �516.2162 �516.2168

71.3935 0.001 0.0010 �581.0807 �581.0813

84.4947 0.0007 0.0007 �657.369 �657.3697

100 0.0005 0.0005 �747.2471 �747.2477

FIGURE 16–12
Use of Excel to calculate the magnitude and frequency for Bode diagrams.
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Case 2.  Proceeding exactly as in case 1 but using the curve for no derivative action, we 
found that  K   c    �  6.7 is needed for satisfactory gain margin and  K   c    �  5.14 for satisfactory 
phase margin. Hence  K   c   is taken as 5.14, and the resulting gain margin is 2.2. 

 The MATLAB code for generating this Bode diagram ( Fig. 16–13 ) is  
 num=[1]   

num =

     1  

 den=[0.1 1.2 2.1 1.0]   

den =

    0.1000    1.2000    2.1000    1.0000  

 sys=tf(num,den,'iodelay',0.1)   

 

Transfer function:

                            1

exp(-0.1*s) * 

              0.1 s^3 + 1.2 s^2 + 2.1 s + 1   

 mybode(sys)      
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FIGURE 16–13
Bode diagram for Example 16.2, case 2, P control only.

 To see the advantage of adding derivative control in this case, note from  Fig. 16–10  that the 
final value of  C  for a unit step change in  U  is 1/(1  �   K   c  ) for any value of t   D  . The addition 
of the derivative action allows an increase in the value of  K   c   from 5.14 to 12.3 while 
maintaining approximately the same relative stability in terms of gain and phase margins. 
This reduces the offset from 16 percent of the change in  U  to 7.5 percent of the change in  U.  
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 The reader is cautioned that the values of  K   c   selected in this way should be 
regarded as initial approximations to the actual values, which give “optimal” control 
of the system of  Fig. 16–10 . More will be said about this matter later in this chapter in 
conjunction with the two-tank chemical-reactor control system of Chap. 10.     

 Thus far, nothing has been said about upper limits on the gain and phase mar-
gins. Referring to Example 16.1 and Fig. 7–3, we see that if  z  2  is too large, the 
response is sluggish. In fact, Fig. 7–3 suggests that for the system of  Fig. 16–7  one 
should choose a value of  z  2  low enough to give a short rise time without causing 
excessive response time and overshoot. In other words, one wants the most rapid 
response that has sufficient relative stability. The results of Example 16.1 general-
ize to many systems of higher complexity, in terms of margin. Hence, the designer 
frequently chooses the controller so that either the gain or phase margin is equal 
to its lowest acceptable value and the other margin is (probably) above its lowest 
acceptable value. This was the procedure followed in Example 16.2. In almost every 
situation, the designer faces this conflict between speed of response and degree of 
oscillation. In addition, if integral action is not used, the amount of the offset must 
be considered. 

 The concepts of gain and phase margin are useful in selecting  K   c   for propor-
tional action. However, for additional modes of control such as PD, these concepts 
are difficult to apply in practice. Consider the selection of  K   c   and  tD   in Example 16.2. 
For a different value of tD   the derivative contribution is shifted to the right or left on 
the Bode diagram of Fig. 15–24. This means that a different value of  K   c   will provide 
the proper margins. A typical design procedure is to select the value of  tD   for which 
the value of  K   c   resulting in a 30°  phase margin is maximized. The motivation for this 
choice is that the offset will be minimized. However, the procedure is clearly trial and 
error. In the case of three-mode control, there are two parameters,  t   I   and t    D  , which 
must be varied by trial to meet various design criteria. Fortunately, for this case and 
others there are simple rules for directly establishing values of the control parameters 
that usually give satisfactory gain and phase margins. These are the Ziegler-Nichols 
rules, which we develop next.   

  16.4  ZIEGLER-NICHOLS CONTROLLER 
SETTINGS 

  Consider selection of a controller  G   c   for the general control system of  Fig. 16–5 . We 
first plot the Bode diagram for the final control element, the process, and the measuring 
element in series  G  1  G  2  H ( jw ). It should be emphasized that the controller is omitted from 
this plot. Suppose the diagram appears as in  Fig. 16–6 . As noted on the figure, the cross-
over frequency for these three components in series is  w   co  . At the crossover frequency, 
the overall amplitude ratio is  A,  as indicated. According to the Bode criterion, then, the 
gain of a proportional controller which would cause the system of  Fig. 16–5  to be on the 
verge of instability is 1/ A.  We define this quantity to be the ultimate gain  K   u  . Thus

    
K

A
u �

1

    
(16.3)  
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The ultimate period  P   u   is defined as the period of the sustained cycling that would occur 
if a proportional controller with gain  K   u   were used. From the discussion of  Fig. 16–3 , 
we know this to be

     
Pu

co
� � �

2p
w

[ ] [ ]radians cycle

radians sec

sec

cy

/

/ ccle  

 (16.3 a )  

The factor of 2 p  appears, so  Pu      will be in units of time per cycle rather than time per 
radian. It should be emphasized that  K   u   and  Pu  are easily determined from the Bode 
diagram of  Fig. 16–6 . 

 The Ziegler-Nichols settings for controllers are determined directly from  K   u   and 
Pu according to the rules summarized in  Table 16.1.  Unfortunately, specifications of 
 K   c   and  t   D   for PD control cannot be made using only  K   u   and  Pu      . In general, the values 
0.6  K   u   and  Pu      /8, which correspond to the limiting case of no integral action in a three-
mode controller, are too conservative. That is, the resulting system will be too stable. 
There exist methods for this case which are in principle no more difficult to use than 
the Ziegler-Nichols rules. One of these is selection of  tD   for maximum  K   c   at 30 °  phase 
margin, which was discussed above. Another method, which utilizes the step response 
and avoids trial and error, is presented in Chap. 18. 

 The reasoning behind the Ziegler-Nichols selection of values of  K   c   is relatively 
clear. In the case of proportional control only, a gain margin of 2 is established. The 
addition of integral action introduces more phase lag at all frequencies (see Fig. 16–20); 
hence a lower value of  K   c   is required to maintain roughly the same gain margin. Adding 
derivative action introduces phase lead. Hence, more gain may be tolerated. This was 
demonstrated in Example 16.2. However, by and large the Ziegler-Nichols settings are 
based on experience with typical processes and should be regarded as first estimates. 

  Example 16.3.     Using the Ziegler-Nichols rules, determine  K   c   and  t   I   for the 
control system shown in  Fig. 16–14 . 
 For this problem, the computation will be done without plotting a Bode diagram; 
however, the reader may wish to do the problem with such a diagram. We first 
obtain the crossover frequency by applying the Bode stability criterion.

    
� � � � ��180

180
1 021tan w

p
w



 ( )( ).

  

TABLE 16.1

Ziegler-Nichols controller settings

Type of control Gc(S) Kc sI sD

Proportional Kc 0.5Ku

Proportional-integral (PI) K
s

c
I

1
1

�
t





 0.45Ku

Pu

1 2.

Proportional-integral-derivative (PID) K
s

sc
I

D1
1

� �
t

t



 0.6Ku

Pu

2

Pu

8
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The value 180/ π   �  57.3 converts radians to degrees. Solving this equation by 
trial and error gives for the crossover frequency  w   co    �  2 rad/min. The amplitude 
ratio AR at the crossover frequency for the open loop can be written as

     

AR �
�

�K
K

c
c1

1
1

2 242w
( )

.
   

where we have used Eq. (15.7) for the first-order system and the fact that the 
amplitude ratio for a transport lag is 1. According to the Bode criterion, the AR 
is 1.0 at the crossover frequency when the system is on the verge of instability. 
Inserting AR  �  1 into the above equation and solving for  K   c   gives  K   cu    �  2.24. 
From the Ziegler-Nichols rules of  Table 16.1 , we obtain

     K Kc cu� � �0 45 0 45 2 24 1 01. . . .( )( )   

and

     t p w p
I

u coP
� � � �

1 2

2

1 2

2 2

1 2
2 62

.

/

.

/

.
. min     

  Example 16.4.     Using the Ziegler-Nichols rules, determine controller settings for 
various modes of control of the two-tank chemical-reactor system of Chap. 10. 
The block diagram is reproduced in  Fig. 16–15 . 

FIGURE 16–15
Block diagram for two-tank chemical-reactor system.

R

U

C

−

+ +

+
Gc

e−s/2

1
(s + 1)(2s + 1)

FIGURE 16–14
Block diagram for Example 16.3.
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 For convenience, the process gain  K  and the controller gain  K   c   are combined into 
an overall gain  K  1 . The equivalent controller transfer function is regarded as

     
G K

s
sc

I
D� � �1 1

1

t
t





   
where  K  1  (as well as  t   I   and  t   D  ) is to be selected by the Ziegler-Nichols rules. The 
required value of  K   c   is then easily determined as

     
K

K

K
c �

1

   

where  K   �  0.09 for the present case (see Chap. 10.) 
 The Bode diagram for the transfer function  without the controller 

     

e

s s

s�

� �

0 5

1 2 1

.

( )( )   

is prepared by the usual procedures and is shown in  Fig. 16–16 . 

 From this figure, it is found that

     

wco

K u

�

� �

1 56

1

0 145
6 91

. /

.
.

rad min

   

    
Pu � �

2

1 56
4 0

p
.

. /min cycle
    

(16.4)  

Hence, the Ziegler-Nichols control constants determined from  Table 16.1  and Eq. 
(16.4) are given in  Table 16.2.  

 A plot comparing the open-loop frequency responses  including the con-
troller  for the three cases, using the controller constants of  Table 16.2 , is given 
in  Fig. 16–17 . This figure shows quite clearly the effect of the phase lead due 
to the derivative action. The resulting gain and phase margins are listed in  
Table 16.3.  From this table it may be seen that the margins are adequate and gen-
erally conservative. 

TABLE 16.2

Control constants for Example 16.4

Control K1 sI sD

P 3.5

PI 3.1 3.3

PID 4.2 2.0 0.50
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 Note that to obtain the Bode diagram for systems including the PID control-
ler, the controller transfer function is rewritten as

     
K

s
s K

s s

s
c

I
D c

D I I

I
1

1 12

� � �
� �

t
t t t t

t




    

(16.5)  

FIGURE 16–16
Bode diagram for e�0.5s/(s � 1)(2s � 1).
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TABLE 16.3

Gain and Phase margins for Example 16.4

Control Gain margin Phase margin

P 2.0 45°
PI 1.9 33°
PID 2.6 34°
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This is second-order in the numerator and has integral action in the denomina-
tor. In general, the numerator factors into first-order factors; hence it contributes 
two curves similar to that of Fig. 15–22 to the overall diagram. For the Ziegler-
Nichols settings it is seen from  Table 16.1  that  t   I    �  4 t   D  . Making this substitution 
into Eq. (16.5) gives

     
G K

s s

s

K s

s
c c

D D

D

c D

D
�

� �
�

�4 4 1

4

2 1

4

2 2 2t t
t

t
t

( )
  

 (16.6)  

and shows that the numerator is equivalent to two PD components in series. This 
AR is represented by a high-frequency asymptote of slope  � 2 passing through 

FIGURE 16–17
Open-loop Bode diagrams for various controllers with system of Fig. 16–15.
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the frequency  w  �  1/2 t   D   and a low-frequency asymptote on the line AR  �  1. It 
should be emphasized that these special considerations apply only to the Ziegler-
Nichols settings. In the general case, the two time constants obtained by factoring 
the numerator of Eq. (16.5) will be different. The Bode plot of the denominator 
follows from

     

1 1
90

t w wtI Ij
� � ��

   

The gain is a straight line of slope  � 1 passing through the point (AR  �  1,  w   �  
1/ t   I  ). The phase lag is 90 ° at all frequencies. Plotting of the overall Bode diagram 
for the PID case to check the results of  Fig. 16–17  is recommended as an exercise 
for the reader.  

  Transient Responses 

 For instructive purposes, the two-tank reactor system of  Fig. 16–15  was simulated using 
MATLAB. Responses of  C ( t ) to a unit-step change in  R ( t ) are shown in  Fig. 16–18 . 
These responses were obtained using the Ziegler-Nichols controller settings determined 
in Example 16.4. 

 The responses to a step load change were also obtained using MATLAB. These 
are the curves of Fig. 9–9 that were discussed in Chap. 9 to illustrate the function of 
the various modes of control. A load change for this system corresponds to a change 
in the inlet concentration of reactant to tank 1 (refer to Fig. 10–1). As process control 
engineers, we would be more interested in controlling against this kind of disturbance 
than against a set point change because the set point or desired product concentration 
is likely to remain relatively fixed. In other words, this is a regulator problem and the 
curves of Fig. 9–9 are those we would use to determine the quality of control. 

FIGURE 16–18
Closed-loop response to step change in set point for control system of Fig. 16–15 
using various control modes.

Time

C
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2 4 6 8 10 12 14 16

PID
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 However, the step change in set point is frequently used to test control systems 
despite the fact that the system will be primarily subject to load changes during actual 
operation. The reason for this is the existence of well-established terminology used 
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to describe the step response of the underdamped second-order system. This termi-
nology, which was presented in Chap. 7, is used to assign quantitative measure to 
responses that are not truly second-order, such as those of  Fig. 16–18 . Of course, 
the terminology can be applied only to responses that  resemble  damped sinusoids. 
Values of the various parameters determined for the responses of  Fig 16–18  are sum-
marized in  Table 16.4.  Offset, realized only with proportional control, is included for 
completeness. 

 It can be seen from  Fig. 16–18  and  Table 16.4  that addition of integral action 
eliminates offset at the expense of a more oscillatory response. When derivative action 
is also included, the response is much faster (lower rise time) and much less oscillatory 
(lower response time). The large overshoots realized in all three cases are characteris-
tic of systems with relatively large time delays. In this case the controller is receiving 
information about the concentration in the second reactor that was true     12    min ago. This 
is to be compared with the reactor time constants of 1 and 2 min. Hence, it is not sur-
prising that the system overshoots before the controller can take sufficient action. 

  Figure 16–19  is presented for two purposes: (1) to illustrate that the Ziegler- 
Nichols controller settings should be regarded as first guesses rather than fixed val-
ues and (2) to show the effects of changing the various controller settings. These 
figures are transient responses to step changes in set point for the three-mode PID 
control. They show the effects of individually varying the three control parameters 
 K   c  ,  t   I  , and  t   D  . 

 As an example of the use of these figures, suppose that it is decided that the 
maximum overshoot that can be tolerated is 25 percent.  Figure 16–19  a  shows that over-
shoot may be reduced by decreasing  K   c   at the expense of a considerably more sluggish 
response. From  Fig. 16–19  b,  we see that overshoot may be reduced by increasing  t   I   
(decreasing integral action) at a lesser expense in speed of response. Thus, for  t   I    �  
5  min, the overshoot is reduced to 20 percent without a serious sacrifice in speed. 
The overshoot cannot be significantly reduced by changing  t   D  , as can be seen from 
 Fig. 16–19  c.  However, the speed of response may be significantly increased by increas-
ing the derivative action (sometimes at the expense of greater oscillation before the 
response has settled, as indicated by a higher decay ratio and a lower period). From this 
brief study of these figures, it may be concluded that, to decrease overshoot without 
seriously slowing the response, a combination of changes should be made. A possible 

TABLE 16.4

Parameters for response of control system of Fig. 16–15 with Z-N settings

Control Overshoot Decay ratio
Rise time, 

min
Response 
time, min

Period of 
oscillation, 

min Offset

P 0.49 0.26 1.3 10.4 5.0 0.21

PI 0.46 0.29 1.5 11.8 5.5 0

PID 0.42 0.05 0.9 4.9 5.0 0
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combination, which should be tried, is to reduce  K   c   slightly and to increase  t   I   and  t   D   
moderately. These changes would probably be tried on the actual reactor system when 
it is put into operation. Such adjustments from the preliminary settings are usually made 
by experienced control engineers, using trial procedures that are more art than science. 
For this reason, we leave the problem of adjustment at this point.     

   SUMMARY 

 In this chapter we used frequency response tools, developed in Chap. 15, to design 
control systems. We introduced the concepts of Bode stability criterion as well as gain 
margin and phase margin for determining appropriate controller settings to obtain the 
desired system response, while maintaining system stability. We also studied the use of 
Ziegler-Nichols controller settings as initial estimates for controller tuning.  

FIGURE 16–19
Effect of varying controller settings on system response. (Z-N indicates 
response using Ziegler-Nichols settings.)
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  PROBLEMS 

   16.1. Calculate the value of gain  K   c   needed to produce continuous oscillations in the control 
system shown in Fig. P16–1 when
   ( a )  n  is 2  
  ( b )  n  is 3    

    Do not  use a graph for this calculation. 

     
R Kc C

+

−
(2s + 1)n

2

FIGURE P16–1

  16.2.    ( a )  Plot the asymptotic Bode diagram | B / e | versus  w  for the control system shown in 
Fig. P16–2.  

  ( b ) The gain  K   c   is increased until the system oscillates continuously at a frequency of 
3 rad/min. From this information, calculate the transportation lag parameter  t   d  . 

    

R C

B

Kc
+ +

− −
10s + 1

1

s + 1
1

s + 1
1

e−  ds

FIGURE P16–2

  16.3. The frequency response for the block  G   p   in Fig. P16–3 is given in the following table:   

 

f, cycles/min Gain Phase angle, deg

0.06 1.60 �68
0.08 1.40 �88
0.10 1.20 �105
0.15 0.84 �145
0.20 0.61 �177
0.30 0.35 �235
0.40 0.22
0.60 0.11
0.80 0.066
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  Block  G   p   contains a distance velocity lag  e   �  t s   with   t  �  1 (this transfer function is included 
in the data given in the table).
   ( a ) Find the value of  K   c   needed to produce a phase margin of 30 °  for the system if 

 t   I    �  0.2.  
   (b)  Using the value of  K   c   found in part ( a ) and using  t   I    �  0.2, find the percentage change in 

the parameter  t  to cause the system to oscillate continuously with constant amplitude. 

    
FIGURE P16–3

R CGp
+
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1
is)

  16.4. The system shown in Fig. P16–4 is controlled by a proportional controller. The concentra-
tion of salt in the solution leaving the tank is controlled by adding a concentrated solution 
through a control valve. 

FIGURE P16–4

Controller

C1 = 25 lb/ft3

1 ft3/min of water

Holdup
volume

3 ft3 C

  The following data apply:
   1. Concentration of concentrated salt solution  C  1   �  25 lb salt/ft 3  solution.  
  2. Controlled concentration  C   �  0.1 lb salt/ft 3  solution.  
  3. Control valve: The flow through the control valve varies from 0.002 to 0.0006 ft 3 /min 

with a change of valve-top pressure from 3 to 15 psi. This relationship is linear.  
  4. Distance velocity lag: It takes 1 min for the solution leaving the tank to reach the 

concentration-measuring element at the end of the pipe.  
  5. Neglect lags in the valve.   

   ( a ) Draw a block diagram of the control system. Place in each block the appropriate 
transfer function. Calculate all the constants and give the units.  

  ( b ) Using a frequency-response diagram and the Ziegler-Nichols rules, determine the 
settings of the controller.  

  ( c ) Using the controller settings of part ( b ), calculate the offset when the set point is 
changed by 0.02 unit of concentration.     
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  16.5. The stirred-tank heater system shown in Fig. P16–5 is controlled by a PI controller. The 
following data apply:

    Flow rate  w  of liquid through the tanks: 250 lb/min  

   Holdup volume of each tank: 10 ft 3   

   Density of liquid: 50 lb/ft 3   

    Final control element: A change of 1 psi from the controller changes the heat input  q  
 by 100 Btu/min. The final control element is linear.    

  
FIGURE P16.5

Thermocouple

PI controller
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Tw

psi
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control
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I, min

w w w

   ( a ) Draw a block diagram of the control system. Show in detail such things as units and 
numerical values of the parameters.  

  ( b ) Determine the controller settings by the Ziegler-Nichols rules.  
  ( c ) If the control system is operated with  proportional mode only,  using the value of  K   c   

found in part ( b ), determine the flow rate  w  at which the system will be on the verge of 
instability and oscillate continuously. What is the frequency of this oscillation?     

  16.6. The transfer function of a process and measurement element connected in series is 
given by

    

e

s

s�

�

0 4

22 1

.

( )   

   ( a ) Sketch the open-loop Bode diagram (gain and phase) for a control system involving 
this process and measurement lag.  

  ( b ) Specify the gain of a proportional controller to be used in this control system.     

  16.7.    ( a )  For the control system shown in Fig. P16–7, determine the transfer function  C/U.   
  ( b ) For  K   c    �  2 and  t   D    �  1, find  C (1.25) and the offset if  U ( t )  �   u ( t ), a unit step.  
  ( c ) Sketch the open-loop Bode diagram for  K   c    �  2 and  t   D    �  1. For the upper part of the 

diagram (AR versus  w ), show the asymptotic approximation. Include the transfer func-
tion for the controller in the open-loop Bode diagram.  

  ( d ) From the Bode diagram, what do you conclude about the stability of the closed-loop 
system? 

    
FIGURE P16–7
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  16.8. The proportional controller of the temperature control system shown in Fig. P16–8 is prop-
erly tuned to give a good transient response for a standard set of operating conditions. 

  If changes are made in the operating conditions, the control system may become more or 
less stable. If the changes listed below are made  separately,  determine whether the system 
becomes more stable, less stable, or remains the same. Try to use the Bode stability crite-
rion and sketches of frequency response graphs to solve this problem.
   1. Controller gain increases.  
  2. Length of pipe between measuring element and tank increases.  
  3. Measuring element is inserted in tank.  
  4. Integral action is provided in controller.  
  5. A larger valve is used (i.e., one with a higher  C   v   value).     

FIGURE P16–8

Controller

Steam

Water

  16.9. For each control system shown in Fig. P16–9, determine the characteristic equation of the 
closed-loop response and determine the value of  K   c   that will cause the system to be on the 
verge of instability (i.e., find the ultimate gain  K   cu  ). If  possible,  use the Routh test. Note 
that the feedback element for system B is an approximation to  e   � 2 s  . 

 

FIGURE P16–9

System B:

Kc

Kc
+

−
R C

1
(8s + 1)2

1 − s
1 + s

System A: +

−
R C 

1
(8s + 1)2

e−2s
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  16.10.      ( a )  For the system shown in Fig. P16–10 determine the value of  K   c   that will give 30 °  of 
phase margin.  

  ( b ) If a PI controller with  t   I    �  2 is used in place of the proportional controller, determine 
the value of  K   c   for 30 °  of phase margin. 

    

Kc

+

−
R C

1
(s + 1)2

FIGURE P16–10

  16.11. A stirred-tank heating process and its block diagram are shown in Fig. P16–11. The con-
trol system is tuned by the Ziegler-Nichols method, and the ultimate frequency  w   u   is 
2 rad/min.
   ( a ) Determine the value of  K   c   by the Ziegler-Nichols method of tuning.  
  ( b ) What is the length of the pipe between the tank and the measuring element?  
  ( c ) What are the gain margin and the phase margin for the control system when  K   c   is set 

to the Ziegler-Nichols value found in part ( a )? 

   FIGURE P16–11

Kc
+

−
R C

100
wC

s + 1
e− ds

Controller

Energy

w = 100 lb/min

 Data on process:

    

Density of fluid, 62 lb ft

Heat capacity,

r � / 3

of fluid 1 0 Btu lb F

Inside diameter

C � ��. / ( )

of pipe 2 0 in� .
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  CHAPTER 

16 
CAPSULE SUMMARY 

 THE BODE STABILITY CRITERION 

  A control system is unstable if the open-loop frequency response exhibits an AR exceed-
ing unity at the frequency for which the phase lag is  180°. This frequency is called the 
 crossover frequency.  The rule is called the  Bode stability criterion.  

  Gain Margin and Phase Margin 

 These quantities are defined to provide a safety margin in the design and selection of 
controllers. 

  Design rules of thumb:  Set gain margin  �  1.7 and phase margin  �  30°  . Choose 
the more conservative of the criteria (the one that yields the lower value of  K   c  ). In gen-
eral, the system becomes less oscillatory and more stable as GM and PM are increased. 
Note GM � 0 and PM  �  0 are unstable.

Gain margin GM
AR

Phase margin (P� �
�� �

1 1

180A f

MM) LAG AR
� � �

�
180

1
f       
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  Suggested Initial Controller Tuning Parameters          

Type of control Gc(g) Kc s1 sD

Proportional Kc 0.5Ku

Proportional-integral (PI) K
s

c
I

1
1

�
t





 0.45Ku

Pu

1 2.

Proportional-integral-derivative (PID) K
s

sc
I

D1
1

� �
t

t



 0.6Ku

Pu

2

Pu

8

Ziegler-Nichols controller settings
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 CHAPTER  

 17 

  Up to this point, the control systems considered have been single-loop systems 
involving one controller and one measuring element. In this chapter, several mul-

tiloop systems are described; these include cascade control, feedforward control, ratio 
control, Smith predictor control, and internal model control. The first three have found 
wide acceptance in industry. Smith predictor control has been known for about forty 
years, but it was considered impractical until the modern microprocessor-based control-
lers provided the simulation of transport lag. Internal model control, based on a rigor-
ous mathematical foundation and an accurate model of the process, has been the subject 
of research for the past twenty years. The controller hardware and instrumentation for 
all these systems are readily available from manufacturers. Since this chapter is quite 
long, the reader may wish to select the type of advanced control strategy that is of par-
ticular interest. The descriptions of the five strategies are independent and need not be 
read in the order presented.  

   17.1 CASCADE CONTROL 

  To provide motivation for the study of cascade control, consider the single-loop control 
of a jacketed kettle as shown in  Fig. 17–1 a  . The system consists of a kettle through 
which water, entering at temperature  T   i  , is heated to  T   o   by the flow of hot oil through a 
jacket surrounding the kettle. The temperature of the water in the kettle is measured and 
transmitted to the controller, which in turn adjusts the flow of hot oil through the jacket. 
This control system is satisfactory for controlling the kettle temperature; however, if the 
temperature of the oil supply should drop, the kettle temperature can undergo a large 
prolonged excursion from the set point before control is again established. The reason 
is that the controller does not take corrective action until the effect of the drop in oil 

 ADVANCED 
CONTROL 

STRATEGIES 
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supply temperature has worked itself through the system of several resistances to reach 
the measuring element. To prevent the sluggish response of kettle temperature to a 
disturbance in oil supply temperature, the control system shown in  Fig. 17–1 b   is pro-
posed. In this system, which includes two controllers and two measuring elements, the 
output of the primary controller is used to adjust the set point of a secondary controller, 
which is used to control the jacket temperature. Under these conditions, the primary 
controller indirectly adjusts the jacket temperature. If the oil temperature should drop, 
the secondary control loop will act quickly to maintain the jacket temperature close to 
the value determined by the set point that is adjusted by the primary controller. This 
system shown in  Fig. 17–1 b   is called a  cascade  control system. The primary controller 
is also referred to as the master controller, and the secondary controller is referred to as 
the slave controller.     

(a)

Hot oil
Ts

w Water

(b)

Tj

Ti

Ti

Secondary
controller

Hot oil

Primary
controller

Set
point

To

To

Tj

w Water

FIGURE 17–1
(a) Single-loop control of a jacketed kettle; (b) cascade control of a jacketed kettle.
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 A simplified block diagram of the single-loop system is shown in  Fig. 17–2 a  . 
 Figure 17–2 b  , which is a block diagram representation of the cascade control system, 
shows clearly that an inner loop has been added to the conventional control system.  

FIGURE 17–2
Block diagram: (a) single-loop conventional control; (b) cascade control.

(a)

R To

−

+ +
+

L, oil supply temperature 

GvGc

Gm

Gjacket Gkettle

(b)

R To

L

− −

+ +
+

TjGc2
Gc1

Gm2

Gjacket

Gm1

Gv Gkettle
+

   Analysis of Cascade Control 

 To develop the closed-loop transfer functions for a cascade control system, consider the 
general block diagram shown in  Fig. 17–3 . In this diagram, the load disturbance  U  enters 
between two blocks of the plant, and the inner loop encloses this load disturbance. 

 To determine the transfer function  C / R,  the inner loop is reduced to one block by 
the method shown in Chap. 11. The result is shown in  Fig. 17–3 b  , and the block dia-
gram of  Fig. 17–3 b   can be used to give the result   

  

C

R

G G G

G G G H
c a

c a
�

�
1

1

3

3 11   

 (17.1)

  

where   
  

G
G G G

G G G H
a

c

c
�

�
2

2

1 2

1 2 21    

To obtain the transfer function relating output to load  C / U,  the block diagram of 
 Fig. 17–3 a   is rearranged by placing the transfer function     G Gc2 1    in the feedback paths 
of the primary and secondary loops; the new arrangement is shown in  Fig. 17–4 a  . Since 
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 R   �  0 for the case under consideration, the block diagram can be redrawn as shown in 
 Fig. 17–4 b  . This diagram, which has the same form as the one in  Fig. 17–3 a  , can now 
be reduced to the form shown in  Fig. 17–4 c  . Application of the rules of Chap. 11 to 
 Fig. 17–4 c   finally gives   

  

C

U

G

G G

G

G G H Gc

a

a c
�

�

3

1 1 32 11   

 (17.2)  

where  G   a   is the same as given in Eq. (17.1). 

Example 17.1.   To compare conventional control with cascade control, consider 
the conventional control system of  Fig. 17–5 a   in which a third-order process is 
under PI control. A cascade version of this single-loop control system is shown in 
 Fig. 17–5 b   in which an inner loop having proportional control encloses the load 
disturbance  U.  

To obtain a response of the conventional control system for use in comparison 
with the response of the cascade system, the block diagram of Fig. 17–5a was simu-
lated on a computer. The values of Kc and tI were chosen by trial and error to give the 
response to a step change in set point shown as curve I of Fig. 17–6; this response, 
which has a decay ratio of about 1

4 ,  was obtained with Kc � 2.84 and t I � 5.

FIGURE 17–3
Block diagram for cascade control for set point change.

(a)

(b)

R C

C

U = 0

− −

+ +
+

Gc2
Gc1
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G2
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G1 G3
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R

−

+ Gc1 G3

H
1
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1 + Gc2
G1G2H2

Gc2
G1G2
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 The Ziegler-Nichols settings ( K   c    �  3.65 and  t   I    �  3.0) gave a set point 
response that was too oscillatory. Having obtained satisfactory controller settings 
( K   c    �  2.84 and  t   I    �  5.0), we show the response of the system to a step change in 
 U  of 4 units as curve II of  Fig. 17–7 . The load response for no control (i.e.,  K   c    �  0) 
is also shown as curve I for comparison. 

 The cascade control system of  Fig. 17–5 b   was also simulated to obtain a 
load response. The controller gain     Kc2    of the inner loop was chosen arbitrarily 
to be 10.0. This value was chosen to be high to obtain a fast-responding inner 
loop, a desirable situation for cascade control. Because of the introduction of the 
inner loop, the dynamics of the control system have changed, and it is necessary 
to tune the primary controller parameters for a good response to a step change 
in set point. By trial and error, primary controller settings of Kc1 1 0� .      and 

FIGURE 17–4
Block diagram for cascade control for load change.

(a)

R = 0 C

U

− −

+ +
+
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+
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(a)

(b)

1 + Kc 
1
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1

C

U

−

+ +
+

s + 1

1

s + 1

1

s + 1

1

1 + Kc1 
1
Is

R

1

C

U

−

+

−

+ +
+

s + 1

1

s + 1

1

1

Kc2 s + 1

1

FIGURE 17–5
Block diagrams for Example 17.1: (a) single-loop conventional control; (b) cascade control.

FIGURE 17–6
Responses to step change in set point for single-loop control and cascade control for Example 17.1. 
I: Conventional control with Kc � 2.84 and tI � 5; II: cascade control with Kc1 � 1.0, tI � 0.63, and 
Kc2 � 10.

I Conventional control

II Cascade control

55
0

0.5

1

C

10 15 20 t

 t   I    �  0.63 were found that produced the response to a unit step in set point, shown 
as curve II in  Fig. 17–6 . The use of Ziegler-Nichols settings produced a less desir-
able response. 

 Using the controller parameters found from the step change in set point
( . , . ),Kc I1 1 0 0 63� �t      the response of the cascade system to a step change in 
load of 4 units was obtained and is shown as curve III of  Fig. 17–7 . As shown in 
 Fig. 17–7 , the load response for the cascade control system is far superior to the 
load response of the conventional control system. The maximum deviation of the 
cascade response has been reduced by a factor of about 4, and the frequency of 
oscillation has nearly doubled.     
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  Generalizations 

 Cascade control is especially useful in reducing the effect of a load disturbance that moves 
through the control system slowly. The inner loop has the effect of reducing the lag in the 
outer loop, with the result that the cascade system responds more quickly with a higher 
frequency of oscillation. Example 17.2 will illustrate this effect of cascade control. 

 The choice of control action and tuning of the primary and secondary controllers 
for a cascade control system must be given careful consideration. The control action for 
the inner loop is often proportional with the gain set to a high value. The rationale for 
the use of proportional control rather than two- or three-mode control is that tuning is 
simplified and any offset associated with proportional control of the inner loop can be 
handled by the presence of integral action in the primary controller. The gain of the sec-
ondary controller should be set to a high value to give a tight inner loop that responds 
quickly to load disturbance; however, the gain should not be so high that the inner loop 
is unstable. Although the primary control loop can provide stable control even when the 
inner loop is unstable, it is considered unwise to have an unstable inner loop because 
the system will go unstable if the primary controller is placed in manual operation or if 
there is a break in the outer loop. 

 The action for the primary controller is generally PI or PID. The integral action is 
needed to reduce offset when sustained changes in load or set point occur. The problem 
of adjusting a primary controller is essentially the same as for a single-loop control 
system. Since the addition of the inner loop can change the dynamics of the outer loop 
significantly, the primary controller must be retuned when the inner loop is closed or 
when the secondary controller settings are changed. 

 Microprocessor-based controllers available today can implement cascade control 
very easily. 

FIGURE 17–7
Responses to step change in set point for single-loop control and cascade control for Example 17.1. I: No 
control; II: conventional control with Kc � 2.84 and tI � 5; III: cascade control with Kc1 � 1.0, tI � 0.63, 
and Kc2 � 10.

II Conventional PI control

I No control

III Cascade control
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Example 17.2.   The claim is often made that cascade control gives a better response 
than conventional control because the lags in the outer loop are reduced. To illustrate 
this benefit, consider the conventional control and the cascade control of a third-
order plant in  Fig. 17–8 a   and  b.  The inner loop of the cascade system surrounds 
two of the first-order blocks in the plant. To simplify the discussion, the load distur-
bance is not shown since we are interested only in the closed-loop dynamics. The 
equivalent single-loop control system of the cascade system, shown in  Fig. 17–8 c  ,
was obtained by the usual method for reducing a loop to a single block. 

FIGURE 17–8
Block diagram for Example 17.2.

(c)

R

−

+ Kc1

10/11

s + 1

1
s + 12

11
s2 +1
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(b)
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− −

+ +Kc1
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10
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1

(s + 1)2

1
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−
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1

(a)

s + 1

1
CR

−

+
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1

 Comparing  Fig. 17–8 a   with  c  shows that the use of cascade control has replaced 
a second-order critically damped system represented by the first two blocks of the 
plant [1/( s   �  1) 2 ] with this underdamped second-order system   

  

K

s st zt2 2 2 1� �   
where          

  

t

z

�

�

1
11

1
11   

This second-order underdamped system, for which  t  and  z  are small, responds 
much faster than the critically damped second-order transfer function of the 
first two blocks of the open-loop system. Consequently, the cascade system will 
respond faster with a higher frequency of oscillation, as we have already seen in 
the simulated response of  Fig. 17–6 .     

K � 10
11K � 10
11
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  17.2 FEEDFORWARD CONTROL 

  If a particular load disturbance occurs frequently in a control process, the quality of 
control can often be improved by the addition of feedforward control. Consider the 
composition control system shown in  Fig. 17–9 a   in which a concentrated stream of 
control reagent containing water and solute is used to control the concentration of the 
stream leaving a three-tank system. The stream to be processed passes through a pre-
conditioning stirred tank where composition fluctuations are smoothed out before the 
outlet stream is mixed with control reagent. A three-tank system has been chosen for 
ease of computation in a numerical example that follows. 

FIGURE 17–9
Composition control system: (a) physical process; (b) block diagram.

(a)

(b)

PI
controller

Preconditioning
tank

Tank1 Tank2 Tank3

cci

Control
reagent

Control
valve

C

Ci

1 + Kc 
1
Is

R
−

+ +
+

(s + 1)3

1

(s + 1)3

1

5s + 1

1

 In the conventional feedback control system shown in  Fig. 17–9 a  , the measurement 
of composition in the third tank is sent to a controller, which generates a signal that opens 
or closes the control valve, which in turn supplies concentrated reagent to the first tank. The 
block diagram corresponding to the control system of  Fig. 17–9 a   is shown in  Fig. 17–9 b  . 
[In  Fig. 17–9 a  , concentration is denoted by  c  (lowercase letter). In the block diagram of the 
process in  Fig. 17–9 b  , the symbol for concentration is denoted by  C  (capital letter) to denote 
a deviation variable. This use of symbols follows the procedure established in Chap. 4.] 

 To obtain some specific control system responses, numerical values of the time con-
stants of the tanks have been chosen as shown in  Fig. 17–9 b  . To study the response of this 
control system, the block diagram shown in  Fig. 17–9 b   was simulated on a computer.  
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 The values of  K   c   and  t   I   were chosen by trial and error to give the response to a step 
change in set point shown in curve II of  Fig. 17–10 ; this response, which has a decay 
ratio of about     14 ,    was obtained with  K   c    � 2.84 and  t   I   � 5.0. The Ziegler-Nichols settings 
( K   c   � 3.65 and  t   I    � 3.0) give a set point response shown as curve I of  Fig. 17–10 , which 
is too oscillatory. 

 

II Improved response

I  Ziegler-Nichols

Responses to a step change in set point for PI
control.
Curve I: Ziegler-Nichols settings: Kc = 3.65,
  I = 3.0; curve II: settings for improved
response: Kc = 2.84,  I = 5.0.

5
0

1

C

10 15 20 25 t

2

3

FIGURE 17–10

 Having obtained satisfactory settings for the controller ( K   c    �  2.84,  t   I    �  5.0), we obtained 
the response of the system to a step change in  C   i   of 10 units, shown as curve I in  Fig. 17–11 . 
Note that the response is oscillatory and has a long tail. This response illustrates the fact 
that the feedback control system does not begin to respond until the load disturbance has 
worked its way through the forward loop and reaches the measuring element, with the 
result that the composition can move far from the set point during the transient. 

FIGURE 17–11

Responses to a step change in load for
feedforward-feedback control.
Curve I: PI control with Kc = 2.84,   I = 5.0 
Curve II: FF control with Kc = 2.84,   I = 
5.0, Gf  = −1/(5s + 1)
Curve III: FF control with Kc = 2.84,   I = 
5.0, Gf  = −1
Curve IV: FF control with Kc = 2.84,   I = 
5.0, Gf  = −0.5
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 If the change in load disturbance  C   i   can be detected as soon as it occurs in the 
inlet stream, this information can be fed forward to a second controller that adjusts 
the control valve in such a way as to prevent any change in the outlet composition 
from the set point. A controller that uses information fed forward from the source 
of the load disturbance is called a  feedforward  controller. The block diagram that 
includes the feedforward controller  G   f    as well as the feedback controller  G   c   is shown 
in  Fig. 17–12 . 

cou9789x_ch17_351-390.indd   362cou9789x_ch17_351-390.indd   362 8/22/08   6:13:18 PM8/22/08   6:13:18 PM



Confirming Pages

 CHAPTER 17  ADVANCED CONTROL STRATEGIES 363

FIGURE 17–12
Control system with feedforward and feedback controllers.
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    Analysis of Feedforward Control 
 The response of  C  to changes in  C   i   and  R  can be written from  Fig. 17–12  as follows:   

  C s G s G s C s G s G s C s G s Gp i f p i c( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )� � �1 pp s E s( ) ( )   (17.3)  

where  E ( s )  �   R ( s ) �  C ( s ). To determine the transfer function of  G   f   ( s ) that will prevent 
any change in the control variable  C  from its set point  R,  which is 0, we solve Eq. (17.3) 
for  G   f   ( s ) with  C   �  0 and  R   �  0. The result is   

  G s G sf ( ) ( )� � 1   (17.4)  

For the example under consideration in  Fig. 17–12 ,   

  

G s
s

f ( ) �
�

�

1

5 1
  

 (17.5)  

This transfer function can be implemented easily with existing control hardware. 
 If the load response of the control system in  Fig. 17–12 , with  G   f   ( s ) given by 

Eq. (17.5), were obtained for a step change in  C   i  , there would be no deviation of  C  from 
the set point (i.e., perfect control). This response is shown as curve II in  Fig. 17–11 , 
which of course is a horizontal line at  C   �  0. 

 Rather than use the  G   f   ( s ) of Eq. (17.5) in the feedforward controller, one can try 
using only the constant term of  G   f   ( s ), that is,   

  G sf ( ) � �1   
The response for  G   f    �   � 1 gives curve III in  Fig. 17–11 ; this response has a very large 
undershoot before the feedback controller returns  C  to the set point. If we try using 
 G   f   ( s )  �   � 0.5, we obtain curve IV of  Fig. 17–11 ; the undershoot is less in this case, 

cou9789x_ch17_351-390.indd   363cou9789x_ch17_351-390.indd   363 8/22/08   6:13:18 PM8/22/08   6:13:18 PM



Confirming Pages

364 PART 5 PROCESS APPLICATIONS

but the response is still unsatisfactory. As shown by curves III and IV, omitting the 
dynamic part of  G   f   ( s ) can give very poor results. The success of using a feedforward 
controller depends on accurate knowledge of the process model, a luxury that may not 
be available in many applications.  

  Implementing Feedforward Transfer Functions 

 In applications of feedforward control,  G   f   ( s ) may take the form of a lead expression, 
such as  G   f   ( s )  �  1  �   t   f    s.  When this occurs, it is necessary to approximate 1  �   t   f    s  by a 
lead-lag expression, such as   

  
G s

s

s
f

f

f
( ) �

�

�

1

1

t
bt   

where   � �� 1  (see Prob. 10.3 for an example of this). To see how  G   f   ( s ) takes the 
form of a lead expression, consider the load disturbance  c   i   of  Fig. 17–9  to enter tank 2. 
Since no change in concentration occurs in the stream entering the preconditioning 
tank, we may eliminate it from the diagram for the case under consideration to obtain 
the diagram in  Fig. 17–13 . 

 Adding feedforward control and feedback control to the system in  Fig. 17–13  
gives the block diagram of  Fig. 17–14 . The diagram shown in  Fig. 17–14  is the same as 
that in  Fig. 17–12  with the exception that the disturbance  C   i   enters tank 2 instead of the 
preconditioning tank. As shown previously, the response of  C  to a change in  C   i   and  R  
can be written directly from  Fig. 17–14  as   

  
C s G s C s G s G s C s G s G s Ei f p i c p( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )� � �1 ss( )

  
 (17.6)  

where  E ( s )  �   R ( s ) �  C ( s ). 

FIGURE 17–13
Composition control with disturbance to second tank.
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FIGURE 17–14
Feedforward-feedback control for system in Fig. 17–13.
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 In order for  C  not to change from the set point  R,  which is 0, we solve Eq. (17.6) for 
 G   f   ( s ) with  C   �  0 and  R   �  0 to obtain   

  
G s

G s

G s
f

p
( ) ( )

( )� �
1

   
(17.7)  

Introducing the expressions for  G  1  ( s ) and  G   p   ( s ) from  Fig. 17–14  into Eq. (17.7) gives   

  
G s sf ( ) ( )� � � 1

   
(17.8)  

It is not practical to implement �( s   �  1). To see this, consider the response of �( s   �  1) 
to a step change as shown in  Fig. 17–15 . 

FIGURE 17–15
Step response for �(s � 1).

X = − (s  + 1) Y

t

Y s
1

−1

0

−∞

 There is no hardware that will produce an impulse as shown in  Fig. 17–15 ; however, 
one can approximate �( s   �  1) by means of a lead-lag transfer function of the form   

  

Y s

X s

s

s
f

f

( )
( ) � �

�

�

t
bt

1

1  

 (17.9)  

where   

  � �� 1   
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If we let  b   �  0.1 and  t   f    �  1 for the control system under consideration, we obtain as an 
approximation to Eq. (17.8)   

  
G s

s

s
f ( ) � �

�

�

1

0 1 1.  
 (17.10)  

The response of this transfer function to a step input is shown in  Fig. 17–16 . The effect 
of this transfer function �( s   �  1)/(0.1 s   �  1) on the output of the feedforward controller 
for a step change in load is to give a sudden drop in flow followed by a fast exponential 
increase in the flow to a steady-state flow of  � 1. Note that for the parameters chosen 
for the transfer functions in  Fig. 17–14 , a unit increase in  C   i   must eventually be com-
pensated by a unit decrease in the signal from the feedforward controller if there is to 
be no change in the process output. The sudden, initial drop in flow may be too abrupt 
for the control hardware, in which case the output would saturate. In practice,  b  can be 
increased (perhaps to 0.5) to reduce the magnitude of the initial drop. 

FIGURE 17–16
Step response for �(s � 1)/(0.1s � 1).
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t

 The effect of using  G   f   ( s )  �  � ( s   �  1)/(0.1 s   �  1) with feedback control is shown 
in  Fig. 17–17 . The responses shown, which were obtained by simulation, are for a unit-
step change in  C   i  . Curve I is for the case of feedback control only with  K   c    �  2.84 and 
 t   I    �  5.0. Curve II is for feedforward-feedback control using Eq. (17.10) for  G   f   ( s ) and 
 K   c    �  2.84 and  t   I    �  5.0. One can see that the overshoot for the feedforward-feedback 
response has been reduced significantly.  

FIGURE 17–17
Comparison of conventional feedback control with feedforward-feedback control for system in 
Fig. 17–14. Curve I: PI control with Kc � 2.84 and tI � 5. Curve II : Feedforward-feedback control with 
Kc � 2.84, tI � 5, and Gf � �(s � 1)/(0.1s � 1).

0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00

−0.05
0 5 10

t

I

II

C

cou9789x_ch17_351-390.indd   366cou9789x_ch17_351-390.indd   366 8/22/08   6:13:21 PM8/22/08   6:13:21 PM



Confirming Pages

 CHAPTER 17  ADVANCED CONTROL STRATEGIES 367

  Tuning Rules for Feedforward Feedback Control 

 In the practical application of feedforward control, one does not have a block diagram 
with transfer functions as shown in  Figs. 17–12  and  17–14 . For such a practical situa-
tion, one can still tune the feedforward controller by introducing a step change in the 
disturbance that enters the feedforward controller ( C   i   in  Fig. 17–14 ) and then applying 
some tuning rules. The rules to be discussed here are from a training film on feedfor-
ward control produced by Foxboro Co. (1978).  

  Feedforward Rules 

 In describing these rules, reference will be made to the general block diagram for a 
feedforward-feedback system shown in  Fig. 17–18 . It is assumed that  G   f   ( s ) will be a 
lead-lag transfer function of the form   

  
G s

K T s

T s
f

f( ) ( )
�

�

�

1

2

1

1  
 (17.11)  

where          K   f    �  steady-state gain of feedforward controller  
   T  1 ,  T  2   �  time constants of dynamic part of feedforward controller   

FIGURE 17–18
Feedforward-feedback control system.
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Mff
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−

R GpGc
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Commercial microprocessor-based controllers provide this lead-lag transfer function. 
 The tuning rules listed below are explained with the help of  Fig. 17–19 . In that 

figure, a unit step is selected for the disturbance  C   i  , and  K   f   has been taken as  � 1. In 
practice,  K   f   will, of course, depend on the particular process being controlled. 

   1. Remove the control action in  G   c  ( s ) by setting the controller to manual.  
  2. Set the feedforward controller to the computed steady-state gain ( K   f  ) necessary to 

compensate ultimately for a step change in  C   i  . This means that the dynamic portion 
of  G   f   ( s ) will be removed, and only the constant term ( K   f  ) will remain.  

  3. Make a step change in  C   i   and observe the open-loop transient of  C.  The general 
shapes of the response to be expected are shown in  Fig. 17–19 .  

  4. If the response shown in  Fig. 17–19 a   occurs, lead must predominate in  G   f   ( s ) of 
Eq. (17.11) (i.e.,  T  1  >  T  2 ). If the response of  Fig. 17–19 b   occurs, lag must predominate 
in  G   f   ( s ) (i.e.,  T  1  <  T  2 ). The values of  T  1  and  T  2  in Eq. (17.11) are found by use of the 
information in  Table 17.1 . The value of  K   f    in Eq. (17.11) has been obtained in step 2.   
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 Example 17.3 will help clarify the use of these tuning rules. 

  Example 17.3. Use of feedforward tuning rules.   Apply the feedforward tun-
ing rules to the system in  Fig. 17–14 . Since this example is concerned with the 
application of the tuning rules to a system for which a mathematical model is 
not generally available, the reader should assume that the transfer functions for 
 G  1 ( s ) and  G   p  ( s ) in  Fig. 17–14  are unknown. The determination of  G   f   ( s ) is to be 
obtained solely by information from open-loop transients. 

 We must first determine the steady-state gain  K   f   for the system of  Fig. 17–14 . 
If a step change in  C   i   is made,  C  will undergo a transient and eventually level 
out at a steady-state value. If the controller parameters are properly selected, the 
value of  C  at the end of the transient will be the same as it was before the tran-
sient occurred. By computation or experiment, one can determine the value of  K   f   
needed to obtain no change in  C.  For the system in  Fig. 17–14 , one can see that  K   f   
of Eq. (17.11) must be equal to  � 1. 

FIGURE 17–19
Open-loop response to determine lead-lag time constants in feedforward tuning rules: (a) Lead must 
predominate in Gf ; (b) lag must predominate in Gf.
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TABLE 17.1

Tuning parameters for feedforward control

Predominant mode T 1 T 2

Lead 1.5tp 0.7tp

Lag 0.7tp 1.5tp

G s K
T s

T s
f f( ) �

�

�

1

2

1

1
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 We must now apply the feedforward tuning rules to obtain  T  1  and  T  2  in 
Eq. (17.11). After removing the feedback controller action [ G   c  ( s )], we have the 
equivalent diagram shown in  Fig. 17–20 . A unit-step change in  C   i   produces the 
transient for  C  shown as curve I in  Fig. 17–22 . Comparing the 2 shape of the tran-
sient with those of  Fig. 17–19 , we see that lead must predominate in  G   f    ( s ). The 
peak value occurs at  t   p    �  2. Applying the rules in  Table 17.1  gives   

  T tp1 1 5 3� �.       

  T tp2 0 7 1 4� �. .   

The feedforward controller transfer function is therefore   

  
G s

s

s
f ( ) ( )

�
� �

�

3 1

1 4 1.  
 (17.12)   

FIGURE 17–20
Open-loop feedforward test to determine parameters for Gf.
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Kf = − 1

Ci G1(s)

Gp(s)

 It is of interest to show the response of  C  for feedforward only when the 
feedforward transfer function of Eq. (17.12) is used. MATLAB and Simulink can 
be used to simulate the result for a unit-step change in  C   i   ( Fig. 17–21 ). It is shown 
as curve II in  Fig. 17–2 2. 

FIGURE 17–21
Simulink model for simulating Example 17.3.
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 When the  G   f  ( s ) of Eq. (17.12) is used and the controller parameters for  G   c  ( s ) are 
 K   c    �  2.84 and  t   I    �  5.0, the feedforward-feedback response to a unit-step change 
in  C   i   is shown as curve II in  Fig. 17–23 . For comparison, the response for feed-
back control only is also shown in  Fig. 17–23 .     

FIGURE 17–23
Comparison of conventional feedback control with feedforward-feedback control for Example 17.3. 
Curve I: PI control with Kc � 2.84 and tI � 5. Curve II: Feedforward-feedback control with 
Kc � 2.84, tI � 5, and Gf � �(3s � 1)/(1.4s � 1).
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  17.3 RATIO CONTROL 

  An important control problem in the chemical industry is the combining of two or more 
streams to provide a mixture having a desired ratio of components. Examples of this 
mixing operation include the blending of reactants entering a chemical reactor or for the 
injection of a fuel/air mixture into a furnace. 

FIGURE 17–22
Open-loop response for step change in Ci for Example 17.3. Curve I: Gf � �1, 
curve II: Gf � �(3s � 1)/(1.4s � 1).
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  Figure 17–24 a   shows an example of a ratio control system. It depicts a control 
system for blending two liquid streams  A  and  B  to produce a mixed stream having 
the ratio  K   r   in units of mass  B /mass  A.  Stream  A,  which is uncontrolled, is used to 
adjust the flow of stream  B  so that the desired ratio is maintained. The measured 
signal for stream  A  is multiplied by the desired ratio  K   r   to provide a signal that is the 
set point for the flow control loop for stream  B.  The parameter  K   r   can be adjusted to 
the desired value. Control hardware is available to perform the multiplication of two 
control signals. 

FIGURE 17–24
(a) Ratio control system; (b) block diagram for ratio control (set point � G K Qm r A1 ).
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A block diagram of the ratio control system is shown in Fig. 17–24b. In a flow con-
trol loop, the dynamic elements consist of the controller, the flow-measuring element, 
and the control valve. For incompressible fluids, there is no lag between the change in 
valve position and the corresponding flow rate. For this reason, the transfer function 
between the valve and the measurement of flow rate is simply unity. The block diagram 
also shows a transfer function Gp that relates the flow rate of B to the supply pressure of B. 
A transfer function Gm1  is also shown that represents the dynamic lag of the flow-
measuring element for stream A.
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 From the block diagram, the flow of  B  may be written   

  
Q

G K G G

G G G
Q

G

G G G
PB

m r c v

c v m
A

p

c v m
B�

�
�

�
1

2 21 1   

The control action for a flow control system is usually PI. The integral action is needed 
to eliminate offset and thereby establish a precise ratio of the mixed streams of  A  and 
 B.  Derivative action is usually avoided in flow control because the signal from a flow-
measuring element is inherently noisy. The presence of derivative action would amplify 
the noise and give poor control. 

 An example system from the LOOP-PRO software package (Cooper, 2005) is the 
control of the air/fuel ratio being fed to a process furnace. A description of the process 
from “Practical Process Control” that accompanies the software is as follows.  

 A furnace burns natural gas to heat a process liquid. The measured process variable is the 
temperature of the process liquid as it exits the furnace. To maintain temperature, controllers 
adjust the feed rate of combustion air and fuel to the firebox using a ratio control strategy. The 
flow rate of the process liquid acts as a load disturbance to the process. . . . For the furnace, the 
independent stream is the combustion air flow rate and the dependent stream is the fuel flow 
rate. Note that while air flow rate is considered the independent stream for ratio control, its 
flow rate is specified by the temperature controller on the process liquid exiting the furnace.  

 The process diagram is shown in  Fig. 17–25 . 

FIGURE 17–25

Screen shot from LOOP-PRO "Furnace
Air/Fuel Ratio" Case Study (Cooper, 2005)
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 This computer simulation by Cooper is an excellent means of exploring the behavior of 
a ratio control system. Additionally, he points out some interesting environmental and 
safety considerations that factor into the design of such a control system, such as

    • Avoiding unburned hydrocarbons and carbon monoxide in the flue gases (too 
fuel-rich)  

   • Avoiding excess energy losses (too much air, a fuel-lean situation)  
   • Avoiding an explosive situation if the airflow fails (fail-safe considerations)   

This interesting example provides some insights into the application of ratio control in 
a real-world situation.   

  17.4  DEAD-TIME COMPENSATION (SMITH 
PREDICTOR) 

  Processes that contain a large transport lag     [ ]exp �t Ds( )    can be difficult to control 
because a disturbance in set point or load does not reach the output of the process until 
 t   D   units of time have elapsed. The control strategy to be described here, which is also 
known as dead-time compensation, attempts to reduce the deleterious effect of trans-
port lag. Dead-time compensation, which is also referred to as a Smith predictor, was 
first described by O. J. M. Smith (1957). 

 Consider the single-loop control system of  Fig. 17–26  in which the process trans-
fer function  G   p   ( s ) is to be modeled by      

G s G s ep
sD( ) ( )� �t

 (17.13)
 

FIGURE 17–26
Control system.

R Gc(s) Gp(s) C

U

+ +
+

−

 The right side of Eq. (17.13) is the product of a transport lag [exp(–  t   D    s )] and a trans-
fer function  G ( s ), which has minimum phase characteristics, such as 1/( t   s   �  1). For 
convenience in developing the dead-time compensation method, only a change in set 
point  R  will be considered. If a step change is made in  R,  the disturbance will not 
break through and appear at  C  until  t   D   units of time elapse. Up to time  t   D  , no control 
action occurs, with the result that the overall closed-loop response will be sluggish and 
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generally unsatisfactory. To overcome this difficulty, Smith suggested that  G   p   ( s ) be 
modeled according to Eq. (17.13) and that additional feedback paths be inserted into 
 Fig. 17–26  as shown in  Fig. 17–27 a  .   

 If  G   p   ( s ) is modeled exactly by Eq. (17.13), a close study of  Fig. 17–27 a   shows 
that the signals entering comparator  A  will be identical; as a result, the signals cancel 
and cause the output of comparator  A  to be zero. The net effect is to completely elimi-
nate the outer feedback path; this simplification is shown in  Fig. 17–27 b  . 

FIGURE 17–27
(a) Dead-time compensation (Smith predictor) block diagram; (b) equivalent diagram for part (a) 
when G G s ep

sD� �( ) .tG G s ep
sD� �( ) .t
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 The system of  Fig. 17–27 b   is now much easier to control because the transport 
lag is not present in the loop. Of course, in the real system the transport lag is still 
present; we have eliminated it in a mathematical sense from the feedback path by the 
additional feedback paths of  Fig. 17–27 a   and the assumption that the process transfer 
function  G   p   ( s ) can be modeled exactly as shown in Eq. (17.13). To achieve the simpli-
fication suggested by  Fig. 17–27 b  , we must now face reality and realize that the signal 
 C  1  in  Fig. 17–27 b   is not available to feed back. Only the signal  C  can be measured and 
fed back to the controller. In terms of controller hardware implementation, the dia-
gram of  Fig. 17–27 a   is redrawn in  Fig. 17–28 a   to show which portion of the diagram 
will be implemented with controller hardware.  Figure 17–28 b  , which is another way 
to represent  Fig. 17–28 a  , is a form sometimes presented in the literature for dead-time 
compensation. The reader may legitimately ask whether hardware exists to actually 
implement what is shown within the dotted lines in  Fig. 17–28 . Until the appearance of 
microprocessor-based controllers, the answer was no. However, today many commer-
cially available controllers provide dead-time compensation [exp(�  t   D    s )] and  G ( s ) in 
the form of a first-order lag [1/( t   s    �  1)]. 
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 The recommended procedure for applying dead-time compensation is as follows:

   1. Model  G   p   ( s ) by using a first-order plus dead-time (FOPDT) model   

  
1

1t
t

s
e Ds

�
�   

 In this step, we have chosen  G ( s ) of  Fig. 17–28 a   to be first-order. Many processes 
in chemical engineering can be modeled by a first-order lag with dead time.  

  2. By means of appropriate hardware, implement the controller portion of  
Fig. 17–28 a   or  b.  If  G   p   ( s ) can be exactly modeled by a first-order process with 
dead time, the response of the control system in  Fig. 17–28  will be equivalent to 
the response obtained for the system in  Fig. 17–27 b   in which the loop involves the 
control of a first-order process. In most practical situations, there will be some mis-
match between  G   p   ( s ) and its first-order with dead-time model. The greater the mis-
match, the greater the deterioration in control response from the ideal situation of 
 Fig. 17–27 b  . The application of the dead-time compensation technique and the effect 
of mismatch between  G   p   ( s ) and its model will be illustrated in Example 17.4.    

FIGURE 17–28
Hardware implementation of dead-time compensation.
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Example 17.4.   Dead-time compensation.   Consider the control system shown 
in  Fig. 17–29  in which the process is fourth-order; thus   

  
G s

s
p ( ) 



�

�

1

1

4

   

In a practical situation, we would not know the transfer function of the process. 
In this example, we have taken the process model to be fourth-order to provide a 
system sufficiently complex to show considerable transfer lag. 

FIGURE 17–29
Control system for Example 17.4.
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One can show for the system in Fig. 17–29 that the ultimate gain and the corre-
sponding period are Kcu � 4 0.  and Pu � 2p. Using the Ziegler-Nichols rules, 
one gets Kc � 2.0. The response for a unit-step change in set point for Kc � 2 is 
shown in curve I of Fig. 17–32. Notice that the decay ratio is about 1

4 .
 We now use the dead-time compensation method to control the process in 

 Fig. 17–29 . If we fit the step response of ( s   �  1)  � 4  to a first-order with dead-time 
model, we obtain   

  

1 03

2 62 1
1 79.

.
.

s
e s

�
�

   

This model was obtained from a unit-step response using a least-squares fit pro-
cedure. We can now draw the diagram for the dead-time compensation system as 
shown in  Fig. 17–30 . 

FIGURE 17–30
Dead-time compensation for Example 17.4.
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 The system shown in  Fig. 17–30  was simulated by computer to compare the 
responses of the two control systems as shown in  Fig. 17–32 . The Simulink block 
diagram for the simulation is shown in  Fig. 17–31 . 

  FIGURE 17–31
  Simulink model for Example 17.4.
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 Using a  K   c   of 2.0 (the Ziegler-Nichols value) for the conventional control, 
we see from curve I that the response is quite oscillatory and has an offset of 
0.333 as required for this value of gain. Using a  K   c   of 4.0 for the dead-time com-
pensation, we see that the response is less oscillatory and the offset is 0.20. Note 
that if a  K   c   of 4.0 were applied to the conventional control system, the system 
would be on the verge of instability since a  K   c   of 4.0 is the ultimate gain. 

FIGURE 17–32
Comparison of response for conventional control with response for dead-time 
compensation for Example 17.4.

150

C

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.0

II Dead-time compensation, Kc = 4

I Conventional control, Kc = 2

30
t

cou9789x_ch17_351-390.indd   377cou9789x_ch17_351-390.indd   377 8/22/08   6:13:30 PM8/22/08   6:13:30 PM



Confirming Pages

378 PART 5 PROCESS APPLICATIONS

 In conclusion, the dead-time compensation has permitted the use of a higher 
value of  K   c  , reduced the offset, and produced a less oscillatory response. The 
dead-time compensation response shown in  Fig. 17–32  can be improved by add-
ing integral action to the controller and tuning the controller parameters.  

 To successfully apply dead-time compensation to the control of a process, one 
must have an accurate model of the process, such as a first-order with dead-time model. 
The parameters in this model ( t  and  t   D  ) can be considered as controller parameters 
along with the controller parameters of  G   c   ( s ). For the case of dead-time compensation 
with proportional control in Example 17.4, we actually have three controller param-
eters:  K   c  ,  t   D  , and  t . If the process dynamics [ G   p   ( s )] changes, all three parameters may 
need adjustment to achieve good control.   

  17.5 INTERNAL MODEL CONTROL 

  Internal model control (IMC), which is based on an accurate model of the process, leads 
to the design of a control system that is stable and robust. A robust control system is one 
that maintains satisfactory control in spite of changes in the dynamics of the process. 
In applying the IMC method of control system design, the following information must 
be specified:

    • Process model  
   • Model uncertainty  
   • Type of input (step, ramp, etc.)  
   • Performance objective (integral square error, overshoot, etc.)   

In many industrial applications for control systems, none of the above items is avail-
able, with the result that the system usually performs in a less than optimum manner. 
Determining the mathematical model and its uncertainty can be a difficult task. When 
the process is not sufficiently understood to obtain a mathematical model by applying 
fundamental principles, one must obtain a model experimentally. A discussion on the 
modeling of a process is presented in Chap. 18. The choice of a performance objec-
tive is subjective and often arbitrary. In the IMC method, the integral square error is 
implied. 

 A simple description of the IMC method will be presented here. The interested 
reader is advised to consult the book by Morari and Zafiriou (1989) for a full treatment 
of internal model control. The literature on IMC is difficult to understand without a 
good foundation in control theory and mathematics. A full treatment of IMC is beyond 
the scope of this text. It is hoped that the simple treatment given here will stimulate 
interest in this important area of process control.  

   Internal Model Control Structure 

 A block diagram of an IMC system is shown in  Fig. 17–33 a  . Notice that the diagram 
is similar to the diagram for the Smith predictor method shown in  Fig. 17–27 a  . In this 
diagram,  G  is the transfer function of the process and  G   m   is the model of the process. 
Although  G  and  G   m   are called the transfer functions of the process, they actually include 
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the valve and the process. The transfer function of the measuring element is taken as 
1.0. The portion of the diagram that is implemented by the computer includes the IMC 
controller and the model; this portion is surrounded by the dotted boundary. 

 To compare the IMC structure of  Fig. 17–33 a   with the conventional control 
structure, the diagram of  Fig. 17–33 a   has been rearranged as shown in  Fig. 17–33 b  . For 
convenience, the transfer function through which the load  U  passes has been omitted. 
We show only the output from the load block ( U  1 ). 

FIGURE 17–33
Internal model control structures: (a) basic structure; (b) alternate structure; (c) structure equivalent.
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 We may use the structure in  Fig. 17–33 b   to relate the IMC controller to the con-
ventional controller. Replacing the inner loop of  Fig. 17–33 b   with a single block gives 
the structure shown in  Fig. 17–33 c  . Since this structure is the conventional single-loop 
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control structure, we can identify the single controller block as  G   c  . After one designs 
the IMC controller ( G   I  ) by the method to be described, one can determine the equiva-
lent conventional controller  G   c   by the relation   

  

G
G

G G
c

I

I m
�

�1
   

(17.14)  

For the structure shown in  Fig. 17–33 a  , one can show that   

  
C U

GG

G G G
R UI

I m
� �

� �
�1 1

1 ( ) ( )
  

 (17.15)  

If the model exactly matches the process (i.e.,  G   m    �   G ), the only signal entering com-
parator 1 in  Fig. 17–33 a   is  U  1 . (The signals from  G  and  G   m   are equal and cancel each 
other in going through comparator 2.) Since  U  1  is not the result of any processing by the 
transfer functions in the forward loop,  U  1  is not a feedback signal but an independent 
signal that is equivalent to  R  in its effect on the output  C.  In fact, there is no feedback 
when  G   �   G   m  , and we have an open-loop system as shown in  Fig. 17–34 . In this case 
the stability of the control system depends only on  G   I   and  G   m  . If  G   I   and  G   m   are stable, 
the control system is stable. 

FIGURE 17–34
IMC structure when model matches the process (Gm � G).
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 Ideally, we should like to have  C  track  R  without lag when only a set point change 
occurs (i.e.,  U  1   �  0). For this to occur, we see from  Fig. 17–34  or Eq. (17.15) that 
 G   I    G   �  1, or since  G   �   G   m  , we may write  G   I    G   m    �  1. Solving for  G   I   gives   

  
G

G
I

m
�

1

   
(17.16)  

Equation (17.16) simply states that the IMC controller should be the inverse of the 
transfer function of the process model.  Keep in mind that Eq. (17.16) is based on the 
assumption that the model exactly matches the process.  

 For the case of only a change in load  U  1  (i.e.,  R   �  0), we should like to have 
the output  C  remain unchanged (i.e.,  C   �  0). For this to occur, we see again from 
 Fig. 17–34  or Eq. (17.15) that  G   I    G   m    �  1; this leads to the same result as given by 
Eq. (17.16). 
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 Even if there is no mismatch between the model and the process, the applica-
tion of Eq. (17.16) will usually lead to a transfer function that cannot be implemented 
because it will be unstable, requires prediction, or requires pure differentiation. For 
example, if  G   m    �  1/( t  s   �  1), the application of Eq. (17.16) gives   

  G sI � �t 1   

This result is equivalent to an ideal PD controller, which cannot be implemented because 
of the derivative term. If  G   m    �   e  � t  s  /( t  1  s   �  1), we obtain   

  G s eI
s� �t t

1 1( )   
The term  e   t  s  , which represents prediction, cannot be implemented. If  G   m    �  (1 �  s )/
[(1  �   s )( t  s   �  1)], then   

  
G

s s

s
I �

� �

�

1 1

1

( )( )t

   

The term 1 �  s  in the denominator means that a pole is in the right half-plane, which 
leads to an unstable controller. With such difficulties of implementation of the internal 
model controller, one might ask if any practical result can be obtained. These difficul-
ties can be overcome by application of the following simplified procedure.  

  Design of IMC Controllers 

 In using these rules, only a step change in disturbance is considered. The procedure for 
disturbances other than a step response is more complicated and beyond the scope of 
the limited discussion presented here. 

   1. Separate the process model  G   m   into two terms   
  

G G Gm m ma m�
   

(17.17)  

 where     Gma    is a transfer function of an all-pass filter. An all-pass filter is one for 
which     G jma w( ) � 1    for all  w . Examples are     e d s�t    and (1 �  s )/(1  �   s ). The     Gmm    
is a transfer function that has minimum phase characteristics. A system has nonmini-
mum phase characteristics if its transfer function contains zeros in the right half-plane 
or transport lags, or both. Otherwise, a system has minimum phase characteristics. 

For a step change in disturbance ( R   �  1/ s  or  U  1   �  1/ s ),  G   I   is determined by   

  G
G

I
mm

�
1   (17.18)  

 For a disturbance other than a step change, obtaining  G   I   is more complicated and 
the reader is referred to Morari and Zafiriou (1989). 

            The results of applying Eq. (17.18) will yield a transfer function that is stable 
and does not require prediction; however, it will have terms that cannot be imple-
mented because they require pure differentiation (e.g.,  t  s   �  1).  
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  2. To obtain a practical IMC controller, one multiplies  G   I   in step 1 by a transfer func-
tion of a filter  f ( s ). The simplest form recommended by Morari and Zafiriou is 
given by   

  
f s

s n( )
( )

�
�

1

1λ  
 (17.19)  

 where  l  is a filter parameter and  n  is an integer. The practical IMC controller  G   I   
can now be expressed as   

  
G

f

G
I

mm

�
   

(17.20)  

 The value of  n  is selected large enough to give a result for  G   I   that does not require 
pure differentiation. For the simple treatment of IMC design presented here,  l  will 
be considered as a tunable parameter. In the full treatment of IMC given by Morari 
and Zafiriou,  l  can be related to the model uncertainty. In practice, model uncer-
tainty may not be available, in which case one is forced to treat  l  as a tunable 
parameter.  

  3. If one wants to obtain the conventional controller transfer function  G   c  , use is made 
of Eq. (17.14), with  G   I   obtained from Eq. (17.20). For many simple process mod-
els,  G   c   turns out to be equivalent to a PID controller multiplied by a first-order 
transfer function; thus   

  
G K s

s s
c c D

I
� � �

�
1

1 1

11
t

t t










  

 (17.21)

  

 where  K   c  ,  t   D  ,  tI  , and  t  1  are functions of  l  and the parameters in  G   I   and  G   m  . The 
examples that follow will illustrate the application of this simplified procedure for 
designing an IMC controller.   

Example 17.5.   Internal model control.   Design an IMC controller for the pro-
cess which is first-order:   

  
G

K

s
m �

�t 1   

For this case     Gma � 1    and     G K smm � �/ .t 1( )    Applying Eq. (17.18) gives   

  
G

G

s

K
I

mm

� �
�1 1t

   

To be able to implement this transfer function, let  f ( s )  �  1/( l   s   �  1). The IMC 
controller becomes   

  
G

K

s

s
I �

�

�

1 1

1

t
l    
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This result is a lead-lag transfer function that can be easily implemented with 
computer-based controllers. We may now obtain  G   c   from Eq. (17.14).   

  
G

G

G G
c

I

I m
�

�1    
Introducing the expressions for  G   I   and  G   m   into this equation gives   

  

G

s

K s

s

K s

K

s

s

K s
c �

�

�

�
�

� �

�
�

�

t
l
t
l t

t
l

t
l

1

1

1
1

1 1

1( )

( )
KK s

1
1

�
t







   

This result is in the form of a PI controller:   

  
G K

s
K

K
c c

I
c I� � � �1

1

t
t
l

t t



    

Although this design procedure results in the equivalence of a PI controller, only 
one parameter ( l ) must be used to tune the controller. This is a distinct advantage 
over the use of a conventional controller in which both  K   c   and  t   I   must be tuned.  

Example 17.6.   Internal model control.   Design an IMC controller for a process 
which is first-order with transport lag   

  
G K

e

s

d s

�
�

�t

t 1   
In the model of this process, use as an approximation to the transport lag a first-
order Padé approximation [see Eq. (7.48)]; thus   

  
e

s

s
d s d

d

� �
�

�
t t

t
1 2

1 2

/

/

( )
( )   

The model becomes   

  
G K

s

s s
m

d

d
�

�

� �

1 2

1 2

1

1

t
t t

/

/

( )
( )   

For this model,   

  
G

s

s
m

d

d
a �

�

�

1 2

1 2

t
t

/

/
( )

( )
( ) an all-pass filter

   

and   

  G
K

s
mm

�
�t 1   

Following the same steps as used in Example 17.5, we obtain for the IMC 
controller   

  
G

K

s

s
I �

�

�

1 1

1

t
l     
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 It is instructive to see the form  G   c   takes for this example. Applying Eq. (17.14) 
gives   

  

G
G

G G

s

K s

s

K s

K
c

I

I m d
�

�
�

�

�

�
�

�

�1

1

1

1
1

1

1 2

t
l

t
l

t
( )

( )
/(( ) 

( ) ( )
s

s sd1 2 1� �t t/   
This may be reduced algebraically to the form given by Eq. (17.21) with   

  
Kc

d

d
�

�

�

2

2

t t
l t( )      

  
t t t

I
d� �
2      

  
t tt

t tD
d

d
�

�2       

  
t lt

l t1
2

�
�

d

d( )    

 The response of this first-order with transport lag system for several values 
of  l  and for  K   �  1,  t   �  1, and  t   d   �  1 is given in  Fig. 17–35 . The values of  K   c  ,  t   I  ,  t   d  , 
and  t  1  obtained from the above relations are shown in  Table 17.2 . Notice that once a 
model is accepted, the tuning of the modified IMC controller [Eq. (17.21)] depends 
only on the choice of  l . For the range of  l  used,  Fig. 17–35  shows that the step 
response is only slightly oscillatory for all values of  l , and the fastest response is 
for  l   �  0.5. Also notice that  l  affects only  K   c   and  t  1 . This example shows that the 
design of a controller by the IMC method is a straightforward procedure and leads to 
a controller that requires the adjustment of only one parameter,  l . 

FIGURE 17–35
Response for IMC designed controller of Example 17.6.
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  TABLE 17.2 

 IMC derived controller settings for Example 17.6 

l 0.5 1.0 1.5 2.0
Kc 1.0 0.75 0.60 0.5
tI 1.5 1.5 1.5 1.5
tD 0.33 0.33 0.33 0.33
t1 0.167 0.25 0.30 0.33

 It is instructive to compare the response for the IMC derived controller 
with the response for a PI controller using Ziegler-Nichols (Z-N) settings. The 
responses, which are given in  Fig. 17–36 , show that for this particular exam-
ple the controller using Z-N settings produces a response with less overshoot 
and a higher frequency of oscillation than the controller designed by the IMC 
method. 

 These two examples show clearly how the parameters of the conventional 
controller  G   c   are related to the parameters of the model and the filter. 

 The treatment of internal model control presented here has been limited 
to single-input, single-output continuous systems for which the disturbance is a 
step change. Furthermore, we have not discussed the use of model uncertainty 
in selecting the filter parameters. Internal model control has been extended to 
sampled-data control systems and to multiple-input, multiple-output systems. 
IMC is an approach to the design of control systems that considers the process 
model as an essential part of the control system design. Computer-based control-
lers have the capability of implementing many of the control algorithms designed 
by the IMC method. There is no longer a need to be tied to the classical control 
algorithms.      

FIGURE 17–36
Comparison of response for IMC controller and conventional controller for Example 17.6: 
Curve I: IMC derived controller with l � 1.0; curve II: PI controller with Ziegler-Nichols settings 
(Kc � 1.02 and tI � 2.84).
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   SUMMARY 

 In this chapter, we have examined five advanced control strategies. The first three on 
cascade control, feedforward-feedback control, and ratio control are advanced only in 
the sense that each strategy is more complex than the single-loop systems we have 
encountered up to this chapter. These three strategies are used extensively in industry, 
and computer-based controllers can implement them easily. The other strategies, on 
Smith prediction and internal model control (IMC), are less likely to be used in industry 
and are closely related in their block diagram structure. Three of the strategies—feed-
forward-feedback, Smith prediction, and IMC—are dependent on accurate models of 
the processes for their application. 

 Cascade control is especially useful in reducing the effect of a load disturbance 
that is located far from the control variable and that moves through the system slowly. 
The presence of the inner control loop reduces the lag in the outer loop, with the result 
that the cascade system responds more quickly to a load disturbance. 

 If a particular load disturbance occurs frequently, the quality of control can often 
be improved by applying feedforward control. Ideally the transfer function of the feed-
forward controller is obtained from knowledge of the model of the process. In cases 
where the feedforward controller transfer function requires prediction (for example, 
 t   f    s   �  1), one must be satisfied with an approximation of the feedforward controller, 
which takes the form of a lead-lag transfer function. When a model of the process does 
not exist, the feedforward controller can be tuned after doing some open-loop step tests 
that relate the control variable to the load disturbance. To provide for load disturbances 
that cannot be measured or anticipated, feedforward control is always combined with 
feedback control in a practical situation. 

 Ratio control is widely used in industry in the blending of two component streams 
( A  and  B ) to produce a mixed stream of desired composition (i.e., ratio of components). 
Ratio control is essentially a flow control problem in which the flow measurement of 
stream  A  (the wild stream) is used to compute the set point for the flow of stream  B  so 
that the desired ratio of components will be obtained. 

 The Smith predictor control scheme (dead-time compensation) was developed to 
improve the control of a system having a large transport lag. The method is based on a 
model of the process that is first-order with dead time. By introducing inner loops that con-
tain elements of the transfer function of the model, the control system is transformed ideally 
to one without transport lag, a system that is much easier to control. This ideal situation 
occurs when the process and the model are in exact agreement. In reality, the success of the 
Smith predictor strategy depends on the degree of agreement between process and model. 

 Internal model control resembles the Smith predictor strategy in terms of the 
structure of the block diagram. To apply the IMC method, one must have an accurate 
model of the process, the model uncertainty, the type of disturbance (step, ramp, etc.), 
and the performance objective (integral of square error). The method, which is based on 
a rigorous mathematical foundation, leads to an IMC controller that is the best that can 
be designed in terms of the performance objective. The IMC structure can be reduced 
to a conventional control structure in which the conventional controller is related to 
the IMC controller and the parameters of the model. For many simple processes with 
simple disturbance (impulse, step, etc.), the equivalent conventional controller based on 
the IMC design method turns out to be the equivalent of a PID controller.  
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  PROBLEMS 

   17.1.    ( a )  Obtain  G   f   for the feedforward-feedback system shown in  Fig. P17–1  so that  C  does not 
change when a disturbance in  C   i   occurs. Would there be any problem in implementing 
this  G   f  ?  

  ( b ) If  G   f   is to be a lead-lag transfer function   

  

T s

T s
1

2

1

1

�

�   
 determine  T  1  and  T  2  by the Foxboro rule. How do you determine whether lead or lag is 

to predominate? Use  t   p    �  1.0 in the Foxboro rule.  
  ( c ) When feedforward-feedback control is present, sketch the response  C ( t ) when  C   i    �  1/ s  

and when  G   f   from part ( a ) is used.  
  ( d ) Repeat part ( c ) when  G   f   from part ( b ) is used. Only a rough sketch that suggests the 

transient response is expected in this case.  
  ( e ) Determine  C ( t ) when  C   i    �  1/ s,   G   f    �   � 1, and the feedback loop is broken at  A-A.  

Obtain the numerical value of  C ( t ) at  t   �  0.5, 1.0, and 1.5.       

R = 0 C

−

+
K = 1

A

A

Ci =

Gf

+
+ +

+
+

(s + 1)2

1

s + 1

11
s

 FIGURE P17–1 
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  CHAPTER 

17 
CAPSULE SUMMARY 

  CASCADE CONTROL 

 Cascade control is used for improved disturbance rejection. It employs two controllers, 
a primary controller and a secondary controller. The primary controller provides the set 
point for the secondary controller. 

 

Primary
process variable

Primary
set point

+

−

+ +
+

−

Disturbance
L

TfGc1
Gc2

Gm1

Gm2

Gv Gjacket GkettleR To

Final control
element

Primary
controller

Secondary
process variable

Secondary
controller

Primary
process

Secondary
process

  FEEDFORWARD CONTROL 

 Feedforward control is usually used in conjunction with feedback control to improve 
disturbance rejection. A model of the process is used to predict the effect of a distur-
bance on the process. This information instructs the controller on how to preemptively 
take action to negate the effect of the disturbance. 

R C

−

+
Gp

Process

Gc

Feedback
controller

Feedforward controller

Disturbance
G1Ci

Gf

+
+ +

+
+
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  RATIO CONTROL 

 Ratio control is a control strategy used to control the blending of two components in a 
desired ratio. 

Flow-measuring
element

Controller

Flow-measuring
element

Set
point

Kr

Fluid A

Fluid B
PB = supply pressure

qA

qB

 

  SMITH PREDICTOR CONTROL 

 Sometimes referred to as dead-time compensation, this control strategy is used to coun-
teract the deleterious effects of dead time on process control. A model of the process is 
used to predict and negate the effect of dead time. 

R C

−−

+
Gp

C1

Process
M

Gc(s)

G(s)

Controller

Process
model

Dead
time

+
+

+

e−  Ds

 

  INTERNAL MODEL CONTROL 

 Internal model control resembles the Smith predictor strategy in terms of the structure 
of the block diagram. To apply the IMC method, one must have an accurate model 
of the process, the model uncertainty, the type of disturbance (step, ramp, etc.), and 
the performance objective (integral of square error). The method, which is based on a 
rigorous mathematical foundation, leads to an IMC controller that is the best that can 
be designed in terms of the performance objective. The IMC structure can be reduced 
to a conventional control structure in which the conventional controller is related to 
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the IMC controller and the parameters of the model. For many simple processes with 
simple disturbance (impulse, step, etc.), the equivalent conventional controller based on 
the IMC design method turns out to be the equivalent of a PID controller.  
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G1

GM C

U1
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CHAPTER

18

The selection of a controller type (P, PI, PID) and its parameters (Kc, tI, tD) is inti-
mately related to the model of the process to be controlled. The adjustment of 

the controller parameters to achieve satisfactory control is called tuning. The selec-
tion of the controller parameters is essentially an optimization problem in which the 
designer of the control system attempts to satisfy some criterion of optimality, the result 
of which is often referred to as “good” control. The process of tuning can vary from a 
trial-and-error attempt to find suitable control parameters for good control to an elabo-
rate optimization calculation based on a model of the process and a specific criterion of 
optimal control. In many applications, there is no model of the process, and the criterion 
for good control is only vaguely defined. A typical criterion for good control is that the 
response of the system to a step change in set point or load have minimum overshoot 
and a one-quarter decay ratio. Other criteria may include minimum rise time and mini-
mum settling time.

In the first part of this chapter, some of the widely used tuning rules for continu-
ous controllers will be presented. In the second part of the chapter, methods for deter-
mining the model of a process from experimental tests will be described. Determining 
the model of a process experimentally is referred to as process identification.

18.1 CONTROLLER TUNING

Before we present tuning rules, some discussion of the effect of each mode in a PID 
controller on the transient response of a controlled process will be instructive.

Selection of Controller Modes

Consider a typical loop as shown in Fig. 18–1 in which the process is second-order and 
the measuring element is a transport lag. (The transfer function of the valve is taken 

CONTROLLER TUNING AND 
PROCESS IDENTIFICATION
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as 1.) Load responses for this process for four types of controllers (P, PD, PI, PID) are 
shown in Fig. 18–2. For each response curve, the process was subjected to a unit-step 
change in load (U � 1/s), and the controller parameters were selected by tuning rules to 
be presented later. Regardless of the specific tuning rules used, the responses shown in 
Fig. 18–2 are typical of well-tuned controllers for systems found in industry. The nature 
of the response for each type controller will now be described. (The reader should also 
refer to Figs. 9–10 and 16–18 to reinforce this discussion.)

R

B
e−s

C 

−

+

(10s + 1)(s + 1)

1

U

+

+
Gc

FIGURE 18–1
Typical control system used to study the effect of controller modes on load 
responses shown in Fig. 18–2.

10 200

C

−0.10

0.00

0.10

0.20
PD

PD

PI

P

t

FIGURE 18–2
Load response of a typical control system using 
various modes of control (process shown in Fig. 18–1).

PROPORTIONAL CONTROL. As shown in Fig. 18–2, proportional control produces 
an overshoot followed by an oscillatory response, which levels out at a value that does 
not equal the set point; this ultimate displacement from the set point is the offset.

PROPORTIONAL-DERIVATIVE CONTROL. For this case the response exhibits a 
smaller overshoot and a smaller period of oscillation compared to the response for pro-
portional control. The offset that still remains is less than that for proportional control.

PROPORTIONAL-INTEGRAL CONTROL. In this case, the response has about the same 
overshoot as proportional control, but the period is larger; however, the response returns 
to the set point (offset � 0) after a relatively long settling time. The most beneficial 
influence of the integral action in the controller is the elimination of offset.
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PROPORTIONAL-INTEGRAL-DERIVATIVE CONTROL. As one might expect, the 
use of PID control combines the beneficial features of PD and PI control. The response 
has lower overshoot and returns to the set point more quickly than the responses for the 
other types of controllers.

From the nature of the responses just described, we can make the following gen-
eralizations. Integral action, which is present in PI and PID controllers, eliminates off-
set. The addition of derivative action speeds up the response by contributing to the 
controller output a component of the signal that is proportional to the rate of change of 
the process variable.

For simple, low-order (first- or second-order) processes that can tolerate some 
offset, P or PD control is satisfactory. For processes that cannot tolerate offset and are 
of low order, PI control is required. For processes that are of high order (those with 
transport lag or many first-order lags in series), PID control is needed to prevent large 
overshoot and long settling time. There is probably little justification to select a P or PD 
controller for most processes. The PI controller is often the choice because it eliminates 
offset and requires only two parameter adjustments. Tuning a PID controller is more 
difficult because three parameters must be adjusted. The presence of derivative action 
can also cause the controller output to be very jittery if there is much noise in the sig-
nals. We now turn our attention to some of the criteria for good control that are used to 
judge whether a control system is well tuned.

Criteria for Good Control

Before we can be satisfied with the response of a control system for a choice of control 
parameters, we must have some concept of what we want as an ideal response. Most 
operators of processes know what they want in the form of a response to a change in 

set point or load. For example, a response that gives minimum overshoot and 1
4  decay 

ratio is often considered as a satisfactory response. In many cases, tuning is done by 
trial and error until such a response is obtained. To compare different responses that use 
different sets of controller parameters, a criterion that reduces the entire response to a 
single number, or a figure of merit, is desirable. The figure of merit provides a means 
of “keeping score” for the different control parameters, and as we shall see, the low 
“score” generally wins. It is dangerous, however, to rely solely on the score to deter-
mine the best choice for the control parameters. The control system designer should 
examine the nature of the response in conjunction with the requirements for the process 
to determine the “best” choice of settings.

One criterion that is often used to evaluate a response of a control system is the 
integral of the square of the error (ISE) with respect to time. The definition of ISE is as 
follows:

Integral of the square of the error (ISE)

 
ISE �

�
e dt2

0∫ (18.1)

where e is the usual error (i.e., set point – control variable). For a stable system for which 
there is no offset [i.e., e(�) � 0], Eq. (18.1) produces a single number as a figure of merit. 

cou9789x_ch18_391-422.indd   393cou9789x_ch18_391-422.indd   393 8/22/08   10:17:33 AM8/22/08   10:17:33 AM



Confirming Pages

394 PART 5 PROCESS APPLICATIONS

The objective of the designer is to obtain the minimum value of ISE by proper choice 
of control parameters. A response that has large errors and persists for a long time will 
produce a large ISE. For the cases of P and PD control, where offset occurs, the integral 
given by Eq. (18.1) does not converge. In these cases, one can use a modified integrand, 
which replaces the error r(t) � c(t) by c(�) � c(t). Since c(�) � c(t) does approach zero 
as t goes to infinity, the integral will converge and serve as a figure of merit.

Two other criteria often used in process control are defined as follows:

Integral of the absolute value of error (IAE)

 
IAE �

�
| |e dt

0∫ 
(18.2)

Integral of time-weighted absolute error (ITAE)

 
ITAE �

�
| |e t dt

0∫ 
(18.3)

Each of the three figures of merit, given by Eqs. (18.1), (18.2), and (18.3), has 
different purposes. The ISE will penalize (i.e., increase the value of ISE) the response 
that has large errors, which usually occur at the beginning of a response, because the 
error is squared. The ITAE will penalize a response that has errors that persist for a long 
time. The IAE will be less severe in penalizing a response for large errors and treat all 
errors (large and small) in a uniform manner. The ISE figure of merit is often used in 
optimal control theory because it can be used more easily in mathematical operations 
(e.g., differentiation) than the figures of merit, which use the absolute value of error. In 
applying the tuning rules to be discussed in the next section, these figures of merit can 
be used in comparing responses that are obtained with different tuning rules.

Example 18.1. For the control system shown in Fig. 18–1, determine the ISE, 
ITAE, and IAE for a unit-step load disturbance. Let the controller be a PI control-
ler with Kc � 6 and tI � 4.

Simulink can be used to easily simulate this process and calculate the fig-
ures of merit. The Simulink block diagram is shown in Fig. 18–3.

The response generated using the model of Fig. 18–3 of the process for 
these controller settings is shown in Fig. 18–4.

The figures of merit alone tell us nothing unless they are compared with 
figures for other controller settings. Remember, the goal is generally to obtain 
the lowest value. Once we have a Simulink model such as this prepared, it is 
relatively easy to check a variety of controller settings. We compare some other 
controller settings and their figures of merit shortly.

18.2 TUNING RULES

Ziegler-Nichols (Z-N) Rules

These rules were first proposed by Ziegler and Nichols (1942), who were engineers for 
a major control hardware company in the United States (Taylor Instrument Co.). Based 
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FIGURE 18–3
Simulink model for Example 18.1
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FIGURE 18–4
Process response for Example 18.1

on their experience with the transients from many types of processes, they developed 
a closed-loop tuning method still used today in one form or another. The method is 
described as a closed-loop method because the controller remains in the loop as an 
active controller in automatic mode. This closed-loop method will be contrasted with an 
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open-loop tuning method to be discussed later. We have already discussed the Ziegler-
Nichols rules in Chap. 16 as a natural consequence of our study of frequency response. 
Ziegler and Nichols did not suggest that the ultimate gain Kcu and ultimate period Pu 
be computed from frequency response calculations based on the model of the process. 
They intended that Kcu and Pu be obtained from a closed-loop test of the actual process. 
When the rules were first proposed, frequency response methods and process models 
were not generally available to the control engineers. The rules are presented below and 
are in the form that one would use for actual application to a real process.

1. After the process reaches steady state at the normal level of operation, remove the 
integral and derivative modes of the controller, leaving only proportional control. 
On some PID controllers, this requires that the integral time tI be set to its maxi-
mum value and the derivative time tD to its minimum value. On computer-based 
controllers, the integral and derivative modes can be removed completely from the 
controller.

2. Select a value of proportional gain Kc, disturb the system, and observe the transient 
response. If the response decays, select a higher value of Kc and again observe 
the response of the system. Continue increasing the gain in small steps until the 
response first exhibits a sustained oscillation. The value of gain and the period of 
oscillation that correspond to the sustained oscillation are the ultimate gain Kcu and 
the ultimate period Pu.

Some very important precautions to take in applying this step of the tuning method are 
given in the next section.

3. From the values of Kcu and Pu found in step 2, use the Ziegler-Nichols rules given 
in Table 18.1 to determine controller settings (Kc, tI, tD). (This table is the same as 
Table 16.1.)

Although variations in the tuning rules given in Table 18.1 are used by industry, 
the same approach of using Kcu and Pu to obtain controller parameters is used. The 
Ziegler-Nichols rules generally provide conservative (and safe) controller settings. The 
Z-N settings should be considered as only approximate settings for satisfactory control. 
Fine-tuning of the controller settings is usually required to get an improved control 
response.

TABLE 18.1

Ziegler-Nichols controller settings

Type of control Gc(s) Kc sI sD

Proportional (P) Kc 0.5Ku

Proportional-integral (PI) K
s

c
I

1
1

�
t







0.45Ku
Pu

1 2.

Proportional-integral-derivative (PID) K
s

sc
I

D1
1

� �
t

t





0.6Ku
Pu

2

Pu

8
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The experimental determination of Kcu and Pu described in step 2 can be replaced 
by a computation using frequency response methods if an accurate model of the process, 
valve, and measuring element is known. This type of calculation was done in Chap. 16.

PRECAUTIONS TO TAKE IN APPLYING THE Z-N METHOD. Some discussion is 
needed to avoid some pitfalls in applying step 2 of the Z-N method to obtain Kcu and Pu. 
These precautions are concerned with the type and size of the disturbance that induces 
the response and with the avoidance of using a limit cycle as the indication that the 
system is on the threshold of instability.

The simplest way to introduce a disturbance is to move the set point away from the 
control variable for a short time and then return the set point to its original value. This 
procedure, which is equivalent to introducing a pulse function in the error, causes the 
system to respond and yet stay within a narrow band surrounding the normal operating 
point of the process.

An alternate type of disturbance would be to introduce a small step change in set 
point. If step changes in set point are used to induce transients, the successive step changes 
should alternate around the normal operating point of the process. It is also important 
to make the disturbance as small as possible, especially as the gain of the controller is 
increased, so that the valve and other components do not exceed their physical limits.

When the valve moves to its limits during a closed-loop transient, we say that the 
valve saturates. Under these conditions, a sustained oscillation occurs, which is called 
a limit cycle. The limit cycle that is caused by saturation is a nonlinear phenomenon, 
which will be covered in Chap. 25 on nonlinear control. If a limit cycle occurs, the gain 
that produces it and the period of the cycle should not be used in the Ziegler-Nichols 
rules. Since the limit cycle will appear to the observer to be the same as a sustained 
oscillation when the system is on the verge of instability, the novice will often mistak-
enly use the information derived from the limit cycle (controller gain and period) to 
obtain controller settings. A simple way to know if one has a limit cycle is to observe 
the swing in pressure to the valve. If the limits of the valve (e.g., 3 to 15 psig) are 
reached repeatedly during the oscillatory response, one has a limit cycle and the con-
troller gain and period should not be used to determine controller settings. It is for this 
reason step 2 states that Kc should be increased in small steps until the response first 
exhibits a sustained oscillation.

To appreciate the use of step 2 of the tuning method, one should have some labo-
ratory experience in tuning a real process, or at least a computer simulation of a process. 
The experienced operator can develop some shortcuts to finding the ultimate gain and 
ultimate period.

Cohen and Coon (C-C) Rules

The next method of tuning to be discussed is an open-loop method, in which the control 
action is removed from the controller by placing it in manual mode and an open-loop 
transient is induced by a step change in the signal to the valve. This method was pro-
posed by Cohen and Coon (1953) and is often used as an alternative to the Z-N method. 
Fig. 18–5 shows a typical control loop in which the control action is removed and the 
loop opened for the purpose of introducing a step change (M/s) to the valve. The step 
response is recorded at the output of the measuring element. The step change to the 
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valve is conveniently provided by the output from the controller, which is in manual 
mode. The response of the system (including the valve, process, and measuring ele-
ment) is called the process reaction curve; a typical process reaction curve exhibits an S 
shape, as shown in Fig. 18–6. After we present the Cohen and Coon method of tuning, 
the basis for their recommendations will be discussed. The C-C method is summarized 
in the following steps:

R = 0

B
H

C

−

+
+

+

M/s U = 0 

Gc Gv Gp

To recorder

Loop opened

FIGURE 18–5
Block diagram of a control loop for measurement of a process reaction curve.

1. After the process reaches steady state at the normal level of operation, switch the 
controller to manual. In a modern controller, the controller output will remain at the 
same value after switching as it had before switching. (This is called “bumpless” 
transfer.)

2. With the controller in manual, introduce a small step change in the controller out-
put that goes to the valve and record the transient, which is the process reaction 
curve (Fig. 18–6).

3. Draw a straight line tangent to the curve at the point of inflection, as shown in 
Fig. 18–6. The intersection of the tangent line with the time axis is the apparent 
transport lag Td; the apparent first-order time constant T is obtained from

 T
B

S
u

� (18.4)

 where Bu is the ultimate value of B at large t and S is the slope of the tangent line. 
The steady-state gain that relates B to M in Fig. 18–5 is given by

 K
B

M
p

u
� (18.5)

4. Using the values of Kp, T, and Td from step 3, the controller settings are found from 
the relations given in Table 18.2.

Notice in Table 18.2 that all the controller settings are a function of the dimen-
sionless group Td /T, the ratio of the apparent transport lag to the apparent time constant. 
Also Kc is inversely proportional to Kp.
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TABLE 18.2

Cohen-Coon controller settings

Type of control Parameter setting

Proportional (P) K
K

T

T

T

T
c

p d

d
� �

1
1

3






Proportional-integral (PI) K
K

T

T

T

T
c

p d

d
� �

1 9

10 12






t I d
d

d
T

T T

T T
�

�

�

30 3

9 20

/

/

Proportional-derivative (PD) K
K

T

T

T

T
c

p d

d
� �

1 5

4 6






t D d
d

d
T

T T

T T
�

�

�

6 2

22 3

/

/

Proportional-integral-derivative (PID) K
K

T

T

T

T
c

p d

d� �
1 4

3 4







t I d
d

d
T

T T

T T
�

�

�

32 6

13 8

/

/

t D d
d

T
T T

�
�

4

11 2 /

Bu

Bu

Td

T

t

B

0
0

M

t0

input

0

Tangent line, slope = = S 

FIGURE 18–6
Typical process reaction curve showing graphical construction 
to determine first-order with transport lag model.
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The rationale for the C-C tuning method begins with the representation of the 
S-shaped process reaction curve by a first-order with transport lag model; thus

 
G s

K e

Ts
p

p
T sd

( ) �
�

�

1 
(18.6)

Using the system expressed by Eq. (18.6), Cohen and Coon obtained by theoretical 
means the controller settings given in Table 18.2. Their computations required that the 
response have 1

4
 decay ratio, minimum offset, minimum area under the load-response 

curve, and other favorable properties.
In applying the C-C tuning method, an important task is the graphical construc-

tion, shown in Fig. 18–6, which reduces the process reaction curve to first-order with 
the transport lag model given by Eq. (18.6). To understand the basis for the graphical 
procedure, consider the response of the transfer function of Eq. (18.6) to a step change in 
input; the resulting transient is shown in Fig. 18–7. After t � Td, the response is a first-
order response. The point of inflection of the curve in Fig. 18–7 occurs at t � Td, and the 
slope of the tangent line at this point is related to the time constant by the relation

 
S

B

T
u

�
 

Solving for T gives the expression in Eq. (18.4). The response after t � Td, shown in 
Fig. 18–7, was also presented in Fig. 4–7.

The attempt to model the process reaction curve by the method shown in Fig. 18–6 
is crude and does not give a very good fit. Finding the point of inflection and drawing a 
tangent line at this point are quite difficult, especially if the data for the process reaction 
curve are not accurate and if they scatter. A better method for fitting the process reac-

Bu

Bu

Td

T

t

B

0
0

M

t0

Input

0

Tangent line, slope = 

FIGURE 18–7
Step response for a first-order with transport lag model.
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TABLE 18.3

Controller settings for the system of Fig. 18–1.

Control 
type Parameter

Closed-loop method 
(Z-N method)

Open-loop method 
(C-C method)

P Kc 6.4  8.1
PI Kc 5.8  7.0

tI 5.6  4.4
PD Kc 11.4*  9.8

tD 1.0*  0.43
PID Kc 7.7 10.5

tI 3.4  3.9
tD 1.6  0.59

   *  Obtained by design for 30 �  phase margin and maximum  K   c  .  
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FIGURE 18–8
Comparison of load responses for the system of Fig. 18–1 using controller settings obtained by the 
Ziegler-Nichols (Z-N) method and the Cohen-Coon (C-C) method.

tion curve to a first-order with transport lag model is to perform a least-squares fit of the 
data. Some computer software, such as the LOOP-PRO package (see www.controlstation
.com), provide an easy means of performing the fitting process. An example to be pre-
sented later will study the effect of the type of model-fitting procedure on the selection 
of controller parameters.

To illustrate the two methods of controller tuning just presented, the system shown 
in Fig. 18–1 was simulated using Simulink as shown above in Example 18.1. Table 18.3 
gives the values of the controller parameters obtained by applying both tuning methods 
(Z-N and C-C). Fig. 18–8 shows the resulting transients. Since the Z-N method does 
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not give a rule for a PD controller, the settings listed for a PD controller under the Z-N 
heading of Table 18.3 were obtained by using a theoretical frequency response calcula-
tion in which the design was based on 30� phase margin and a maximum Kc. No general 
conclusions can be drawn about the relative merits of the two tuning methods from the 
results shown in Fig. 18–8, since these results apply to one specific example. About 
all that can be said is that for this specific example, both methods give reasonable first 
guesses of the control parameters.

Example 18.2. For the control system shown in Fig. 18–1, shown again in 
Fig. 18–9, determine the “best” PI controller settings as indicated by each of the 
figures of merit (ISE, ITAE, and IAE). Compare the responses of those settings 
with the ones obtained from Z-N and C-C tuning. We can use the same Simulink 
diagram that we used in Example 18.1. This time, however, it will be advanta-
geous to write a MATLAB m-file to vary the controller parameters to minimize a 
particular figure of merit.

Product
Clock

Integrator

19.09

ITAE value

ITAE

IAE

Out1
1
s

1

Absolute value Integrator2

1.515

IAE value

1
s

Out2
2

ISE
Integrator1

0.1357

ISE value

Process Scope

1
s

Error squared

u2
Out3

3

Time delay = 1

Load, U = 1/s

P, I

PID
10s2 + 11s +1

1

u

Set point, R = 0

+− ++

FIGURE 18–9
Simulink model for Example 18.2.

The Simulink block diagram is saved as fig18_1.mdl. The m-file that we use 
to call the Simulink diagram is called merit_score.m. We make use of the MAT-
LAB optimization function FMINSEARCH to vary the controller parameters for 
us and to find the minimum figure of merit of interest. The comment statements 
in the m-file describe how it’s used. An example of the MATLAB command that 
performs the optimization is
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[zn,fval,exitflag]=FMINSEARCH('merit_score',[5.8 1],OPTIMSET

('MaxIter',100))

m-file: merit_score.m

function merit_score=merit_score(Varg);

% this m-file is for use with the FMINSEARCH function to vary P & I to

% minimize the ITAE, IAE or ISE for the control system in Fig. 18.1:

%

% issue the FMINSEARCH command from the MATLAB workspace

% be sure that the PID controller in simulink model, fig18_1.mdl,

% has the P and I values set to the variables P & I

% also be sure to declare P and I global in the MATLAB workspace

% the 5.8 is the initial guess for P and 1 for I (these are the ZN values)

%

%[zn,fval,exitflag]= FMINSEARCH('merit_score',[5.8 1],options)

%fval is the final value of the objective function

%set the max iterations with:

%options = OPTIMSET('MaxIter',100)

%    If EXITFLAG is:

%    1 then FMINSEARCH converged with a solution X.

%    0 then the maximum number of iterations was reached.

%

%note that the ITAE is outport 1 on the simulink diagram, fig18_1

%IAE is outport 2 and ISE is outport 3 on fig18_1

%the column specified in the y variable is the outport. . .

% y(:,1)=ITAE

% y(:,2)=IAE

% y(:,3)=ISE

%

global P I

P=Varg(1);

I=Varg(2);

[t,x,y]=sim('fig18_1',50);

merit_score=max(y(:,1));

TABLE 18.4

Comparison of controller settings for Example 18.2 using 
different tuning methods

Parameter Z-N method C-C method Minimum ITAE Minimum IAE Minimum ISE

Kc 5.8 7.0 5.5 6.6 8.7
tI 5.6 4.4 6.0 6.7 7.9

The results of running this optimization to minimize each figure of merit for PI 
control are shown in Table 18.4 and Fig. 18–10.
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The controller settings for all the settings are very similar. The C-C settings are 
the most oscillatory for this system. Z-N and minimum ITAE have the largest 
initial peak, but settle the most rapidly.

Let’s look at some additional examples.

Example 18.3. For the control system shown in Fig. 18–11, determine control-
ler settings for a PI controller using the Z-N method and the C-C method. This 
problem will be instructive because the transfer function of the model is already 
in the form of first-order with transport lag, which is the form used by Cohen and 
Coon to derive their tuning rules.

C-C method. Since the transfer function of the plant is in the form of Eq. (18.6), 
we obtain T and Td immediately without having to draw a tangent line through 
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FIGURE 18–10
Plot of system response for Example 18.2 using different tuning methods.
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the point of inflection; i.e., T � 1 and Td � 1. We also observe from the block 
diagram that Kp � 1. Substituting these values into the appropriate equations of 
Table 18.2 gives
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Using these values for Kc and tI, the step response shown in Fig. 18–12 was 
obtained by simulation.

R = u(t) C

−

+
e−s 

s +1 
1

Kc 1 + 1
1s

FIGURE 18–11
Process for Example 18.3.
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FIGURE 18–12
Response to unit-step change in set point for the 
system in Fig. 18–11 (Example 18.3).

Z-N method. Application of the Bode criterion from Chap. 16 gives
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The details for obtaining these results will not be given here since this type cal-
culation was covered in depth in Chap. 16. Applying the Z-N rules for PI control 
from Table 18.1 gives

 K Kc cu� � �0 45 0 45 2 26 1 02. ( . )( . ) . 

and

 
t I

uP
� � �

1 2

3 09

1 2
2 58

.

.

.
.

 

The step response for these controller settings is shown in Fig. 18–12. The ISE 
value for each response was calculated out to a sufficiently long time (10 units of 
time) for the integral to converge; the results are as follows:

 

C-C response ISE at

Z-N response ISE

: .

:

� �1 54 10t

�� �1 49 10. at t
 

Although the ISE values are nearly the same, the transient for the Z-N set-
tings is better than the transient for the C-C settings. The Z-N transient has much 
less overshoot. The lesson to be learned from this example is that the comparison 
of two transients based on only one criterion (in this case, the ISE) may be mis-
leading in the selection of the best transient. It is also important to judge the qual-
ity of a transient by its actual appearance. Note that for this example, in which 
there is a relatively large transport lag (Td � 1), much of the contribution to the 
ISE occurs from t � 0 to t � 1, during which time the ISE reaches 1.0. This value 
of the ISE at t � 1 is the same, regardless of the tuning method used because the 
transport lag causes error to be constant from t � 0 to t � 1.

Example 18.4. For the control system shown in Fig. 18–13, determine the con-
troller settings for a PI controller using the Z-N method and the C-C method. In 
this problem, the process reaction curve must be modeled by the method shown 
in Fig. 18–6.

R = 0 C
+

−

U = s
1

1 +KC
1

is
1

4(s + 1)

FIGURE 18–13
Process for Example 18.4.

C-C method. Since the transfer function of the plant is given as 1/(s � 1)4, we 
can obtain the values of Td and T for use in the C-C method analytically. A unit-
step response for the plant transfer function is

 
c t t t t e t( ) ( )� � � � � �1 11

6
3 1

2
2
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From this result one can readily obtain the first and second derivatives; thus
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The location of the inflection point on the transient c(t) is obtained by setting the 
second derivative to zero:

 
0 31

6
2 3� ��e t tt ( )
 

Solving for t gives as the root of interest in this problem t � 3. Knowing that the 
point of inflection occurs at t � 3, we can compute the slope of the tangent line 
through this point to be

 
S c e� � ���( ) ( ) .3 3 0 2241

6
3 3

 

We can now determine Td as shown in Fig. 18–14.
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FIGURE 18–14
Process reaction curve for Example 18.4.

From the expression for c(t), we obtain the value of c at the inflection point to be 
c(3) � 0.353. The value of t where the tangent line intersects the t axis is obtained 
from the slope S; thus

 

0 353 0

3
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.
.

�

�
� �

T
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d  

Solving for Td gives

 Td � 1 42. 
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Solving for T from Eq. (18.4) gives
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Having found Td and T, we can apply the appropriate equations from Table 18.2 
to get

 Kc I� �2 91 2 86. .t 
The transient for these settings that was obtained by simulation is shown as curve 
C-C1 in Fig. 18–15. To our surprise, it is unstable.

Z-N method. We apply the Z-N method for a PI controller, and we obtain the 
following results: Kcu � 4, Pu � 2p, Kc � 1.8, and tI � 5.23.
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FIGURE 18–15
Comparison of transients produced by different tuning methods for Example 18.4 
(shown in Fig. 18–13). Z-N: Ziegler-Nichols method; CC1: Cohen-Coon graphical 
method; CC2: Cohen-Coon method using least-squares fit of data.

The transient for this set of controller parameters is also shown in Fig. 18–15. We 
see that the response is stable and well damped.

The lesson learned in this example is that the application of a tuning method 
may not produce a satisfactory transient. Fine-tuning of these first guesses is usu-
ally needed.

Before we abandoned the C-C method for this example, the process reac-
tion curve was fitted to a first-order plus dead-time (FOPDT) model by means 
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of a least-squares fitting procedure using LOOP-PRO and Simulink software. The 
process was simulated in Simulink and disturbed with a unit step occurring at 
time t � 1.0. The response data were imported into Control Station and fit to a 
FOPDT model to produce the following results (see Fig. 18–16).
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FIGURE 18–16
LOOP-PRO fit of FOPDT model to process for Example 18.4.

Applying the C-C method for these FOPDT values gives

 Kc I� �1 374 2 548. .and t 

Notice that the value of Kc is now considerably less than the value obtained from 
the fitting procedure shown in Fig. 18–14. This leads to the expectation that the 
response will now be stable. This expectation is fulfilled as shown by the tran-
sient labeled C-C2 in Fig. 18–15. Additionally, we can minimize ISE, ITAE, or 
IAE to find initial controller parameters as shown in Table 18.5. The response of 
the process to these controller settings is shown in Fig. 18–17.

The qualitative nature of these responses is similar to that for the Z-N settings 
and the CC2 settings shown in Fig. 18–15.
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18.3 PROCESS IDENTIFICATION

Up to this point, the processes used in our control systems have been described by trans-
fer functions that were derived by applying fundamental principles of physics and chem-
ical engineering (e.g., Newton’s law, material balance, heat transfer, fluid mechanics, 
reaction kinetics) to well-defined processes. In practice, many of the industrial processes 
to be controlled are too complex to be described by the application of fundamental prin-
ciples. Either the task requires too much time and effort, or the fundamentals of the pro-
cess are not understood. By means of experimental tests, one can identify the dynamical 
nature of such processes and from the results obtain a process model which is at least 
satisfactory for use in designing control systems. The experimental determination of the 
dynamic behavior of a process is called process identification.
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FIGURE 18–17
Comparison of transients produced by minimizing the figures of merit for Example 18.4 
(shown in Fig. 18–13), ITAE: minimum ITAE; ISE: minimum ISE; IAE: minimum IAE.

TABLE 18.5

Controller settings for Example 18.4 using various tuning methods

Parameter
Z-N 

method
C-C 

method

C-C using 
LOOP-PRO

FOPDT fit
Minimum

ITAE
Minimum

IAE
Minimum 

ISE

Kc 1.8 2.91 1.374 1.18 1.66 2.45
tI 5.23 2.86 2.548 3.28 4.16 5.51

ITAE 24.2 8431 30.7 19.37 21.64 41.33

IAE 2.93 116 3.34 2.96 2.79 3.311

ISE 0.819 284 0.910 1.06 0.816 0.67
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The need for process models arises in many control applications, as we have seen 
in the use of tuning methods. Process models are also needed in developing feedfor-
ward control algorithms, self-tuning algorithms, and internal model control algorithms. 
Some of these advanced control strategies were discussed in Chap. 17.

Process identification provides several forms that are useful in process control; 
some of these forms are

Process reaction curve (obtained by step input)
Frequency response diagram (obtained by sinusoidal input)
Pulse response (obtained by pulse input)

We have already encountered the need for process identification in applying the tuning 
methods presented earlier in this chapter. In the case of the Z-N method, the procedure 
obtained one point on the open-loop frequency response diagram when the ultimate 
gain was found. (This point corresponds to a phase angle of �180� and a process gain 
of 1/Kcu at the crossover frequency wco.) In the case of the C-C method, the process 
identification took the form of the process reaction curve.

Step Testing

As already described in the application of the C-C tuning method, a step change in the 
input to a process produces a response, which is called the process reaction curve. It is 
important that no disturbances other than the test step enter the system during the test; 
otherwise the transient will be corrupted by these uncontrolled disturbances and will 
be unsuitable for use in deriving a process model. Additionally, the step must be large 
enough to produce a change in the process that is much larger than any noise present in 
the process. (If the noise band is 0.5�F, the step should move the process at least 10 times 
this amount, or at least 5�F. This corresponds to a signal-to-noise ratio of 10.)

For many processes in the chemical industry, the process reaction curve is an 
S-shaped curve, as shown in Fig. 18–6. For systems that produce an S-shaped process 
reaction curve, a general model that can be fitted to the transient is a second-order plus 
dead time (SOPDT) model:
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(18.7)

This model is an extension of the one used in the C-C tuning method, in which there 
was only one first-order term, the FOPDT model.

Computer software is available to fit a variety of models to process data using 
a least-squares technique. LOOP-PRO is one of the easiest and most efficient. Cooper 
(2005) makes the following points regarding the successful use of computer software to 
fit process models to data for the purposes of controller tuning.

1. The process must be at steady state before data collection begins.
2. The first data point in the file must be the steady-state value.
3. The test must be such that the dynamics caused by the test dominate the process 

noise.
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4. There are no disturbance changes present during the test. The change in the process 
variable must be solely due to the changes introduced in the controller output.

5. Finally, does the model appear to visually fit the process data?

We will now work an example to demonstrate the use of such software to fit models to 
process data.

Example 18.5. Use LOOP-PRO software to obtain a process model for the two 
tanks in series process shown in Fig. 18–18. Fit a FOPDT model and a SOPDT 
model to the data.

Inlet flow (L/min)

17.8
Controller
output (%)

70.0

Lower tank
level (m)

3.99

Pumped flow
(L/min)

(Disturbance)

2.0

Outlet flow
(L/min)

15.8

LC

FIGURE 18–18
Screen shot from LOOP-PRO software for gravity-drained tanks.

The process is a pair of gravity-drained tanks. Flow enters the upper tank and 
drains into the lower tank. A level controller monitors the level in the lower tank 
and adjusts the flow into the upper tank to maintain the lower level at the desired 
set point. The process disturbance is a pumped flow (not dependent on tank level) 
from the lower tank.

We perform a step test on the inlet flow rate to the upper tank and record 
the data. In this test, the controller output was stepped from 70 to 80 percent, and 
the process response was recorded (Fig. 18–19).
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FIGURE 18–19
LOOP-PRO gravity-drained tanks step test for Example 18.5.
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LOOP-PRO has the built-in capability to fit a FOPDT or SOPDT model (as well 
as some others) to the process data that we have generated. We use the Design 
Tools feature of the software and fit an FOPDT model to the data as shown in 
Fig. 18–20.

4.0
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LOOP-PRO: Design Tools

Model: First Order Plus Dead Time (FOPDT)

Gain (K) = 0.1316, Time Constant (T1) = 1.73, Dead Time (TD) = 0.6469
Goodness of Fit: R-Squared = 0.9993, SSE = 0.0424
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FIGURE 18–20
LOOP-PRO design tools for data analysis. FOPDT fit of step test data for Example 18.5.

The FOPDT model fits the data very well. It captures the essential features 
of the response. The most noticeable difference is located at the time when the 
process variable begins to change. The process, being second-order (two tanks in 
series), rises as an S-shaped curve. The FOPDT, after the dead time, rises with a 
nonzero slope. There are two indications of the goodness of fit: R2 � 0.9993 is 
very close to 1.00 (which would indicate a perfect fit). The sum of the squares of 
the errors, SSE, is defined as

 

SSE Measured Data Model Data� �
�

i i
i

N

( )∑ 2

1
 

(18.8)

For this case SSE � 0.0424, which indicates a very close fit. We can also fit a 
SOPDT model to the process data as shown in Fig. 18–21.

The SOPDT model fits the data nearly perfectly (R2 � 1,  SSE � 0.0019), as 
we would expect, since the process is in fact a second-order process.
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Pulse and Doublet Testing

Pulse testing is similar to step testing; the only difference in the experimental procedure 
is that a pulse disturbance is used in place of a step disturbance. The pulse is introduced 
as a variation in valve top pressure as was done for step testing (see Fig. 18–5). In 
applying the pulse, the open-loop system is allowed to reach steady state, after which 
the valve top pressure is displaced from its steady-state value for a short time and then 
returned to its original value. The response is recorded at the output of the measuring 
element (B in Fig. 18–5). Usually the pulse shape is rectangular in experimental work, 
but other well-defined shapes are also used. An example of a pulse change in a process 
variable is shown in Fig. 18–22.
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LOOP-PRO: Design Tools

Model: Second Order Plus Dead Time (SOPDT)
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FIGURE 18–21
LOOP-PRO design tools for data analysis. SOPDT fit of step-test data for Example 18.5.
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FIGURE 18–22
Sample pulse input.
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This brief outline describing pulse testing may appear deceptively simple. In 
practice, the data on the response must be very accurate and noise-free for the method 
to succeed. This means that the recorder used to measure the response must be very 
sensitive. The selection of the pulse height and width is also critical. If the pulse height 
and width are too small, the disturbance to the system will be too small to produce a 
transient that can be measured accurately by the recorder. If the pulse height is too 
large, the system may be operating too far from the linear range of interest. The proper 
pulse height and width can be determined by some preliminary open-loop experiments. 
The pulse test is the least disruptive to plant operation among the process identification 
methods we have considered. The pulse disturbance does not cause the process output 
to depart far from its normal operating point.

A doublet test is two pulse tests performed in rapid succession and in opposite direc-
tion as shown in Fig. 18–23. (Cooper, 2005). For example, we might step the input to the 
process from 50 to 60 to 40 to 50. This is the equivalent of two pulse tests 50-60-50 and 
50-40-50 performed back to back. The process variable does not need to come to steady 
state for either pulse. It merely needs to show a clear response to the first pulse.

50

60

40

50

FIGURE 18–23
Sample doublet test input.

The advantages of the doublet test are that it starts from and returns to the design level 
of operation relatively quickly, it produces data above and below the design level, and 
from a process standpoint, it minimizes the amount of time that the process is away 
from the design level, and hence off-spec production (Cooper, 2005).

Example 18.6. Consider a process with an unknown transfer function such as 
that shown in Fig. 18–24. We wish to perform some process identification test-
ing on it to determine a FOPDT model for use in controller tuning. Compare the 
results of pulse and doublet testing for this process.

Black box 
process

Process 
variable

Manipulated 
variable

FIGURE 18–24
“Black-box” process for Example 18.6.
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For calculation purposes we will use G � 2/[(s � 1)(s � 2)(0.5s � 1)] for the 
transfer function of the black box.

Pulse test. We will disturb the process by using a pulse input for the manipulated 
variable, as shown in Fig. 18–22, and use LOOP-PRO to determine the parameters 
for a FOPDT model (see Fig. 18–25).
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Gain (K) = 1.99, Time Constant (T1) = 2.38, Dead Time (TD) = 0.5784 

Goodness of Fit: T-Squared = 0.9994, SSE = 7.03

FIGURE 18–25
FOPDT fit of black-box process response to a pulse input (Example 18.6).

The resulting FOPDT model from a least-squares fit of the pulse data is

 G
s

s
�

�

�

1 99 0 5784

2 38 1

. .

.

exp ( ) (18.9)

Doublet test. The doublet test on the black-box process is shown in Fig. 18–26.
The FOPDT model from a least-squares fit of the doublet data is

 
G

s

s
�

�

�

2 09 0 7458

2 70 1

. ( . )

.

exp

 

(18.10)

If we use the model, Eq. (18.9), obtained from the pulse test, and perform a 
doublet test on it to compare with our actual black-box process response, we obtain 
Fig. 18–27. Notice that the pulse model deviates from the process response, mainly 
on the second half of the doublet. The SSE for the pulse model on the doublet 
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Gain (K) = 2.09, Time Constant (T1) = 2.70, Dead Time (TD) = 0.7458 
Goodness of Fit: R-Squared = 0.9981, SSE = 29.71

FIGURE 18–26
FOPDT fit of black-box process response to a doublet input (Example 18.6).

test is 159.15 compared to 29.71 for the doublet model. Since we would like the 
model to capture process characteristics for deviations above and below the design 
operating level, we would probably be better off using the FOPDT model obtained 
from the doublet testing to determine our initial tuning parameters.

Frequency Testing

We have shown in the section on frequency response that a process having a trans-
fer function G(s) can be represented by a frequency response diagram (or Bode plot) 
by taking the magnitude and phase angle of G(jw). This procedure can be reversed to 
obtain G(s) from an experimentally determined frequency response diagram. The pro-
cedure requires that a device be available to produce a sinusoidal signal over a range of 
frequencies. We describe such a device as a sine wave generator. In frequency testing 
of an industrial process, a sinusoidal variation in pressure is applied to the top of the 
control valve so that the manipulated variable can be varied sinusoidally over a range of 
frequencies. The block diagram that applies during frequency testing is the same as that 
of Fig. 18–5 with the step input (M/s) replaced by a sinusoidal signal. The sine wave 
generator used to test electronic devices operates at frequencies that are too high for 
many slow-moving chemical processes. For frequency testing of chemical processes, 
special low-frequency generators must be built that can produce a sinusoidal variation 
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in pressure to a control valve. To preserve the sinusoidal signal in the flow of manipu-
lated variable through the valve, the valve must be linear.

In the 1960s when frequency response methods were first introduced to chemi-
cal engineers as a means for process identification, several chemical and petroleum 
companies constructed mobile units containing low-frequency sine wave generators 
and recorders that could be moved to processing units in a plant for the purpose of 
frequency testing.

The great disadvantage of frequency testing is that it takes a long time to collect 
frequency response data over a range of frequencies that can be used to construct fre-
quency response plots. The time is especially long for chemical processes, often having 
long time constants measured in minutes or even hours. The frequency test at a given 
frequency must last long enough to make sure that the transients have disappeared and 
only the ultimate periodic response is represented by the data. Frequency testing usually 
ties up plant equipment too long to be recommended as a means of process identifica-
tion. Step testing, pulse testing, and doublet testing take much less time and can usually 
provide satisfactory process identification.
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FIGURE 18–27
A doublet test on the FOPDT model derived from a pulse input test (Example 18.6).
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SUMMARY

In the practical application of process control, some methods for tuning and process 
identification are needed. The selection of controller modes depends on the process 
to be controlled. Proportional control is simple, but the response exhibits offset. The 
derivative action in PD control makes it possible to increase the controller gain with 
the result that the response has less offset and responds more quickly compared to pro-
portional control. To eliminate offset, integral action must be present in the controller 
in the form of PI and PID control. PI control often causes the response to have large 
overshoot and a slow return to the set point especially for high-order processes. The 
presence of derivative action in a PID controller gives less overshoot and a faster return 
to the set point, compared to the response for PI control.

To compare the quality of control on a numerical basis, several criteria that inte-
grate some function of the error with respect to time have been proposed. These include 
the integral of the square of the error (ISE), the integral of the absolute error (IAE), and 
the integral of the time-weighted absolute error (ITAE).

In the first part of this chapter two well-known tuning methods are presented: 
the Ziegler-Nichols (Z-N) method (a closed-loop method) and the Cohen-Coon (C-C) 
method (an open-loop method). These two methods were applied to several examples 
and the transients for each compared. The lesson to be learned through these examples 
is that the controller parameters obtained from a tuning rule should be considered as 
first guesses; fine online tuning is usually needed to get a satisfactory transient.

The Z-N and C-C methods actually require information about the process model. 
The Z-N method is based on the ultimate gain at the crossover frequency, which is 
equivalent to knowing one point on the open-loop frequency response diagram. The 
C-C method requires the use of an open-loop step response (process reaction curve).

In the advanced control strategies discussed in Chap. 17, a process model is often 
needed to apply the strategy. When a process model cannot be found by application 
of theoretical principles, one must obtain a model experimentally. The experimental 
approach to obtaining a model is called process identification. The three methods of 
process identification discussed in this chapter are step testing, frequency testing, and 
pulse testing. The frequency method is seldom used because of the time it takes to test 
a system over a wide range of frequencies. Step testing is easy to apply and ties the 
process up for only enough time to obtain one transient. Pulse testing is also simple to 
apply, but the analysis of the input-output data requires extensive calculations that must 
be done by a computer.

PROBLEMS

18.1. Calculate C-C and Z-N parameters for PI control for the process in Example 18.5, using the 
pulse FOPDT model and the doublet FOPDT model. Compare the results for a step change 
in load for a closed-loop PI control system. Use the ITAE figure of merit for comparison.
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First-order plus dead-time (FOPDT) model
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Figures of merit for comparing control parameters (computed from process 
transients)

Figure of merit Equation Purpose

Integral of the square of the error 
(ISE)

ISE �
�

e dt2
0∫

Penalizes large errors, 
particularly those that occur 
initially

Integral of the absolute value of 
error (IAE)
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| |e dt
0∫

Treats all errors (large and small) 
the same

Integral of time-weighted absolute 
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0∫

Penalizes errors that persist for a 
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Ziegler-Nichols controller settings
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Cohen-Coon controller settings
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 CHAPTER 

 19 

  One of the basic components of any control system is the final control element, 
which comes in a variety of forms depending on the specific control application. 

The most common type of final control element in chemical processing is the pneu-
matic control valve, which regulates the flow of fluids. Some other types include the 
variable-speed pump and the power controller (used in electrical heating). 

 Since the pneumatic control valve is so widely used in chemical processing, this 
chapter will be devoted to the description, selection, and sizing of control valves.  

   19.1 CONTROL VALVE CONSTRUCTION 

  The control valve is essentially a variable resistance to the flow of a fluid in which 
the resistance, and therefore the flow, can be changed by a signal from a process 
controller. 

 As shown in  Fig. 19–1 , the control valve consists of an actuator and a valve. 
The valve itself is divided into the body and the trim. The body consists of a housing 
for mounting the actuator and connections for attachment of the valve to a supply line 
and a delivery line. The trim, which is enclosed within the body, consists of a plug, a 
valve seat, and a valve stem. The actuator moves the valve stem as the pressure on a 
spring-loaded diaphragm changes. The stem moves a plug in a valve seat to change the 
resistance to flow through the valve. When a valve is supplied by the manufacturer, the 
actuator and the valve are attached to each other to form one unit. 

 For most actuators, the motion of the stem is proportional to the pressure applied 
on the diaphragm. In general, this type of actuator can be used for functions other than 
moving a valve stem. For example, it can be used to adjust dampers, variable-speed 
drives, rheostats, and other devices. As the pressure to the valve varies over its normal 

 CONTROL 
VALVES 
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range of operation (3 to 15 psig), the range of motion of the stem varies from a fraction 
of an inch to several inches depending on the size of the actuator. Manufacturers pro-
vide a range of actuators for various valve sizes. 

 The valves available vary over a wide range of sizes. The size is usually referred 
to by the size of the end connectors. For example, a 1-in valve would have connectors 
(threaded or flanged) to fit into a 1-in pipeline. In general, the larger the valve size, the 
larger the flow capacity of the valve. 

 For the control valve shown in  Fig. 19–1 , an increase in signal pressure above 
the diaphragm exerts a force on the diaphragm and back plate, which causes the stem 
to move down; this causes the cross-sectional area for flow between the plug and the 
seat to decrease, thereby reducing or throttling the flow. Such valve action as shown in 
 Fig. 19–1  is called air-to-close (AC) action. The reverse action, air-to-open (AO), can 
be accomplished by designing the actuator so that pressure is applied to the underside 
of the diaphragm, for which case an increase in pressure to the valve raises the stem. 
An alternate method to reverse the valve action is to leave the actuator as shown in 
 Fig. 19–1  and to invert the plug on the stem and place it under the valve seat. In general, 
selection of the type of valve (AO or AC) is made based on safety considerations. We 
would like the valve to fail in a safe position for the process in the event of a loss of air 
pressure. For example, if the control valve is controlling the inlet flow of cooling water 
to a cooling jacket on an exothermic chemical reactor, we would like the valve to fail 
in the open position so that we do not lose coolant flow. Thus, we would select an air-
to-close (AC) valve. 

Air-to-Close Valve

ACTUATOR

Delivery

Stem

Supply

Seat
Plug

VALVE

Packing

Diaphragm

Air signal

Air-to-Open Valve

ACTUATOR

Delivery

Stem

Supply

Seat
Plug

VALVE

Packing

Diaphragm

Air signal

FIGURE 19–1
Single-seated control valves.

 The valve shown in  Fig. 19–1  is single-seated, meaning the valve contains one 
plug with one seating surface. For a single-seated valve, the plug must open against the 
full pressure drop across the valve. If the pressure drop is large, this means that a larger, 
more expensive actuator will be needed. To overcome this problem, valves are also 
constructed with double seating as shown in  Fig. 19–2 . In this type valve, two plugs 
are attached to the valve stem, and each one has a seat. The flow pattern through the 
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valve is designed so that the pressure drop across the seat at  A  tends to open the plug 
and the pressure drop across the seat at  B  tends to close the plug. This counterbalancing 
of forces on the plugs reduces the effort needed to open the valve with the result that a 
smaller, less expensive actuator is needed. 

Stem

A
B

Packing

FIGURE 19–2
Double-seated control valve.

 In a double-seated valve, it is difficult to have tight shutoff. If one plug has tight 
closure, there is usually a small gap between the other plug and its seat. For this reason, 
single-seated valves are recommended if the valve is required to be shut tight. In many 
processes, the valve is used for throttling flow and is never expected to operate near 
its shutoff position. For these conditions, the fact that the valve has a small leakage at 
shutoff position does not create a problem.   

  19.2 VALVE SIZING 

  To specify the size of a valve in terms of its capacity, the following equation is used:   

  
q C f x

p
v� ( )

∆ valve

sg

  

 

(19.1)

  

where                     q   �  flow rate, gal/min  
           f  ( x )  �  fraction of maximum fl ow ( �  1 for fully open)  
              x   �  fractional stem position (i.e., fraction open)  
   ∆  p  valve   �  pressure drop across the valve, psi  
            sg  �   specifi c gravity of fl uid at stream temperature relative to water; for 

water sg  �  1  
             C   v    �  factor associated with capacity of valve   

Equation (19.1) applies to the flow of an incompressible, nonflashing fluid through the 
valve. Manufacturers rate the size of a valve in terms of the factor  C   v  . Sometimes  C   v   is 
defined as the flow (gal/min) of a fluid of unit specific gravity (water) through a fully 
open valve, across which a pressure drop of 1.0 psi exists. This verbal definition is, of 
course, obtained directly from Eq. (19.1) by letting   f  ( x )   �  1, ∆  p  valve   �  1, and sg  �  1. 
Equation (19.1) is based on the well-known Bernoulli equation for determining the 
pressure drop across valves and resistances. It is important to emphasize that  C   v   must be 
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determined from Eq. (19.1) using the units listed. Since so many valves in use are rated 
in terms of  C   v  , Eq. (19.1) is of practical importance; however, some industries now are 
defining a valve coefficient  K   v   defined by the equation   

  

q K
p

v�
∆ valve

sg
   

where                  q   �  flow rate, m 3 /h  
       ∆  p  valve   �  pressure drop across valve, kg f /cm 2   
                 sg  �  specific gravity of fluid relative to water   

The relation between  K   v   and  C   v   is   

  K Cv v� 0 856.   

For gases and steam, modified versions of Eq. (19.1) are used in which  C   v   is still used 
as a factor. 

 Manufacturers of valves provide brochures, nomographs, and computer programs 
for sizing valves for use with gases and steam. 

 In general, as the physical size of a valve body (i.e., size of pipe connectors) 
increases, the value of  C   v   increases. For a sliding stem and plug type of control valve, 
the value of  C   v   is roughly equal to the square of the pipe size multiplied by 10. Using 
this rule, a 3-in control valve should have a  C   v   of about 90, with units corresponding to 
those of Eq. (19.1). This implies the capacity of the fully open valve is 90 gal/min with 
a pressure drop of 1 psi. 

  Example 19.1     A valve with a  C   v   rating of 4.0 is used to throttle the flow of 
glycerine for which sg  �  1.26. Determine the maximum flow through the valve 
for a pressure drop of 100 psi.   

  
q � �4 0

100

1 26
35 6.

.
. /gal min

     

 The coefficient  C   v   varies with the design of the valve (shape, size, roughness) and 
the Reynolds number for the flow through the valve. This relationship is analogous to 
the relationship between the friction factor and roughness and the Reynolds number for 
flow through a pipe. For relatively nonviscous fluids,  C   v   in Eq. (19.1) can be taken as a 
constant for a valve of given size and type. The reason for this is that at high Reynolds 
numbers, the friction factor changes very little with flow rate. Except for very viscous 
fluids, the flow through a valve, which involves sudden contraction and expansion, is in 
the turbulent regime of fluid flow; turbulence in the valve exists even if the flow in the 
supply pipe is near the critical Reynolds number of 2100. 

 Consequently, for relatively nonviscous fluids, Eq. (19.1) is satisfactory for sizing 
a valve for any fluid. For the control of flow of very viscous fluids, such as tar or molas-
ses, the value of  C   v   found from Eq. (19.1) must be multiplied by a correction factor that 
depends on viscosity, density, flow rate, and valve size (i.e., on the Reynolds number). 
Methods for determining the viscosity correction factor are provided by manufacturers 
for their valves. If one does not apply the correction factor for a very viscous fluid, the 
value of  C   v   will be too low and the valve will be undersized.   
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  19.3 VALVE CHARACTERISTICS 

  The function of a control valve is to vary the flow of fluid through the valve by means 
of a change of pressure to the valve top. The relation between the flow through the 
valve and the valve stem position (or  lift ) is called the  valve characteristic,  which can 
be conveniently described by means of a graph as shown in  Fig. 19–3  where three types 
of characteristics are illustrated. 
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FIGURE 19–3
Inherent valve characteristics (pressure drop across valve is 
constant). 
I: Linear, II: increasing sensitivity (e.g., equal-percentage valve), 
and III: decreasing sensitivity (e.g., square root valve).

 In general, the flow through a control valve for a specific fluid at a given temperature 
can be expressed as   
  

q f L p p� 1 0 1, ,( )  
 

(19.2)

  

where           q   �  volumetric flow rate  
       L   �  valve stem position (or lift)  
    p  0   �  upstream pressure  
    p  1   �  downstream pressure   

The inherent valve characteristic is determined for fixed values of  p  0  and  p  1 , for which 
case Eq. (19.2) becomes   

  q f L� 2 ( )   
(19.3)  

or, in other words, the flow is a function of the valve stem position. 
 For convenience, let   

  
f

q

q
x

L

L
� �

max max
and

   

where      q  max   �   maximum flow when valve is fully open (stem is at its maximum lift 
 L  max )  

   x   �  fraction of maximum lift  
    f   �  fraction of maximum flow   

In general,  f  will be a function of  x,  which we will denote as  f  ( x ). Equation (19.3) may 
be written as   

  
f

L

L
f x

q

qmax max





 ( )� �

  
(19.4)
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428 PART 5 PROCESS APPLICATIONS

 The types of valve characteristics can be defined in terms of the sensitivity of the 
valve, which is simply the fractional change in flow to the fractional change in stem 
position for fixed upstream and downstream pressures; mathematically, sensitivity may 
be written   

  
Sensitivity �

df

dx   

In terms of valve characteristics, valves can be divided into three types: decreasing sensi-
tivity (square root or quick-opening), linear, and increasing sensitivity (equal-percentage). 
These types are shown in  Fig. 19–3  where the fractional flow  f  ( x ) is plotted against frac-
tional lift  x.  For the decreasing sensitivity type, the sensitivity (or slope) decreases with 
 increasing flow.  For the linear type, the sensitivity is constant and the characteristic curve 
is a straight line. For the increasing sensitivity type, the sensitivity increases with flow. 

 Valve characteristic curves, such as the ones shown in  Fig. 19–3 , can be obtained 
experimentally for any valve by measuring the flow through the valve as a function 
of lift (or valve-top pressure) under conditions of constant upstream and downstream 
pressures. Two types of valves that are widely used are the linear valve and the equal-
percentage valve.  

   Linear Valves 

 The linear valve is one for which the sensitivity is constant and the relation between 
flow and lift is linear. For the linear valve, the mathematical relationship is   
  

df

dx
� a

  

 

(19.5)

  

where  a  is a constant. 
 Assuming that the valve is shut tight when the lift is at lowest position, we have 

 f   �  0 at  x   �  0. For a single-seated valve that is not badly worn, the valve can be shut off 
for  x   �  0. Recall that the definitions of  x  and  f  require that  f   �  1 at  x   �  1. Integrating 
Eq. (19.5) and introducing the limits  f   �  0 at  x   �  0 and  f   �  1 at  x   �  1 give   

  
df dx

0

1

0

1

∫ ∫� a
   

Integrating this equation and inserting limits give   

  a � 1   

For  a   �  1, Eq. (19.5) can now be integrated to give   

  
f x x( ) � linear valve

    
 
(19.6)    

  Equal-Percentage Valves 

 For the equal-percentage valve, the defining equation is   

  

df

dx
f� b

   
(19.7)
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 CHAPTER 19  CONTROL VALVES 429

where  b  is constant. Integration of this equation gives   

  

df

f
dx

f

f
x

0
0

∫ ∫� b
   

(19.8)  

or   

  
ln

f

f
x

0
� b
  

 (19.9)  

where  f  0  is the flow at  x   �  0. Rearranging gives   

  f f e x� 0
b

  
 (19.10)  

The term  b  can be expressed in terms of  f  0  by inserting   f   �  1 at  x   �  1 into Eq. (19.9). 
The result is   

  
b � ln

1

0f   
If we substitute for  b  in Eq. (19.10), we obtain   

  
f f e f e f e f fx f f f

x x

� � � �
�

0
1

0
1

0 0
0 0 0ln ln ln/ /( ) ( ) ( )

00 0
1� ��x xf

   

which is of the form   

  
f x� �a 1 equal-percentage valve

   
(19.11)  

where  a   �  1/ f  0  is a constant. 
 Equation (19.9) shows that a plot of  f  versus  x  on semilog coordinates gives a 

straight line. A convenient way to determine if a valve is of the equal-percentage type is 
to plot the flow versus lift on semilog coordinates. The relation expressed by Eq. (19.9) 
is the basis for calling the valve characteristic logarithmic. The basis for calling the valve 
characteristic equal percentage can be seen by rearranging Eq. (19.7) into the form   

  

df

f
dx

f

f
x� �b bor

∆ ∆
    

 In this form it can be seen that an equal fractional (or percentage) change in 
flow ∆  f / f  occurs for a specified increment of change in stem position ∆  x,  regardless of 
where the change in stem position occurs along the characteristic curve. In integrating 
Eq. (19.7), the flow was assumed to be  f  0  at  x   �  0. Mathematically this is necessary, 
because  f  0  cannot be taken as zero at  x   �  0 because the term on the left side of Eq. (19.9) 
becomes infinite. In practice, there may be some leakage (hence  f  0  � 0) when the stem 
is at its lowest position for a double-seated valve or for a valve in which the plug and 
seat have become worn. 

 For some valves, especially large ones, the valve manufacturer intentionally 
allows some leakage at minimum lift ( x   �  0) to prevent binding and wearing of the 
plug and seat surfaces. For a valve that does shut tight and is also classified as an equal-
percentage valve, the equal-percentage characteristic will not be followed when the 
valve is nearly shut. In practice, the control valve serves as a throttling valve and is not 
intended to be wide open or completely closed during normal operation. 
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430 PART 5 PROCESS APPLICATIONS

 To express the range over which an equal-percentage valve will follow the equal-
percentage characteristic, the term  rangeability  is used. Rangeability is defined as the 
ratio of maximum flow to minimum controllable flow over which the valve character-
istic is followed.   

  
Rangeability max

min controllable
�

f x

f x

( )

( ) ,   

For example, if  f  0  is 0.02, the rangeability is 50. It is not uncommon for a control valve 
to have a rangeability as high as 50. 

 In practice, the ideal characteristics for linear and equal-percentage valves are 
only approximated by commercially available valves. These discrepancies cause no dif-
ficulty because the inherent characteristics are changed considerably when the valve 
is installed in a line having resistance to flow, a situation that usually prevails in prac-
tice. The inherent valve characteristics are shown in  Table 19.1 . In the next section, the 
effect of line loss on the effective valve characteristic will be discussed. 

  TABLE 19.1 

 Inherent valve characteristics 

Valve type Sensitivity
 

df
dx

Relationship

Linear Constant f (x) � x

Equal-percentage Increasing f (x) � ax�1

Square root or quick-opening Decreasing f x x( ) �

   Effective Valve Characteristic 

 When a valve is placed in a line that offers resistance to flow, the inherent charac-
teristic of the valve will be altered. The relation between flow and stem position 
(or valve-top pressure) for a valve installed in a process line is called the  effective valve 
characteristic.  

Water
supply

p0

pv

p1L

FIGURE 19–4
Control valve with supply line.
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 CHAPTER 19  CONTROL VALVES 431

 Consider a linear control valve attached to the end of a pipeline that delivers water to 
an open tank. A diagram of the system is shown in  Fig. 19–4 . If the pipe is of large 
diameter relative to the size of the control valve, the pressure drop in the line will be 
negligible and the full pressure drop  p  0   �   p  1  will be across the valve as the lift varies 
between 0 and 1 (from fully closed to fully open). In this case a plot of flow versus lift 
will give a linear relation as shown by curve I of  Fig. 19–5 . This curve is for the flow of 
water at 5°C through a control valve for which  C   v    �  4.0 and the overall pressure drop 
 p  0   �   p  1  is 100 psi. To show the effect of line loss, curve II is constructed for the same 
conditions as curve I, with the exception that 100 ft of 1.0-in (inside diameter) pipe is 
used to supply the valve. 

 Example 19.2 will give the detailed calculations used to obtain the results 
in  Fig. 19–5 . For 100 ft of pipe, the plot of flow versus lift gives curve II, shown in  
Fig. 19–5 , in which the curve falls away or droops from the linear relation that holds for 
no line loss. Since line loss is proportional to the square of the velocity, the line loss is 
very small when the valve is nearly closed, for which case the total pressure drop is across 
the valve. For this reason, curves I and II in  Fig. 19–5  are close together at low rates. 

A rule often followed in industrial application of control valves is that the pressure 
drop across the wide-open valve should be greater than 25 percent of the pressure 
drop across the closed valve. A valve not selected according to this rule will lose its 
effectiveness to control at high flow rates.

q,
 g

al
/m

in

x, fraction lift
0

0
0.2 0.4 0.6 0.8 1.0

10

20
II

I30

40

FIGURE 19–5
Effect of line loss on control valve characteristics from Example 19.2. 
I: No pressure drop in supply line to valve, II: pressure drop present in supply line to valve.

  Example 19.2.     Determine the flow versus lift relation for the linear control 
valve installed in the flow system of  Fig. 19–4 . The fluid is water at 5°C. The 
following data apply.    

 

Pipe length 100 ft
Inside pipe diameter 1 in
Density of water 62.4 lb/ft3

Viscosity of water 1.5 cP
Cv of control valve 4.0
Total pressure drop p0 � p1 �  ∆ ptotal 100 psi
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 If there is no line loss, as is the case for a large-diameter line, then  ∆  p  total   �   
∆  p  valve , and the maximum flow can be calculated from Eq. (19.1):   

  
q C f x

p
v� � �( ) . ( . ) . /

∆ valve

sg
gal min4 0 1 0

100

1
40 0

   
To determine the flow/lift relation for the case of line loss, we arbitrarily start the 
calculation with a flow of 30 gal/min. The pressure drop in the 100 ft-pipe can be 
calculated from the well-known expression from fluid mechanics   

  
∆ ρ

p
f L Q

g Dc
pipe �

32

144

2

2 5p  
 (19.12)

  
where     ∆  p  pipe   �  pressure loss in line, psi  

      
gc � �32 174

2

.
/lb ft s

lb
m

f     
   r   �  density of fluid, lb m /ft 3   
   f   �  Fanning friction factor, dimensionless  

   Q   �  volumetric flow through pipe, ft 3 /s  
   L   �  pipe length, ft  
   D   �  inside pipe diameter, ft    

 The Fanning friction factor is a function of the Reynolds number and the 
pipe roughness. Equation (19.11) and a correlation for the Fanning friction fac-
tor can be found in the literature (Perry and Green, 1999). We now calculate the 
Reynolds number Re:   

  
Re �

Dur
m   

Replacing the velocity  u  with  Q /[( p /4) D  2 ] gives   

  
Re �

4Q

D

r
pm  

 (19.13)     

  

Q � �
30

60 7 48
0 066

3

gal min

s/min gal ft

/

. /
.

( )( ) 88 240 6
3 3ft

s

ft

h
� .

      

  

Re
ft h lb ft

ft

�
4 240 6 62 4

1

3 3

1
12

( )( )( )
( )( )

. / . /

p .. .
/ ( )

,

50 2 42

63 220

cP
cP

( ) 





=
lb ft h�

   
For this value of Reynolds number and for smooth pipe, the Fanning friction fac-
tor  f  is 0.005. Equation (19.12) may now be used to calculate the line loss:   

  

∆ppipe �
32 0 005 100 62 4 0 0668

144

2( )( )( )( )( )
( )
. . .

pp 2 1
12

5
32 2

24 2

( )( )( ).
.� psi

   
Therefore, ∆  p  valve   �  100 psi  �  24.2 psi  �  75.8 psi. 
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 CHAPTER 19  CONTROL VALVES 433

 We next calculate the flow through the wide-open valve that gives a pres-
sure drop of 75.8 psi:   

  

q C f xv

x
f x x

max

for linear

for max fl

�

� �

( )
,

( )
.

1
oow

valve

sg
gal min�

∆p
� �4 0

75 8

1
34 8.

.
. /

   

Recall that we arbitrarily started this calculation with a flow rate of 30 gal/min. 
Now, since a flow of 34.8 gal/min through the wide-open valve produces a pres-
sure drop of 75.8 psi, we conclude that the valve must be partially closed since we 
have ∆  p  valve   �  75.8 psi with only 30 gal/min of flow. Since the valve is linear, 
we can calculate the lift  x  as follows:   

  

f x x
q

q
( )

.
.� � � �

Linear valve
max� �� ��

30

34 8
0 86

   

We can generalize this calculation to generate the data necessary to produce 
 Fig. 19–5 .   

  

x
q

q

q

C p

q

pv

� � �
max valve valvesg∆ ∆/ 4

   

We also know that   

  ∆ ∆ ∆p p ptotal pipe valve psi� �100 +   

We can observe that the pressure drop through the pipe is proportional to the 
square of the flow rate through the pipe [Eq. (19.12)]. Therefore, we can write   

  

∆
∆

p

p

q

q

q

q

pipe old

pipe new

old

new

old

new

( )
( )


� �

2

2 



2

   

We have one data point that we have already calculated:  q   �  30 gal/min and  
∆  p  valve   �  24.2 psi, so   

  

24 2 30
2

.  psi  gpm

pipe∆p q
�







   

and   

  
∆p

q
pipe

 gpm
 psi�

30
24 2

2





( ).
   

From the expression for the total pressure drop, we can write   

  
∆ ∆ ∆p p p

q
valve total pipe  psi

 gpm
� � � �100

30







( )
2

24 2.  psi
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Finally, we can substitute this back into the expression for  x.    

  

x
q

p

q

q
� �

�
4

4 100
30

24 2
2∆ valve

 psi
 gpm

 ps






. ii( )
   

Using this equation, we can generate the effective characteristic curve (curve II) 
shown in  Fig. 19–5 . The data are summarized in  Table 19.2 .

  TABLE 19.2 

 Effective characteristic for a linear valve with supply line loss 

Curve I pressure drop in valve only Curve II pressure drop in valve and pipe

Flow 
q, gal/min Stem position x

Valve pressure 
drop, psi Stem position x

Valve pressure 
drop, psi

0 0.00 100 0.00 100
10 0.25 100 0.25 97
20 0.50 100 0.53 89
30 0.75 100 0.86 76
30.5 0.76 100 0.88 75
31 0.78 100 0.90 74
31.5 0.79 100 0.92 73
32 0.80 100 0.94 72
32.5 0.81 100 0.96 72
33 0.83 100 0.98 71
33.5 0.84 100 1.00 70
34 0.85 100
34.5 0.86 100
35 0.88 100
35.5 0.89 100
36 0.90 100
36.5 0.91 100
37 0.93 100
37.5 0.94 100
38 0.95 100
38.5 0.96 100
39 0.98 100
39.5 0.99 100
40 1.00 100

    Example 19.3. A control valve is to be installed in the flow system of  Fig. 19–4 . 
The valve is supplied by water at 5°C through 200 ft of pipe having an inside diam-
eter of 1.0 in. The total pressure drop  p  0   �   p  1  is 100 psi. When the valve is wide 
open, the flow is to be 30 gal/min. Determine  C   v   for the valve. Plot the effective 
characteristic curve for the valve as flow versus lift. Do this problem for a lin-
ear valve and for an equal-percentage valve. The equal-percentage valve has an  
a   �  33.3. 
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 CHAPTER 19  CONTROL VALVES 435

  Linear valve.   To obtain the pressure drop in the line, use is made of Eqs. (19.12) 
and (19.13) as was done in Example 19.2. From Eq. (19.13), we obtain the Reyn-
olds number as follows:   

  
q � � �

30

60 7 48
0 0668 240 6

3 3

( )( . )
. .

ft

s

ft

h      

  

Re
240 6 ft h 62 4 lb ft

� �
4 4 3 3

1

q

D

r
pm

p

( )( )( )
( )

. / . /

112
2 42

63

ft 1 50
lb ft h( )( ) ( )











. .
/

,

cP
cP

�
� 2220

   

From a correlation for the Fanning friction factor, we obtain  f   �  0.005. From Eq. 
(19.12), the line loss is calculated to be   

  

∆p �
32 0 005 200 62 4 0 0668

144

2

2

( )( )( )( )( )
( )( )
. . .

p 332 2

100 48 4

1
12

5
.

.

. .

( )( )
�

� � �

48 4 psi

51 6valve∆p psi   

From knowledge of the maximum flow through the wide-open valve (30 gal/min) 
and  ∆  p  valve , we calculate  C   v   from Eq. (19.1) as follows:   

  

C
q

p
v � � �

max

valve sg∆ / .
.

30

51 6
4 18

   

Now that we have  C   v  , we can calculate the stem position  x  needed for various 
flow rates  q.  

 As we showed in Example 19.2, the pressure drop through the pipe is pro-
portional to the square of the flow rate. Since the total pressure drop is constant, 
we can calculate the pressure drop across the valve for any flow rate.   

  
∆ ∆ ∆p p p

q
valve total pipe 100 psi

30 gpm
� � � �







( )
2

48 4 psi.
   

We can generalize the rest of the solution procedure for this problem as follows:

   1. Pick a value for  q  (less than  q  max , 30 gal/min in this case).  

  

2. Find         

  3. Find         

∆p
q

valve 100 psi
30 gpm

48 4 psi� �






( )
2

.∆p
q

valve 100 psi
30 gpm

48 4 psi� �






( )
2

.

q C f x
p p

vmax
valve valve

sg 1
� � �( ) . . .

∆ ∆
4 18 1 0 4( )( ) 118 100

30
48 4

2

psi
gpm

psi�
q





( ). .q C f x
p p

vmax
valve valve

sg 1
� � �( ) . . .

∆ ∆
4 18 1 0 4( )( ) 118 100

30
48 4

2

psi
gpm

psi�
q





( ). .
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  4. Find f x
q

q

q

q
( )

. / .
.� �

�max 4 18 100 30 48 42( ) ( )
         

  5. Find  x   �   f  ( x ) for a linear valve.   

As a numerical example,

   1. Choose  q   �  20 gal/min  .

  2.         

  3.         

  
4.

         

  5.  x   �   f  ( x )  �  0.54  for a linear valve   

For other flow rates, one can repeat this procedure to obtain values of  x.  The 
results are shown in  Table 19.3  and in  Fig. 19–6 . The latter also shows the inher-
ent characteristic of the linear valve for comparison with the effective character-
istic of the valve when line loss is present.  

  Equal-percentage valve.   Calculation of the effective characteristic will now be 
made for an equal-percentage valve having the same  C   v   of 4.18 as calculated for 
the linear valve in the first part of this example. The procedure (steps 1 to 5) that 
we outlined above for the linear valve applies to this case as well, except that we 
must modify step 5 for an equal-percentage valve. The relationship between stem 
position and fraction of maximum flow is given by Eq. (19.11).   

  f x x( ) � �a 1    (19.11)   

Solving Eq. (19.11) for  x,  we get   

  x
f x

� �1
ln

ln

( )

a
   

For this example,  a   �  33.3, and we modify step 5 from above to determine  x  as 
follows:

   5. Find     x
f x f x f x

� � � � � �1 1
33 3

1
3 51

ln

ln

ln

ln

ln( ) ( )

.

( )

.a
     

For a flow rate of 20 gal/min, we found  f  ( x )  �  0.54 above. For the equal-percent-
age valve, we can now find the stem position.   

  x � � �1
0 54

3 51
0 82

ln( . )

.
.   

For other values of flow, corresponding values of  x  are calculated for the equal-
percentage valve, and the results are shown in  Table 19.3  and  Fig. 19–6 . 

�pvalve 100 psi
30 gpm

48 4 psi 7� � �
20

2





( ). 88 5 psi.�pvalve 100 psi
30 gpm

48 4 psi 7� � �
20

2





( ). 88 5 psi.

qmax 37 gpm� �4 18 78 5. .qmax 37 gpm� �4 18 78 5. .

f x( ) .� �
20

37
0 54f x( ) .� �

20

37
0 54
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 CHAPTER 19  CONTROL VALVES 437

  TABLE 19.3 

 Effective characteristics for a linear and an equal percentage valve (Example 19.3) 

Q Ppipe Pvalve Qmax x x x

(gal/min) (psi) (psi) (gal/min) Linear Equal-percentage Linear, inherent

2 0.22 99.78 41.76 0.05 0.13 0.07
4 0.86 99.14 41.62 0.10 0.33 0.13
6 1.94 98.06 41.39 0.14 0.45 0.20
8 3.44 96.56 41.07 0.19 0.53 0.27

10 5.38 94.62 40.66 0.25 0.60 0.33
12 7.74 92.26 40.15 0.30 0.66 0.40
14 10.54 89.46 39.54 0.35 0.70 0.47
16 13.77 86.23 38.82 0.41 0.75 0.53
18 17.42 82.58 37.98 0.47 0.79 0.60
20 21.51 78.49 37.03 0.54 0.82 0.67
22 26.03 73.97 35.95 0.61 0.86 0.73
24 30.98 69.02 34.73 0.69 0.89 0.80
26 36.35 63.65 33.35 0.78 0.93 0.87
28 42.16 57.84 31.79 0.88 0.96 0.93
30 48.40 51.60 30.03 1.00 1.00 1.00
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Q
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FIGURE 19–6
Comparison of effective characteristics for linear and equal-percentage 
valves from Example 19.3.
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    BENEFIT OF AN EQUAL-PERCENTAGE VALVE. It is often stated in the control 
literature that the benefit derived from an equal-percentage valve arises from its 
inherent nonlinear characteristic that compensates for the line loss to give an effec-
tive valve characteristic that is nearly linear. A study of Fig. 19–6 shows that in this 
example an equal-percentage valve overcompensates for line loss and produces an 
effective characteristic that is not linear, but is bowed in the opposite direction to 
that of the effective characteristic of the linear valve. In summary, neither valve in 
this example produces an effective characteristic that is linear. One can show that 
as the line loss increases, the linear valve will depart more from the ideal linear 
relation and the equal-percentage valve will move more closely toward the linear 
relation.

 In practice, a valve designated as linear will not give a linear characteristic exactly 
as defined in this chapter. To achieve a truly linear characteristic would require very 
careful design and precision machining of the valve plug and seat. The same comment 
can be made for an equal-percentage valve, as defined by Eq. (19.11). To know the 
effective characteristic of a valve, one must test it experimentally. 

  19.4 VALVE POSITIONER 

  The operation of an ideal air-to-open control valve is shown in  Fig. 19–7  a.  Any given 
air pressure signal to the valve results in a unique stem position  x.  The friction in the 
packing and guiding surfaces of a control valve often causes a control valve to exhibit 
hysteresis, as shown in  Fig. 19–7  b.  When the air pressure increases to the valve top, 
the stem position increases along the lower curve. When the air pressure decreases, the 
stem position decreases along the upper curve. At the moment the air pressure signal 
reverses, the stem position stays in the last position until the dead band  H  is exceeded, 
after which the pressure begins to decrease or increase along the paths shown by the 
arrows. If the valve is subjected to a slow periodic variation in pressure, a typical 
path taken by the stem position is shown by the closed curve  ABCDA  in  Fig. 19–7  b.  
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FIGURE 19–7
Control valve hysteresis.
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The net result of this behavior is that the same air pressure signal to the valve top cor-
responds to two different stem positions, depending upon whether the valve is in the 
process of opening or closing. 

 The hysteresis described in the previous paragraph should be distinguished from 
the dynamic lag of a valve discussed in Chap. 9. The dynamic lag discussed in Chap. 9 
is caused by the volume of space above the valve diaphragm, the resistance to flow of 
air to the valve top, and the inertia of the valve stem and plug; such a lag is expressed 
by a first-order or second-order transfer function. On the other hand, hysteresis, which 
is caused by the friction between the stem and the packing, is a nonlinear phenomenon 
and cannot be expressed by a transfer function. A valve can exhibit both dynamic lag 
and hysteresis. 

 The presence of hysteresis in the valve can cause the controlled signal to exhibit 
an oscillation or ripple called a  limit cycle.  Since this limit cycle is usually considered 
objectionable and contributes to the wear of the valve, a method is needed to eliminate 
it. Since the limit cycle is a nonlinear phenomenon related to the hysteresis, controller 
tuning is not a solution to the problem. 

 To reduce the deleterious effect of hysteresis and to also speed up the response 
of the valve, one can attach to the control valve a  positioner  that acts as a high-gain 
proportional controller that receives a set point signal from the primary controller and 
a measurement from the valve stem position. In this sense, the addition of a valve posi-
tioner introduces a form of cascade control, which was discussed in a previous chap-
ter. A sketch of a control valve with a positioner attached is shown in  Fig. 19–8 . The 
positioner, bolted to the valve actuator, has an arm that is clamped to the valve stem to 
detect the stem position. 

 Notice that the valve positioner shown in  Fig. 19–8  has the usual connections 
for a controller: a set point that calls for a desired stem position in the form of a signal 
from the primary controller  p   c  , a measurement in the form of stem position  x,  and a 
pneumatic output in the form of a pressure to the valve top  p   v  . Some positioners are 
now electronic microprocessor-based controllers, while others are still pneumatically 
based. Valve positioners are especially important for speeding up the valve motion and 
eliminating hysteresis and valve stem friction.    

Arm attached to stem
to sense valve position

Valve position
indicator

Signal from
controller pc

Output to valve pv Valve positioner

pv

x

FIGURE 19–8
Control valve with positioner. (Compare with Fig. 19–1.)
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   SUMMARY 

 The control valve is a component of a control system often overlooked in a course 
on process control. In this chapter, the description, selection, and sizing of pneumatic 
control valves were presented. Valves may be of the pressure-to-close or the pressure-
to-open type; the selection of the type is often related to safety considerations. If the air 
pressure fails, the valve should return to a position that ensures safe operating condi-
tions for a process. 

 The flow capacity of a valve is based on an equation relating flow to the square 
root of the pressure drop across the valve; the proportionality constant  C   v   in this equa-
tion is a measure of the valve’s capacity for flow—the larger  C   v  , the larger the flow. 

 Valves are classified according to their inherent flow characteristics such as linear 
or equal-percentage. A linear valve produces a flow (for constant pressure drop across 
the valve) that is proportional to the valve stem position, which in turn is proportional 
to the valve-top pressure. 

 The presence of a long, small-diameter line supplying a valve causes the pressure 
drop across the valve to decrease with the increase of flow, for a fixed overall pressure 
drop across the system. If the pressure drop in the line is excessive, the characteristic of 
the linear valve will become nonlinear and in terms of control theory, the steady-state 
gain  K   v   of the valve decreases with flow. 

 As a result of the change in valve gain, the controller in the loop must be read-
justed for different flow rates to maintain the same degree of stability. To overcome this 
limitation of the linear valve, an equal-percentage (or logarithmic) valve is available for 
which the gain of the valve increases with flow rate. Such a valve compensates for the 
line loss and produces an effective characteristic that approaches a linear relation. The 
basis for the name  equal-percentage  (or  logarithmic ) is related to one form of the math-
ematical expression that describes the valve. In this form, an equal-percentage change 
in flow occurs for a specified change in stem position, regardless of the stem position. 

 To eliminate hysteresis, which can produce cycling and cause wear of the valve 
plug and seat, a valve positioner may be attached to a control valve. The positioner also 
speeds up the motion of the valve in response to a signal from the controller.  

  PROBLEMS 

    19.1.  A linear control valve having a  C   v   of 0.1 is connected to a source of water. If the pressure 
drop across the valve is 400 psi and if the pneumatic pressure to the valve top is 12 psig, 
what is the flow rate through the valve? The valve goes from completely shut to completely 
open as the valve-top pressure varies from 3 to 15 psig.  

   19.2.     ( a )  Under what conditions would an equal-percentage valve be used instead of a linear 
valve?  

  ( b ) What are some reasons to use a valve positioner?       
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CAPSULE SUMMARY 
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FIGURE 19–1
Single-seated control valves.

 Control valves can be air-to-open or air-to-close. The choice is usually made so 
that the valve fails in the safe position upon loss of air signal pressure.   

  

Valve sizing equation  
sg
valve

q C f x
p

v� ( )
∆

  
 ( 19.1 )  

where               q   �  flow rate, gal/min  
              x   �  fractional stem position (i.e., fraction open)  
   ∆  p  valve   �  pressure drop across valve, psi  
          f  ( x )  �  fraction of maximum flow ( �  1 for fully open)  
            C   v    �  factor associated with capacity of valve   
           sg  �  specific gravity of fluid (water sg  �  1)    

 Equation (19.1) applies to the flow of an incompressible, nonflashing fluid 
through a fully open valve. Factor  C   v   can be defined as the flow (gal/min) of a fluid of 
unit specific gravity (water) through a fully open valve, across which a pressure drop of 
1.0 psi exists. Therefore, the bigger  C   v  , the larger the valve.     
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 A  valve positioner  is a device that can be attached to a valve that drives the valve 
to the desired position, in spite of friction or hysteresis.   

  

Valve type Sensitivity 
df

dx
Relationship

Linear (I) Constant f(x) � x
Equal-percentage (II) Increasing f(x) � ax�1

Square root or quick-opening (III) Decreasing f x x( ) �

0
0

0.5 1.0
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1.0

f, 
fr

ac
tio
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x, fraction of maximum lift

III

II

I

FIGURE 19–3
Inherent valve characteristics (pressure drop across valve is constant). 
I: Linear, II: increasing sensitivity (e.g., equal-percentage valve), and III: decreasing sensitivity (e.g., square 
root valve).
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 CHAPTER 

 20 

  To investigate theoretically the control of a process, it is necessary first to know 
the dynamic character of the process that is being controlled. In previous chap-

ters, the processes have been very simple for the purpose of illustrating control theory. 
Many physical processes are extremely complicated, and it requires considerable effort 
to construct a mathematical model that will adequately simulate the dynamics of the 
actual system. In this chapter, we analyze several complex systems to indicate some 
of the types of problems that can be encountered. In these examples, the technique of 
linearization, first presented in Chap. 5, is applied to a function of several variables. 
One example leads to a multiloop control system. In Sec. 20.3 distributed-parameter 
systems are discussed.  

   20.1  CONTROL OF A STEAM-JACKETED 
KETTLE 

  The dynamic response and control of the steam-jacketed kettle shown in  Fig. 20–1  are 
to be considered. The system consists of a kettle through which water flows at a vari-
able rate  w  lb/time. The entering water is at temperature  T   i  , which may vary with time. 
The kettle water, which is well agitated, is heated by steam condensing in the jacket at 
temperature  T   v   and pressure  p   v  . The temperature of the water in the kettle is measured 
and transmitted to the controller. The output signal from the controller is used to change 
the stem position of the valve, which adjusts the flow of steam to the jacket. The major 
problem in this example is to determine the dynamic characteristics of the kettle. The 
kettle is actually a nonlinear system, and to obtain a linear model, a number of simplify-
ing assumptions are needed.  

 THEORETICAL ANALYSIS OF 
COMPLEX PROCESSES 
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   Analysis of Kettle 

 The following assumptions are made for the kettle:

   1. The heat loss to the atmosphere is negligible.  
  2. The holdup volume of water in the kettle is constant.  
  3. The thermal capacity of the kettle wall, which separates steam from water, is neg-

ligible compared with that of the water in the kettle.  
  4. The thermal capacity of the outer jacket wall, adjacent to the surroundings, is finite, 

and the temperature of this jacket wall is uniform and equal to the steam tempera-
ture at any instant.  

  5. The kettle water is sufficiently agitated to result in a uniform temperature.  
  6. The flow of heat from the steam to the water in the kettle is described by the 

expression

     q U T Tv o� �( )   

 where      q   �  flow rate of heat, Btu/(h · ft 2 )  
    U   �  overall heat-transfer coefficient, Btu/(h · ft 2  · °F)  
    T   v    �  steam temperature, °F  
    T   o    �  water temperature, °F   

 The overall heat-transfer coefficient  U  is constant.  

  7. The heat capacities of water and the metal wall are constant.  
  8. The density of water is constant.  
  9. The steam in the jacket is saturated.   

w

m

wv

wc

Water

Condensate

Jacket
wall

Control valve

Computer/Controller 

Steam

Temperature-measuring
element

Ti

To

w
To

Tc

Tv Pv

FIGURE 20–1
Control of a steam-jacketed kettle.
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The assumptions listed here are more or less arbitrary. For a specific kettle operat-
ing under a particular set of conditions, some of these assumptions may require 
modification. 

 The approach to this problem is to make an energy balance on the water side 
and another energy balance on the steam side. To aid the development of the transfer 
functions, a schematic diagram of the kettle is shown in  Fig. 20–2 . The symbols used 
throughout this analysis are defined as follows:

    T   i      �  temperature of inlet water, °F  
   T   o       �  temperature of outlet water, °F  
   T   v        �  temperature of jacket steam, °F  
   T   c         �  temperature of condensate, °F  
   w        �  flow rate of inlet water, lb/time  
   w   v     �  flow rate of steam, lb/time  
   w   c     �  flow rate of condensate from kettle, lb/time  
   m       �  mass of water in kettle, lb  
   m  1   �  mass of jacket wall, lb  
   V       �  volume of jacket steam space, ft 3   
   C       �  heat capacity of water, Btu/(lb · °F)  
   C  1   �  heat capacity of metal in jacket wall, Btu/(lb · °F)  
   A        �  cross-sectional area for heat exchange, ft 2   
   t         �  time  
   H   v    �  specific enthalpy of steam entering, Btu/lb  
   H   c    �  specific enthalpy of condensate leaving, Btu/lb  
   U   v    �  specific internal energy of steam in jacket, Btu/lb  
   r   v      �  density of steam in jacket, lb/ft 3     

WaterSteam
wv

wc

Tv

Tc

w
To

w
Ti 

To

m1

m

A

Pv

FIGURE 20–2
Schematic diagram of kettle.

 An energy balance on the water side gives

     
wC T T UA T T mC

dT

dt
i o v o

o
� � � �( ) ( )

  
 (20.1)  

In Eq. (20.1), the terms  C,   U,   A,  and  m  are constants. The first term in Eq. (20.1) is non-
linear, since it contains the product of flow rate and temperature, that is,  wT   i   and  wT   o  . 
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To obtain a transfer function from Eq. (20.1), these nonlinear terms must be linearized. 
Before continuing the analysis, we digress briefly to discuss the general problem of 
linearization of a function of several variables. 

 Recall from Chap. 5 [Eq. (5.39)] that a function of two variables  z ( x, y ) can be 
expanded around an operating point  x   s  ,  y   s   by means of a Taylor series expansion:

     

z z x y
z

x
x x

z

y
y ys s

x y
s

x y

s
s s s s

� �
�

�
� �

�

�
�

�

,
, ,

( ) ( ) ( )

hhigher-order terms in andx x y ys s� �
  

 (20.2)  

The subscript  s  stands for steady state. 
 In control problems, the operating point ( x   s  ,  y   s  ), around which the expansion is 

to be made, is selected at steady-state values of the variables before any disturbance 
occurs. Linearization of the function  z  consists of retaining only the linear terms, on the 
basis that the deviations (e.g.,  x   �   x   s  ) will be small. Thus,

     z z z x x z y ys x s y ss s� � � � �( ) ( )   (20.3)  

where     zxs    and     zys    are the partial derivatives in Eq. (20.2). If  z  is a function of three or 
more variables, the linearized form is the same as that of Eq. (20.3) with an additional 
term for each variable. 

 The linearization expressed by Eq. (20.3) may be applied to the terms  wT   i   and 
 wT   o   in Eq. (20.1) to obtain

     wT w T w T T T w wi s i s i i i ss s s� � � � �( ) ( )   (20.4)  

and

     wT w T w T T T w wo s o s o o o ss s s� � � � �( ) ( )   (20.5)  

Notice that for these cases the nonlinear terms are  wT   i   and  wT   o  . The first partial deriva-
tives, evaluated at the operating point, are

     

�

�
�

�

�
�

wT

w
T

wT

w
w
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w T
i

i

w T
s

s

s is

s

s

s i

( )

( )
,

,
   

and so on. 
 Introducing Eqs. (20.4) and (20.5) into Eq. (20.1) gives the following linearized 

equation:

     
T T w w w T T C UA T T mC

dT
i o s s i o v os s� � � � � � �( )( ) ( )[ ] ( ) oo

dt   
(20.6)  
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At steady state,  dT   o  / dt   �  0, and Eq. (20.1) can be written

     w C T T UA T Ts i o v os s s s� � � �( ) ( ) 0   (20.7)  

Subtracting Eq. (20.7) from Eq. (20.6), introducing the deviation variables

     

T T T

T T T

T T T

W w w

i i i

o o o

v v v

s

s

s

s

�

�

�

� �

� �

� �

� � �   

and rearranging give the result

     
C T T W w T T UA T T mC

d
i o s i o v os s� � � � � �� � � �( ) ( )



 ( ) TT

dt
o�

   
(20.8)  

Taking the transform of Eq. (20.8) and solving for  T   o   �  ( s ) give

     
T s
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s
T s
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s
T s
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s
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� � ��
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�
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( ) ( ) ( )1 2 3

1 1 1t t t
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(20.9)  

   where
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From Eq. (20.9), we see that the response of  T   o   �  to  T   i   � ,  T   v   � , or  W  �  is first-order with a time 
constant  t   w  . The steady-state gains  (K   s )  in Eq. (20.9) are all positive. 

 The following energy balance can be written for the steam side of the kettle:

     

w H w H UA T Tv v c c v o

in by flow out by flow o
� �� � �( )

uut by convection
accumula

� ��� ��� + ( )Vd U

dt
v vr

ttion in steam
� �� ��

� m C
dT

d
v

1 1
tt

accumulation in kettle wall
� �� ��

   

(20.10)  

Notice that we have made use of assumption 4 in writing the last term of Eq. 
(20.10), which implies that the metal in the outer jacket wall is always at the steam 
temperature. 
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 A mass balance on the steam side of the kettle yields

     
w w V

d

dt
v c

v
� �

r
   

(20.11)  

Combining Eqs. (20.10) and (20.11) to eliminate  w   c   gives

     

w H H U H V
d

dt
m C

dT

dt
UA T Tv v c v c

v v
v o� � � � � �( ) ( ) ( )r

1 1

� V
dU

dt
v

vr
  

 (20.12)  

The variables  r   v  ,  U   v  ,  H   v  , and  H   c   are functions of the steam and condensate temperatures 
and can be approximated by expansion in Taylor series and linearization as follows:

     

r r a
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s s
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 (20.13)  

   

where

  

a
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dH
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dH
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The parameters  a ,  f ,  g , and  s  in these relationships can be obtained from the steam 
tables once the operating point is selected. For example, if the operating point is at 
212°F and the deviation in steam temperature is 10°F, we obtain the following estimate 
of  g  from the steam tables:

       
Tvs � �212 F

    

      Hvs � 1150 4. /Btu lb     

   H   v    �  1154.1   at  T   v    �  222°F  

   H   v    �  1146.6   at  T   v    �  202°F  

      g �
1154 1 1146 6

222 202
0 375

. .
.

�

�
�

    

   H   v    �  1150.4  �  0.375( T   v    �  212)   
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In a similar manner, the properties of saturated steam can be used to evaluate  a ,  f , 
and  s . 

 Introducing the relationships of Eq. (20.13) into Eq. (20.12) and assuming the 
condensate temperature  T   c   to be the same as the steam temperature  T   v   give the follow-
ing result:

     

H H T T w

U H

v c v v v
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s s s

s s

� � � �
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g s

f s
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a

a

1 1

AA T Tv o( )�

   

(20.14)  

Some of the terms in Eq. (20.14) can be neglected. The term

     
g s� �( )( )T Tv vs

   

can be dropped because it is negligible compared with     H Hv cs s
� .    For example, for 

steam at atmospheric pressure, a change of 10°F gives a value of     g s� �( )( )T Tv vs    of 

about 7 Btu/lb while     H Hv cs s�    is 970 Btu/lb. Similarly, the term     2f s� �( )( )T Tv vs    
can be neglected. For example, this term is about  � 4 Btu/lb for a change in steam tem-

perature of 10°F for steam at about 1 atm pressure; the term     U Hv cs s�    is 897 Btu/lb 
under these conditions. Also, the term     fr avs /    is about 15 Btu/lb and can be neglected. 
Discarding these terms, writing the remaining terms in deviation variables, and trans-
forming yield

     
T s

s
T s

K

s
W sv

v
o

v
v� � ��

�
�

�
( ) ( ) ( )1

1 1
5

t t  
 (20.15)  

where     T  �   v    �   T   v    �   T   vs    

      W W Wv v vs
� � �     

      K
H H

UA
v cs s

5 �
�

    

      t
a

v
v cU H V m C

UA
s s�

� �( ) 1 1
      

 From Eq. (20.15), we see that the steam temperature  T  �   v   depends on the steam 
flow rate  W  �   v   and the water temperature  T  �   o  . The combination of Eqs. (20.9) and (20.15) 
gives the dynamic response of the water temperature to changes in water flow rate, inlet 
water temperature, and steam flow rate. These equations are represented by a portion of 
the block diagram of  Fig. 20–4 . Before completing the analysis of the control system, 
we must consider the effect of valve stem position on the steam flow rate.  
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  Analysis of Valve 

 The flow of steam through the valve depends on three variables: steam supply pres-
sure, steam pressure in the jacket, and the valve stem position, which we assume to be 
proportional to the pneumatic valve-top pressure  p.  For simplicity, assume the steam 
supply pressure to be constant with the result that the steam flow rate is a function of 
only the two remaining variables; thus

     w f p pv v� ,( )   (20.16)  

Because of the assumption that the steam in the jacket is always saturated, we know that 
 p   v   is a function of  T   v  ; thus

     p g Tv v� ( )   (20.17)  

This functional relation can be obtained from the saturated steam tables. Equations 
(20.16) and (20.17) can be combined to give

     
w f p g T f p Tv v v� �, ,( )[ ] ( )1

   

The function  f  1 (  p,   T   v  ) is in general nonlinear, and if an analytic expression is available, 
the function can be linearized as described previously. The flow of steam through a 
control valve can often be represented by the relationship

     
w A C p pv v s v� �0

   (20.18)  

where     p   s       �  supply pressure of steam  
    p   v        �  pressure downstream of valve  
    A  0   �  cross-sectional area for flow of steam through valve  
    C   v    �  constant of valve   

For a linear valve,  A  0  is proportional to stem position, and the stem position is propor-
tional to the valve-top pressure  p;  under these conditions, Eq. (20.18) takes the form

     
w C p p pv v s v� ��

   
(20.19)   

 For this example, however, we assume that an analytic expression is not avail-
able. The linearized form of  f  1 (  p,   T   v  ) can be obtained by making some experimental 
tests on the valve. If the valve-top pressure is fixed at its steady-state (or average) value 
and  w   v   is measured for several values of  T   v   (or  p   v  ), a curve such as the one shown in 
 Fig. 20–3 a   can be obtained. If the steam temperature  T   v   (or  p   v  ) is held constant and the 
flow rate is measured at several values of valve-top pressure, a curve such as that shown 
in  Fig. 20–3 b   can be obtained. These two curves can now be used to evaluate the partial 
derivatives in the linear expansion of  f  1 (  p,   T   v  ) as we now demonstrate. 
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 Expanding  w   v   about the operating point     p Ts vs,    and retaining only the linear 
terms give

     

w w
w

p
p p

w

T
T Tv v

v

p T

s
v

v p T
v vs

s vs s vs

s� �
�

�
� �

�

�
�

, ,
( ) (( )

   

This equation can be written in the form

     
W K P

R
Tv v

v
v� � �

1  
 (20.20)  

   where      W w wv v vs
� � �     

       P   �   p   �   p   s    

      T T Tv v vs
� � �     

      
K

w

p
v

v

p Ts vs

�
�

� ,     

      

1

R

w

Tv

v

v p Ts vs

� �
�

� ,        

The coefficients Kv and �1/Rv in Eq. (20.20) are the slopes of the curves of Fig. 20–3 
at the operating point p Ts vs, .  This follows from the definition of a partial derivative. 
Notice that 1/Rv has been defined as the negative of the slope so that Rv is a positive 
quantity. The experimental approach described here for obtaining a linear form for the 
flow characteristics of a valve is always possible in principle. However, it must be 
emphasized that the linear form is useful only for small deviations from the operating 
point. If the operating point is changed considerably, the coefficients Kv and 1/Rv must 
be reevaluated. Notice that, in writing Eq. (20.20), we have assumed the valve to have 
no dynamic lag between p and stem position. This assumption is valid for a system 
having large time constants, such as a steam-jacketed kettle, as was demonstrated in 
Chap. 9.

Tv

ps

pv

p

Tv

wv 
p

wvs
wvs

Tvs

wv wv

Slope = = − 1
Rv

∂wv
∂Tv

or

(a) p = ps (b) Tv = Tvs
(c)

Slope = = Kv
∂wv
∂p

s
s

FIGURE 20–3
Linearization of valve characteristics from experimental tests.
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  Block Diagram of Control System 

 We have now completed the analysis of the kettle and valve. A block diagram of the 
control system, based on Eqs. (20.9), (20.15), and (20.20), is shown in  Fig. 20–4 . 

G1

G3

G2

G4

Gc Kv
WvP

R

T ′i 

T ′o 
T ′v  

W

K1

w s+1

K3

w s+1

K2

w s+1

G5

H

K5

v s+1

1

v s+1

1

+

+

+

+
+

+

+

−

−

−

−

Rv

FIGURE 20–4
Block diagram for control of steam-jacketed kettle.

 The controller action is not specified but merely denoted by  G   c   in the block diagram. 
Also, the feedback element is denoted as  H.  From  Fig. 20–4 , we see that the steam-
jacketed kettle is a multiloop control system. Furthermore, the loops overlap. The block 
diagram can be used to obtain the overall transfer function between any two variables 
by applying the methods of Chap. 12. After considerable algebraic manipulation, the 
following result is obtained:

     

T
G G G K

D s
R

G G R

D s
T

G G
o

c v v
i� �� �

�
�

�2 5 1 5 3 51 1

( )
( )

( )
/ // R

D s
Wv( )

( )
  

 (20.21)  

where  D ( s )  �  1  �   G  5 / R   v    �   G   c    G  2   G  5   K   v    H   �   G  2   G  4 . The terms  G  1 ,  G  2 ,  G  3 ,  G  4 ,  G  5 ,  G   c  , 
and  H  are defined in  Fig. 20–4 . For example, if  G   c    �   K   c   and  H   �  1, one obtains from 
Eq. (20.21) the transfer function

     

T

R

K

s s
o�

�
� �t zt2 2 2 1   

(20.22)  
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where 

       

K
K K K K

D
c v� 2 5

1

    
      t

t t2

1
�

v w

D     

      2
5

1
zt t t t

�
� �v w w vK R

D

/
    

      D
K

R
K K K K K

v
c v1

5
2 5 21� � � �       

 It is seen that the response of the control system is second-order when propor-
tional control is used and the measuring element does not have dynamic lag. Notice 
that the parameters  K,   t  2 , and 2 z   t  in Eq. (20.22) are positive. This follows from the fact 
that the parameters  K   c  ,  K   v  ,  K  2 ,  K  5 ,  R   v  ,  t   v  , and  t   w   are all positive and that  K  2  < 1. When 
a block diagram of a control system becomes very complicated, such as the one in this 
example, it is convenient to simulate the control system with a software package such 
as Simulink.    

  20.2  DYNAMIC RESPONSE OF A GAS 
ABSORBER 

  Another example of a complex system is the plate absorber shown in  Fig. 20–5 . The 
reader who has not studied gas absorption may find this subject presented in any text-
book on chemical engineering unit operations; for example, see McCabe, Smith, and 
Harriott (2004). 

Water

Bubble cap

Downcomer
weir

Plate 2

Plate 1

Air-
ammonia

L3 V2

V0

V1 L2

x1L1 y0

y1

x2

y2x3

FIGURE 20–5
Bubble-cap absorber.
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 In this process, air containing a soluble gas such as ammonia is contacted with 
fresh water in a two-plate column in order to remove part of the ammonia from the gas. 
The action of gas bubbling through the liquid causes thorough mixing of the two phases 
on each plate. During the mixing process, ammonia diffuses from the bubbles into the 
liquid. In an industrial operation, many plates may be used; however, for simplicity, we 
consider only two plates in this example, since the basic principles are unaffected by 
the number of plates. 

 Our problem is to analyze the system for its dynamic response. In other words, 
we want to know how the concentrations of liquid and gas change as a result of change 
in inlet composition of the gas stream to be treated. We will consider the inlet flow of 
the liquid phase to be constant. 

 Throughout the analysis, the following symbols are used:

    L   n    �  flow of liquid leaving  n th plate, mol/min  
   V   n    �  flow of gas leaving  n th plate, mol/min  
   x   n       �  concentration of liquid leaving  n th plate, mole fraction NH 3   
   y   n       �  concentration of gas leaving  n th plate, mole fraction NH 3   
   H   n     �  holdup (or storage) of liquid on  n th plate, mole   

To avoid too many complicating details, the following assumptions will be used:

   1. The temperature and total pressure throughout the column are uniform and do not 
vary with changes in flow rate.  

  2. The entering gas stream is dilute (say 5 mol % NH 3 ) with the consequence that we 
can neglect the decrease in total molar flow rate of gas as ammonia is removed. 
Likewise, we can assume that the molar flow rate of liquid does not increase as 
ammonia is added.  

  3. The plate efficiency is 100 percent, which means that the vapor and liquid streams 
leaving a plate are in equilibrium. Such a plate is called an  ideal  equilibrium 
stage.  

  4. The equilibrium relationship is linear and is given by the expression

     y mx bn n� �∗
  

 (20.23)  

 where  m  and  b  are constants that depend on the temperature and total pressure of 
the system and     xn

∗    is the concentration of liquid in equilibrium with gas of concen-
tration  y   n  . For an ideal plate

     x xn n� ∗
   

 (If the efficiency of the plate is not 100 percent, we can introduce an individual tray 
efficiency of the Murphree type, defined as

     
E

x x

x x
n

n n

n n
�

�

�

�

�

1

1
∗
   

 where     xn
∗    is the concentration of the liquid in equilibrium with gas of composition 

 y   n  . Notice that for an ideal plate  E   n    �  1 and     x xn n� ∗ .    In general, the efficiency 
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of a plate depends on the design of the plate, the properties of the gas and liq-
uid streams, and the flow rates. We could include efficiency in our mathematical 
model; however, to do so would greatly increase the complexity of the problem. 
To account properly for the variation in efficiency with flow rates would require 
empirical relationships for a specific plate design. 

 In this list of assumptions, the one which is most likely to be invalid for a 
practical process is that the plate is an ideal equilibrium stage.)  

  5. The holdup of liquid  H   n   on each plate is constant and independent of flow rate. 
Furthermore, the holdup is the same for each plate, that is,  H  1   �   H  2   �   H.   

  6. The inlet liquid flow is constant. This assumption, in addition to assumptions 5 
and 2, leads us to the conclusion that the liquid flows throughout the column are 
constant and equal, that is,  L  3   �   L  2   �   L  1   �   L.   

  7. The holdup of gas between plates is negligible. As a consequence of this assump-
tion and assumption 2, the flow rate of gas from each plate is the same and equal to 
the entering gas flow rate; that is,

     V V V V0 1 2� � �        

   Analysis 

 We begin the analysis of this process by writing an ammonia balance around each plate. 
A mass balance on ammonia around plate 1 gives

     
H

dx

dt
Lx Vy Lx Vy1

2 0 1 1� � � �
  

 (20.24)  

This last equation states that the accumulation of NH 3  on plate 1 is equal to the flow of 
NH 3  into the plate minus the flow of NH 3  out of the plate. Notice that  V, L,  and  H  do not 
have subscripts because of assumptions 5 through 7. 

 A mass balance on ammonia around plate 2 gives

     
H

dx

dt
Vy Lx Vy2

1 2 2� � �
   

(20.25)  

The last equation does not contain a term  Lx  3 , since we have assumed that  x  3   �  0 (pure 
water). 

 For an ideal plate  x   n    �   x  *   n  , and the equilibrium relation of Eq. (20.23) becomes

     
y mx bn n� �

   

Substituting the equilibrium relationship into Eqs. (20.24) and (20.25) gives

     
H

dx

dt
Lx Lx Vm x x1

2 1 0 1� � � �( )
   

   and
  

H
dx

dt
Vm x x Lx2

1 2 2� � �( )
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where  x  0   �  (  y  0   �   b )/ m  is the composition of liquid that would be in equilibrium with 
the entering gas of composition  y  0 . Solving these last two equations for the derivatives 
gives

     

dx

dt

L

H
x x

Vm

H
x x1

2 1 0 1� � � �( ) ( )
  

 (20.26)  

     

dx

dt

Vm

H
x x

L

H
x2

1 2 2� � �( )
   

(20.27)   

 The analysis has resulted in two first-order differential equations. The forcing 
functions in this process, which must be specified as functions of  t,  are the inlet gas 
concentration  x  0   �  (  y  0   �   b )/ m  and the inlet liquid flow rate  L  3   �   L.  We can now solve 
for  x  1 ( t ) and  x  2 ( t ). Equations (20.26) and (20.27) can be written

     
dx

dt
ax bx cx1

1 2 0� � � �   (20.28)  

     

dx

dt
cx ax2

1 2� �
   

(20.29)  

where

     

a
L

H

Vm

H

b
L

H

c
Vm

H

� �

�

�

   

At steady state,  dx  1 / dt   �   dx  2 / dt   �  0, and Eqs. (20.30) and (20.31) can be written

     0 1 2 0� � � �ax bx cxs s s   (20.30)  

     
0 1 2� �cx axs s

  
 (20.31)  

Subtracting these steady-state equations from Eqs. (20.28) and (20.29) and introducing 
the deviation variables     X x x X x xs s1 1 1 2 2 2� � � �, ,    and     X x x s0 0 0� �    give

     
dX

dt
aX bX cX1

1 2 0� � � �   (20.32)  

     

dX

dt
cX aX2

1 2� �
  

 (20.33)  

Notice that  X  0   �   Y  0    / m  because
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X x x

X
y b

m

y b

m

y y

m

Y

m

s

s s

0 0 0

0
0 0 0 0 0

� �

�
� �

�
�

�−
   

Equations (20.32) and (20.33) can be transformed to give

     

sX aX bX cX

sX cX aX

1 1 2 0

2 1 2

� � � �

� �
    

 We now have two algebraic equations and three unknowns ( X  1 ,  X  2 , and  X  0 ). Solv-
ing this pair of equations to eliminate  X  1  and replacing  X  2  by  Y  2 / m  and  X  0  by  Y  0 / m  give 
the transfer function

     

Y s

Y s

c a bc

a bc s a a

2

0

2 2

2 2 21 2

( )
( )

( )
( )





�
�

� � �

/

/ / bbc s( )



 � 1

  

 (20.34)  

This result shows that the response of outlet gas concentration to a change in inlet gas 
concentration is second-order. Equation (20.34) is of the standard second-order form 
 K /( t  2  s  2   �  2 z   t   s   �  1) with the parameters

     

t zt2
2 2

1
2

2
�

�
�

�a bc

a

a bc
and

   

Solving these two equations to eliminate  t  gives

     

z �
�

1

1 2bc a/   

Writing  a  and  b  in terms of the original system parameters ( L, H, V, m ) gives

     

z � �
�

1 2

1 2
L H Vm H

L H Vm H

/ /

/ /

/
( )( )

( )










−

   

Simplifying this expression gives

     

z� �
�

1
1 2

1 2
Vm L

Vm L

/

/

/

( )










−

   

Since  Vm / L  > 0, we see that  z  > 1, meaning that the response is overdamped. If the anal-
ysis is repeated for a gas absorber containing  n  plates, it will be found that the response 
between inlet gas concentration and outlet gas concentration is  n th-order.    
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  20.3 DISTRIBUTED-PARAMETER SYSTEMS 

   Heat Conduction into a Solid 

 In Chap. 4, the analysis of the mercury thermometer was based on a “lumped para-
meter” model. At that time, reference was made to a distributed-parameter model of 
the thermometer. To illustrate the difference between a lumped-parameter system and a 
distributed-parameter system, consider a slab of solid conducting material of infinite 
thickness, as shown in  Fig. 20–6 . Let the input to this system be the temperature at 
the left face ( x   �  0), which is some arbitrary function of time. The output will be the 
temperature at the position  x   �   L.  For convenience, we may consider this system to rep-
resent the response of a bare thermocouple embedded in a thick wall, as the surface of 
the wall experiences a variation in temperature. The conductivity  k,  heat capacity  C,  and 
density  r  of the conducting material are constant, independent of temperature. Initially 
( t  < 0), the slab is at a uniform steady-state temperature. Therefore in deviation vari-
ables, which will be used henceforth, the initial temperature is zero. The cross-sectional 
area of the slab is  A.  

T(0,t )

x Lx+  x0

FIGURE 20–6
Heat conduction in a solid.

  ANALYSIS.   In this problem the temperature in the slab is a function of position and 
time and is indicated by  T ( x,t ). The temperature at the surface is indicated by  T (0, t ), and 
that at  x   �   L  by  T ( L,t ). To derive a differential equation that describes the heat conduc-
tion in the slab, we first write an energy balance over a differential length ∆  x  of the slab. 
This energy balance can be written

     

Flow of heat

into left face

by conduction












�

Flow of heat out

of right face

by condduction

Rate of accumulation

of i











� nnternal energy in

volume element











  

 (20.35)  

The flow of heat by conduction follows Fourier’s law:

   where

  
q k

T

x
� �

�

�   (20.36)  

     q   �  heat flux by conduction  

  ì  T /ì  x   �  temperature gradient  

    k   �  thermal conductivity   
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Applying Eq. (20.36) to Eq. (20.35) gives

     

�
�

�
� �

�

�
�

�

�
�

�

Ak
T

x
Ak

T

x t
C A x T T

x x x
r

∆
∆







( )[ ]r

  

 (20.37)  

where  T   r   is the reference temperature used to evaluate internal energy. If we divide both 
sides by the volume of the element, and rearrange, we obtain

     

Ak
T

x
Ak

T

x

A x

k
T

x
k

T

x

x
Cx x x x x x

�

�
�

�

�
�

�

�
�

�

�
�� �∆ ∆

∆ ∆
r ��

�
�

t
T Tr( )[ ]

   

(20.38)  

Now, if we let the volume of the element shrink to zero, we obtain the fundamental 
equation describing conduction in a solid

     
k

T

x
C

T

t

�

�
�

�

�

2

2 r
   

This is often written as

     
a �

�
�

�

�

2

2
T

x

T

t   
(20.39)  

where  a   �   k /( r   C ) is defined as the thermal diffusivity. 
 Several points are worth mentioning at this time. In this analysis, we have allowed 

the capacity for storing heat ( r   CA  per unit length of  x ) and the resistance to heat con-
duction [1/( kA ) per unit length of  x ] to be “spread out” or distributed uniformly through-
out the medium. This distribution of capacitance and resistance is the basis for the term 
 distributed parameter.  The analysis has also led to a partial differential equation, which 
in general is more difficult to solve than the ordinary differential equation that results 
from a lumped-parameter model.  

  TRANSFER FUNCTION.   We are now in a position to derive a transfer function from 
Eq. (20.39). First notice that since  T  is a function of both time  t  and position  x,  a transfer 
function may be written for an arbitrary value of  x.  In this problem, the temperature is 
to be observed at  x   �   L;  hence the transfer function will relate  T ( L,t ) to the temperature 
at the left surface  T (0, t ) which is taken as the forcing function. 

 Equation (20.39) will be solved by the method of Laplace transforms. Taking the 
Laplace transform of both sides of Eq. (20.39) with respect to  t  gives

     
a �

�
�

�

�

� � � �
2

20 0

T

x
x t e dt

T

t
x t e dtst st∫ ∫( ) ( ), ,

  
 (20.40)  

Consider first the integral on the left side of Eq. (20.40). Interchanging the order of 
integration and differentiation results in
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�

�
�

�

�
�

� � � �
2

20

2

2 0

T

x
x t e dt

x
T x t e dt

dst st∫ ∫( ) ( ), ,
22

2
T x s

dx

,( )
  

 (20.41)  

where     T x s,( )    is the Laplace transform of  T ( x,t ). This interchange is allowed for most 
functions of engineering interest (Churchill,1972). In this chapter the overbar is often 
used to indicate the Laplace transform of a function of two variables. Note that the pres-
ence of  x  has no effect on the second integral of Eq. (20.41) because the integration is 
with respect to  t.  Also note that the derivative on the right side of Eq. (20.41) is taken 
as an ordinary derivative because  T ( x,s ) will later be seen to be a function of only one 
independent variable  x  and a parameter  s.  Next consider the integral on the right side of 
Eq. (20.40). Again, the presence of  x  has no effect on the integration with respect to  t,  
and the rule for the transform of a derivative may be applied directly to yield

     

�

�
� �

� �T

t
x t e dt sT x s T xst

0
0∫ ( ) ( ) ( ), , ,

  
 (20.42)  

where  T ( x, 0) is the initial temperature distribution in the solid. Introducing the results of 
the transformation into Eq. (20.40) gives

     
a d T x s

dx
sT x s T x

2

2 0
,

, ,
( ) ( ) ( )� �

   
(20.43)  

The partial differential equation has now been reduced to an ordinary differential equa-
tion, which can usually be solved without difficulty. It should be clear that  s  in Eq. 
(20.43) is merely a parameter, with the result that this equation is an  ordinary  second-
order differential equation in the independent variable  x.  This follows because there are 
no derivatives with respect to  s  in Eq. (20.43). Since we have taken  T ( x, 0)  �  0 for the 
example under consideration, Eq. (20.43) becomes

     
d T

dx

s
T

2

2 0� �
a  

 (20.44)  

Equation (20.44) is a linear differential equation and can be solved to give

     
T A e A es x s x� ��

1 2
( / ) ( / )a a

  
 (20.45)  

The arbitrary coefficients  A  1  and  A  2  may be evaluated as follows: In order that     T    may 
be finite as  x  →  � , it is necessary that  A  2   �  0. Equation (20.45) then becomes

     T A e s x� �
1

( / )a
   

(20.45 a )  

The transformed forcing function at  x   �  0 is     T s0, ,( )    which can be substituted into Eq. 
(20.45 a ) to determine  A  1 ; then

     T s A e0 1
0,( ) �   
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or   
  

A T s1 0� ,( )
   

Substituting  A  1  into Eq. (20.45 a ) gives

     

T x s

T s
e s x,

,
( / )( )

( )0
� � a

   
(20.46)  

By specifying a particular value of  x,  say  x   �   L,  the transfer function is

     

T L s

T s
e s L,

,
( / )( )

( )0
� � a

  
 (20.47)    

  STEP RESPONSE.   To illustrate the use of this transfer function, consider a forcing 
function that is the unit-step function; thus

     
T t u t0,( ) ( )�

   

for which case     T s s0 1, / .( ) �    Substituting this into Eq. (20.47) gives

     
T L s

s
e s L, ( / )( ) � �1 a

  
 (20.48)  

To obtain the response in the time domain, we must invert Eq. (20.48). A table of 
transforms gives the following transform pair:

     

L
s

e
x

t
s x1

4
� �( / )a

a{ } erfc

  
 (20.49)  

where erfc  x  is the complementary error function of  x  defined as

     

erfc x e duux
� � �1

2 2

0p ∫
   

This function is tabulated in many textbooks and mathematical tables. 
 Using this transform pair, Eq. (20.48) becomes

     

T L t
L

t

t

L
,

/

( ) 














� �

�

erfc erfc
4

1

2 2

1 2

a
a


  

 (20.50)  

A plot of  T  versus the dimensionless group  a   t / L  2  is shown in  Fig. 20–7 .  
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  SINUSOIDAL RESPONSE.   It is instructive to consider the response in temperature at 
 x   �   L  for the case where the forcing function is a sinusoidal variation; thus

     
T t0, t A( ) � sinw

   

Using the substitution rule of Chap. 15, in which  s  is replaced by  j  w , Eq. (20.47) 
becomes

     

T L j

T j
e jw L,

,
( / )w

w
a( )

( )0
� �

   
(20.51)  

To obtain the AR and phase angle requires that the magnitude and argument of the right 
side of Eq. (20.51) be evaluated. This can be done as follows: First write  j  in polar form 
(see  Fig. 20–8 ); thus

     

j e ej
j

� �( / )
( / )

	 2
2

1
magnitude

p le
�

���p
hase ang

   

from which we get

     
j e e jj j� � 
 � 
 �( / ) / /p p2 1 2 4 1

2
1( ) ( )

   

1.0

0.8

0.6

0.4

0.2

0
0 1 2 3

L2
t

T

FIGURE 20–7
Response of temperature in the interior of a solid to 
a unit-step change in temperature at the surface.

Re

Im

/2

FIGURE 20–8
Polar representation of j.
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Substituting the positive form of     j    into Eq. (20.51) gives

     

T L j

T j
e eL j L,

,
/ /w

w
w a w a( )

( )0
2 2� � �

   

[Notice that the substitution of � �( ) /1 2j  into Eq. (20.51) leads to a result in which 
the AR is greater than 1 and the phase angle leads. This is contrary to the response of 
the physical system and is not considered as a useful solution.]

  From this form, we can write by inspection

     

AR � � �T L j

T j
e L,

,
/w

w
w a( )

( )0
2

  
 (20.52)  

     

Phase angle rad� � ��
T L j

T j
L

,

,

w
w

w
a

( )
( )0 2

  

 (20.53)  

From these results, it is seen that the AR approaches zero as  w  →  �  and the phase angle 
decreases without limit as  w  →  � . Such a system is said to have  nonminimum  phase lag 
characteristics. With the exception of the transport lag, all the systems that have been 
considered up to now have given a limited value of phase angle as w   →  � . These are 
called minimum phase systems and always occur for lumped-parameter systems. The 
nonminimum phase behavior is typical of distributed-parameter systems.   

  Transport Lag as a Distributed-Parameter System 

 We can demonstrate that the transport lag (distance-velocity lag) is, in fact, a distributed-
parameter system as follows: Consider the flow of an incompressible fluid through an 
insulated pipe of uniform cross-sectional area  A  and length  L,  as shown in  Fig. 20–9 a.   
The fluid flows at velocity  v,  and the velocity profile is flat. 

To
Ti

v

Ti

To 

v

(a)

(b)

FIGURE 20–9
Obtaining the transfer function of a transport lag 
from a lumped-parameter model.
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 We know from Chap. 7 that the transfer function relating outlet temperature  T   o   to the 
inlet temperature  T   i   is

     

T s

T s
eo

i

L v s( )
( ) � �( / )

   

Let the pipe be divided into  n  zones as shown in  Fig. 20–9 b.   If each zone of length  L /n  
is considered to be a well-stirred tank, then the pipe is equivalent to  n  noninteracting 
first-order systems in series, each having a time constant

     
t �

L

n v

1

   

This expression for  t  is equivalent to that appearing in Eq. (8.10). Since the transfer 
function for flow through a tank was developed in Chap. 8, the analysis will not be 
repeated here. (Note that taking each zone to be a well-stirred tank is called lump-
ing of parameters.) The overall transfer function for this lumped-parameter model is 
therefore

     

T s

T s s L v n s
o

i

n( )
( )





 ( )[ ]









�
�

�
�

1

1

1

1t / /

nn

   

To “distribute” the parameters, we let the size of the individual lumps go to zero by 
letting  n  →  � .

     

T s

T s L v n s
o

i n

n( )
( ) ( )[ ]







→

�
��

lim
1

1/ /
   

The thermal capacitance is now distributed over the tube length. It can be shown by use 
of calculus that the limit is

     e L v s�( / )
   

which is the transfer function derived previously. This demonstration should provide 
some initial insight into the relationship between a distributed-parameter system and a 
lumped-parameter system and indicates that a transport lag is a distributed system.  

  Heat Exchanger 

 As our last example of a distributed-parameter system, we consider the double-pipe heat 
exchanger shown in  Fig. 20–10 . [The analysis presented here essentially follows that of 
W. C. Cohen and E. F. Johnson (1956). These authors also present the experimental 
results of frequency response tests on a double-pipe, steam-to-water heat exchanger.] 
The fluid that flows through the inner pipe at constant velocity  v  is heated by steam con-
densing outside the pipe. The temperature of the fluid entering the pipe and the steam 
temperature vary according to some arbitrary functions of time. The steam temperature 
varies with time, but not with position in the exchanger. The metal wall separating 
steam from fluid is assumed to have negligible thermal capacity for the purpose of the 
analysis. The heat transfer from the steam to the fluid depends on the heat-transfer coef-
ficient on the steam side  h   o   and the convective transfer coefficient on the water side  h   i  . 
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The resistance of the metal wall is neglected. The goal of the analysis will be to find 
transfer functions relating the exiting fluid temperature  T ( L,t ) to the entering fluid tem-
perature  T (0, t ) and the steam temperature  T   v  ( t ). 

Condensate

Steam 
Tv(t)

0
x+   x

x

x

v
T(0, t)

T(L, t)

L

FIGURE 20–10
Double-pipe heat exchanger.

 The following symbols will be used in this analysis:

    T ( x,  t )  �  fluid temperature  
     T   v  ( t )  �  steam temperature  
              T   r    �  reference temperature for evaluating enthalpy  
              v   �  fluid velocity  
           r   �  density of fluid  
         C   �  heat capacity of fluid  
          A   i    �  cross-sectional area for flow inside pipe  
        D   i    �  inside diameter of inner pipe  
        D   o    �  outside diameter of inner pipe  
             h   i    �  convective heat-transfer coefficient inside pipe  
        h   o    �  heat-transfer coefficient for condensing steam  
        U   i    �  overall heat-transfer coefficient based on inside area    

        �
�

1

1 1/ ( / )( / )h h D Di o i o

  ANALYSIS.   We begin the analysis by writing a differential energy balance for the fluid 
inside the pipe over the volume element of length ∆  x  (see  Fig. 20–10 ). This balance can 
be stated as

     

Flow of

enthalpy in

Flow of

enthalpy ou









�
tt

Heat transferred

from steam

to liqui









�

dd

Rate of a

















�
cccumulation

of internal energy







  

 (20.54)
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 The terms in this balance can be evaluated as follows:

   Flow of enthalpy in at  x   �   vA   i    r  C ( T   �   T   r  )  

  Flow of enthalpy out at         x x vA C T
T

x
x Ti r� � �

�

�
�∆ ∆r 











  Heat transfer through film  �   p   D   i    U   i   ∆  x ( T   v    �   T   )  

  Accumulation of internal          energy �
�

�
�

t
A x C T Ti rr ∆ ( )[ ]

Introducing these terms into Eq. (20.54) gives, after simplification,

     
�

�
� �

�

�
� �

T

t
v

T

x
T Tv

1

t
( )   (20.55)  

where

     

1

t
p
r

�
D U

A C
i i

i
   

We now have the differential equation that describes the dynamics of the system. As in 
previous problems, the dependent variables will be transformed to deviation variables. 
At steady state, the time derivative in Eq. (20.55) is zero, and it follows that

     
0

1
� � � �v

dT

dx
T Ts

v sst
( )

   
(20.56)  

where the subscript  s  is used to denote the steady-state value. Note that to determine the 
steady-state temperature profile requires the solution of Eq. (20.56). We can rearrange 
this equation to

     

dT

dx v
T

v
T u ts

s vs� �
1 1

t t
( )

   
(20.57)  

Transforming gives

     

sT s T
v
T

v
T

s
s s s vx s( )( ) 



� � �� 0

1 1 1

t t
  

 (20.58)  

Now, let     Ts0    represent the steady-state inlet (at  x   �  0) temperature of the water  T   s    
x  � 0  and 

rearrange:

     

T s
T v

s s v

T

s v
s

v ss( ) ( )�
�

�
�

/

/ /

t
t t1 1

0

   

The steady-state temperature profile as a function of  x  may now be obtained by 
inverting
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T x T T T
x

v
s v s vs s( ) ( ) 



� � � �0 exp
t

   

(20.59)  

All equations for  T  �  to be derived below should be recognized as deviations from this 
expression. Subtracting Eq. (20.56) from Eq. (20.55) and introducing deviation vari-
ables give

     

� �

�
� �

� �

�
� � ��

T

t
v

T

x
T Tv

1

t ( )
   

(20.60)  

where  T  �   �   T   �   T   s   and     T T Tv v vs
� � � .    Assuming that the exchanger is initially at 

steady state, so that  T   s   ( x, 0)  �   T   s   and     T Tv vs0( ) � ,    Eq. (20.60) may be transformed 
with respect to  t  to yield

     

sT x s v
dT x s

dx
T s T x s

d

v� � �
�

� � ��,
,

,( ) ( ) ( ) ( ) 
1

t
TT x s

dx

s

v
T x s

v
T sv

�
�

�
� � �

, /
,

( ) ( ) ( )1 1t
t

   

(20.61)  

Equation (20.61) is an ordinary first-order differential equation with the boundary con-
dition     T x s T s x� � � �, , .( ) ( )0 0at    We can transform Eq. (20.61) with respect to  x  
(using  p  as the transform variable) to yield

     

pT p s T s
s

v
T p s

v

p
T sv� � � �

�
� � �, ,

/
,

/( ) ( ) ( ) ( )0
1 1t t

   

Rearranging gives

     

T p s
v

p p s v
T s

p s
v� �

� �
�

� �
�,

/

( / ) / ( / )
( ) [ ] ( )1

1

1

1

t
t t //

,
v

T s[ ] ( )� 0

   

This expression is of the form

     

T p s
A

p p B
T s

p B
T sv� �

�
�

�
��, ,( ) ( ) ( ) ( )1

0

  

 (20.62)  

where  A  and  B  are constants defined as  A   �  1/ t   v  and  B   �  ( s   �  1/ t )/ v.  
 Equation (20.62) can now easily be inverted back to the ( x,s ) domain to yield

     
T x s

s
e T s es v x

v
s� �

�
� �� � � � �, /( ) ( ) ( )( )[ ]1

1
1 1

t
t t t 11 0( )[ ] ( )/ ,tv xT s�

   
(20.63)  
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Let’s look at the expression for the liquid outlet temperature from the exchanger, the 
quantity of interest in this example. The transform of the liquid outlet temperature is 
 T  �  ( L,  s ). If we substitute  x   �   L  into Eq. (20.63), we get

     

T L s
s

e T s es v L
v

s� �
�

� �� � � � �, /( ) ( ) ( )( )[ ]1

1
1 1

t
t t t 11 0( )[ ] ( )/ ,t v LT s�

  
 (20.64)  

If we examine the exponent of the exponential term

     

�
�

� � � � � �
t
t t

t t
t

s

v
L

L

v
s

L

v
sd

d1

















   

we see a familiar term appear:  t   d   is the transport lag on the liquid side of the exchanger. 
We can rewrite Eq. (20.64) as

     

T L s
s

e es d d� �
�

� � �, /( )










1

1
1

t
t t t

constant
��� TT s e e T s

T L s

v
s d d� � �� �

�

( ) ( )

(

t t t/ ,

,

constant
��� 0

))
outlet temperature

(output)

��� �� �
�

�
�1

1ts
Ke ss d

s

t

t �1







transfer function relating
outllet temperature to changes

in steam temperatture

steam temperature
(input

� ���� ����
T sv� ( )

)) transfer function
relating

outlet

� � �Ke s dt( )
temperature

to changes in
inlet temperaturee

inlet temperature
(disturbance

��� ��
T s� 0,( )

))

��� ��

   (20.65)  

where     K e d� ��t t/ .constant    
 If the steam temperature is held constant  T  �   v   ( s )  �  0, the transfer function relating the 
outlet temperature to the inlet temperature is

     

T L s

T s
Ke s d

�

�
� �,

,

( )
( )0

t

   
(20.66)  

If we set 1/ t   �  0 (which corresponds to the case of no heat transfer  U  0   �  0), then     
K e ed� � ��t t/ .0 1    The response is simply that of a transport lag. This is the 
physical situation for which case the wall separating cold fluid from hot fluid acts as a 
perfect insulator. We saw in Chap. 7 that this situation is represented by a transport lag. 

 If the inlet temperature of the fluid entering the heat exchanger does not vary, the 
transfer function relating the exit fluid temperature to the steam temperature is

     

T L s

T s s

Ke

sv

s d�
�

�
�

��

�,( )
( )

1

1 1t t

t

  
 (20.67)  
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The response in the temperature of the fluid leaving the exchanger can be found for 
any forcing function,  T (0, t ) or  T   v  ( t ), by introducing the corresponding transforms into 
Eq. (20.65). 

  Example 20.1     Consider the heat exchanger shown in  Fig. 20–10 . The water 
is flowing through a 40-ft-long,     3

4
  -in 14 BWG tube at a rate of 2 gal/min. The 

overall heat-transfer coefficient for the exchanger is  U   i    �  100 Btu/(ft 2  · h · °F). 
The steady-state inlet water temperature is 70°F, and the steady-state steam tem-
perature is 212°F. 

   ( a ) Determine the steady-state temperature profile of the tube-side liquid as a 
function of distance from the inlet of the exchanger.  

  ( b ) For a 10°F step increase in the inlet temperature (steam temperature 
remains constant), determine the response of the exit temperature from the 
exchanger.  

  ( c ) For a 10°F step increase in the steam temperature (inlet temperature 
remains constant), determine the response of the exit temperature from the 
exchanger.   

  Solution   

Data:

in

in

flow area

D

D

o

i

i
i

D

A

�

�

� �

0 75

0 584
2

.

.

p
44

0 584 12

4
0 00186

2

2
2� �

�

p ( . / )
. ft

gal

min
v 





11

7 48

1

0 00186

13

2
ft

gal ft

min

. .











 660

2 4

1 0 584 12

s

ft

s






( )

�

� �

.

. /

t
p
r

pD U

A C
i i

i

fft Btu ft h F

ft

[ ] ( )





( )
100

0 00186 62

2

2

/

. .

� ��

44 1
131 7

0 0

3
1

lb ft Btu lb F
h

/ /
.

.

( ) ( ) ��
�

�

�

t 00759 27 3h s� .  

   ( a ) Making use of Eq. (20.59) gives

     

T x T T T
x

v

T x

v s vs ss

s

( )

( )

� � � �

� �

0

212 7

( ) 



exp
t

00 212
2 4 27 3

212 1� � � �( ) ( )( )








exp

ft s s

x

. / .
442

65 52
exp �

x

.






    (20.59)   

 If we plot this result from  x   �  0 to  x   �   L   �  40 ft, we get the plot in  Fig. 20–11 . 
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 This plot shows the temperature profile in the tube along the length of the exchanger. 
The initial steady-state temperature at  x   �  40 ft,  T   s  (40), is 134.9°F. This is easily 
obtained by substituting  x   �  40 into the above expression.    

( b ) Using Eq. (20.66), we have

     

T L s

T s
Ke

T L s Ke T s

s

s

d

d

�

�
�

� � � �

�

�

,

,

, ,

( )
( )

( ) ( )

0

0

t

t ee e T s

L

v

d ds

d

� � �

� � �

t t t

t

/ ,

.

0

40
16 7

( )
ft

2.4
s

fts

TT s
s

T

� � �0
10

,( ) step function of magnitude 10

�� � � �L s e e
s

s, . / . .( ) ( )( )


( )16 7 27 3 27 3 10s s s 
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  (20.66)   

 and finally,
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 So the response to a step change in the inlet temperature is delayed 16.7 s from the 
inlet change. The output increases by only 5.42°F (to 140.32°F) in response to a 10°F 
change in inlet temperature (the steady-state gain is 0.542).  

Steady-State Temperature Profile
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FIGURE 20–11
Steady-state temperature profile down length of heat exchanger tube 
for Example 20.1.
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  ( c ) The applicable equation is Eq. (20.67).
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 A plot of the output response  T ( L,  t )  �  134.9°F  �   T  �  ( L,  t ) is shown in  Fig. 20–12 . 
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FIGURE 20–12
Plot of exit temperature from the heat exchanger as a function of time T(L,t).

  After the transport lag time (16.7 s) the outlet temperature from the exchanger remains 
constant.            
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   SUMMARY 

 In this chapter, we analyzed several complex systems, using material and energy bal-
ances to predict their dynamic responses to disturbances. The process is often called 
 modeling,  and the resulting set of equations is referred to as the  mathematical model  of 
the system. In general, the model is based on the physics and chemistry of the system. 

 As systems are analyzed in greater detail and with fewer assumptions, the mod-
els that describe them become more complex, although more accurate. To predict the 
response of the system from the model requires that equations of the model be solved 
for some specific input disturbance. The only practical way to solve a complex model 
is to use computer simulation. The computer response will resemble that of the physical 
system if the model is accurate.  

  PROBLEMS 

   20.1 For the heat exchanger described in Example 20.1, determine the output response for a 
10°F change in both steam temperature and inlet temperature.  

  20.2 What is the physical reason for the outlet temperature increasing less than 10°F for a step 
increase in the inlet temperature of 10°F? (That is, why doesn’t the 10°F change propagate 
through the exchanger and ultimately appear at the outlet?)    
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  CHAPTER 

20 
CAPSULE SUMMARY 

 In this chapter, several complex systems have been analyzed mathematically. The result 
of each analysis was a set of equations (algebraic and/or differential) that presumably 
describe the dynamic response of the system to one or more disturbances. The process 
of obtaining the set of equations is often called  modeling,  and the set of equations is 
referred to as the  mathematical model  of the system. In general, the model is based 
on the physics and chemistry of the system. For example, in the analysis of a heat 
exchanger, one may write that the heat flux through a wall is equal to a convective 
transfer coefficient times a temperature driving force. 

 For a process not well understood, there is little chance that an accurate model 
can be obtained from the theoretical approach used here. For such systems, a direct 
dynamic test can be made. To do this, a known disturbance such as a pulse, step, or 
sinusoidal input is applied, and the response is recorded. This approach was discussed 
in Chap. 18. On the other hand, a model based on a theoretical analysis is extremely 
valuable, for it means that the system is well understood and that the effect of changes 
in system design and operation can be predicted. 

 The analysis of a steam-jacketed kettle provided an example of a nonlinear sys-
tem containing nonlinear functions of several variables. The problem was handled by 
linearizing these functions about an operating point and ultimately obtaining a block 
diagram of the system from which the transfer function of the control system could 
be obtained. Although this approach is relatively straightforward, the resulting linear 
model can only be used over a narrow range of variables. 

 The analysis of the gas absorber gave some insight into the dynamic character 
of a typical multistage process that is widely used in the chemical process indus-
tries. A linear analysis of an  n -plate column leads to  n  ordinary differential equations, 
which combine to give an overdamped  n th-order response. Nonlinearities may be 
present in this system in such forms as a product of flow and concentration or a non-
linear equilibrium relationship. When the change of plate efficiency with flow is con-
sidered, the model of a gas absorber becomes even more complex. Most of the design 
techniques developed for multistage operations (e.g., gas absorption and distillation) 
have applied to steady-state operation. The dynamic analysis of such processes calls 
for dynamic parameters that are usually unavailable. For example, the liquid flow 
dynamics of trays used in distillation towers are relatively unknown. 

 The discussion of distributed-parameter systems further illustrated the com-
plexities that can arise in physical systems. The distributed-parameter systems lead 
to partial differential equations, which may be very difficult to solve for most of the 
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forcing functions of practical interest. However, we saw that the response of dis-
tributed-parameter systems to sinusoidal forcing functions can be obtained directly 
by application of the substitution rule, in which  s  is replaced by  j  w . A distributed-
parameter system features nonminimum phase lag characteristics. This is in sharp 
contrast to the lumped-parameter systems for which the phase angle approaches a 
limit at infinite frequency. 

 As systems are analyzed in greater detail and with fewer assumptions, the mod-
els that describe them become more complex, although more accurate. To predict the 
response of the system from the model requires that equations of the model be solved 
for some specific input disturbance. The only practical way to solve a complex model 
is to use computer simulation. The computer response will resemble that of the physical 
system if the model is accurate.   
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 CHAPTER 

  21 
 STATE-SPACE REPRESENTATION 

OF PHYSICAL SYSTEMS 

   21.1 INTRODUCTION 

  Up to this point, we have described dynamic physical systems by means of differential 
equations and transfer functions. Another method of description, which is widely used 
in all branches of control theory, is the state-space method. In fact, other disciplines of 
engineering (e.g., electrical engineering) introduce the state-space description before 
the transfer function description. The reader who plans to go beyond an introductory 
course in control or read from other engineering disciplines should be familiar with 
state-space methods. In the chapters of Part 6 of the book, the state-space method will 
be developed and compared with the transfer function method. It is much easier to start 
with the transfer function method and then develop the state-space method. The math-
ematical background needed for the transfer function approach involves differential 
equations and Laplace transforms. The additional mathematical background needed for 
the state-space method involves matrix algebra. Nearly all students today receive infor-
mation on matrices in their mathematics courses. For those who are rusty in this topic, 
it is recommended that they review some of the fundamental matrix operations. A brief 
review of matrix algebra is given in App. 21A. 

 The transfer function approach is sufficient to calculate the response of linear 
control systems. The state-space approach is especially valuable in the field of optimal 
control of linear or nonlinear systems. The concepts developed in Part 6 of the book 
will be used in Part 7 on nonlinear control.   

  21.2 STATE VARIABLES 

  A linear physical system can be described mathematically by

    • An  n th-order differential equation  
   • A transfer function  
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478 PART 6 STATE-SPACE METHODS

   •  n  first-order differential equations  
   • A matrix differential equation 

 So far, we have used the first two mathematical representations for describing physi-
cal systems. The third and fourth representations are referred to as state variable 
descriptions.   

To illustrate these four methods of description, consider the familiar second-order 
process relating an output  y  to an input  u.  The four representations for this process are 
shown below.

   1.  An   n  th-order differential equation  ( n   �  2)

     
t zt2

2

2 2
d y

dt

dy

dt
y u� � �

   
(21.1)

    

  2.  Transfer function.  The transfer function corresponding to Eq. (21.1) is

     

Y s

U s s s

( )
( ) �

� �

1

2 12 2t zt
   

(21.2)
    

  3.  n   first-order differential equations  ( n   �  2). Equation (21.1) can be expressed 
by two first-order differential equations. First, we need to make a variable change. 
Let’s represent  y  as  x  1  and     �y    as  x  2 . Thus,  x  1   �   y  and     x y2 � �    ( Note:      �y dy dt� /    
and ÿ  �   d  2  y / dt  2 .)   Then,

     � �x y x1 2� �   (21.3)  

 and

     � �� ��x x y2 1� �   
(21.4)

  

 Solving Eq. (21.1) for ÿ yields

     
�� �y y y u� � � �

1 2 1
2 2t

z
t t   

(21.5)
  

 Substituting in terms of  x  1  and  x  2 , we obtain

     
�x x x u2 2 1 2 2

1 2 1
� � � �

t
z
t t   

(21.6 a )
  

 and

     �x x1 2�    (21.6 b )  

 where  x  1  and  x  2  are called the state variables ( x  1   �   y  and     x y2 � �   ). Equations 
(21.6 a ) and (21.6 b ) are the system of two first-order differential equations that 
represent the second-order differential equation, Eq. (21.1). 

cou9789x_ch21_475-497.indd   478cou9789x_ch21_475-497.indd   478 8/22/08   6:17:42 PM8/22/08   6:17:42 PM



Confirming Pages

 CHAPTER 21  STATE-SPACE REPRESENTATION OF PHYSICAL SYSTEMS 479

  We shall see later that other choices for  x  1  and  x  2  are possible; at this point, how-
ever, the reader is asked to accept Eqs. (21.6 a ) and (21.6 b ) as a valid description of 
the second-order system under consideration.  

  4.  Matrix differential equation.  Equations (21.6 a ) and (21.6 b ) can be written as one 
matrix differential equation as follows:

     �x Ax b� � u    (21.7)  
 or

     

�
�
�
�

� ��� ��
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x

1

2 2

0 1

1 2
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b
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The representation given by Eqs. (21.6) and the representation given by Eq. (21.7) are 
exactly the same; Eq. (21.7) is in a more compact form. The state variables  x  1  and  x  2  
are represented by the column vector  x.  The coefficients of the state variables on the 
right sides of Eqs. (21.6 a ) and (21.6 b ) are the elements of the matrix  A.  In this example, 
there is only one input or forcing term  u,  which is a scalar. Each term on the right side 
of Eq. (21.7) must be a vector containing two elements (i.e., a 2  �  1 matrix). For the 
expression given by Eq. (21.7) to agree with Eqs. (21.6 a ) and (21.6 b ), the coefficient of 
 u  must be a vector with the upper element zero. With some practice, the reader will be 
able to look at a matrix expression such as Eq. (21.7) and quickly see the equivalent set 
of differential equations.    

 The output  y  in representation 1 or 2 often represents a physical variable of inter-
est, such as the temperature of a process or the position of a mechanical system. The 
alternate state variable representation given by Eq. (21.3) or Eq. (21.7) contains two 
state variables, one of which is  y  and the other of which is the derivative of  y  (or     �y   ). In 
this case only  y  may be of interest to the control engineer;     �y    is available, but may not 
be of interest since it cannot always be measured easily. (For example, there is no easy 
way to measure the rate of change of temperature if  y  represents temperature.)  

   State-Space Description 

 In general, a physical system can be described by state variables as follows

     

� … …

� …

x f x x x u u u

x f x x

n m1 1 1 2 1 2

2 2 1 2

� , , , , , , ,

, , ,

( )
= xx u u u

x f x x x u u u

n m

n n n

, , , ,

, , , , , , ,

1 2

1 2 1 2

…

�
� … …

( )

= mm( )   

(21.8) 

 

where  x  1 ,  x  2 , . . .,  x   n   are  n  state variables and  u  1 ,  u  2 , . . .,  u   m   are  m  inputs or forcing 
terms. The above set of equations may be written as a matrix expression as follows:

     �x u� f x,( )   
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If the system parameters vary with time, the vector  f  will contain explicit functions of 
time. An example for an element of  f  might be the expression on the right side of the 
following equation:

     �x tx x u u1 1 2 1 22� � � �   

In this chapter, we shall be concerned with time-invariant systems for which     �xi    is a 
linear combination of state variables and the coefficients are constant. For the time-
invariant case, we may write the general term     �xi    in Eq. (21.8) as follows:

     
� � �x a x a x a x b u b ui i i in n i im m� � � � � � �1 1 2 2 1 1   

(21.9)
  

for  i   �  1, 2, 3, . . .,  n.  The equivalent matrix expression for Eq. (21.9) is
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(21.10)

  

Writing this in the more compact matrix form, we have

     �x Ax Bu� �   (21.11)  

In this expression, there are  m  different inputs where  m  �  n.  Also, note that  u  in this 
expression is a vector quantity, not a scalar. The nature of the linear physical system 
expressed by Eq. (21.11) is completely stated by the matrices  A  and  B.  For the time-
invariant system, the elements of  A  and  B  are constants. 

 The outputs of interest to the control engineer may differ from the state variables 
 x   i  . The most general statement for relating the output to the state variables is

     y Cx�   (21.12)  

where  y  is the vector of outputs ( y  1 ,  y  2 , . . .,  y   p  ) chosen by the control engineer for some 
practical reason. The matrix  C  is a  p   �   n  matrix containing constant elements. The 
way in which the matrix  C  is selected will be clarified in Example 21.1. In summary, 
the state-space description for a linear time-invariant system is given by Eqs. (21.11) 
and (21.12). 

  Example 21.1.     For the two-tank noninteracting liquid-level system shown in 
 Fig. 21–1 , obtain the state-space description as expressed by Eqs. (21.11) and 
(21.12). The output  y  of interest is the level in tank 2. Notice that streams enter 
both tanks.

     

A R

A R

1 1

2 2
2
3

1 0 5

0 5
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cou9789x_ch21_475-497.indd   480cou9789x_ch21_475-497.indd   480 8/22/08   6:17:44 PM8/22/08   6:17:44 PM



Confirming Pages

 CHAPTER 21  STATE-SPACE REPRESENTATION OF PHYSICAL SYSTEMS 481

For this example, let the state variables be the physical variables  h  1  and  h  2 , which 
are the levels in tanks 1 and 2. These state variables are called physical variables 
because they can be easily measured or observed. (In another example, we shall 
consider a different set of state variables.) 

 For the liquid-level system shown in  Fig. 21–1  we may write

     
A

dh

dt
u

h

R
1

1
1

1

1
� �

   
(21.13)
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dh

dt
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h
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2
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2
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(21.14)

  

or
     

dh

dt R A
h

A
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1
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(21.15)

  

     

dh
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h

A
u2

1 2
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2

2
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(21.16)

  

These equations can be written as

     �h � �Ah Bu   (21.17)  

where
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FIGURE 21–1
Two-tank liquid-level system.
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If the output  y  is to be the level in tank 2 ( h  2 ), we have
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and  y   �   y  1   �   h  2 . In this case  y  is a scalar (i.e., a 1  �  1 matrix). 
 The choice of output can be stated in many ways. Regardless of the choice, 

the output is related to the state variables by Eq. (21.12). To see how the matrix  C  
depends on the choice of output, consider the following examples: 

 If  y  is to be a scalar that is the arithmetic average of the levels in the two 
tanks, one can show that

     

y
h

h
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 If the output is to be  h  1  and  h  2 , one can show that
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  Selection of State Variables 

 To the beginner, the selection of state variables may seem mysterious. The state vari-
ables of a system are the smallest set of variables that contain sufficient information 
to permit all future states to be determined. Although the number of state variables is 
fixed, the actual selection of these state variables is not unique. If possible, it is conve-
nient to choose state variables that are directly related to physical variables which can 
be measured or observed (e.g., temperature, level, composition, position, velocity). For 
mechanical systems, transducers are available for measuring velocity; for this reason, 
velocity is considered a physical variable. On the other hand, since the measurement of 
rate of change of composition is not easily made, this variable is not usually considered 
a physical variable. 

 In the control literature, the types of state variables have been classified as 
follows. 

   1.  Physical variables.  State variables are called physical variables when they are 
readily measured and observed (level, temperature, composition, etc.). Physical 
variables were discussed at the beginning of this chapter and illustrated for a liq-
uid-level system in Example 21.1 where  x  1   �   h  1  and  x  2   �   h  2 .  

  2.  Phase variables.  State variables that are chosen to be the dependent variable and its 
successive derivatives are called phase variables. Phase variables were selected at 
the beginning of this chapter where  x  1   �   y  and     x y2 � �.     
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  3.  Canonical variables.  If the state variables are selected to be canonical variables, 
the result is that the matrix  A  is diagonal. At this point, it is sufficient to say that 
canonical variables are selected as state variables for ease in matrix computation. In 
general, the canonical variables are not readily identified with physical variables.   

 In addition to the types of state variables listed above, any other legitimate set 
of variables can be selected. In Example 21.1, we used physical variables, namely, the 
levels in the tanks of the liquid-level system. In Examples 21.2 and 21.3, the method for 
selecting state variables will be shown. 

  Example 21.2.     For the two-tank liquid-level system of Example 21.1, shown 
in  Fig. 21–1 , obtain the state-space description as expressed by Eqs. (21.11) and 
(21.12) when phase variables are selected for the state variables. To simplify the 
problem, let  u  2   �  0; i.e., there is only one input  u  1 . 

 For the system shown in  Fig. 21–1 , one can show that

     

H s

U s

R

s s
2

1

2

1 21 1

( )
( ) ( )( )�

� �t t   
(21.18)

  

where  t  1   �   A  1   R  1  and  t  2   �   A  2   R  2 . Introducing the parameters in  Fig. 21–1  into 
Eq. (21.18) gives

     
H s

U s s s

2

1

2
3

1
2

1
3

1 1

( )
( ) ( )( )�

� �
   

(21.19)  

or
     

H s

U s s s

2

1

4

2 3

( )
( ) ( )( )�

� �   
(21.20)  

To obtain the differential equation corresponding to Eq. (21.20), we cross-multi-
ply to obtain

     s s H U� � �2 3 42 1( )( )    

or     s s H U2
2 15 6 4� � �( )    

This may be expressed as the following differential equation:

     �� �h h h u2 2 2 15 6 4� � �   (21.21)  

Let the state variables be the following phase variables:

     x h1 2�   (21.22)  

     x h2 2� �   (21.23)  

We may now write

     
� �x x h1 2 2� �    

 (21.24)
  

     � ��x h2 2�   (21.25)  
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MATLAB Solution of Example 21.2

MATLAB has the capability to convert from a transfer function model to a state-space model of a 
system. From Eq. (21.20), the transfer function that relates the height in tank 2 to changes in the 
inlet flow to tank 1 is

 

H s

U s s s s s

2

1
2

4

2 3

4

5 6

( )
( ) ( )( )�

� �
�

� �  
(21.20)

The MATLAB commands that create the state space representation are:

num=[4];

den=[1 5 6];

[A,B,C,D] = tf2ss(num,den)

A =

     -5   -6            

      1    0

B =

      1    

      0

C =

      0    4

D =

      0

Equation (21.21) becomes

     �x x x u2 2 1 15 6 4� � �   (21.26)  

The system can be described by Eqs. (21.24) and (21.26):

     �x x1 2�   (21.27 a )  

     �x x x u2 1 2 16 5 4� � � �   (21.27 b )  

In terms of a matrix expression, Eqs. (21.27) may be written

     

�

�
�
�
� � �� ��

x

x A

� �Ax bu

x

x

1

1

2

0 1

6 5












�
� �

0

4
scalar

x

x
u

1

2
1













x b
� �

��

   

If the output  y  is to be the level in tank 2,

     

y
x

x
   











y C
x

� ���
�

� 1 0
1

2

     

cou9789x_ch21_475-497.indd   484cou9789x_ch21_475-497.indd   484 8/22/08   6:17:50 PM8/22/08   6:17:50 PM



Confirming Pages

 CHAPTER 21  STATE-SPACE REPRESENTATION OF PHYSICAL SYSTEMS 485

tf2ss is a “transfer function to state space” command that generates the matrices for the state-space 
model. The generalized model that MATLAB uses is

 

�x Ax Bu

y Cx Du

� �

� �

Note that the output y is some function of the states x and/or the inputs u. MATLAB returns a 
canonical form for the state-space representation that is equivalent (but not identical) to the one that 
we developed using phase variables. The output y that is returned from the tf2ss routine is a scalar 
that represents the dependent variable of the original transfer function, h2 in this case. Let’s see if we 
can verify that the state-space model that MATLAB returns is a valid representation of the original 
system, Eq. (21.21). The MATLAB model is

 

�
�

�
� � �� ��

x

x

x

x
1

2

1

2

5 6

1 0




























x A

�
� �














   

x B

y C

� �

� ��� �

�

� �

1

0

0 4

1

2

u t

y h

( )

��
�

x

x
u t

1

2
10









  

x

� ( )

 
From the output equation,

 

h x

x h
2 2

2 2

4

0 25

�

� . 
and from the differential equations,

 

�
�
x x x u t

x x
1 1 2 1

2 1

5 6� � � �

�

( )

 
and so we can write

 x x h1 2 20 25� �� �. 
and finally,

 

0 25 5 0 25 6 0 25

5

2 2 2 1

2

. ( . ) ( . ) ( )�� �

�� �
h h h u t

h

� � � �

� hh h u t2 2 16 4� � ( )
 

which we recognize as Eq. (21.21), the original system. Although the state-space representation 
is not the same as the representation we derived using phase variables, it is a valid model for the 
system, and the output from a computer simulation of these models for h2 would be identical.
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486 PART 6 STATE-SPACE METHODS

      Example 21.3.     For the PI control system shown in  Fig. 21–2 , obtain a state-
space representation in the form of Eq. (21.7); thus

     �x Ax b� � r   

where  r  is a scalar (the set point). Let

     x c1 �   (21.28)  

     x c x2 1� �� �   (21.29)  

With this choice of state variables, we have selected phase variables. 
 From  Fig. 21–2 , we may write

     
C s

M s

K

s s

K

s s
p p( )

( ) ( )( ) ( )�
� �

�
� �t t

t t
t1 2

1 2

11 1 1

/

/ 11 2/t( )   

or
     

C s

M s

A

s a s b

( )
( ) ( )( )�

� �   
(21.30)

  

where        A K p
�
t t1 2

    

      
a �

1

1t     

      
b �

1

2t      

Cross-multiplying Eq. (21.30) gives

     
s a b s ab C s AM s2 � � � �( )



 ( ) ( )   

or, in the time domain,

     �� �c a b c abc Am� � � �( )    (21.31)  

Kc 
Is

Is + 1 Kp

( 1s + 1)( 2s + 1)
R

+

−

E M

Gc Gp

C

FIGURE 21–2
PI control system for Example 21.3.
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From Eqs. (21.28), (21.29), and (21.31) we obtain

     �x x1 2�   (21.32)  

     �x abx a b x Am2 1 2� � � � �( )   (21.33)  

We must now obtain the state variables associated with the PI controller. From 
 Fig. 21–2 , we obtain

     
M s

E s
K

s

s
c

I

I

( )
( ) �

�t
t

1
   

or     t tI c I csM s K sE s K E s( ) ( ) ( )� �   

In terms of the time domain, this expression becomes

     
� �m K e

K
ec

c

I
� �

t   
(21.34)

  

From the signals entering and leaving the comparator, we may write

     e r c� �   

or, since  x  1   �   c,  we may write

     e r x� � 1   (21.35 a )  

and     � � �e r x� � 1   (21.35 b )  

Combining Eqs. (21.34) and (21.35) gives

     

� � ��m K r x
K

r xc

x

c

I
� � � �1 1

2









 ( )

t
   

or
     

� �m K r K x
K

r
K

xc c
c

I

c

I
� � � �2 1

t t   
(21.36)

   

 At this stage, we are faced with the difficulty of having a derivative term 
on the right side of Eq. (21.36).  In state-space representation, all variables on the 
right side must be state variables, not derivatives of state variables.  One way to 
handle the present difficulty is to define a new state variable  x  3 ; let

     x m K rc3 � �   (21.37)  

or     � � �x m K rc3 � �   (21.38)  

cou9789x_ch21_475-497.indd   487cou9789x_ch21_475-497.indd   487 8/22/08   6:17:54 PM8/22/08   6:17:54 PM



Confirming Pages

488 PART 6 STATE-SPACE METHODS

Combining Eqs. (21.38) and (21.36) leads to

     
�x

K
x K x

K
rc

I
c

c

I
3 1 2� � � �

t t   
(21.39)

  

or     �x x K x rc3 1 2� � � �a a   (21.40)  

where  a   �   K   c  / t   I  . Summarizing the state variable equations given by Eqs. (21.32), 
(21.33), and (21.40) and using the definition of  x  3  in Eq. (21.37) give

     

�

�
�

x x

x abx a b x Ax AK r

x x K

c

c

1 2

2 1 2 3

3 1

�

� � � � � �

� � �

( )
a xx r2 � a

  

where        A
K p

�
t t1 2

    

      
a �

1

1t     

      
b �

1

2t     

      
a

t
�

Kc

I      

Therefore, the reduced form     �x A� x b� r    is

     

�
�
�

x

x

x

ab a b A

Kc

1

2

3

0 1 0

0

















( )





� � � �

� �a

























A
� ����� �����

x

x

x

AKc

1

2

3

0

�

a

















b
���

r t( )

   

If  m  is required as a function of  t,  it can always be found by solving Eq. (21.37) 
for  m;  thus
     m x K rc� �3          

   SUMMARY 

 State-space representation is an alternative to the transfer function representation of a 
physical system that we have used up to this point. A transfer function that relates an 
output variable to an input variable represents an  n th-order differential equation. In the 
state-space representation, the  n th-order differential equation is written as  n  first-order 
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differential equations in terms of  n  state variables. These  n  differential equations can 
also be written in a more compact form as a matrix differential equation

     �x Ax B� � u    

 For an  n th-order dynamic system, the number of state variables is fixed at  n,  but 
the selection of the variables is not unique. Of the many sets of state variables that one 
can choose, we discussed three sets that are useful in control theory, namely, physi-
cal variables, phase variables, and canonical variables. The state-space representation 
gives all the dynamic details of a system (e.g., the dependent variable and its successive 
derivatives for the case of phase variables, for example,  h  1  and  h  2  from Example (21.3). 
Whether or not this detail is needed depends on the problem being solved. We shall see 
the value of state-space representation in multivariable control and in nonlinear control 
in later chapters.  
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490

  APPENDIX 

21A 
 ELEMENTARY MATRIX ALGEBRA 

  The purpose of this section is to provide, in a convenient location, a review of some of 
the elementary operations of matrix algebra for use in state-space methods. It is expect-
ed that the reader has had some course work in linear algebra discussing the concepts of 
a vector and a matrix and the operations performed on them. 

  VECTORS 

  An  n -dimensional column vector is an ordered series of elements (numbers)  x  1 ,  x  2 , . . ., 
 x   n   and is written as

     

x �

x

x

xn

1

2

�



















   
Multiplication of a vector by a scalar  l  x  results in a vector for which each element is 
multiplied by  l .   

  MATRICES 

  A matrix is a rectangular array of elements (numbers) that takes the form

     

A �

a a a

a a a

a a a

m

m

n n nm

11 12 1

21 22 2

1 2

�
�

� � � �
�



















   
in which the elements are written  a   ij  . The subscript  i  refers to the  i th row and  j  to the 
 j th column. 

 Matrix  A  is called an  n   �   m  matrix where  n  is the number of rows and  m  is the 
number of columns. If  n   �   m,  the matrix is called a square matrix. If  m   �  1, the ma-
trix is a column vector ( n   �  1). If  n   �  1, the matrix is a row vector (1  �   m ). 
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 The transpose of a matrix  A   T   is a matrix for which the rows and columns of the 
matrix  A  are interchanged. If the diagonal elements ( a   ij   for all  i   �   j ) of a square matrix 
are 1 and all off-diagonal elements are 0, then the matrix is called a unit (or identity) 

matrix and is given the symbol  I.  For example, a 2  �  2 unit matrix is given by     
1 0

0 1





.    

 If  A   �   A   T   for a square matrix, the matrix  A  is said to be symmetric. 
 When two matrices are added (or subtracted), the corresponding elements are 

added (or subtracted); thus

     

A B� �

� � �

� � �

a b a b a b

a b a b a

m m

m

11 11 12 12 1 1

21 21 22 22 2 bb

a b a b a b

m

n n n n nm nm

2

1 1 2 2

� � � �
� � �



















   
The product of two matrices  C   �   AB  is a matrix whose elements are obtained by the 
expression

     
c a b i n j pij ik kj

k

m

� � �
�1

1 1∑ … …for and, , , ,

   
where  A  is an  n   �   m  matrix and  B  is an  m   �   p  matrix. The matrix  C  is an  n   �   p  ma-
trix. The number of columns in  A  must equal the number of rows in  B  to perform this 
operation.   

  INVERSE OF A MATRIX 

  The inverse of a matrix is related to the concept of division for numbers. It can only 
be found for square matrices. The inverse of a number  x  is written 1/ x  or  x   � 1 . The 
product of a number  x  and its inverse is equal to unity. The inverse of a matrix  A  is 
written  A   � 1 , and the product of a matrix and its inverse is equal to the unit matrix; 
thus

     A A I� �1
   

The expression used for matrix inversion takes the form

     
A

A
� �1 adj A

   
(21A.1)

  

where | A|  is the determinant of  A  and adj  A  is the adjoint of  A.  These two terms will 
now be described. 

 The determinant of a matrix | A|  is a scalar which is computed from the elements 
of the matrix as follows:

     A � � � �a A a A a Ai i i i in in1 1 2 2 �   
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or
     

A �
�

a A iij ij
j

n

1
∑ for any

  
 (21A.2)

  

where  A   ij  , the cofactor of element  a   ij  , is computed as

     
A Mij

i j
ij� � �( )1

   
The determinant  M   ij   is the minor of the element  a   ij   and is defi ned as follows. If the row 
and column containing the element  a   ij   are deleted from a square matrix  A,  the deter-
minant of the resulting matrix, which is an ( n   �  1)  �  ( n   �  1) matrix, is the minor  M   ij  . 
An alternate expression for the calculation of a determinant which uses the elements of 
a specifi c column and its cofactors is as follows:

     
A �

�

a A jij ij
i

n

1
∑ for any

   
(21A.3)

  
The determinant of a matrix with two equal rows or columns is zero. 

 We now defi ne the adjoint of a matrix. Let the matrix  B  be an  n   �   n  matrix 
whose elements  b   ij   are the cofactors  A   ji   of  A,  i.e., the transpose of the cofactor matrix. 
Matrix  B  is the adjoint of  A;  thus  B   �  adj  A   �  transpose of cofactor matrix, or

     

adj A �

A A A

A A A

A A A

n

n

n n nn

11 21 1

12 22 2

1 2

�
�

� � � �
�



















  
Some useful properties of the inverse are

     

A B A

A A

A

B

A

( )

( ) ( )
( )

� � �

� �

� �

�

�

�

1 1 1

1 1

1 1

T T

   
The derivations of relationships presented here, as well as other properties of matrices, 
can be found in textbooks on linear algebra (see Anton, 1984).   

  EXAMPLES   

   1. Evaluate the determinant of  A  for the following matrix.

     

A �

2 3 5

1 0 1

2 1 0
















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For this problem, we use Eq. (21A.2) with  i   �  1 (i.e., use row 1).

     

A � � �

�

2
0 1

1 0
3

1 1

2 0
5

1 0

2 1

2 0 0



















( )(( ) ( )( )[ ] ( )( ) ( )( )[ ] ( )( ) ( )(� � � � �1 1 3 1 0 1 2 5 1 1 0 2))[ ]
( ) ( ) ( )� � � � � �2 1 3 2 5 1 9       

  MATLAB Solution:

   A = [2,3,5;1,0,1;2,1,0] 

A  = 

     2     3     5

     1     0     1

     2     1     0

 det(A) 

ans  = 

     9    

   2. Find the inverse of the matrix

     

A

A
A

�

��

2 3

1 4

1







adj

A
   

The determinant of  A  is

     
A � � �2 4 3 1 5( )( ) ( )( )

   
The matrix of minors is

     

4 1

3 2




   

The cofactor matrix is

     

4 1

3 2

�

�






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The adjoint of the matrix, which is the transpose of the cofactor matrix, is

     
adj A �

�

�

4 3

1 2




   

therefore      A� �
�

�
�

�

�

1
4
5

3
5

1
5

2
5

1

5

4 3

1 2


















     

  MATLAB Solution

   A =  [2,3;1,4] 

A  = 

     2     3

     1     4

 A   ̂ -1 

ans  = 

    0.8000     - 0.6000

         - 0.2000       0.4000    

   3. Obtain the inverse of the matrix

     

A �

2 3 1

1 2 3

3 1 2















   

One can show that

     A � 18   
The cofactor matrix is

     

1 7 5

5 1 7

7 5 1

�

�

�















   

The adjoint matrix is

     

1 5 7

7 1 5

5 7 1

1

18

1 5 7

7 1 5

5 7 1

1

�

�

�

�

�

�

�

�





















A 









      
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  MATLAB Solution

   A = [2,3,1;1,2,3;3,1,2] 

A  = 

     2     3     1

     1     2     3

     3     1     2

 A ̂  - 1

 ans  = 

    0.0556     - 0.2778     0.3889

    0.3889     0.0556     - 0.2778

   -0.2778     0.3889     0.0556 which is the same as we determined by 

hand... if we multiply each element by 18, the result will be obvious.

 ans*18 

ans  = 

    1.0000     - 5.0000     7.0000

    7.0000     1.0000     - 5.0000

   -5.0000     7.0000     1.0000    

u1

x1

A1 = 1

u2

A3 = 1

R1 = 1

R4

x2

R2 = 1

R5

x3

R3

A2 = 1
2

  FIGURE P21–1  

      PROBLEMS 
   21.1. In the liquid-level process shown in  Fig. P21–1 , the three tanks are interacting. The process 

may be described by

     �x � �Ax Bu    

 where      x u� �

x

x

x

u

u

1

2

3

1

2























and     
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   ( a ) If

     

A � �

�

3 1 0

2 3 2

0 1 3

















   
 determine values of  R  3 ,  R  4 , and  R  5 . If one of these values of  R  is negative, what is your 

interpretation?  

  ( b ) Determine  B.     

  21.2. For the system shown in  Fig. P21–2 , find  A  and  b  in

     �x � �Ax bu   

 The tanks are interacting. The following data apply:

     
A A R R R1 2

1
2 1

1
2 2 31 2 1� � � � �, , , ,

    
       u

x1 x2

A1

R1

R3

R2

A2

  FIGURE P21–2  
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  CHAPTER 

21 
CAPSULE SUMMARY 

 A linear physical system can be described mathematically in several ways. For a second-
order differential equation  t   2   d  2  y / dt  2   �  2 z   t   dy / dt   �   y   �   u,  we may represent it by

    •  A transfer function. 

     
Y s

U s s s

( )
( ) �

� �

1

2 12 2t zt     

   •  Two   first-order differential equations 

     

x y x y

x x

x x x u

1 2

1 2

2 2 1 2 2

1 2 1

� �

�

� � � �

and �
�

�
t

z
t t     

   •  A matrix differential equation. 

     

�

�
�
�
�

x A

x

� �x bu

x

x

1

2 2

0 1

1 2



















� � �

t
z
t 























A
x

b
� ��� ���

�
�

sc

x

x
u

1

2 2

0

1�

t aalar
�

y C� x
      

The  x   i   are the  state variables,  and the  y   i   are the  outputs.  In control literature, there are 
generally three types of state variables used:

   1.  Physical variables  (readily measured and observed, i.e., level, temperature, com-
position, etc.)  

  2.  Phase variables  (the dependent variable and its successive derivatives)  
  3.  Canonical variables  (state variables selected so that matrix  A  is diagonal, chosen 

for ease in matrix computation)    

  SOME MATLAB COMMANDS 

      tf2ss   —converts a transfer function model to a state-space model. 

The state variables are canonical.  

     det(A)   —finds the determinant of square matrix  A   

     Aˆ - 1    or    inv(A)   —finds the inverse of square matrix  A       
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 CHAPTER 

 22 
 TRANSFER 
FUNCTION MATRIX 

  In Chap. 21, we have seen that a linear dynamic system can be expressed in terms of 
the following equations

     �x Ax Bu� �   (22.1)  

     
y Cx�

   (22.2)  

where     x   �  column vector of  n  state variables ( x  1 ,  x  2 , . . .,  x   n  )  
   u   �  column vector of  m  inputs or forcing terms ( u  1 ,  u  2 , . . .,  u   m  )  
   y   �  column vector of  p  outputs ( y  1 ,  y  2 , . . .,  y   p  )  
   A   �   n   �   n  matrix of coefficients  
   B   �   n   �   m  matrix of coefficients  
   C   �   p   �   n  matrix of coefficients   

One of the objectives of this chapter is to show how one solves Eqs. (22.1) and (22.2) 
in a systematic manner. 

 Before discussing the solution of the matrix differential equation of Eq. (22.1), 
we consider the scalar differential equation

     

dx

dt
Ax Bu� �

   
(22.3)

  

In this equation all the terms are scalars. If we multiply both sides of Eq. (22.3) by  e   �  At  , 
we obtain, after rearrangement,

     e dx Axe dt Be u t dtAt At At� � �� � ( )   
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We can recognize that the left-hand side is an exact differential, and we can rewrite this 
expression as

     
d xe Be u t dtAt At� ��( ) ( )

   

Integrating both sides from  t   �  0 to  t   �   t,  we obtain

     

d xe Be u d

xe x Be

Att At

At

� ��

�

�

� �

( )
( )

∫ ∫ =0 0

0

t
t

t
t( ) τ

���

�� �

At

At At A

u d

x e x e Be u d

t
t

t

t
t

t t

t t

( )

( )

=

=

∫
( )

0

0
00 0

0
t t

t

t
t t

� ��
� �

t At A tt
e x Be u d∫ ∫( ) ( )

=
( )

   

The solution to Eq. (22.3) can thus be written as the sum of the complementary function 
and the particular integral as follows:

     

x t e x eAt A t( ) ( ) ( )� � �0
particular
solution

��� ��
t BBu d

t
( )t t

0∫
complementary

solution

� ���� ����

   

(22.4)

  

Equation (22.4) is a well-known result that has been derived in many books on the solu-
tion of ordinary differential equations.  

  22.1 TRANSITION MATRIX 

  Let us now turn our attention to the solution of the matrix differential equation

     �x Ax�   (22.5)  

This is Eq. (22.1) for the case of no inputs (i.e.,  u   �  0). The initial conditions for 
Eq. (22.5) may be expressed as  x (0). One can show that the solution to Eq. (22.5) with 
initial conditions  x (0) is given by

     
x I A

A A
xt t t

k
t

k
k( ) 









( )� � � � �

2
2

2
0

!
...

!   

(22.6)

  

The infinite series of matrix terms within the braces is given the symbol  e   A  t  . This sym-
bol is chosen to recall that the infinite series of the scalar term  e   at   is

     
1

2

2
2� � � �at

a
t

a

k
t

k
k

!
...

!   

Using the symbol  e   A  t  , we may write Eq. (22.6) as

     x xAt e t( ) ( )� 0   
(22.7)  

cou9789x_ch22_498-511.indd   499cou9789x_ch22_498-511.indd   499 8/23/08   9:32:47 AM8/23/08   9:32:47 AM



Confirming Pages
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The symbol  e   A  t   is an  n   �   n  matrix in which each element contains a power series of  t.  
The solution to Eq. (22.1) can be shown to be

     
x x BuA At e e dt tt( ) ( ) ( )∫� � �0

0
t t t( )

   
(22.8)

  

Notice that Eq. (22.8) resembles Eq. (22.4), which is the solution for the scalar dif-
ferential equation. Since  e   A  t   is awkward and perhaps misleading as to its nature,  e   A  t   is 
sometimes replaced by  f  (t); thus

     
e t e t( ) � A ( )transition matrix

   (22.9)  

Either of the terms  e ( t ) and  e   A  t   can be used for the transition matrix. In this book, we 
shall use  e   A  t  . 

  Example 22.1.   Solution of a matrix differential equation.   Solve the follow-
ing matrix differential equation

     

�x x�
�

�
�

1 1

0 2

0

1












( )u t

   

where  u ( t ) is a unit-step function and

     

x 0
1

0
( ) 





�
�

   

One can show that

     

e
e e e

e

t
t t t

t
A �

�� � �

�

2

20













   

In the next section, the method used to obtain the elements of this matrix will be 
developed. Applying Eq. (22.8) gives

     

x( )t
e e e

e

et t t

t

t

�
� �

�
� � �

�

� �2

20

1

0



















tt t t

t

( ) ( ) ( )

( )
















e e

e

t t

t

� � � �

� �

� 2

20

0

1∫ d
t

t
0

   

or

     

x t
e e e

e

t t t

t
( ) 









( ) ( )
�

�
�

�� � � � �

�0

0 5

0 5

2

2

t t.

. ��
�

�

t
t

t

( )













0

t

   

or

     

x t
e e

e

t t

t
( )













�
� �

�

� �

�

0 5 2 0 5

0 5 0 5

2

2

. .

. .
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MATLAB Solution of Matrix Differential Equation

Let’s resolve Example 22.1 using MATLAB.

A=[−1,1;0,−2]

A =

    −1     1

     0    −2

syms t       %Declare t to be a symbolic variable.

B=expm(A*t)    %Calculate the transition matrix.

B =

[exp(−t), exp(−t)−exp(−2*t)]

[0,         exp(−2*t)]

C=B*[−1;0]    %This is the “particular” solution, the first term on the right-hand side.

C =

[ −exp(−t)]

[        0]

syms tau        %Declare tau to be symbolic.

D=expm(A*(t−tau))    %Preparing the integrand
D =

[exp(−t+tau), −exp(−2*t+2*tau)+exp(−t+tau)]

[0,                exp(−2*t+2*tau)]

E=D*[0;1]     %Completing the integrand

E =

[−exp(−2*t+2*tau)+exp(−t+tau)]

[exp(−2*t+2*tau)]

F=int(E,tau,0,t)     %Integrating the expression over tau, from tau=0 to tau=t

F =

[1/2+1/2*exp(−2*t)−exp(−t)]

[1/2−1/2*exp(−2*t)]    %The “complementary” solution

G=F+C

G =

[1/2+1/2*exp(−2*t)−2*exp(−t)]

[1/2−1/2*exp(−2*t)]    %The complete solution . . . this checks with our hand calculation above.
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  Determining  e   A  t   

 One method for determining the elements of the transition matrix  e   A  t   is to use Laplace 
transforms. Consider the matrix differential equation of Eq. (22.1)

     �x Ax Bu�� ��   

If we take the Laplace transform of each side, we obtain

     s s s sX x AX BU( ) ( ) ( ) ( )� � �0    

or     s s s sX AX x BU( ) ( ) ( ) ( )� � �0   

Solving for  X ( s ) gives

     s s sI A X x BU� � �( ) ( ) ( ) ( )0   (22.10)  

To obtain an expression for  X ( s ), premultiply both sides of Eq. (22.10) by ( s  I   �   A )  � 1 ; thus

     s s s s s sI A I A X I A x I A BU� � � � � �� � �( ) ( ) ( ) ( ) ( ) ( )1 1 10 (( )   

This equation becomes

     X I A x I A BUs s s s( ) ( ) ( ) ( ) ( )� � � �� �1 10   (22.11)  

To obtain  x ( t ) from Eq. (22.11), we take the inverse transform; thus

     
x I A x I A BUt L s L s s( ) ( ) ( ){ } ( ) ( ){ }� � � �� � � �1 1 1 10

   
(22.12)

  

By comparing Eqs. (22.8) and (22.12), we see that

     
e L stA I A� �� �1 1( ){ }

   
(22.13)

  

and
     

e d L s stt A Bu I A BU� � �� �t t t( )
0

1 1∫ ( ) ( ){ }
   

(22.14)
      

 22.2 TRANSFER FUNCTION MATRIX 

 When  x (0)  �  0, a case frequently used in control applications, we obtain from Eq. (22.11)

     X I A BUs s s( ) ( ) ( )� � �1
   (22.15)  

This may be written

     X G Us s s( ) ( ) ( )�    (22.16)  
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where

     
G I A Bs s( ) ( )� � �1 ( )transfer function matrix

   (22.17)  

The term  G ( s ) is called the  transfer function matrix  and serves the same purpose as the 
transfer function for the scalar case; namely, it relates a set of state variables  X ( s ) to a 
set of inputs  U ( s ). 

 If we prefer to relate the output to the input as expressed by Eq. (22.2), we may 
proceed as follows. Taking the Laplace transform of both sides of Eq. (22.2) gives

     
Y CXs s( ) ( )�

   (22.18)  

Combining Eqs. (22.15) and (22.18) gives

     
Y C I A BUs s s( ) ( ) ( )� � �1

   

We may now write

     Y G Us s s( ) ( ) ( )� 1   (22.19)  

where
     G C I A B1

1s s( ) ( )� � �

   
(22.20)

  

The term  G  1  ( s ) in Eq. (22.20) is also a transfer function matrix that relates the output 
vector  Y  to the input vector  U.  

Example 22.2. Determine the transfer function matrix for the two-tank liquid-level 
system shown in Fig. 22–1. Given: A A R R1 2 1 2

2
31 0 5 0 5� � � �, . , . , .

u1

u2

h2

h1

A1

A2

R1

R2

q1

q2

FIGURE 22–1
Two-tank liquid-level system.

cou9789x_ch22_498-511.indd   503cou9789x_ch22_498-511.indd   503 8/23/08   9:32:50 AM8/23/08   9:32:50 AM



Confirming Pages

504 PART 6 STATE-SPACE METHODS

  As developed in Example 21.1 [Eq. (21.17)], this system is described by

     �h Ah Bu�� ��   

where

     
A B�

�

�
�

2 0

4 3

1 0

0 2










   

From the definition of the transfer function matrix of Eq. (22.17), we write

     G I A Bs s( ) ( )� � �1
   

The inverse of  s  I   �   A  is obtained as follows (see App. 21A for details on the 
inversion of a matrix):

     

s
s

s

s
s

s

I A
I A

I A

I A

� �
�

�

� �
�

� �

�( ) ( )











1

2 0

4 3

adj

   

   
Cofactor of

  
s

s

s
I A� �

�

�

3 4

0 2




   

We can now find the adjoint:

     
adj s

s

s
I A� �

�

�
( ) 





3 0

4 2   

The determinant of  s  I   �   A  is

     

s

s
s s

�

� �
� � �

2 0

4 3
2 3( )( )

   

We can now determine the inverse of  s  I   �   A. 

     

s

s

s

s s

s

s

I A

G

� �

�

�

� �

�

�

�( )







( )( )

( )

1

3 0

4 2

2 3

3 0

4 ss

s s

s

s�

� �
�

�

�2

2 3

1 0

0 2

3 0

4 2 2






( )( )






( )






( )( )s s� �2 3   

(22.21)

  

Simplifying this expression gives

     

G s
s

s s s

( )

( )( )



















�
�

� � �

1

2
0

4

2 3

2

3   
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From Eq. (22.16) we write

     H G Us s s( ) ( ) ( )�    

therefore

     

H s

H s

s

s s s

1

2

1

2
0

4

2 3

2

3

( )
( )









( )( )










�
�

� � �










( )
( )









U s

U s

1

2

   

(22.22)

  

From Eq. (22.22), we obtain

     
H s

s
U s1 1

1

2
( ) ( )�

�   

and
     

H s
s s

U s
s

U s2 1 2
4

2 3

2

3
( )

( )( ) ( ) ( )�
� �

�
�   

For given inputs, the above equations may be inverted to obtain  h  1  ( t ) and  h  2  ( t ). 
For the case of  U  1 ( s )  �  1/ s  and  U  2 ( s )  �  0, we get

     
H s

s s s s
1

1

2

0 5

0 5 1
( )

( ) ( )�
�

�
�

.

.   

and
     

H s
s s s

2
4

2 3
( )

( )( )�
� �   

Inversion of  H  1 ( s ) and  H  2 ( s ) gives

     

h t e

h t e e

t

t t

1
2

2
3 2

0 5 1

2

3

4

3
2

2

3
1

( ) ( )
( )

� �

� � � � �

�

� �

.

22 33 2e et t� ��( )
   

The results given above can be obtained, of course, by the methods presented 
earlier in this book. 

 The transition matrix can be obtained by applying Eq. (22.13) to Eq. (22.21):

     

e L
s

s s s

tA �
�

� � �

�1

1

2
0

4

2 3

1

3( )( )



































   

Inverting each term in the matrix gives

     

e
e

e e e
t

t

t t t
A �

�

�

� � �

2

2 3 3

0

4 ( )












   

This matrix can be used in Eq. (22.8) to calculate  h  1  ( t ) and  h  2  ( t ). The result will 
be the same as obtained by inversion of Eq. (22.22).  
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MATLAB Solution of Example 22.2

A = [−2,0;4, − 3]

A =

      −2   0

       4  −3

B = [1,0;0,2]

B =

      1   0

      0   2

syms s t

I = eye(2)  %Set up the identity matrix

I =

      1   0

      0   1

E = s*I − A

E =

[s + 2, 0]

[−4, s + 3]

F = Eˆ −1

F =

[1/(s + 2), 0]

[4/(s + 2)/(s + 3), 1/(s + 3)]

G = F*B

G =

[1/(s + 2), 0]

[4/(s + 2)/(s + 3), 2/(s + 3)]

This is the same expression that we obtained by hand for G(s).

Let’s check the transition matrix.

H = ilaplace(F)

H =

[ exp(−2*t), 0]

[ 4*exp(−2*t) − 4*exp(−3*t), exp(−3*t)]    %This is exp(At), the transition matrix
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 CHAPTER 22  TRANSFER FUNCTION MATRIX 507

This matches the value we arrived at above for the transition matrix.

syms tau

K = [exp(−2*(t − tau)),0; 4*exp(−2*(t − tau)) − 4*exp(−3*(t − tau)), 

exp(−3*(t − tau))]

K =

[ exp(−2*t + 2*tau), 0]

[ 4*exp(−2*t + 2*tau) −4*exp(−3*t + 3*tau), exp(−3*t + 3*tau)]  %This is exp(A(t−τ))

M = K*B

M =

[exp(−2*t + 2*tau), 0]

[ 4*exp(−2*t + 2*tau) − 4*exp(−3*t + 3*tau), 2*exp(−3*t + 3*tau)]

N = M*[1;0]     %This is M*u, remember u1 = 1 and u2 = 0

N =

[exp(−2*t + 2*tau)]

[4*exp(−2*t + 2*tau) − 4*exp(−3*t + 3*tau)]

P = int(N,tau,0,t) %The complementary solution.

P =

[1/2 − 1/2*exp(−2*t)]

[2/3 − 2*exp(−2*t) + 4/3*exp(−3*t)]     % The first element is H1 and the second is H2.

This result matches the earlier result we obtained for H1 and H2.

Simulink Modeling of Example 22.2

Simulink can model a state-space system. Using the model developed in Example 22.2,

 

�
�

� �� ��

h

h

h

h
1

2

1

2

2 0

4 3

1





















�
�

�
�

A

00

0 2

1

2













B
��� ��

u

u

 

If we desire to examine the response in tank 2, we want the output y to be equal to h2. Therefore,

 

y
h

h

u

u
= [ ] 





[ ] 





0 1 0 0
1

2

1

2
C D
��� ���� � outpput

 

The Simulink block diagram for the model is shown in Fig. 22–2.
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508 PART 6 STATE-SPACE METHODS

U1

U2

State-space

x' = Ax+Bu
y = Cx+Du

Scope

To workspace

y

0

FIGURE 22–2
Simulink model for Example 22.2.

The simulation is quite easy to set up. Double-clicking on the state-space block pops up a menu that 
must be filled in using the values for the matrices A, B, C, and D (see Fig. 22–3). The completed 
menu box is shown below. The input signals u1 and u2 are multiplexed and fed into the state-space 
block. The upper signal is u1, a unit step, and the lower signal is u2, which is zero. The scope output 
is shown in Fig. 22–4.

FIGURE 22–3
Simulink state-space menu block.

FIGURE 22–4
Simulink model output, Example 22.2.
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The output from the model is also sent back to the MATLAB workspace, as y, where we can plot it 
in comparison to the analytical expression for h2.

 

h t e e e et t t t
2

3 2 3 22

3

4

3
2

2

3
1 2 3( ) ( )� � � � � �� � � �

 

The MATLAB commands required to generate a comparison plot are

h2 = y.signals.values;

t = y.time;

h2analytical = (2/3) + (4/3)*exp(−3*t) − 2*exp(−2*t);

plot(t,h2,t,h2analytical,’*’)

0
0 0.5 1 1.5 2

Time

Simulink
Analytical

2.5 3 3.5 4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Comparison of h2 calculated with Simulink and the analytical expression

h 2

FIGURE 22–5
Comparison of h2 calculated using Simulink with analytical solution.

From Fig. 22–5, we note that the solutions are identical.

cou9789x_ch22_498-511.indd   509cou9789x_ch22_498-511.indd   509 8/23/08   9:32:53 AM8/23/08   9:32:53 AM



Confirming Pages

510 PART 6 STATE-SPACE METHODS

   SUMMARY 

 The matrix differential equation

     �x Ax Bu�� ��   

used to describe a control system by the state-space method can be solved for the vector 
of state variables  x  by use of the transfer function matrix. It consists of a matrix of transfer 
functions that relate the state variables to the inputs. The transfer function matrix serves 
the same purpose in a multiple-input multiple-output system as the transfer function does 
for a single-input single-output system. The transfer function matrix is obtained from the 
matrix differential equation by application of Laplace transforms.  

  PROBLEMS 

   22.1. Determine  x ( t ) for the system

     �x Ax Bu�� ��   

 

where

     

e
e e e

e

t
t t t

t
A

x

�
� �

�

� � �

�

5 2 5

20

0
0

1













( ) 







 ( ) 

















u Bt � �

�

3

1

1 2

0 4
     

  22.2    ( a ) Solve Prob. 21.1, using the techniques in this chapter.  
  ( b ) Solve Prob. 21.1, using MATLAB/Simulink.     

  22.3    ( a ) Solve Prob. 21.2, using the techniques in this chapter.  
  ( b ) Solve Prob. 21.2, using MATLAB/Simulink.       
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  CHAPTER 

22 
CAPSULE SUMMARY 

 For the general state-space model,

     �x Ax Bu y Cx Du�� �� �� ��   

The solution was shown to be

     
x x BuA At e e dt tt( ) ( ) ( )∫� � �0

0
t t t( )

   

where
     

e L stA I A� �� �1 1( ){ } � transition matrix
   

and thus,
     

e d L s stt A Bu I A BU� � �� �t t t( )
0

1 1∫ ( ) ( ){ }
   

If  x (0)  �  0 (as is normally the case with deviation variables),

     
X I A BUs s s( ) ( ) ( )� � �1

   

or     X G Us s s( ) ( ) ( )�   

where

     

G I A Bs s( ) ( )� � �1 � transfer function matrix (rellates to

transfer fun

X U

G C I A B

)

1
1s s( ) ( )� � � � cction matrix (relates toY U)    

   USEFUL MATLAB COMMANDS  

      expm(A)   —matrix exponential command.  
     int   —performs a symbolic integration.  
     Aˆ   -  1    — inverts matrix  A.   

     >

State-Space

x'= Ax + Bu

y = Cx + Du
>—Simulink block that performs state-space simulation      
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  Up to this point, the fundamentals of process dynamics and control have been illus-
trated by single-input single-output (SISO) systems. The processes encountered in 

the real world are usually multiple-input multiple-output (MIMO) systems. To explore 
these concepts, consider the interacting, two-tank liquid-level system in  Fig. 23–1  
where there is one input, the flow to tank 1 ( m  1 ), and one output, the level in tank 2 ( h  2 ). 
In this figure,  h  2  is related to  m  1  by a second-order transfer function. From the point of 
view of a SISO system, the relation between  h  2  and  m  1  may be represented by the block 
diagram in  Fig. 23–1  b.  One may place a feedback control system around the open-loop 
system of  Fig. 23–1  b  to maintain control of  H  2 . 

 MULTIVARIABLE 
CONTROL 

(a)

(b)

h2

H2

h1

R1 R2

m1

M1
R2

2s2 + 2 s + 1

FIGURE 23–1
Single-input single-output (SISO) system: (a) two-tank interacting level system and (b) block diagram for 
SISO system.

 CHAPTER 

 23 
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H1

H2
M2

M1 G11 (s)

G21 (s)

G12 (s)

G22 (s)

+

+

+

+

(a)

(b)

h2h1
R1 R2

m1 m2

FIGURE 23–2
Multiple-input multiple-output (MIMO) system: (a) level process and (b) block diagram.

 Now consider the same process of  Fig. 23–1  in which there are two inputs ( m  1  and 
 m  2 ) and two outputs ( h  1  and  h  2 ). This system is shown in  Fig. 23–2  a.  A change in  m  1  
alone will affect both outputs ( h  1  and  h  2 ). A change in  m  2  alone will also change both 
outputs. (Remember that this is an interacting process for which the level in tank 1 is 
affected by the level in tank 2.) The interaction between inputs and outputs can be seen 
more clearly by the block diagram of  Fig. 23–2  b.  In this diagram, the transfer functions 
show how the change in one of the inputs affects both of the outputs. For example, if a 
change occurs in only  M  1 , the responses of  H  1  and  H  2  are 

    

H s G s M s

H s G s M s

1 11 1

2 21 1

( ) ( ) ( )
( ) ( ) ( )

�

�    

The transfer functions in  Fig. 23–2  b  will be worked out for a specific set of process 
parameters in Example 23.1. (If the tanks were noninteracting,  G  12   �  0, with the result 
that a change in flow to tank 2 would not affect  H  1 .) If both  H  1  and  H  2  are to be con-
trolled, a single control loop will not be sufficient; in this case two control loops are 
needed. The addition of control loops to the interacting system will be considered in 
Sec. 23.1.   
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  23.1 CONTROL OF INTERACTING SYSTEMS 

  The problem of controlling the outputs of a MIMO system will be discussed by means 
of a 2  �  2 system shown in  Fig. 23–3 . The problem can be extended to the case of more 
than two pairs of inputs and outputs by the same procedure described here. The control 
objective is to control  C  1  and  C  2  independently, in spite of changes in  M  1  and  M  2  or other 
load variables not shown. Two control loops are added to the diagram of  Fig. 23–3  as 
shown in  Fig. 23–4 . Each loop has a block for the controller, the valve, and the measur-
ing element. In principle, the multiloop control system of  Fig. 23–4  will maintain control 
of  C  1  and  C  2 . However, because of the interaction present in the system, a change in  R  1  
will also cause  C  2  to vary because a disturbance enters the lower loop through the trans-
fer function  G  21 . Because of interaction, both outputs ( C  1  and  C  2 ) will change if a change 
is made in either input alone. If  G  21  and  G  12  provide weak interaction, the two-controller 
scheme of  Fig. 23–4  will give satisfactory control. In the extreme, if  G  12   �   G  21   �  0, we 
have no interaction and the two control loops are isolated from each other. 

    

C1

C2
M2

M1
G11

G21

G12

G22

+

+

+

+ FIGURE 23–3
MIMO system for two 
pairs of inputs and outputs

M2

M1R1

R2

C1

C2

E1

E2

G11

Gm1

Gm2

Gv1Gc11

Gc22 Gv2

G21

G12

G22

+

+

+
+

−
+

+
−

FIGURE 23–4
Multiloop control system with two controllers. 
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 CHAPTER 23  MULTIVARIABLE CONTROL 515

 To completely eliminate the interaction between outputs and set points, two more 
controllers (cross-controllers) are added to the diagram of  Fig. 23–4  to give the diagram 
shown in  Fig. 23–5 . In principle, these cross-controllers can be designed to eliminate 
interaction. The following analysis, which is expressed in matrix form, will lead to the 
method of design for cross-controllers that will eliminate interaction. 

Response of Multiloop Control System 

 From  Fig. 23–5 , we may write by direct observation the following relationships in the 
form of the matrix expression

     C G M� p  

 (23.1)  

where 
       

We also may write from  Fig. 23–5 

     M G G E G G Ev c v c1 1 11 1 1 12 2� �   (23.2)  

     M G G E G G Ev c v c2 2 21 1 2 22 2� �   (23.3)  
where  G   v 1  and  G   v 2  are the transfer functions for the valves. Equations (23.2) and (23.3) 
may be written in matrix form as

     M G G E� v c   (23.4)  

where 

        

G C Mp
G G

G G

C

C
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M
= = =11 12
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2
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
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
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11 120

0
valve matrix









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
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
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
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( )controller matrix
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


G Gv
v

v
c

c cG

G
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G
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2

11 120

0
valve matrix









 ( )

cc cG

E

E

21 22

1

2


















( )controller matrix
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


R1

R2

E1

E2

M1

M2

C1

C2

Gc 11

Gm1

G11Gv 1

Gc 12 G21

G12

G22

Gc 21

Gc 22 Gv 2

Gm2

+
+

+
++

+

+
+

+

+

−

−

FIGURE 23–5
Multiloop control system with two
primary controllers and two cross-
controllers.
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 From  Fig. 23–5 , we write directly

     E R G Cm1 1 1 1� �    (23.5)  

     E R G Cm2 2 2 2� �    (23.6)  

where  E  1  and  E  2  are the error signals from the comparators. Equations (23.5) and (23.6) 
can be written in matrix form

     E R G C� � m    (23.7)  

where       

      

From Eqs. (23.1) and (23.4), we obtain

     C G G G E� p v c   (23.8)  

If we let   G   o    �    G   p    G   v    G   c  , Eq. (23.8) becomes

     C G E� o    (23.9)  

Combining Eqs. (23.7) and (23.9) gives

     C R G G C� �Go o m    (23.10)  

We may now solve Eq. (23.10) for  C  to obtain

     C I G G G R� � �
o m o[ ] 1
  

 (23.11)  

Notice that the closed-loop behavior expressed by this matrix equation is analogous to 
the closed-loop response of a SISO system, which may be written

     
C s

G s

G s G s
R so

o m
( ) ( )

( ) ( ) ( )�
�1    

(23.12)  

The matrix term (  I   �    G   o    G   m  ) 
 � 1  is equivalent to the scalar term 1/[1  �   G   o  ( s ) G   m  ( s )]. 

Gm
m

m

G

G
�

1

2

0

0
measuring element matrix







( )Gm
m

m

G

G
�

1

2

0

0
measuring element matrix







( )

R �
R

R

1

2







R �
R

R

1

2







Gv

Gm

GpGcR
−

+ E M
C

FIGURE 23–6
Block diagram for MIMO control system in terms of matrix blocks.
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 CHAPTER 23  MULTIVARIABLE CONTROL 517

 A block diagram equivalent to the diagram 
for the MIMO control system in  Fig. 23–5  is 
shown in  Fig. 23–6 . In this diagram, the blocks 
are filled with the matrices in Eqs. (23.1), (23.4), 
and (23.7). The double line indicates that more 
than one variable is being transmitted. Each block 
contains a matrix of transfer functions that relates 
an output vector to an input vector. The dia-
gram can be simplified by multiplying the three 

matrices in the forward loop together and calling the result   G   o  , as was done to obtain 
Eq. (23.9). The simplified diagram is shown in  Fig. 23–7 .  

  Noninteracting Control 

 In order for no interaction to occur between  C  and  R  in  Fig. 23–5  (i.e.,  R  1  affects only  C  1  
and  R  2  affects only  C  2 ), the off-diagonal elements of [  I   �   G   o    G   m  ] 

 � 1   G   o   in Eq. (23.11) 
must be zero. Since  I  and   G   m   are diagonal, [  I   �    G   o     G   m  ] 

 � 1   G   o   will be diagonal if   G   o   
is diagonal. Multiplication of the matrices in the expression for   G   o   is now shown: 

    G G G Go p v c�     

    
Go

v

v

c cG G

G G

G

G

G G
�

11 12

21 22

1

2

11 120

0










 GG Gc c21 22





   

The result of multiplying these matrices gives

     
Go

v c v c v c v cG G G G G G G G G G G G
�

� �11 1 11 12 2 21 11 1 12 12 2 222

21 1 11 22 2 21 21 1 12 22 2G G G G G G G G G G G Gv c v c v c v c� � 222





  

 (23.13)  

Setting the off-diagonal elements to zero and solving for  G   c 12  and  G   c 21  give

     
G

G G G

G G
c

v c

v
12

12 2 22

11 1
� �

   
(23.14)  

     
G

G G G

G G
c

v c

v
21

21 1 11

22 2
� �

  
 (23.15)  

Example 23.1 will give some experience with the computations involved in applying 
the theory developed so far in this chapter. 

  Example 23.1.   For the two-tank, interacting liquid-level system shown in  Fig. 
23–8 , develop the block diagram for a MIMO system corresponding to  Fig. 23–3 . 

 Material balances around tank 1 and tank 2 give the following differential 
equations:

     

A c m
c c

R

c

R
1 1 1

1 2

1

1

3
� � �

�
�

  
 (23.16)  

     
A c m

c c

R

c

R
2 2 2

1 2

1

2

2
� � �

�
�

  
 (23.17)  

Gm

GoR

−
+

E
C

FIGURE 23–7
Reduced diagram for MIMO control 
system where  Go �  Gp Gv Gc.
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Introducing the parameters given in  Fig. 23–8  into Eqs. (23.16) and (23.17) 
gives

     �c m c c1 1 1 23 2� � �   (23.18)  

     �c m c c2 2 1 22 4 5� � �    (23.19)  

These equations may be written in matrix form as 

    �c Ac Bm�� �   

where 

    

A B�
�

�
�

3 2

4 5

1 0

0 2










   

We use Eq. (22.15) to obtain

     C BMs s s( ) ( ) ( )� � �I A 1
   (23.20)  

Writing Eq. (23.20) in the form of Eq. (23.1) gives 

    C G� pM   

where   G   p    �  ( s   I   �   A )  � 1   B.  
 After several steps involving the inversion of  s   I   �   A  and multiplying the 

result of inversion by  B,  we get

     

G

s

s

s s
p �

�

�

� �

5 4

4 2 3

1 7

( )






( )( )
  

 (23.21)  

The block diagram can now be drawn as shown in  Fig. 23–3  with 
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c2c1

R1R3
R2

m1

A1 A2

m2

FIGURE 23–8
Process for Example 23.1: A A R R R1 2

1
2 1

1
2 2 31 2 1� � � � �, , , , .
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Notice that the diagonal elements of   G   p  ( s ) are of the form 

    

a bs

s s

�

� �

( )
( )( )1 7  

(a)

0.0
0 1.5

c1 c2

t 3

0.2

0.4

0.6

0.8

1.0

(b)

0.0
0 1.5

c1

c2

t 3

0.2

0.4

0.6

0.8

1.0

FIGURE 23–9
Open-loop response for Example 23.1. (a) M

s
M1 2

1
0� �,   (step change to tank 1) and 

(b) M M
s

1 20
1

� �,
 (step change to tank 2).

  
These elements, which relate  c  1  to  m  1  and  c  2  to  m  2 , will produce a second-order 
response to a step change in input that has a finite slope at the origin because of the 
numerator term  s   �   b . In contrast, the off-diagonal elements have second-order 
transfer functions without numerator dynamics, for which case the step response 
will be second-order with zero slope at the origin. The responses of  c  1  and  c  2  for 
unit-step changes in  m  1  and  m  2  taken separately are shown in  Fig. 23–9 .  

  Example 23.2.   For the two-tank liquid-level system of Example 23.1, deter-
mine the controller transfer function matrix   G   c   needed to eliminate interaction. 
The primary controllers are to be proportional; i.e.,  G   c 11   �   K  1  and  G   c 22   �   K  2 . 
The diagram of the control system is shown in  Fig. 23–10 .  

c2c1

R1

Controller

R3

R2

m1

A1 A2

m2

r2r1

FIGURE 23–10
Process for Example 23.2. A A R R R G K G Kc c1 2

1
2 1

1
2 2 3 11 1 22 21 2 1� � � � � � �, , , , , , .
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 The block labeled Controller contains the four transfer functions that are the ele-
ments of   G   c  . In this problem,   G   v   is a unit diagonal matrix, i.e.,  G   v 1   �   G   v 2   �  1. 

 From Eqs. (23.14) and (23.15) we obtain 

    

G
G G

G s s
K

s s

s
c

c
12

12 22

11
2

4

1 7

1 7
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�+( ) +( )
( )( )

55
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   (23.22)
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(23.23)

   

 Having found the transfer functions for the cross-controllers, we can now deter-
mine the nature of the uncoupled response of  c  1  to a change in  r  1  and of  c  2  to a 
change in  r  2 . 
 Inserting  G   v 1   �   G   v 2   �  1 and the expressions for  G   c 12  and  G   c 21  from Eqs. (23.14) 
and (23.15) into Eq. (23.13) gives for   G   o  

     
Go

c c

c c

G G G G

G G G G
�

�

�

11 11 12 21

21 12 22 22

0

0




  

 (23.24)   

 Inserting the appropriate elements of the   G   p   matrix [Eq. (23.21)] and the   G   c   
matrix in Eq. (23.24) gives, after considerable simplification,
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

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decoupled systemm

  

 (23.25)   

 The block diagram for this decoupled MIMO system is shown in  Fig. 23–11 .  

Go

Gm

Gm1

Gm2

R C+ −

E

K1

2K2

s + 3

s + 5

0

0

0

0

FIGURE 23–11
Block diagram for decoupled system in Example 23.2.
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 Assuming that the measurement matrix   G   m   is a unit diagonal matrix, the diagram 
in  Fig. 23–11  can be simplified to the unity feedback diagram of  Fig. 23–12 .  

Go

R C
+ −

E

K1

2K2

(s + 3)

s + 5
0

0

FIGURE 23–12
Simplified block diagram for Example 23.2.

 From  Fig. 23–12 , we may write directly 

      C G E E R C� � �o    
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 From this expression, we may write 
    C G R G C
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 Solving for  C  1 ( s ) gives 
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o
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1
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 Inserting  G   o 11  from Eq. (23.25) gives
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(23.26)   

 In a similar way, one can show that

     
C s

K s

K s
R s2
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/

/  
 (23.27)   

 The result shows that the cross-controllers of Eqs. (23.22) and (23.23) give two 
separate noninteracting control loops, as shown in  Fig. 23–13 . 

 The response of the control system of  Fig. 23–10  is shown in  Fig. 23–14  for 
a unit-step change in  R  1 . In  Fig. 23–14  a,  no cross-controllers are present in the 
matrix   G   c  . In  Fig. 23–14  b,  cross-controllers having the transfer functions given 
by Eqs. (23.22) and (23.23) are present. As expected, for the case of no cross-
controllers, one sees from  Fig. 23–14  a  that a request for a unit-step change in  r  1  
causes both  c  1  and  c  2  to change. For the case where cross-controllers are present, 
we see from  Fig. 23–14  b  that a change in  r  1  does not affect  c  2  as demanded by a 
decoupled system.  

C G R G C� �o oC G R G C� �o o
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  Example 23.3.   Use MATLAB and Simulink to simulate the system shown in 
Example 23.2. Examine the system behavior for values of  K   c   (both  K  1  and  K  2 ) 
 �  2, 4, 6, 8, and 10.  

 The Simulink diagram for the process is shown in  Fig. 23–5 . 
 The PID controller block for each loop is a proportional controller only,  G   c 11   �   K  1  
and  G   c 22   �   K  2 .  

 We use a MATLAB m-file to call this model, using the following command:  
 >>ex23_3driver    

 The MATLAB m-file that calls the Simulink model is  
 % The name of this file is ex23_3driver.m 

 % The Simulink file for the model is example23_3 

 %  The variable h is used to plot each line in different 

colors 

 h(1,:)='g−'; 

 h(2,:)='r−'; 

 h(3,:)='b−'; 

R1 K1 C1

C2R2 K2

+

+

−

−

s + 3
1

s + 5
2

FIGURE 23–13
Decoupled control system for Example 23.2 where primary 
controllers are proportional.

(a)

c1 c1

c2 c2

0.0
0 1.5

t
3

0.2

0.4

0.6

0.8

1.0

(b)

0.0
0 1.5

t
3

0.2

0.4

0.6

0.8

1.0

FIGURE 23–14
Response for control system in Example 23.2 for R1 � 1/s,  R2 � 0,  Gc11 � K1 � 4,  Gc22 � K2 � 4.
(a) No cross-controllers; (b) cross-controllers present.
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 h(4,:)='k − '; 

 h(5,:)='g− −'; 

 h(6,:)='r − −'; 

 for i=1:5 

   K1=2 * i; 

   K2=2 * i; 

 %  The variable y in the 'sim' statement is taken from the 

outport in the model 

   [t,x,y] = sim('example23_3',3); 

   plot(t,y(:,1),h(i,:)) 

   hold on 

   plot(t,y(:,2),h(i+1,:)) 

 end 

 grid 

 title('c_1 and c_2 vs time for K_c = 2,4,6,8,10'); 

 grid 

 hold off    

 The output from the m-file is the desired plot shown in  Fig. 23–16 . (Note that 
the text labels for the lines were added afterward using MATLAB plot edit-
ing commands by double-clicking the graph and filling in the appropriate menu 
boxes.) 

 The MATLAB output shows that as we increase the controller gain, 
the height in tank 1 more nearly tracks the set point change (as we might 
expect), and the height in tank 2 is unaffected because of the decoupling cross-
controllers. 

G22

G12

G21

G11

C2

C2

C1
C1

GC12

GC21

GC11

s2 + 8s + 7

s2 + 8s + 7

E2

E2

E1 M1

M2

Scope

2
Out2

R1

R2

s + 3
−2*k1

s + 5
−4*k2

1
Out1

s2 + 8s + 7
s + 5

s2 + 8s + 7

2s + 6

4

4

PID

GC22

PID

+−

+−

++ ++

++++

FIGURE 23–15
Simulink model for simulation of Example 23.2.
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 To completely avoid the offset associated with proportional control, we can use 
PI controllers for the primary controllers for the decoupled system. To study the effect 
of PI controllers for the decoupled system, let 

    
G K

s
G K

s
c c11 1 22 21

1
1

1
� � � �


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
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


and

    

 Note that  t   I    �  1 for both controllers. For this case, the cross-controller transfer func-
tions may be obtained from Eqs. (23.14) and (23.15); the results are 
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 A simulation using these four controller transfer functions with  K  1   �   K  2   �  4 is shown 
in  Fig. 23–17 . From the transient response, we see that  c  1  moves toward the set point of 
1.0 and that  c  2  does not change, as is expected for a decoupled system.     

Time

Including cross-controllers

c1 and c2 vs time for Kc = 2, 4, 6, 8, 10 

K1 = 10 

K1 = 2

R2 = 0
R1 = 1/s

c1

c2

0
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.5 1 1.5 2 2.5 3
FIGURE 23–16
Solution of Example 23.2 
using MATLAB/Simulink.

0.0
0 1.5

Set Point

c1

c2

t
3

0.2

0.4

0.6

0.8

1.0

FIGURE 23–17
Response of decoupled control system in Example 23.2 for 
PI primary controllers: Gc11 � Gc22 � 4(1 � 1/s), R1 � 1/s, 
R2 � 0.
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  23.2  STABILITY OF MULTIVARIABLE 
SYSTEMS 

  Determining the stability for a multivariable control system, such as the one in  Fig. 
23–4  or  Fig. 23–5 , can be much more complicated than for a SISO system. The transfer 
function for the closed-loop response of a MIMO system is given by Eq. (23.11): 

    C I G G G R� � �
o m o[ ] 1
    

 To invert this expression, we write

     
C

I G G G R
I G G

�
�

�

adj o m o

o m

[ ]
  

 (23.28)   

 The numerator of this expression is an  n   �   n  matrix; the denominator is a  n th-order 
polynomial. To simplify the following argument, let the matrix in Eq. (23.28) be 2  �  2. 
Let the elements of the numerator, after expansion, be written as follows:
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 Let the elements of   G   o     G   m   be written as follows:
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 Expansion of the determinant in Eq. (23.28), using Eq. (23.30), is    
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(23.31)

 Equation (23.31) is a polynomial expression, for which the order will depend on the 
order of the transfer functions in   G   o   and   G   m  . Equation (23.28) can now be written in 
terms of the expansions shown in Eqs. (23.29) and (23.31) as follows: 
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 Since each term contains the polynomial |  I   �    G   o     G   m  | in the denominator, the stability 
of the multivariable system will depend on the roots of the polynomial equation

     I G G� �o m 0 characteristic equation    (23.32)   
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 Equation (23.32) is the characteristic equation of the multivariable system. 
Although Eq. (23.32) has been derived here for the case where   G   o     G   m   is a 2  �  2 
matrix, one can show that Eq. (23.32) applies to the general MIMO system of 
 Fig. 23–7  in which   G   o     G   m   is a matrix of any size ( n   �   n ). If the roots of the charac-
teristic equation are in the left half of the complex plane, we know that the system is 
stable. One method to be used for examining the stability of a multivariable system is to 
apply the Routh test to the characteristic equation of Eq. (23.32). In practice, the char-
acteristic equation can be of high order for a simple 2  �  2 multivariable control sys-
tem. Example 23.4 illustrates the determination of stability for a multivariable control 
system. 

  Example 23.4.   For the control system of Example 23.2, which is shown in  Fig. 
23–10 , determine stability for the case where  G   c 11   �   K  1 ,  G   c 22   �   K  2 , and there 
are no cross-controllers present (i.e.,  G   c 12   �   G   c 21   �  0); also let   G   m   and   G   v   be 
unit matrices. From Example 23.1, we have for the elements of   G   p   

    

G
s

s s
G

s s

G
s

11 12

21

5

1 7

4

1 7

4

1

�
�

� �
�

� �

�
�

( )( ) ( )( )

( ) ss
G

s

s s�
�

�

� �7

2 3

1 7
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 Since   G   v    �    I,    G   o    �    G   p    G   c  . Since   G   m    �    I,  the characteristic equation of 
Eq. (23.32) can now be written as

     
I G G� �p c 0

  
 (23.33)   

 Introducing the elements of the matrices   G   p   and   G   c   into Eq. (23.33) gives, after 
expansion of the determinant, 

        

 For given values of  K  1  and  K  2 , this expression can be expanded into a fourth-
order polynomial equation of the form

     s s s s4 3 2 0� � � � �a b g ∆   (23.34)  

where  a ,  b ,  g , and ∆ will include the gains  K  1  and  K  2 . 
 The Routh test can be applied to Eq. (23.34) to determine whether the sys-

tem is stable. From this simple example, the reader can appreciate the algebraic 
tedium that may be needed to determine the stability of a multivariable system. 

 One way to express the stability of this system is to plot the stability bound-
aries on a graph of  K  1  versus  K  2 . The region within the boundaries gives the com-
binations of values of  K  1  and  K  2  for which the system is stable. Since the details 
of stability boundaries are beyond the scope of this chapter, the reader may con-
sult Seborg, Edgar, and Mellichamp (2004) for examples of stability boundaries 
for multivariable systems.     

s s K s s s K s� � � � � � � � �1 7 5 1 7 2 3 11 2( )( ) ( )[ ] ( )( ) ( )[ ] 66 01 2K K �s s K s s s K s� � � � � � � � �1 7 5 1 7 2 3 11 2( )( ) ( )[ ] ( )( ) ( )[ ] 66 01 2K K �
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   SUMMARY 

 Most of the systems encountered are multiple-input multiple-output (MIMO) systems. 
Such systems have several inputs and several outputs that are often interacting, meaning 
that a disturbance at any input causes a response in some of or all the outputs. This inter-
action in a MIMO system makes control and stability analysis of the system very com-
plicated compared to that of a single-input single-output (SISO) system. A convenient 
way to describe a MIMO system is by means of a block diagram in which each block 
contains a matrix of transfer functions that relates an input vector to an output vector. 

 It is often desirable to have a control system decoupled so that certain outputs can 
be controlled independently of other outputs. A systematic procedure was described 
for decoupling a control system by including cross-controllers along with the princi-
pal controllers. This approach to decoupling requires an accurate model of the system; 
the number of controllers (principal controllers and cross-controllers) increases rapidly 
with the number of inputs and outputs. A system represented by two inputs and two 
outputs requires as many as four controllers; a system of three inputs and three outputs 
requires as many as nine controllers; and so on. 

 The characteristic equation for a multivariable control system, from which one 
can determine stability by examining its roots, can be of high order for a relatively sim-
ple system. Expressing stability boundaries in terms of controller parameters becomes 
complex because of the large number of controller parameters that can be adjusted.  

  PROBLEMS 

    23.1.  For the liquid-level system shown in Fig. P23–1 determine the cross-controller transfer 
functions that will decouple the system. Fill in each block of the diagram shown in  Fig. 
23–5  with a transfer function obtained from an analysis of the control system. The transfer 
function for each feedback measuring element is unity. The following data apply: 

        A A G K G Kc c1 2 1 2
2
3 11 1 22 21 0 5 0 5� � � � � �. .Res ResA A G K G Kc c1 2 1 2
2
3 11 1 22 21 0 5 0 5� � � � � �. .Res Res

   FIGURE P23–1   Res2

Res1

x1

x2

A2

m1

R1
R2

A1

Gc

m2
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 The resistance on the outlet of a tank has been denoted by Res to avoid confusion with the symbol 
for set point ( R ).  

   23.2.       (a )  For the interacting liquid-level system shown in Fig. P23–2, draw  very neatly  a block 
diagram that corresponds to  Fig. 23–4 . Each block should contain a transfer function 
obtained from an analysis of the liquid-level system. There are no cross-controllers in 
this system. The transfer function for each feedback element is unity. The following 
data apply: 

    
A A1 2

1
2 1

1
2 2 31 2 1� � � � �Res Res Res

       

    
FIGURE P23–2

c1

Res3
Res1 Res2

m1

A1

K1 ≡ K11 = 1
R1

Proportional controller

c2

m2

A2

K2 ≡ K22

R2

Proportional controller

  ( b ) Obtain the characteristic equation of this system in the form 

    s s sn n n� � � �� �a b1 2 0. . .
    

  Obtain expressions for  a ,  b , etc., in terms of  K  2  ( K  1   �  1).  
   (c)  How would you determine stability limits for this interacting control system?    

   23.3.  Modify the Simulink model from Example 23.3 to simulate a PI controller for the process 
and verify  Fig. 23–17 .    
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  CHAPTER 

23 
CAPSULE SUMMARY 

     SISO   �  single-input single-output system  

    MIMO   �  multiple-input multiple-output system. Most real-life systems are 
MIMO.   

 In MIMO systems, the variables can interact, making control difficult. A change in one 
variable by a controller attempting to drive the process variable to its desired set point 
can cause unwanted disturbances in other process variables. 

 Decoupling process variable interactions is possible by introducing appropriate 
cross-controllers. 

 MATLAB and Simulink are useful for simulating MIMO systems.   
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 CHAPTER 

 24 
 EXAMPLES OF NONLINEAR 

SYSTEMS 

  In previous chapters, we have confined our attention to the behavior of linear systems 
or to the analysis of linearized equations representative of nonlinear systems in the 

vicinity of the steady-state condition. While much useful information can be obtained 
from such analysis, it frequently is desirable or necessary to consider nonlinearities in 
control system design. 

 No real physical system is truly linear, particularly over a wide range of operating 
variables. Hence, to be complete, a control system design should allow for the possibil-
ity of a large deviation from steady-state behavior and resulting nonlinear behavior. The 
purpose of Chaps. 24 and 25 is to introduce some of the tools that can be used for this 
purpose and to indicate some of the complications that arise when nonlinear systems 
are considered.  

   24.1  DEFINITION OF A NONLINEAR 
SYSTEM 

   A nonlinear system is one for which the principle of superposition does not apply.  Thus, by 
superposition, the response of a linear system to the sum of two inputs is the same as the 
sum of the responses to the individual inputs. This behavior, which allows us to character-
ize completely a linear system by a transfer function, is not true of nonlinear systems. 

 As an example, consider a liquid-level system. If the outflow is proportional to the 
square root of the tank level, superposition does not hold and the system is nonlinear. 
If the tank will always operate near the steady-state condition, the square root behavior 
may be adequately represented by a straight line and superposition applied, as we have 
done before. On the other hand, if the tank level were to fall to one-half the steady-state 
value, we would no longer expect the transfer function derived on the linearized basis 
to apply. The analysis becomes more complicated, as we shall see in our introduction to 
the study of nonlinear systems.   
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  24.2 THE PHASE PLANE 

  The analysis of nonlinear dynamic systems may often be conceptually simplified by 
changing to a coordinate system known as  phase space.  In this coordinate system, 
time no longer appears explicitly, it being replaced by some other property of the sys-
tem. For example, consider the flight of a rocket to the moon. In a grossly oversim-
plified manner, we may describe this motion by a plot of the distance of the rocket 
from the moon versus time. If all goes well, we would like such a plot to resemble 
 Fig. 24–1 . Note the initial acceleration during launch and the final deceleration at 
landing. We may, however, also represent this motion by a plot of rocket velocity 
versus distance from the moon. This plot is shown in  Fig. 24–2 , where velocity is 
defined as  d  (distance from moon)/ dt.   Figure 24–2  is called a  phase diagram  of the 
rocket motion. Time now appears merely as a parameter along the curve of the rocket 
motion. It has been replaced as a coordinate by the rocket velocity. Although in the 
present example  Fig. 24–2  may not be of significant advantage over  Fig. 24–1 , we 
shall find phase diagrams very helpful in the analysis of certain nonlinear control 
systems. 
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V
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Time

Distance from moon
Earth

FIGURE 24–2
Velocity-distance plot for moon rocket.
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Launch

Earth

FIGURE 24–1
Distance-time plot for moon rocket.

 To begin our study of phase diagrams, we convert the second-order system 
studied previously in Chap. 7 to the phase plane.   
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  24.3  PHASE-PLANE ANALYSIS OF DAMPED 
OSCILLATOR 

  The differential equation describing the motion of the system of Fig. 7–1 in response to 
a unit-step function is

     
t zt2

2

2 2 1
d Y

dt

dY

dt
Y� � �

   
(24.1)

  

Equation (24.1) has previously been solved to yield the motion in the form of  Y ( t ) ver-
sus  t  as shown in Fig. 7–3. For phase analysis, however, we want the motion in terms 
of velocity versus position,     �Y    versus  Y,  where the dot notation is used to indicate dif-
ferentiation with respect to  t.  Hence, we rewrite Eq. (24.1) as

     

dY

dt
Y

dY

dt

Y Y

�

�
� � �

�

� �2 1
2
zt
t   

(24.2)
  

It is sometimes convenient in phase-plane analysis to write the variables in terms of 
deviation about the  final condition.  In this case, the system will ultimately come to rest 

at  Y   �  1 (because both time derivatives     
dy

dt
   and     

d y

dt

2

2    equal 0 at steady state). Hence 
we define

     

X Y

X Y

� �

�

1

� �
   

Then Eq. (24.2) becomes

     

dX

dt
X

dX

dt

X X

�

�
� �

�

� �2
2
zt

t   

(24.3)

  

These are now viewed as two simultaneous, first-order differential equations in the 
variables  X  and     �X    (which, we recall, are phase variables). 

 To solve Eqs. (24.3), we may use the methods presented in Chaps. 21 and 22. For 
this purpose, let  X  1   �   X  and     X X2 � � .    Equations (24.3) may be written in the form

     

�
�
X

X

X

X
1

2 2

1

2

0 1

1 2
































� � �

t
z
t   

or      �X AX�    (24.4)  

where     X A� � � �
X

X

1

2 2

0 1

1 2




















t
z
t
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Equation (24.4) is in the standard form of a matrix differential equation [Eq. (21.7)]. 
Notice that the term  b  u  of Eq. (21.7) is not present because no forcing term is present in 
Eqs. (24.3). Equation (24.4) may be solved by use of Eq. (22.7):

     X XAt e t( ) ( )� 0    
(22.7)

   

where      e L stA A� �� �1 1I( ){ }     (22.13)   

Following the usual steps required to solve these equations gives the result

     X X C e C es t s t
1 1 2

1 2� � �   

     X X s C e s C es t s t
2 1 1 2 2

1 2� � ��    (24.5)  

where
       

C
s X X

s s

C
X s X

s s

o o

o o

1
2

2 1

2
1

2 1

�
�

�
�

�

�
−

−

   

and  X  0  and     �X0    are the initial conditions; thus  X  0   �   X (0) and     � �X X0 0� ( ).    The terms 
 s  1  and  s  2  are the roots of the characteristic equation

     | |sI � �A 0   (24.6)  

Expanding this equation gives

     t zt2 2 2 1 0s s� � �   

This quadratic equation has two roots:

     
s1 2

2 1
, �

� � �z z
t   

If we take  s  2  as the root with the positive sign

     
s2

2 1
�

� � �z z
t   

the constants take the form

     

C s X X

C X s X

1
2

2 0 0

2
2

0 1 0

2 1

2 1

�
�

�

�
�

�

t

z
t

z

�

�

( )

( )
   

(24.7)

   

 Equations (24.5) and (24.7) together give  X ( t ) and     �X t( )    for all possible initial 
conditions  X  0  and     �X0 .    For a given set of initial conditions, we compute  C  1  and  C  2  from 
Eq. (24.7), and then each value of  t  in Eq. (24.5) yields a pair of values for  X  and     �X.    
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These may be plotted as a point on an     �X   - X  diagram (i.e., a phase plane). The locus 
of these points as  t  varies from zero to infinity will be a curve in the     �XX    plane. As an 
example, consider the case     X X0 01 0 1� � � �, , .� z    The solution is already known 
to us in the form of  X  versus  t  (Chap. 7) and is replotted in  Fig. 24–3  for convenience, 
together with a plot of     �X    versus  t.  If these curves are replotted as     �X    versus  X,  with  t  as a 
parameter, the result is as shown in  Fig. 24–4 . The reader should carefully compare  Figs. 
24–3  and  24–4  to be satisfied that they are indeed equivalent. The relationship between 
the two may be expressed by the statement that  Fig. 24–3  is a parametric representation 
of  Fig. 24–4 . Having only the curve  X  versus  t  of  Fig. 24–3 , one can construct  Fig. 24–4 .  

X

X
.

t = ∞
at origin

−1

t = 0

t

FIGURE 24–4
Phase plane corresponding to motion of Fig. 24–3.

t

X

t

X
.

FIGURE 24–3
Typical motion of second-order system.

To explore the phase diagram concept further, note that division of the second of 
Eqs. (24.3) by the first yields

 

dX

dX

X X

X

� �
��

� � 2
2
zt

t  
(24.8)

in which the variable t has been eliminated. Equation (24.8) may be recognized as a 
homogeneous first-order differential equation. Hence, the substitution �X VX�  
yields

     

X dV

dX

V

V
V

V V

V
�

� �
� �

� � �1 2 1 2
2

2 2

2
zt

t

zt t

t
( )
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an equation which is separable in  X  and  V.  This can then be easily solved for  V  in terms 
of  X.  Finally, replacing     V X X� � /    gives the solution for     �X    versus  X,  or the equation 
for the curve of  Fig. 24–4 . The algebraic details of this rather tedious process are omitted. 
The point of the discussion is to emphasize further the equivalence between the descrip-
tion of the motion as  X  versus  t  or     �X    versus  X.  

A convenient feature of the phase diagram is that several motions, corresponding 
to different initial conditions, can be readily plotted on the same diagram. Thus, if we 
add to Fig. 24–4 a curve for the motion under the initial condition  X X0 01 0� �, ,�  
we obtain Fig. 24–5. This new trajectory represents the motion of the system after it is 
stretched 2 units and released from rest. (This follows from the definition X � Y � 1.) 
Furthermore, we have also interpolated in Fig. 24–5 to obtain the motion corresponding 
to X X0 00 1� �, ,�  As we shall see later, this interpolation is justified. Hence, it is evi-
dent that the phase diagram gives us the “big picture” of the motion of the underdamped 
U-tube manometer or a spring-mass-damper system. No matter where the system starts, it 
spirals to the condition X X0 01 0� �, ,�  the steady-state position. This spiral motion in 
the phase plane corresponds to the oscillatory nature of the X versus t curve of Fig. 24–3.

X0 = 1, X0 = 0
.

Interpolation for
X0 = 0, X0 = 1

.X0 = −1, X0 = 0
.

x

FIGURE 24–5
Interpolation on the phase plane.

 Before we begin a more detailed study of the mechanics of phase analysis, it may 
be worthwhile to see how situations amenable to such analysis arise naturally in the 
physical world.  

   The Damped Oscillator 

 A classical example from mechanics is the damped oscillator, shown in  Fig. 24–6 . 
A block of mass  W  resting on a horizontal, frictionless table is attached to a linear 
spring. A viscous damper (dashpot) is also attached to the block. Assume that the sys-
tem is free to oscillate horizontally under the influence of a forcing function  F ( t ). The 
origin of the coordinate system is taken as the right edge of the block when the spring is 
in the relaxed or unstretched condition. At time zero, the block is assumed to be at rest 
at this origin. In effect, this assumption makes the displacement variable  Y ( t ) a devia-
tion variable. Also, the assumption that the block is initially at rest permits derivation of 
the second-order transfer function in its standard form. An initial velocity has the same 
effect as a forcing function. Hence, this assumption is in no way restrictive. 
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 Positive directions for force and displacement are indicated by the arrows in 
 Fig. 24–6 . 

 Consider the block at some instant when it is to the right of  Y   �  0 and when it is 
moving toward the right (positive direction). Under these conditions, the position  Y  and 
the velocity  dY/dt  are both positive. At this particular instant, the following forces are 
acting on the block:

   1. The force exerted by the spring (toward the left) of  �  KY  where  K  is a positive con-
stant, called Hooke’s constant  

  2. The viscous friction force (acting to the left) of  �  C   dY / dt,  where  C  is a positive 
constant called the damping coefficient  

  3. The external force  F ( t ) (acting toward the right)   

Newton’s law of motion, which states that the sum of all forces acting on the mass is 
equal to the rate of change of momentum (mass  �  acceleration), takes the form

     

W

g

d Y

dt
KY C

dY

dt
F t

c

2

2 � � � � ( )
   

(24.9)
  

Rearrangement gives

     

W

g

d Y

dt
C

dY

dt
KY F t

c

2

2 � � � ( )
   

(24.10)
  

where     W   �  mass of block, lb m   
   g   c    �  32.2 lb m  · ft/(lb f  · s 2 )  
   C   �  viscous damping coefficient, lb f /(ft/s)  
   K   �  Hooke � s constant, lb f /ft  

   F ( t )  �  driving force, a function of time, lb f    

Dividing Eq. (24.10) by  K  gives

     

W

g K

d Y

dt

C

K

dY

dt
Y

F t

Kc

2

2 � � �
( )

   
(24.11)

  

0

Spring

Dashpot

W

Y

F(t)
K

C

FIGURE 24–6
The damped oscillator.
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For convenience, this is written as

     
t zt2

2

2 2
d Y

dt

dY

dt
Y X t� � � ( )

   
(24.12)

  

where      t 2 �
W

g Kc
   (24.13)  

     
2zt �

C

K   
(24.14)

  

     
X t

F t

K
( ) ( )

�
   

(24.15)
   

 Solving for  t  and  z  from Eqs. (24.13) and (24.14) gives

     
t �

W

g Kc
s

   
(24.16)

  

     
z �

g C

WK
c

2

4
dimensionless

   
(24.17)

  

If the block is motionless ( dY / dt   �  0) and located at its rest position ( Y   �  0) before the 
forcing function is applied, the Laplace transform of Eq. (24.12) becomes

     t zt2 2 2s Y s sY s Y s X s( ) ( ) ( ) ( )� � �   (24.18)   

  Example 24.1.     Consider the motion of the damped oscillator in  Fig. 24–6 . 
Write the matrix differential equations that characterize the system. The follow-
ing constants apply, and  Y (0)  �  0 and     �Y 0 0( ) � .   

     

W

g
C

K F t

c
� �

� �

1 2

5 10

2
lb

ft s

lb

ft s

lb

ft
lb

f f

f
f

/ /

( )
   

From Eqs. (24.15) through Eq. (24.17), we can calculate

     

X t( )

( )( )

� �

�

� �

10

5
2

1

5

2

4 5

1

5

2

ft

st

z
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The governing differential equation Eq. (24.12) can now be written as

     
1

5

2

5

2

2
d Y

dt

dY

dt
Y X t� � � ( )   

Defining the following phase variables

     

Y Y

dy

dt
Y Y

�

� �

1

1 2�    

the differential equation becomes

     �Y Y Y X2 2 1 2 2 2
1 2 1

�
�

� �
t

zt
t t





    

Summarizing these equations in matrix form yields

     

�
�
Y

Y

Y

Y
1

2 2

1

2

0 1

1 2








 −























� �
�

t
z
t














 ( ) 











� �
� �

�

0

1
0 1

5 22

1

2
t

X t
Y

Y

00

5






( )X t

   

(24.19)

    

  Example 24.2.     Use MATLAB to solve the matrix differential equations devel-
oped in Example 24.1 for the damped oscillator, and plot the phase plane. 

 We can use the MATLAB differential equation-solving routine ODE23 to 
solve the system of first-order differential equations represented by Eq. (24.19). 
The following m-file represents the model.

  function ydot � ex24_2(t,y)

%function file for damped oscillator

%position is the first variable and velocity is the second

A=[0,1; −5, −2];

B=[0;5];

x=2;

ydot=A*y+B*x;  

The corresponding MATLAB commands to solve the model are

  >>   [t,y] = ode45(@ex24_2,[0,5],[0,0]);

>> plot(t,y)

>> figure

>> plot(y(:,1),y(:,2))  

The solution is returned in the  y  matrix. The first column is the displacement  Y  1 , 
and the second column is the velocity  Y  2 . Thus, a plot of  y  versus  t  yields the 
typical time plots, while the plot of the first column,   y(:,1)  , versus the second 
column,   y(:,2)  , is the phase-plane plot, with time as a parameter along the 
curve. (See  Fig. 24–7 ) 
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Time
(a) Velocity and displacement for the damped oscillator in Example 24.2.
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(b) Phase plane for the damped oscillator in Example 24.2.
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FIGURE 24–7 
Plot of Solution to Example 24.2.
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   Notice that the phase plane plot starts at (0,0) and spirals into the steady state 
(2,0) at  t   �   � . It’s also clear from the original differential equation [Eq. (24.18)] 
that  Y   �  2 at steady state.     

  24.4 MOTION OF A PENDULUM 

  Consider the pendulum of  Fig. 24–8 . As the pendulum is moving in the direction shown, 
there are two forces acting to oppose its motion. 

Pivot

BR

mg sin θ
mg

d
dt

Motion

R

FIGURE 24–8
Forces acting on a pendulum.

 These forces, which act tangentially to the circle of motion, are (1) the gravitational 
force  mg  sin  θ  and (2) the friction in the pivot, which we suppose to be proportional to 
the tangential velocity of the mass  BR ( d  q  / dt ), where  B  is the proportionality constant. 
We shall assume the air resistance to be negligible and the rod to be of negligible mass. 
Application of Newton’s second law gives

     
� � �mR

d

dt
mg BR

d

dt

2

2
q q q

sin
   

Rearrangement leads to

     
d

dt
D

d

dt
n

2

2
2 0

q q w q+ + sin �
   

(24.20)
  

where     D
B

m

g

R
n� �w 2    

This equation resembles the equation for the motion of the damped oscillator system. 
However, the presence of the term involving sin  q  makes the equation nonlinear. 

 Equation (24.20) has the following form in phase coordinates:

     

d

dt

d

dt
Dn

q q

q w q q

�

� � �

�

�
�2 sin

   

(24.21)
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and a phase diagram would be a plot of angular velocity     �q    versus position  q . At this 
point, we can gain some insight by simple analysis of Eq. (24.21) without actually 
obtaining a solution. 

 Referring for the moment to the spring-mass-damper system of  Fig. 24–3 , we 
saw that the system ceased to oscillate when the point     dX dt dX dt/ /� �� 0    was 
reached. That is, all curves stopped at the origin of  Fig. 24–5 . Since neither  X  nor     �X    is 
changing with time, the motion ceases. Further examination of Eqs. (24.3) shows that     
X X� �� 0    is the  only  point at which both  dX/dt  and     dX dt� /    are zero. Thus, we see 
that the mass will come to rest  only  when the situation of zero displacement (remember 
that in this case  X  is a deviation variable defined relative to the final steady-state dis-
placement) and zero velocity is reached. 

 Now we can perform a similar analysis on Eqs. (24.21). We are asking the fol-
lowing question: At what point or points in the phase plane (    �q    versus  q  diagram) do 
both  d  q  / dt  and     d �q /dt   become zero? From the first of these equations, we see that this 
can happen only when     �q � 0.    

 The reader should not be lulled into a false sense of security at this point. It would 
be wise to disregard the fact that  d  q  / dt  and     �q    are, in fact, the same quantity;     �q    should 
be thought of as a coordinate in the phase plane, and  d  q  / dt  as the rate of change with 
time of the other coordinate. The virtue of making this distinction will become clear in 
the next example, a chemical reactor. 

 Thus, the analysis leads to the conclusion that the motion will cease when the 
pendulum comes to rest in either of the positions shown in  Fig. 24–9 . In addition, it is 
clear from Eqs. (24.21) that if the pendulum stops at any other point, the motion con-
tinues. Of course, this analysis agrees with our physical intuition. However, we expect 
to find a distinction between the stability characteristics of the two equilibrium points, 
since the position at  p  is likely to be hard to attain and maintain. This distinction will be 
explored in greater detail in Chap. 25. 

Two possible equilibrium
positions for pendulum

Pivot

=

= 0 

FIGURE 24–9
Equilibrium positions for pendulum.

 By using this result in the second equation, it can be seen that it is also necessary that

     sinq � 0   (24.22)  
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Equation (24.22) is satisfied at any of the points

     q p� n   

where  n  is a positive or negative integer or zero. However, from a physical standpoint, 
we can really distinguish between only two of these points, which we take as  q   �  0 and 
 q   �   p . Thus, the positions  q   �  0, 2 p , 4 p ,  � 2 p , etc., all look the same; i.e., the pendu-
lum is hanging straight down. Similarly, the points  q   �   p , 3 p , etc., all correspond to the 
pendulum standing straight up. 

  Example 24.3.     Use MATLAB to plot the displacement and velocity of a pen-
dulum as a function of time as well as the phase-plane plot, using the following 
numerical values:

     

R m

B g

d

dt

� �

� �

� �

1 m 1 kg

kg

s

m

s
2 9 8

0
4

0

2.

q p q( )    

Using these values, Eq. (24.21) becomes

     

q

q

�

� �

� � � �

y

d

dt

dy

dt
y

d

dt

dy

dt
y

1

1
2

2

2
2

19 8 2
	

. sin yy2

    

 The MATLAB m-file for the model is  

function ydot = ex24_3(t,y)

%function file for pendulum

%position is the first variable and velocity is the second

ydot(1,1) = y(2);

ydot(2,1) = −9.8*sin(y(1)) −2*y(2);  

The MATLAB commands to execute the file and plot the necessary graphs are  

>>[t,y] = ode45(@ex24_3,[0,10],[pi/4,0]);

>> plot(t,y)

>> figure

>> plot(y(:,1),y(:,2))    

Note that the phase plane starts at the initial condition of q p q� �/ ,4 0�  and spi-
rals into the steady state of q q� �0 0, � as we would expect (see Fig. 24–10).
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Time (s)
(a) Displacement and velocity of the pendulum in Example 24.3.

Velocity (rad/s)

Displacement (rad)

0 1 2 3 4 5 6 7 8 9 10
−2

−1.5

−1

−0.5

0

0.5

1

FIGURE 24–10
Plot of the solution for Example 24.3.

(b) Phase plane for the pendulum in Example 24.3.
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      24.5 A CHEMICAL REACTOR  *  1

   Consider the stirred-tank chemical reactor of  Fig. 24–11 . The contents of the reactor are 
assumed to be perfectly mixed, and the reaction taking place is

     A B→   (24.23)  

which occurs at a rate

     R kC eA A
E RT� � /

   (24.24)  

where     R   A    �  moles of  A  decomposing per hour per cubic foot of reacting mixture  
   k   �  reaction velocity constant, h   �1   

   C   A    �  concentration of  A  in reacting mixture, mol/ft 3   
   E   �  activation energy, a constant, Btu/mol  
   R   �  universal gas law constant  
   T   �  absolute temperature of reacting mixture   

The reaction is exothermic; ∆  H  Btu of heat is generated for each mole of  A  that reacts. 
Hence, to control the reactor, cooling water is supplied to a cooling coil. The actual 
reactor temperature is compared with a set point, and the rate of cooling water flow 
is adjusted accordingly. To indicate this control mathematically, we write that  Q ( T ) 
Btu/h of heat is removed through the cooling coil. In Chap. 25 we make a more detailed 
analysis of the dynamic behavior of the reactor. For the present preliminary analysis, it 
is not necessary to look carefully at  Q ( T ), and hence it is merely assumed that as  T  rises, 
more heat is removed in the coil. Let

     

x A

x

A

B

0

0

�

�

mole fraction of in feed stream

molle fraction of in feed streamB   

   *  This example is based on the work of R. Aris and N. R. Amundson (1958).  

AReaction 

Product

Cooling
water

Feed: reactant

diluent
+

B

FIGURE 24–11
Schematic of exothermic chemical reactor.
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Then     1 0 0� �x xA B    is the fraction of inerts in the feed stream. A mole balance on  A 

     

Molar flow rate

of in with feed

Mol

A






�
aar flow rate

of out with product

M

A






�
oolar rate of

reacting

Molar rate of

A






�
accumulation

of in reactorA




   

takes the form

     F x F x k Ve x V
dx

dt
A A

E RT
A

Ar r r r0 � � �� /   (24.25)  

where     F   �  feed rate, ft 3 /h  
   x   A    �  mole fraction of  A  in reactor  
   r   �  molar density of reacting mixture, mol/ft 3   
   V   �  volume of reacting mixture, ft 3     

 To arrive at Eq. (24.25), we have used Eq. (24.24) and made the following 
assumptions:

   1. The density of the reacting mixture is constant, unaffected by the conversion 
of  A  to  B.   

  2. The feed and product rates  F  are equal and constant.  
  3. Together, 1 and 2 imply that  V,  the volume of reacting mixture, is constant.  
  4. Perfect mixing occurs, so that  x   A   is the same in the reactor and product stream.   

A similar mole balance may be derived for substance  B.  However, Eq. (24.23) shows 
that 1 mol of  B  appears for every mole of  A  destroyed. Hence

     x x x xB B A A� � �0 0   (24.26)  

Equation (24.26) permits us to circumvent the mass balance for  x   B  , since knowing  x   A  , 
we can calculate  x   B   directly. 

 The energy balance on the reactor

     

( ) (Sensible heat in feed Sensible heat in p� rroduct

Heat generated by reaction Hea

)

( ) (� � tt removed in cooling coil

Energy accumul

)

(= aating in reactor)
   

can be written as

     
F C T T k V H e x Q T VC

dT

dt
p

E RT
A pr r r0 � � � ��( ) ( ) ( )∆ /

   
(24.27)

  

where     T  0   �  temperature of feed stream  
   T   �  temperature in reactor (and product, since reactor is well mixed)  

   C   p    �  specific heat of reacting mixture   
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In writing Eq. (24.27), it is assumed that

   1. The specific heat of the reacting mixture is constant, unaffected by the conversion 
of  A  to  B.   

  2. The perfect mixing means that the temperatures of the reacting mixture and prod-
uct stream are the same.  

  3. The heat of reaction ∆ H  is constant, independent of temperature and composition.   

We remark here that these assumptions, as well as those made in Eq. (24.25), may be 
relaxed without affecting the conceptual aspects of the phase analysis. They are made 
only to keep the example as uncluttered as possible, without being trivial. 

 Equations (24.25) and (24.27) may be rearranged to the system

     

dx

dt

F

V
x x ke x

dT

dt

F

V
T T

k H

A
A A

E RT
A� � �

� � �

�
0

0

( )

( )

/

∆(( ) ( )
C

e x
Q T

VCp

E RT
A

p

� �/

r
   

(24.28)

  

As a typical application of this system of equations, we might consider starting up the 
reactor, initially filled with a mixture at composition  x   A  (0) and temperature  T (0). Sup-
pose the feed rate, feed composition, feed temperature, and flow rate of cooling water 
are held constant and the reactor is operated in this manner until steady state is reached. 
To describe the transient behavior of the chemical reactor, one can solve Eqs. (24.28) 
by integrating them numerically, using a typical stepwise procedure such as the Euler 
or Runge-Kutta method. In MATLAB, ODE45, a differential equation solver, could be 
used. This will result in functions  x   A  ( t ) and  T ( t ) for values of  t  from zero to some value 
(if one exists) at which, for practical purposes,  x   A  ( t ) and  T ( t ) cease to change with  t.  

 Alternatively, we may consider a phase-plane analysis of Eqs. (24.28) and seek 
solutions in the form of  x   A   versus  T  curves. Note that division of the first of Eqs. (24.28) 
by the second gives

     

dx

dT

F V x x ke x

F V T T k
A A A

E RT
A

�
� �

� �

�/

/

/( )( )
( )( )

0

0 ∆HH C e x Q T VCp
E RT

A( )[ ] ( )/ //� � r p    
(24.29)

  

The parameter  t  has been eliminated in Eq. (24.29), which is simply a differential equa-
tion relating  x   A   and  T.  As we shall see in Chap. 25, this phase-plane analysis of the 
chemical reactor offers significant advantages over the ordinary analysis. 

 In the chemical reactor, we no longer have the special relationship among the 
phase variables that we had in both previous cases. For both the spring and pendulum 
problems, we more or less artificially changed a second-order differential equation to 
two first-order equations by introducing the phase variable     �X    (or     �q   ). This phase vari-
able was directly related to the other phase variable  X  (or  q  ) by the equation

     
�X

dX

dt
�
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For the chemical reactor, there is no such simple relation between  x   A   and  T.  
 We can study the steady-state solutions to Eqs. (24.28) without solving the equations, 

much as was done in the case of the damped pendulum of the previous example. As before, 
we note that steady state requires that  x   A   and  T  simultaneously cease to change with time,

     

dx

dt

dT

dt
A

� � 0
   

From Eqs. (24.28), this implies that

     

F

V
x x ke x

F

V
T T

k H

C
e

A A
E RT

A

s
p

s
s

s0 0

0

� � �

� �

�( )

( ) ( )

/

∆ �� � �E RT
A

s

p

s
sx

Q T

VC
/ ( )

r
0

   

(24.30)

  
where     xAs    and  T   s   are the steady-state values of  x   A   and  T.  

 The first of Eqs. (24.19) can be solved for     xAs ,    yielding

     
x x

kV F e
A A E RTs

s
�

� �0

1

1 / /( )   
(24.31)

  

Substitution of (24.31) into the second of Eqs. (24.30) yields

     

k H x C

e kV F

Q T

VC

F

V
T TA p

E RT
s

p
s

s

∆( ) ( ) ( )0
0

/

// �
� � �
r
   

(24.32)
  

Equation (24.32) is implicit in  T   s  , the steady-state temperature. In physical terms, it 
expresses an equality between the heat generated by the reaction and the heat removed 
in the cooling coil and product stream. To emphasize this, we have arranged it so that 
the left side is the heat generation and the right side is the heat removal. 

 Solution of Eq. (24.32) for  T   s   requires numerical values for the various param-
eters. Without going into this much detail at present, we may obtain some qualitative 
information. To do this, we sketch the right and left sides of this equation as functions 
of  T   s  . A typical shape for the left side is given by the sigmoidal curve of  Fig. 24–12 . 
(See Aris and Amundsen, 1958, p.121.) The unusual curvature, of course, is caused by 
the     eE RTs/    term in the denominator. To plot the right side, we must know  Q ( T ). While 
we have avoided specifying the form of  Q ( T ), we know it increases with  T.  If there 
were no control action, i.e., if the flow rate of cooling water were maintained constant 
regardless of  T,  then  Q ( T ) would increase almost linearly with  T.  This is so because at 
constant water rate, the heat transfer in the coil is approximately proportional to the dif-
ference between  T  and the mean temperature of the cooling water. This latter tempera-
ture would not vary as rapidly as  T  at practical flow rates. However, since we expect 
to have control action, we know that the cooling water flow rate will be increased with 
increasing  T.  Therefore,  Q ( T ) may be expected to increase faster than linearly with  T,  
which means that the right side of Eq. (24.32) increases faster than linearly. Several 
typical curves of this right side are shown in  Fig. 24–12 . 

 A solution of Eq. (24.32) requires that the graphs of the right and left sides intersect. 
As shown in  Fig. 24–12 , there may be one, two, or three such intersections, depending on 
the relative locations of the heat generation (left side) and heat removal (right side). This 
means that there may be one, two, or three possible steady states for the reactor. 
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 As we shall see in Chap. 25, the steady state actually attained by the reactor 
depends on initial conditions  x   A  (0) and  T (0). The steady-state temperature  T   s   is then the 
temperature at the pertinent intersection, and the steady-state composition can be deter-
mined from Eq. (24.31). We shall also see that some of the steady states are unstable. 
In fact, the low-temperature steady state for curve ( c ) of  Fig. 24.12 , occurring as a point 
of tangency, is to be regarded with suspicion. Practically speaking, a perfect tangency 
would not occur. Minor variations in operating conditions (i.e., noise), which occur 
continually in actual process operation, may shift the curve ( c ) slightly to the left or 
right, resulting in two or zero low-temperature intersections, respectively.    

   SUMMARY 

 In this chapter, we have introduced the concept of a phase analysis and some of its basic 
elements. We have seen how physical situations give rise naturally to phase solutions. 
Furthermore, we have had our first look at true nonlinear behavior. In so doing, we have 
come to at least one interesting conclusion: a nonlinear motion or control system response 
may have more than one steady-state solution. This was true for the chemical reactor and 
for the pendulum. In contrast, the linear motions and control system responses we studied 
in previous chapters had only one steady-state solution. In Chap. 25, we shall discover 
still more differences that render nonlinear analysis more difficult than linear analysis.  

  PROBLEMS 

   24.1 Use MATLAB to analyze the damped oscillator shown in  Fig. 24–6 , using the following 
numerical values. Plot the displacement and velocity as a function of time as well as the 
phase plane for the sytem.

     

W

g
C K

c
� � �1 2 22

lb

ft s

lb

ft s

lb

ft
f f f

/ /
   

   ( a )  F ( t )  �  6 lb f ,  Y (0)  �  0, and     �Y 0 0( ) �     

  ( b )  F ( t )  �  6 lb f ,  Y (0)  �  2, and     �Y 0 0( ) �     

  ( c )  F ( t )  �  6 lb f ,  Y (0)  �  0, and     �Y 0 2( ) �        

  24.2. Plot the phase planes for Prob. 24.1, parts ( a ) to ( c ), on the same set of axes.    

H
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r 
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m
ov
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, B

tu
/h

Ts

Heat
generated

Different possible locations
of heat removal

(a) (b) (c) (d )

FIGURE 24–12
Steady-state generation and removal 
functions for exothermic chemical 
reactor
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  CHAPTER 

24 
CAPSULE SUMMARY 

 In this chapter, we have introduced the concept of a phase analysis and some of its basic 
elements. We have seen how physical situations give rise naturally to phase solutions. 
Furthermore, we have had our first look at true nonlinear behavior. In so doing, we 
have come to at least one interesting conclusion: a nonlinear motion or control system 
response may have more than one steady-state solution. This was true for the chemical 
reactor and for the pendulum. In contrast, the linear motions and control system 
responses we studied in previous chapters had only one steady-state solution. In Chap. 
25, we shall discover still more differences that render nonlinear analysis more difficult 
than linear analysis. 
    

Typical displacement versus time plot

t

X

Typical velocity versus time plot
t

X
.

X

X
.

t = ∞
at origin

−1

t = 0

t

Phase-plane plot with time as a parameter along the 
length of the curve
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 CHAPTER 

 25 

  The advantages of the phase analysis introduced in Chap. 24 can be more fully appre-
ciated after some acquaintance with the tools available for such analysis. To give 

a detailed exposition of all, or even most, of the aspects of this subject is not intended. 
Instead, this chapter strives to indicate its flavor and to stimulate further study.  

   25.1 PHASE SPACE 

  In Chap. 24, we considered three examples for which the dynamic response can be 
described by two state variables. For the cases of the damped oscillator and the pen-
dulum, the state variables were phase variables in which the dependent variable and 
its derivative ( X,      �X    or     q q, �   ) were chosen as the state variables. For the exother-
mic chemical reactor, the state variables selected were temperature and composition 
( T,   x   A  ); these variables, which arose naturally in the analysis of the chemical reactor, 
were called physical variables in Chap. 21. 

 In general, an  n th-order dynamic system can be described by  n  state variables. 
The state variables ( x  1 ,  x  2 , . . .,  x   n  ) can be located in a coordinate system called phase 
space. Each value of  t,  say  t  1 , defines a point in this space:  x  1 ( t  1 ),  x  2 ( t  1 ), . . . ,  x   n  ( t  1 ). 
The solution curve is a locus of these points for all values of  t.  It is called a  trajectory  
and connects successive states of the system. For the damped oscillator presented in 
Chap. 24, the coordinate system was a plane with an axis for each state variable; we 
shall refer to this coordinate system as a phase plane. Figure 24–5 is a typical phase-
plane representation of a dynamic system. When the physical system is third-order, the 
coordinate system consists of three axes, one for each state variable. Of course, systems 
of fourth or higher order require treatment in space that is of too many dimensions to 
be visualized. The graphic aspects of phase-space representation are advantageous pri-
marily in the case of two dimensions (the phase plane) and to a limited extent for three 

 EXAMPLES 
OF PHASE-PLANE 

ANALYSIS 
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dimensions. The bulk of practical use of phase-space analysis has been made in the 
two-dimensional autonomous (time-invariant) case:

     

dx

dt
f x x

dx

dt
f x x

1
1 1 2

2
2 1 2

�

�

( , )

( , )
   

(25.1)

   

 For this reason, we largely confine our attention in the remainder of this study to 
systems that may be written in the form of Eqs. (25.1). As we have seen, there is no loss 
in  conceptual generality,  but we cannot expect the  graphical aspects  of the material we 
shall develop to generalize to higher-dimension phase space. The solution of the system 
(25.1) may be presented as a family of trajectories in the  x  2  x  1  plane. If we are given the 
initial conditions

     

x t x

x t x

1 0 10

2 0 20

( )
( )

�

�   

the initial state of the system is the point ( x  10 ,  x  20 ) in the  x  2  x  1  plane, and the trajectory 
may be traced from this point. 

 By dividing the second of Eqs. (25.1) by the first, we obtain

     

dx

dx

f x x

f x x
2

1

2 1 2

1 1 2
�

,

,

( )
( )   

(25.2)
  

Now  dx  2 / dx  1  is merely the slope of a trajectory, since a trajectory is a plot of  x  2  versus 
 x  1  for the system. Hence, at each point in the phase plane ( x  1 ,  x  2 ), Eq. (25.2) yields a 
unique value for the slope of a trajectory through the point, namely,  f  2  ( x  1 ,  x  2 ) /  f  1 ( x  1 ,  x  2 ). 
This last statement should be amended to exclude any point ( x  1 ,  x  2 ) at which  f  1 ( x  1 ,  x  2 ) 
and  f  2  ( x  1 ,  x  2 ) are  both  zero. These important points are called  critical points  and will 
be examined in greater detail below. Since the slope of the trajectory at a point, say 
( x  1 ,  x  2 ), is unique by Eq. (25.2), it is clear that trajectories cannot intersect except at a 
critical point, where the slope is indeterminate.  

  Using Simulink/MATLAB to Plot a Phase Plane 

 Let us illustrate the use of Simulink/MATLAB in phase-plane analysis with an example. 

 Example 25.1.     Find the trajectory of the system

     

dx

dt
x

dx

dt
x x

1
2

2
1 25 2

�

� � �
   

(25.3)

  

which passes through the point

     x x1 21 0� �    

 The Simulink diagram for simulating this system is shown in  Fig. 25–1 a.   
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FIGURE 25–1
Simulink solution for Example 25.1.
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(a) Simulink diagram for Example 25.1.

(b) Phase plane for Example 25.1 from Simulink.
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 Another trajectory, starting from the point ( � 0.6, 0), is shown on  Fig. 25–1 b.   
This serves to emphasize that interpolation is possible on the phase plane, and many 
trajectories representing various initial conditions are easily visualized or sketched. 

 Analysis of Critical Points 

 In the situations of most interest to us, Eq. (25.2) will represent the behavior of a (non-
linear) control system, as in Eq. (24.29). Therefore, we shall be interested in maintain-
ing the system at or near a steady state. Since, from Eq. (25.1), a steady-state point is 
defined by

     f x x f x x1 1 2 2 1 2 0, ,( ) ( )� �   

it is clear that the steady states are critical points. At the critical points, the slope of 
the trajectory is undefined; hence, many trajectories may intersect at these points. In 
 Fig. 25–1  the origin is a critical point. It can be seen from the figure that, in this case, 
all trajectories spiral into the origin. Hence, this particular system is such that, no matter 
what the initial state (i.e., for any disturbance which is applied), the system returns to 
steady state at the critical point. 

 The critical point of  Fig. 25–1  is called a  focus,  because the trajectories spiral into 
it. This spiral motion of the trajectories corresponds to the oscillatory approach of the 
system to steady state. The oscillatory motion occurs because the system of Eqs. (25.3) 
is underdamped, as indicated by the characteristic equation

     sI � �A 0   

or

      

s

s

s

s

sI A

0

0

0 1

5 2

1

5










��� �� � �� ��

�
� �

�
�

� 22
2 5 0 12 1

5
2 2
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When put into standard form, this characteristic equation has parameters

     

t

t

zt
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2 1
5

1
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Since  z  < 1, the system is underdamped. 
 An overdamped system, such as that generated by the system

     
dx

dt
x

dx

dt
x x1

2
2

1 25 6� � � �   

having characteristic equation

     s s2 6 5 0� � �   

so that

     
t z� �

1

5

3

5   
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has a critical point such as that of  Fig. 25–2 a.   Here the trajectories enter the critical point 
directly, without oscillation. This type of critical point is called a node. For comparison, 
a typical focus is sketched in  Fig. 25–2 b.   In fact, other types of behavior may be exhib-
ited by critical points of a second-order system, depending on the nature of the roots 
of the characteristic equation. These are summarized for  linear  systems in  Table 25.1  
and sketched in  Fig. 25–2 . The distinction between stable and unstable nodes or foci is 

(c)(d)

(e)

(a) (b)

FIGURE 25–2
Second-order critical points: (a) stable node, 
(b) stable focus, (c) unstable focus, (d) unstable 
node, (e) saddle point.

 TABLE 25.1 

 Classification of critical points 

Type of 
critical point

Characteristic 
equation

Pertinent 
values of z

Nature of 
roots

Sign of 
roots

Stable node t2 s2 � 2zts � 1 � 0 z > 1 Real Both �

Stable focus t2 s2 � 2zts � 1 � 0 0 < z < 1 Complex Real parts both �

Unstable focus t2s2 � 2zts � 1 � 0 �1 < z < 0 Complex Real parts both �

Unstable node t2s2 � 2zts � 1 � 0 z < �1 Real Both �

Saddle point t2s2 � 2zts � 1 � 0 All Real One �, one �
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made to indicate that the trajectories move toward the stable type of critical point and 
away from the unstable point. The saddle point arises when the roots of the characteris-
tic equation are real and have opposite sign. In this case there are only two trajectories 
that enter the critical point, and after entering, the trajectories may leave the critical 
point (permanently) on either of two other trajectories. No other trajectory can enter the 
critical point, although some approach it very closely. 

 This categorization of critical points according to the particular linear system is 
often of value in the analysis of nonlinear systems. The reason for this is that, in a suf-
ficiently small vicinity of a critical point, a nonlinear system behaves approximately 
linearly. Thus, the system of Eq. (24.21) for the pendulum is nonlinear. It has two 
physically distinguishable steady states, corresponding to the pendulum pointing up or 
down. The nonlinear term sin  q  may be linearized around each steady state. Near the 
steady state at  q   �  0,

     

sin higher-orderq q
q
q

qq
q

� sin
sin

�
�

� � �0
0

0
d

d

( ) ( ) term

sin higher-order teq q qq� 0 00
1

� � �
�

cos ( ) rrms

sinq � θ
   

and near the steady state at  q   �   p , a Taylor series yields

     sinq q p� � �( )   

Therefore, near  q   �  0, Eqs. (24.21) are closely approximated by the linear equations

     

d

dt
d

dt
Dn

q q

q w q q

�

� � �

�

�
�2

   

(25.4)

  

and near  q   �   p , by

     

dx

dt
x

dx

dt
x Dxn

�

� �

�

�
�w 2

   

(25.5)

  

where  x   �   q   �   p . These linearized versions of Eqs. (24.10) can be easily solved to 
determine the nature of the  linear approximations  to the critical points. Thus, the char-
acteristic equation for Eqs. (25.4) is

     s Ds n
2 2 0� � �w   (25.6)  

while that for Eqs. (25.5) is

     s Ds n
2 2 0� � �w   (25.7)  
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As shown in  Table 25.1 , Eq. (25.6) yields a stable critical point, which may be a node 
or focus depending on the degree of damping. (Note that as the damping is increased, 
the behavior changes from focus to node, or from oscillatory to nonoscillatory.) On the 
other hand, Eq. (25.7) indicates a saddle point for the motion near  q   �   p . 

 These conclusions apply strictly only to the linearized phase equations, Eqs. (25.4) 
and (25.5). To compare them with the behavior of the true system of Eqs. (24.10), the 
actual phase diagram is sketched for a lightly damped case in  Fig. 25–3 . For simplic-
ity, this diagram is extended beyond the range 0 � q � 2p even though this is the only 
region of physical significance. Actually, the section for 0 �  q  � 2 p  should be cut out 
and rolled into a cylinder so that the lines corresponding to  q   �  0 and  q   �  2 p  coincide. 
This phase cylinder would more realistically represent the motion of the pendulum. As 
seen from  Fig. 25–3 , the point at  q   �   p  is, indeed, a saddle point and the point  q   �  0 
(or 2 p ) is a stable focus. If the system were more heavily damped, this latter point 
would be a stable node. 

=

= −

= 2
= 0

FIGURE 25–3
Phase portrait of lightly damped pendulum.

 A greater understanding of the saddle point may now be obtained by analyzing 
the  q   �   p  point in terms of what we know to be the physical behavior of the pendulum 
at this point. That is, the point may be approached from either of two directions. When 
the pendulum is at the point, an infinitesimal disturbance will cause it to fall in either of 
two directions. Other trajectories narrowly miss this point, indicating that just the right 
initial velocity must be imparted to the pendulum at a given initial point to cause it to 
stop in the  q   �   p  position. 

 In summary, it can be concluded that in this case the linearized equations give 
valuable, accurate information about the behavior of the nonlinear system in the vicin-
ity of the critical points. Because the linearized equations are more easily solved, it is 
always desirable to be able to relate the behavior of the actual system to the behavior 
of the linearized solutions in the vicinity of the operating point. In fact, in our previ-
ous work on control systems, we have assumed for nonlinear systems that design of a 
stable control system based on the linearized equations was adequate to ensure stable 
operation of the actual system. The basis for this assumption is given by the following 
theorem of Liapunov (see Letov, 1961). 

 Let the nonlinear equations of a motion be linearized by expansion in devia-
tion variables around a particular critical point. If the linearized solution for the 
deviation variables is stable, the actual motion will be stable in some vicinity of 
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the critical point. If the linearized solution is neutrally stable (i.e., its characteris-
tic equation has roots on the imaginary axis), no statement can be made about the 
actual motion. If the linearized solution is unstable, then the actual motion will be 
unstable. 

 It is necessary to define what is meant by stability and instability of the actual 
nonlinear motion in the vicinity of the critical point. Although stability in nonlinear sys-
tems is a complex subject, for our purposes it will suffice to state that a stable nonlinear 
motion in the vicinity of a critical point is one for which all phase-plane trajectories in 
this vicinity travel toward and end at the critical point. An unstable motion is one for 
which trajectories move away from the critical point. This would mean that while theo-
retically the state of the system may remain at the critical point indefinitely, any slight 
disturbance causes the unstable system to move away from the critical point. These 
conclusions agree with our physical understanding of the pendulum motion, since the 
steady condition at  q   �   p  is easily destroyed. 

 It is because of Liapunov’s theorem that linear control theory is so successful in 
control system design. One really hopes to control the system so that it remains perma-
nently in the vicinity of a particular point (i.e., a steady state). However, when serious 
upsets occur in an automatically controlled plant, moving it far from steady state, it is 
often necessary to return the plant to manual control until conditions are again close to 
steady state. This is so because the controllers are designed for satisfactory operation 
in the linear range only. One of the great drawbacks of linear control theory is the fact 
that stability of the linearized equations guarantees stability of the nonlinear system 
only in  some  vicinity of the particular critical point. No information about the size of 
this vicinity or about the behavior outside this vicinity is obtained. If the linear vicinity 
is extremely small, then unknown to the designer who has used linear methods, almost 
any plant disturbance of practical size may result in control system failure. An example 
of this behavior will be given later. 

  Limit Cycles 

 The first major difference between linear and nonlinear motions is the possible exis-
tence of more than one critical point in the latter type. The second is the possible exis-
tence of limit cycles. 

 A  limit cycle  is defined as a periodic oscillation whose amplitude and frequency 
depend only on the properties of the system and not on the initial state of the system 
(provided the initial state lies in a certain nontrivial region of the phase space). In the 
phase plane,  stable  limit cycles are recognized as closed curves which are approached 
asymptotically by all nearby trajectories.  Unstable  limit cycles are closed curves from 
which all nearby trajectories diverge. An example of a stable limit cycle is the “steady-
state” behavior of a home heating system when controlled by a thermostat. A periodic 
oscillation in house temperature is always reached, and the amplitude and frequency 
of the oscillation are independent of the temperature that existed in the house at the 
time that the furnace was started. Unstable limit cycles can never be realized physi-
cally for any system by definition. However, as will be seen later, they divide the phase 
plane into regions of totally different dynamic behavior and hence are of considerable 
importance. 
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 It is important to distinguish between limit cycles and other closed curves that 
may occur. The linear system

     
t 2

2

2
0

d x

dt
x� �

   

has phase-space solution

     x x C2 2 2 2� �t �( )   (25.8)  

where     �x dx dt� /    and the constant  C  depends on initial conditions. Equation (25.8) 
defines a family of concentric ellipses in the phase plane. However,  these are not limit 
cycles,  because the closed curve which is followed by the system depends on the initial 
state of the system through the constant  C.  In the next section, we study some limit 
cycles occurring in typical control systems.    

OTHER ASPECTS. We have presented only those aspects of phase-plane analysis that 
will be of use in the examples to follow. This can be considered only as a brief introduc-
tion to the subject, and the interested reader is referred to the references already cited 
for more information. Among the important subjects that have been omitted are graphi-
cal methods for determination of time along a trajectory, various aspects of phase-plane 
topology, and the mathematical aspects of stability.

  25.2  EXAMPLES OF PHASE-PLANE 
ANALYSIS 

  In this section, we consider two different examples of the use of the phase plane to 
analyze nonlinear control systems. The first is a simple on/off control system for a 
stirred-tank heater. The second is the chemical reactor of Chap. 24. In both cases, the 
systems are second-order and autonomous, so that they are ideal situations for use of 
the phase plane.  

   On/Off Control of Stirred-tank Heater 

 The use of on/off control offers significant economic advantages over proportional control 
or other more sophisticated modes of control. The control mechanism is simply a relay 
that turns on or off depending on the value of the measured variable. The disadvantage is 
usually that the quality of control is inferior to that realized with proportional control. 

 Consider the stirred-tank heater of  Fig. 25–4 . Water is being heated to a con-
trolled temperature by mixing with steam. It is assumed for the analysis that the cold 
water input rate is constant. Heated water overflows into an outlet pipe at the top of the 
tank, so that no accumulation of mass occurs in the tank. Most of the steam is added, 
at a fixed flow rate, from the main steam supply. However, this amount of steam is 
set at a value somewhat less than the amount required to heat the cold water to the 
desired temperature. An additional amount of steam may be added whenever the sole-
noid valve is opened. When this additional steam is admitted, the sum of the two steam 
inputs is enough to heat the water to a temperature somewhat in excess of the desired 
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temperature. A temperature-measuring device such as a thermocouple or RTD trans-
mits the tank temperature to the relay. When this temperature is below the set point, the 
relay closes, which opens the solenoid valve, thus admitting more steam. Eventually, 
the additional steam will result in the temperature exceeding the set point, the relay 
will open, the valve will close, cutting off the additional steam, and the temperature 
will fall again. 

 It is apparent that an oscillating control will be achieved. In fact, from the discus-
sion in the previous section, we recognize that a limit cycle will occur. We consider 
now a numerical example of this type of control system. 

 Water at 40 �  F, at a rate of 100 lb/min, is to be heated to 150 �  F. The main steam 
supply is to be set so that it will heat this much water to 125 �  F, while additional steam, 
through the controlled solenoid valve, is available to heat the water another 50 �  F. This 
means that the steady-state temperatures with the solenoid closed and open, 125 to 
175 �  F, are equally spaced about the set point. Heat losses to the surroundings are negli-
gible. The volume of the tank is 1.6 ft 3 . The relay control system has a thermocouple for 
measurement of temperature. This measuring system has a time constant of 30 s. The 
solenoid valve is very rapid in response. 

 We first analyze this system considering the relay to behave ideally. This means 
that it opens precisely at the instant the temperature exceeds the set point and closes 
similarly. Later, we shall correct this to conform more closely to the behavior of 
actual relays. 

 If the tank is perfectly stirred, it is a first-order system with a time constant of

     
t r

w
� � �

V 62 1 6

100
1 0

( )( ).
. min

   

and its transfer function relating changes in the steam input rate to temperature is

     
G s

s
p ( ) �

�

10

1   

Cold

Heated
water

Main steam
supply Temperature sensing

Set point

Relay

Voltage
source

Control

steam

Solenoid

water

FIGURE 25–4
On/off control of a stirred-tank heater.
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where 10 � F/lb/min of steam flow is the change in steady-state temperature per unit 
change in steady-state steam flow. The necessary main and controlled steam rates are 
(using 1000 Btu/lb for latent heat)

     

Q

Q

main

controll

lb/min�
�

�
125 40 100

1000
8 5

( )( )
.

eed lb/min�
�

�
175 125 100

1000
5 0

( )( )
.

   

The amount of steam that would be necessary to maintain the water at a steady-state 
temperature of 150 � F is

     
Qs �

�
�

150 40 100

1000
11 0

( )( )
. lb/min

   

Hence, in terms of deviation variables, the controller output may be taken as  �  2.5 lb/min 
of steam. 

 A block diagram may now be constructed for this system, as shown in  Fig. 25–5 . 
This diagram uses deviations from 150 � F as temperature variables, so the set point is 
taken as zero. The action of the relay is symbolized by the input-output relations, indi-
cating that  � 2.5 lb/min of steam is admitted when the error is positive and  � 2.5 lb/min 
when the error is negative, again in deviation variables. 

0.5 s + 1

−

+

1

0

B

M C

−2.5

2.5

s + 1
10

FIGURE 25–5
Block diagram for system of Fig. 25–4.

 It is convenient to use a dimensionless version of  Fig. 25–5 . This is provided in  Fig. 25–6 , 
where the changes

     
M

M
C

C
B

B
� � � � � � � �

2 5 25 25 25.
e e

   

have been made. 

0 1
s + 1

1

B' = B/25

M' = M/2.5' =
/25

+
− −1

1
0.5s + 1

C' = C/25

FIGURE 25–6
Dimensionless block diagram for system of Fig. 25–4.

cou9789x_ch25_553-578.indd   563cou9789x_ch25_553-578.indd   563 8/22/08   3:41:26 PM8/22/08   3:41:26 PM



Confirming Pages

564 PART 7 NONLINEAR CONTROL

 The usual methods of linear control theory are not applicable to the block diagram of 
 Fig. 25.6 . The relay does not obey the principle of superposition in its input-output 
relation. It is necessary to revert to the differential equations describing the control 
loop. These are

     
M

dC

dt
C� �

�
� �

   
(25.9)

  

     
C

dB

dt
B� �

�
� �

1

2    
(25.10)

  

     e� � � �B   (25.11)  

In addition we have

     

M� �
� �

� � �

1 0

1 0

e
e



    

(25.12)

  

Combination of Eqs. (25.9) to (25.12) yields
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(25.13)
  

Equation (25.13) can be rewritten in phase notation as

     

d

dt

d

dt

e e

e e e e
e e
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

 e� �
   

(25.14)

  

 Figure 25–7  is a plot of the phase plane for this system. Note that, in this figure, the e �  
scale has been expanded by a factor of 10 to magnify the behavior near the origin. 

 It can be seen from  Fig. 25–7  that the trajectory approaches the origin. The final 
state is a limit cycle of zero amplitude and infinite frequency about the origin. In other 
words, the relay alternately opens and closes at very high frequency, a condition known 
as  chattering.  

 Physically, this condition will never be realized because the dynamics of the sole-
noid valve and the relay itself would become important. Instead, the final condition 
will be a limit cycle of high, rather than infinite, frequency and low, rather than zero, 
amplitude. 

 However, the basic idealization which has led us to this suspect conclusion 
is in the behavior of the relay. True relays have input-output characteristics more 
similar to those shown in  Fig. 25–8 . There is a dead band around the set point, of 
width 2e �  0 , over which the relay is insensitive to changes in the error signal. Anyone 
who has made fine adjustments in the setting of a home thermostat has observed this 
behavior. 

cou9789x_ch25_553-578.indd   564cou9789x_ch25_553-578.indd   564 8/22/08   3:41:27 PM8/22/08   3:41:27 PM



Confirming Pages

 CHAPTER 25  EXAMPLES OF PHASE-PLANE ANALYSIS 565

 Consider as an example the case for ε �  0   �  0.01. The effect of this dead zone is to 
change the dividing line between on and off to that shown in  Fig. 25–9 . The new divid-
ing line has the equation

e
e
e

� �
� �

� � �

0 01 0

0 01 0

.

.

�
�





−0.04 −0.02 0.02 0.04 0.06

−0.6

−0.4

0.2

0.4

0.6

Solenoid valve
closed

Solenoid valve
open

−0.2

FIGURE 25–7
Phase-plane trajectory for on-off control system of Fig. 25–4.

Output

−1

0
'0−  '0

1

FIGURE 25–8
Characteristics of true relay with dead zone.
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  Now, as shown in  Fig. 25–9 , all trajectories approach a limit cycle, for which the error 
amplitude is approximately 0.03. The frequency is finite and is obtained by computing 
the time around the limit cycle. Although we have not presented here the graphical 
methods for determining this time, it can always be calculated by noting from the first 
of Eqs. (25.14) that

     t dt
d

� �
�

�
∫ ∫

e
e�   

(25.15)
  

Thus, time around the limit cycle can be computed by graphical evaluation of the inte-
gral in Eq. (25.15). The only difficulty is near the e �  axis, where     �e�    goes to zero. To 
circumvent this, we may use the second of Eqs. (25.14)

     
t

d
� �

�

� � � �

�
�

e
e e3 2 2∫

   

over a small segment of the trajectory as it crosses the e �  axis. The result of this graphi-
cal calculation is  w   �  9.2 rad/min. 

 The frequency thus computed for the error signal is, for obvious physical reasons, 
the same as the frequency of the controlled signal  C  � . However, the amplitude of  C  � , 
which is of more direct interest, is not the same as the amplitude of e � . It may be found 
in this case by noting from Eqs. (25.10) and (25.11) that

     C� � � � �� 1
2
�e e   

−0.06 −0.04 −0.02 0.02 0.04 0.060

−0.6

−0.4

o− o

0.6

0.4

0.2

Lim
it cy

cle

FIGURE 25–9
Phase plane for system of Fig. 25–4 using relay with characteristics of Fig. 25–8.
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It is therefore clear from  Fig. 25–9  that  C  �  attains a maximum value near the switching 
points where

     C� �� 0 17.   

Reverting to the original variables, it follows that the water temperature will oscillate 
with an amplitude of

     0 17 25 4 25. .( )( ) � �F   

The effect of a small dead zone, 2e 0   �  2(0.01)(25)  �  0.5 � F, is thus quite significant. 
 In practice, the width of this dead zone is usually an adjustable design param-

eter. This width is always chosen as a compromise. The wider it is made, the lower 
will be the limit-cycle frequency, thus saving excessive switching or chatter. How-
ever, the limit-cycle amplitude increases with dead-zone width, decreasing the quality 
of control. 

  Example 25.2.   Use of Simulink to generate a phase-plane diagram for a 
relay with dead zone.   Use MATLAB and Simulink to simulate the control 
system shown in  Fig. 25–6  containing a relay with characteristics shown in 
 Fig. 25–8 . 

 The Simulink block diagram for the system is shown in  Fig. 25–10 . 

0.5 s + 1
1

s + 1
1

Error

Error to workspace

du/dt

de/dt

Derivative of error

Derivative to workspace

Phase-plane trajectory

+−
Step Relay Process

Measurement

Relay output

Process output

FIGURE 25–10
Simulink block diagram for process in Fig. 25–6.

 The phase-plane trajectory for Example 25.2 is shown in  Fig. 25–11 . 
 We can also determine the cycle time by looking at the relay output as 

shown in  Fig. 25–12 . 
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d 
 /d
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FIGURE 25–11
Phase plane generated using Simulink for Example 25.2.

Expanding

FIGURE 25–12
Relay ouput from Simulink model.
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 The relay cycle time from the graph is 0.7 min/cycle. The frequency is

     
w p

� �
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9 0

rad
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1 cycle

min
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









.

.
rrad

min
    

 This is the same result that we found earlier. We can also determine the maxi-
mum and minimum values of  C  �  from the Simulink process output, as shown in 
 Fig. 25–3 . 

Expanding

FIGURE 25–13
Minimum and maximum values of C� from Simulink.

 From the output, we can see that  C  �  �  �  0.173, which is also the same as our 
earlier result. Simulink provides us with an easy way to study the behavior of 
these types of systems.   

  Exothermic Chemical Reactor 

 We now wish to consider the phase-plane behavior of the chemical reactor of Chap. 24. 
This study is based on the paper by Aris and Amundson (1958). For convenience, the 
dynamic equations are reproduced here:
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( 24.28 )
  

Defining the dimensionless variables
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these equations become

     
dy

d
y r y

t
q� � �1 ,( )   

     
d

d
r y q

q
t

q q q q� � � �0 ,( ) ( )   

(25.16)

  

where
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 As a control heat removal function  q  ( q ), Aris and Amundson chose the form

     q U Kc c sq q q q q( ) ( ) ( ) � � � �1   (25.17)  

where  q   c   is the dimensionless mean temperature of water in the cooling coil. This indi-
cates that the heat removal is always proportional to the difference between the reac-
tor temperature and mean cooling water temperature. In addition, the term in brackets 
indicates that proportional control on the cooling water flow rate is present. The flow 
rate is increased by an amount proportional to the difference between the actual reac-
tor temperature  q  and the desired steady-state temperature  q   s  . This increase in cooling 
water flow rate is assumed for convenience to cause an approximately proportional 
increase in heat removal. The constant  U  is a dimensionless analog of  U  0  A,  the overall 
heat-transfer rate. 

 As a specific numerical example, Aris and Amundson selected the following val-
ues for constants:
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Under these conditions, Eqs. (25.16) become
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(25.18)

  

It can be seen that there is a critical point of Eqs. (25.18) at

     
y ys s� � � �1

2
2q q

   

and this is the location at which control is desired. This point has the correct steady-
state temperature and a 50 percent conversion of reactant. In addition, there may be two 
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more critical points of Eq. (25.18) depending on the proportional control constant  K   c  , 
as will be discussed below. 

 Since we are primarily interested in control about  q   s  , we make use of Liapunov’s 
theorem on local stability, presented earlier. Linearizing Eq. (25.18) in deviation vari-
ables  q   �   q   s   and  y   �   y   s   by using Taylor’s series yields

     

d y y

d
y y

d

d
y y

s
s s
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( ) ( ) ( )
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(25.19)

  

where     ys � 1
2 .

  
 As we have seen before, the solution to this linear system is

     

y y c e c e

c e c e

s
s t s t

s
s t s t

� � �

� � �

1 2

3 4

1 2

1 2q q    

where, in this case,  s  1  and  s  2  are the roots of [see Eq. (24.6) and the steps following this 
equation]

     s
K

s
Kc c2 9

4

2 9

4
0�

�
�

�
�   

(25.20)
  

According to the Routh criteria, all coefficients in this characteristic equation must be posi-
tive in order that the real parts of the roots  s  1  and  s  2  be negative. Hence, we can see imme-
diately from Eq. (25.20) that to achieve a stable node or focus, it is necessary that  K   c   > 9. 

Kc = 9+

2

0.5

Unstable
limit
cycle

Stable limit
cycle

y

FIGURE 25–14
Stable and unstable limit cycles in 
an exothermic chemical reactor.

 However, Aris and Amundson obtained the phase plane for (among other values) 
a value of  K   c   slightly greater than 9. This was accomplished by numerical solution of 
Eqs. (25.18). It was found that in the vicinity of the steady-state point, the situation is as 
depicted in  Fig. 25–14 . There are two limit cycles surrounding the stable focus critical 
point. The inner limit cycle is unstable, and the outer limit cycle is stable, according to the 
definitions given earlier. It may be seen that any disturbance (or initial condition) which 
moves the system no further from the critical point than the unstable limit cycle can be 
controlled. That is, the control system will eventually bring the system back to steady 
state. However, once the system is forced outside this limit cycle, it will eventually spiral 
out to the stable limit cycle. Control cannot be restored, and the reactor temperature and 
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concentration oscillate continuously. This example illustrates very well the limitations 
of linear control theory. All that the linear investigation could reveal is that, for  K   c   > 9, 
the system will be stable in some vicinity of the control point. The phase-plane analysis 
shows that for  K   c   slightly greater than 9, this vicinity is inside the unstable limit cycle of 
 Fig. 25–14 . If  K   c   is increased further, the two limit cycles disappear and good control can 
be achieved. This example points out the importance of unstable limit cycles. Although 
a physical system can never follow an unstable limit cycle, the limit cycle divides the 
phase plane into distinct dynamic regions for the physical system. 

 Other values of  K   c   were analyzed by Aris and Amundson. For low values of  K   c  , 
there are two other critical points besides the control point. For example, for  K   c    �  0.8, 
there are critical points at

     y � �0 95 1 77. .q   

and

     y � �0 15 2 15. .q   

Linear analysis shows that both these are stable, but for  K   c   < 9 the control point 
( y   �  0.5,  q   �  2) is not. Phase-plane analysis shows that if the reactor is started at high 
temperatures, it will come to steady state at the high-temperature critical point, and 
vice versa. Starting the reactor at the desired control point will be of no avail, as it will 
leave and go to one of the other steady-state points, depending on the direction of the 
initial disturbance. For high values of  K   c  , there is only one critical point, which is at the 
control point. Phase-plane analysis shows that  K   c   must exceed approximately 30 before 
rapid return to steady state at the desired control point, following all disturbances, is 
achieved. Some phase-plane portraits for this system that were obtained by means of a 
computer are shown in  Figs. 25–15  to  25–17 . 

y

1.75 2.0 2.25
0

0.2

0.4

0.6

0.8

1.0

Kc = 8

FIGURE 25–15
Phase-plane portrait of the control of a 
chemical reactor (limit cycle forms).
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y
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0
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0.8
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FIGURE 25–16
Phase-plane portrait of the control of a 
chemical reactor (no limit cycle forms).

y

1.75 2.0 2.25
0

0.2

0.4

0.6

0.8
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Kc = 20

FIGURE 25–17
Phase-plane portrait of the control of a chemical reactor (no limit cycle forms).

 This discussion is only a rather brief introduction to the extensive work by Aris 
and Amundson. The reader is strongly urged to consult the original paper for a more 
comprehensive treatment of the problem.     
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  SUMMARY 

 We have seen that phase-plane analysis can be used for two typical nonlinear control 
problems. The results of this analysis give extensive information about the control system 
behavior.  

 PROBLEMS 

  25.1. For the system shown in  Fig. P25–1 , use Simulink to plot the trajectory from the initial 
point  e   �  2 and     �e � 0.    

FIGURE P25–1

+
R

M

M
C

1

1

(s + 1)2
10e

1

1
e

−

−

−

     25.2. For the system shown in  Fig. P25–2 , plot the phase-plane trajectory. Use     t z� �1 1
2

, ,    
K b� �1 0 25, . . Let  R   �  0.  

FIGURE P25–2
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−
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     25.3. Consider the phase-plane equations

     

�

�

x x

x x x x x

1 2

2 1
1

10 2 1
2 10

3
3
2

�

� � � � � ( )  
    ( a ) Determine the type of critical point at  x  1   �   � 1,   x  2   �  0.  
   ( b ) If there are any other critical points, find them.     

  25.4. The system shown in  Fig. P25–4  is to be controlled by an ideal on/off relay.
    ( a ) From the block diagram, write the differential equations for phase-plane description of 

the physical system in the form

     
� �x f x x x f x x1 1 2 2 1 2� �, ,( ) ( )

   
  where  x  1   �   c  and     x c2 � �.     
   ( b ) Plot the trajectory that starts at  x  1   �  2,  x  2   �  0.  
   ( c ) Determine the values of  x  1  and  x  2  where the first switch occurs. 

FIGURE P25–4
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        25.5. For the control system shown in  Fig. P25–5  determine the frequency and amplitude of the 
limit cycle if one exists. 

FIGURE P25–5

CR = 0
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     25.6. For the system shown in  Fig. P25–6 ,     t z� � � � �1 1 1 0 251
2

, , , , . ,K M b
  
 and 

 R   �  0. 

  
FIGURE P25–6
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    ( a ) For  K   �  2, does a limit cycle exist? If so, describe it.  
   ( b ) If a transport lag  e   �  s   is introduced in the feedback loop, determine if a limit cycle 

exists for  K   �  2.    

  25.7. The stirred-tank system shown in  Fig. P25–7  produces an aqueous solution of salt by use 
of a solenoid valve that switches from one reagent tank to the other as described below. 
The reagent tanks contain concentrated solutions of salt. When the measured concentration 
is above the set point, the control reagent of lower concentration enters the mixing tank at 
a constant flow rate of 0.01 L/min. When the measured concentration is less than the set 
point, the control reagent of higher concentration enters the mixing tank at a constant rate 
of 0.01 L/min. The holdup volume of the tank is 2 L, the transport lag between the tank and 
measuring element is 1.2 min, and the set point is 2 g salt/L. 

  

Set point

Control reagent

Solenoid valve

0.01 L/min

100g salt/
L

water
1 L /min

ci = 0

Relay

300g salt/
L

Concentration-measuring
element

FIGURE P25–7
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    ( a ) Obtain a block diagram, in terms of deviation variables, for this control system.  
   ( b ) Determine the characteristics of the limit cycle (frequency and amplitude), if one exists.    

 25.8. For the control system shown in  Fig. P25–8 , determine if a limit cycle exists for  K   �  1, 2, 
and 3. If a limit cycle exists, describe it in terms of amplitude and frequency. 

FIGURE P25–8
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25
CAPSULE SUMMARY 

 MATLAB and Simulink can be used to plot phase planes:
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      Limit cycle.  A  limit cycle  is defined as a periodic oscillation whose amplitude and fre-
quency depend only on the properties of the system and not on the initial state of the 
system (provided the initial state lies in a certain nontrivial region of the phase space). In 
the phase plane,  stable  limit cycles are recognized as closed curves that are approached 
asymptotically by all nearby trajectories.  Unstable  limit cycles are closed curves from 
which all nearby trajectories diverge. An example of a stable limit cycle is the “steady-
state” behavior of a home heating system when controlled by a thermostat, an on/off 
controller.    
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 CHAPTER 

 26 

  In this chapter, some of the highlights of modern industrial microprocessor-based 
controllers and distributed control systems are presented. A microprocessor-based 

controller is essentially a computer programmed to perform the function of a process 
controller. For our purpose, the term  microprocessor  is synonymous with  computer,  
and we could refer to a microprocessor-based controller as a computer-based controller. 
The number of features of these modern controllers is far too great to cover in one chap-
ter. The best way for the reader to acquire some experience with modern controllers is 
through laboratory and plant use and by attending some of the short courses offered by 
the major suppliers of the equipment.  

   26.1 HISTORICAL BACKGROUND 

  During the past fifty years, tremendous development has occurred in process control 
hardware. The three phases of development are pneumatic control, electronic control, 
and microprocessor-based control. During the 1940s, the predominant controller was 
pneumatic, meaning that signals to and from the controller and within the controller 
mechanism were air-pressure signals that usually varied from 3 to 15 psig. The devel-
opment of the high-gain operational electronic amplifier during World War II led to the 
development of the electronic controller and also the analog computer. The electronic 
controller mimicked the control functions of the pneumatic controller. It also provided 
some improvements, such as accurate and reproducible control parameter settings and 
reduction in size of the instruments. In contrast, the pneumatic controller required fre-
quent calibration of the knobs used to set the various controller parameters ( K   c  , t   I  , t   D  ). 
The pneumatic controller had interaction among the control modes and had inherent 

 MICROPROCESSOR-BASED 
CONTROLLERS AND 

DISTRIBUTED 
CONTROL 
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lags that became significant at high-frequency operation. There were frequent debates 
over the pros and cons of pneumatic and electronic controllers. For example, the pneu-
matic controller was rugged, simple to install, and required little maintenance. Only a 
source of air pressure was needed to operate the controller. There was initially great 
concern about the possibility of explosions with the use of electronic controllers, so the 
instrument cases for these controllers were purged with steady streams of air when used 
in plants producing flammable substances. The maintenance of electronic controllers 
also required highly trained technicians. 

 In the 1960s, the chemical industry made its first attempt at computer process 
control. These control systems used large mainframe computers, for which the control 
programs had to be written from scratch. The first attempts at computer control were 
met with mixed reactions. In the 1970s, there appeared on the market the first genera-
tion of digital control hardware, which was based on the advances in microprocessor-
based technology. This equipment was user-friendly, and all the software accompanied 
the hardware. The operator did not face the problem of writing computer code to imple-
ment the control functions; it was only necessary to learn the instructions needed to 
configure (set up) the controllers.   

  26.2 HARDWARE COMPONENTS 

  The hardware requirements for pneumatic, electronic, and microprocessor-based con-
trols are shown in  Fig. 26–1 . In this figure, all the components are obtained from a 
manufacturer of control equipment; several of the components are common to the three 
systems. In  Fig. 26–1 a,   all the signals are pneumatic (3 to 15 psig). The energy needed 
to operate these pneumatic components is a source of clean, dry air at a pressure of about 
20 psig. The pressure can vary from 20 psig by about  �  10 percent without adversely 
affecting the operation of the instruments. 

 The electronic system shown in  Fig. 26–1 b   requires both electrical and pneumatic 
power to operate the components. A transducer or converter is needed between the con-
troller and the valve to convert current (4 to 20 mA) to pressure (3 to 15 psig). This is 
often referred to as an  I / P  ( I   �  current,  P   �  pressure) converter. 

 The components for a microprocessor-based system are shown in  Fig. 26–1 c.   In 
this case, the control algorithm is software on the computer. The operator interacts with 
the control system using the computer. The computer can perform many more functions 
than just the implementation of the control algorithm, as will be discussed later. The 
chart recorder used on the older pneumatic and electronic systems has been replaced by 
a monitor on which the transients are shown. 

 Typical controllers are now capable of processing both analog and digital signals. 
An analog signal is the type that represents a continuous variable that varies over a 
range of values. A digital signal is a binary signal that can be represented by two states 
(on, off, or logic 1, logic 0, etc.). Examples of analog signals are the measurement 
from a temperature transmitter or the signal sent to a valve. Examples of digital signals 
are the output to a motor, which causes it to be on or off, or the output to an alarm 
light causing it to be on or off. The focus of this book has been on analog signals that 
are applicable to continuous control systems. However, there is an important area of 
control called  batch control  which frequently must deal with digital (on/off) signals. 
Batch control, as the name suggests, is the control of processes that are done in a batch 
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operation. Many examples of batch processing occur in the pharmaceutical industry 
where small amounts of products of high unit cost are produced.   

  26.3  TASKS OF A MICROPROCESSOR-BASED 
CONTROLLER 

  The primary task of a microprocessor-based controller is implementation of a control 
algorithm; however, the presence of a computer makes it possible to perform a number 
of other peripheral tasks that are useful in process control and monitoring. Some of 
these tasks provided in a modern control system are to

   Implement classical and advanced control algorithms  
  Provide static and dynamic displays on the monitor  
  Provide process and diagnostic alarms  
  Provide mathematical functions  
  Provide data acquisition and storage (archiving)   

The software to support all these tasks is supplied by the manufacturer of the control 
equipment. We now look briefly at the nature of each task.  

FIGURE 26–1
Controller components for (a) pneumatic control, (b) electronic control, (c) computer or 
microprocessor-based control.
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   Implementation of Control Algorithms 

 The portion of the software that covers this task is organized into large numbers of 
blocks that can be connected to solve a specific control problem. A partial listing of the 
blocks typically provided is as follows:

   Analog input  
  Analog output  
  Conventional control algorithms (P, PI, PD, PID)  
  Linearization  
  Lead-lag  
  Dead time  
  Self-tuning   

There are many other blocks that have been omitted from this list because of the limita-
tion of space in this chapter. Also a number of blocks process digital (or logic) signals 
(on/off) such as comparators, selectors, or timers, which are needed in batch control and 
automatic plant start-up and shutdown.    

ANALOG INPUT BLOCK. The analog input block is an analog-to-digital device that 
converts a continuous signal from a transducer, which is in the form of a current or volt-
age, to a digital signal that can be used in the microprocessor.

ANALOG OUTPUT BLOCK. The analog output block reverses the operation of the 
analog input block by converting a digital signal, which has been computed in the 
microprocessor, to a voltage or a current that can be sent out to a transducer in the pro-
cess in the field. Sometimes this block is called a field output block.

CONTROL BLOCK. The control block is a block for which many parameters can be 
specified. The manufacturer does not give any information on the method of imple-
menting the control algorithms. The computer does not “watch” the process continu-
ously, but rather it “samples” the necessary process signals at discrete time intervals. 
The sampling period T is one parameter that generally cannot be adjusted in a com-
mercial controller; it is fixed by the developer of the software. Typical values of T in 
commercial controllers vary from 0.1 to 0.25 s. A controller operating with such a small 
T can be considered as a continuous controller for many chemical processes with large 
time constants. Parameters that can be selected are the controller parameters (Kc,tI,tD), 
limits on set point and controller output, and others. The familiar PID control algorithm 
from Chap. 9 is a continuous form of the equation

    
p K K

d

dt

K
dt pc c D

c

I

t
s� � � �e t e

t
e

0∫  
 (9.11)  

To implement the PID algorithm in the computer (digital) control system, we must 
discretize the equation, realizing that we are sampling the signals at fixed instants in 
time. The discrete version of Eq. (9.11) is 
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(26.1)  

Equation (26.1) can be interpreted as describing the output from the controller at the  n th 
time interval (at  t   �   nT ). This form of the PID equation is called the  position  form of the 
equation. It specifies the exact value of the controller output at any time  t  (for example, 
the exact valve position if we are controlling a valve). Another form of this equation is 
called the  velocity  form of the equation. It specifies the change in the controller output 
from one time interval to the next. The velocity form of the PID equation is 
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 (26.2)  

Either the form of Eq. (26.1) or that of (26.2) can be used for the PID controller. Each 
is used in commercially available control systems.   

LINEARIZATION BLOCK. The linearization block is used to “straighten out” a non-
linear relation. The most common example of the need for this block is in processing a 
signal from an orifice plate used to measure flow. The signal (pressure) across an ori-
fice plate is proportional to the square of the flow. To obtain a linear relation between 
flow rate and signal, the signal is sent through a linearization block, which has been 
configured to extract the square root of the input signal. The linearization block can also 
be configured to linearize any nonlinear relation that can be plotted on a coordinate sys-
tem. This aspect of the linearization block can be useful for linearizing the input-output 
relation to a valve that is nonlinear in behavior. In Chap. 19, an equal-percentage valve 
was proposed as a device to linearize the relation between flow and valve-top pressure 
when line loss was large.

LEAD-LAG BLOCK. The lead-lag block simulates the lead-lag transfer function 
K(T1s � 1)/(T2s � 1). The parameters K, T1, and T2 can be selected over a wide range 
of values. If one needs a first-order lag, T1 can be set to zero. We have seen the need for 
the lead-lag block in feedforward control in Chap. 17.

DEAD-TIME BLOCK. The dead-time block simulates dead time (or transport lag) 
e d s�t .  For this block, td can be selected over a wide range of values. We have seen the 
need for this block in the Smith predictor control algorithm of Chap. 17.

  Figure 26–2  shows a simple flow example using some of the blocks just 
described. The blocks are connected by computer code at a keyboard during the con-
figuration of the control system. This connection of blocks is called  softwiring  since 
it is done through the software. The actual connection between the flow transmit-
ter and the analog input block in the controller, which is made with wires, is called 
 hardwiring.  
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  SELF-TUNE BLOCK. For years, one of the goals of control engineers has been to 
develop a device that would automatically tune a controller, online, while the process 
is operating. Until recently, this goal was reached for some special cases by the applica-
tion of adaptive control theory, a branch of control that is beyond the scope of this book. 
In the mid-1980s a commercial device became available that uses the normal transients 
occurring in a controlled process (caused by set point and load upsets) to update the 
control parameters of a PID controller. This device is called a self-tuner and is one of the 
blocks available in the microprocessor-based controller of several hardware manufactur-
ers. When the self-tuner is first applied to a process for which no process identification 
has been performed, the self-tuner is placed in the pretune phase, during which time the 
process is subjected to a pulse while it is operated open-loop. The introduction of the 
pulse and the analysis of the transient are done automatically by the self-tuner. The out-
come of the pretune phase of operation is the selection of controller parameters. A con-
ceivable approach to the development of the pretune phase of a self-tuner is to monitor 
an open-loop step response and apply a tuning method similar to the Cohen-Coon tuning 
method of Chap. 18. After the pretune phase, the control system is returned to closed-
loop and the self-tuner continues to monitor the transients and make changes in control-
ler parameters when needed. The self-tuning that occurs during closed-loop operation is 
based on the characteristics of the transients, such as decay ratio, overshoot, and period 
of oscillation. The self-tuning algorithm, being proprietary information, is described in 
only a general manner in the reference manual that accompanies the control equipment. 
Since many industrial processes are poorly tuned, the general-purpose self-tuner repre-
sents an impressive achievement in the application for computer control technology.

  Displays 

 Software has made the strip chart recorder almost unnecessary. Transients (or trends) 
produced in a control system can now be displayed on a monitor screen dynamically. 

FIGURE 26–2
Example of the use of control blocks to control a flow process.
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As time progresses, the values of selected variables are displayed as a function of time. 
The segment of time shown on the screen can be selected to be a few minutes to a few 
hours to show dynamic detail or long-term trends. Transients that occurred in the past 
can be stored and displayed again. 

 Many process operators are more comfortable with control instruments that have 
a faceplate which shows bar graphs or pointers indicating set point, control variable, 
and output to the valve. In the older instruments, those indicators were obtained by use 
of mechanical motion or other means. The software for computer-based control can be 
used to obtain a dynamic display on the screen that mimics the faceplates of older, more 
traditional instruments.  

  Alarms 

 A part of the control software is devoted to detecting and reporting a problem in the 
form of an alarm. The alarm takes the form of a visual signal (flashing light), an audi-
ble signal (beeping horn), or the actuation of a switch. Examples of the use of switch 
closures include turning on or off a pump motor or opening or shutting a valve. The 
alarms are classified as  process alarms  and  diagnostic alarms.  The diagnostic alarm 
detects a malfunction in the control equipment or the loss of communication. For exam-
ple, if a wire connecting the output of a temperature transmitter to an analog input block 
breaks, a diagnostic alarm will go off, indicating that the signal to the analog input 
block is out of range. The manufacturer of the control equipment provides all the soft-
ware for detecting the problems that trigger diagnostic alarms. 

 The engineer who configures the control blocks selects the variables that are 
to trigger process alarms and specifies the alarm limits and the type of annunciation 
(flashing light, beeping horn, etc.) The alarms can be assigned a priority rating. Those 
variables in a process that are most critical are given the highest priority; less critical 
variables are given a lower priority.  

  Mathematical Functions 

 Control software provides basic mathematical functions such as summation, subtrac-
tion, multiplication, and accumulation (i.e., integration). These functions can be used 
along with other blocks in the design of a control system. A simple example of these 
functions is the calculation of mass flow rate of a gas from measurements of velocity, 
pressure, and temperature. These three measurements are combined according to the 
following relationship, which is based on the ideal gas law: 

w
vAPM

RT
�

   where       w   �  mass flow rate, mass/time  
      v   �  velocity  
    P   �  pressure  
    T   �  absolute temperature  
   M   �  molecular weight of gas  
    R   �  gas constant  
    A   �  cross-sectional area for flow   
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The signal from the math block that represents  w  can then be sent as the control variable 
to a control block that controls the mass flow of gas.  

  Data Acquisition and Storage 

 Long-term storage of the transients can be obtained easily with a computer. This 
task is referred to as  archiving.  The automatic storage of critical process-control 
variables on disk or tape can be retrieved later to explain process operating diffi-
culties. The computer can also be used to automatically record or log the type and 
location of an alarm, the time of a process alarm, the time of acknowledgment of an 
alarm, and the time it was cleared by operator intervention. This information is use-
ful to supervisors in detecting violation of safety regulations or diagnosing process 
malfunctions.    

  26.4  SPECIAL FEATURES OF 
MICROPROCESSOR-BASED 
CONTROLLERS 

  In addition to the tasks just described, there are three special features available in mod-
ern microprocessor-based controllers that deserve attention. These are limiting, track-
ing, and anti-reset windup. Each will be discussed separately.  

   Limiting 

 In configuring a control system from basic control blocks, one can select lower and 
upper limits on controller output and set point. These limits are narrower than the limits 
inherently present in the hardware. Limits are often placed on a controller output for 
safety reasons or to protect equipment. For example, if one knows the flow rate of a 
liquid that causes a tank to overflow, one can set the limit on the output of a controller at 
a value less than the value that causes overflow. The limits on the controller output are 
active when the controller is in either automatic or manual mode. An example of a limit 
on set point is the selection of an upper limit on pressure for a steam-heated sterilizer to 
prevent damage to the equipment.  

  Tracking 

 A very useful feature of a microprocessor-based controller is tracking. Although track-
ing is not needed to successfully control a system, its presence is of great convenience 
to the process operator. Two examples of tracking are set point tracking and controller 
output tracking. 

 Set point tracking is useful when a controller is transferred from manual to auto-
matic. When a process is started up for the first time, a common procedure is to bring 
the process on-stream in manual mode. In this case the operator adjusts the output of the 
controller (which goes to the valve) until the process variable comes to a desired steady 
state. When the tracking feature is not present in the controller, the set point must be man-
ually adjusted until it equals the process variable before the controller is transferred to 
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automatic; the process then continues running in a smooth manner. If the operator adjusts 
the set point to the process variable after switching to automatic, there may be a tempo-
rary disturbance in the process variable. The expression for the disturbance is called a 
 bump.  With set point tracking, the operator does not need to think about adjusting the set 
point to the process variable, because it is done automatically. In other words, set point 
tracking provides “bumpless” transfer when switching from manual to automatic. 

 A second example of tracking can be seen in its use for transferring a cascade 
system from manual to automatic. (The reader should be familiar with the information 
on cascade control provided in Chap. 17 to understand this example.) To explain the 
use of tracking in cascade control, reference to Figs. 17–1 b  and 17–2 b  will be made. In 
starting up this system, the primary controller is placed in a standby condition, and the 
secondary controller is placed in manual mode. The means for accomplishing this is 
built into the software of the controller. With the secondary controller in manual mode, 
its output is adjusted until the temperature of the tank contents  T  0  is at the desired value. 
Then, with the control system at steady state and  T  0  at the desired value, the system is 
transferred to cascade mode by placing both controllers in automatic. Since the output 
of the primary controller adjusts the set point of the secondary controller, it is neces-
sary to have the output of the primary controller equal to the jacket temperature  T   j   
when the system is transferred to cascade mode. This goal can be achieved by having 
the output of the primary controller track the jacket temperature while the secondary 
controller is used in manual mode to adjust the tank temperature to the desired value. 
For this example, the set point of the primary controller can also automatically track the 
tank temperature  T  0  before the transfer to cascade mode occurs. In this cascade control 
example, we have seen tracking used for both the set point and the controller output.  

  Anti-Reset Windup 

 A troublesome problem with a controller having integral action (PI or PID) is the possible 
occurrence of reset windup. When the error to a controller remains large for a long time, the 
integral action of the controller builds up a large value of output which often approaches 
the saturation value of the controller output. This accumulation of output is called  reset 
windup.  When the process variable returns to the set point, the output of the controller does 
not immediately return to a value that will hold the process variable at the set point because 
the controller output has built up (or has been wound up) and must be reduced by the pres-
ence of error of opposite sign over some duration of time. Thus the transient for the control 
variable exhibits a large overshoot that can persist while the output signal is being reduced 
through integral action being applied to the error of reversed sign. 

 Reset windup typically occurs during the start-up of a process. To gain some 
insight into the cause of reset windup, consider the start-up of the liquid-level process 
shown in  Fig. 26–3  in which the level in the third tank is to be controlled by a PI con-
troller. The valve is linear and saturates at 0 and at 0.5, as shown in  Fig. 26–3 b.   Upon 
start-up with the PI controller in automatic mode, the tanks are empty, and the error  
R   �   C  is large and positive. The action of the controller on this error will result in a 
large output  M  due to proportional action and a rising contribution to  M  due to the inte-
gral action. The output of the controller will be at its saturation value, which is typically 
about 10 percent above the top of the 4- to 20-mA scale (i.e., 22 mA). 
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 The large saturated value of  M  will in turn cause the valve to reach its saturation 
value, which has been taken as 0.5. During the initial phase of the operation, the tanks are 
being filled at the maximum rate of flow provided by the upper limit of the control valve. 
During this filling stage of operation, the controller is not exercising any control since 
the valve is at its limit. As the level rises toward the set point, the large error that existed 
at start-up gradually diminishes toward zero. If only proportional action were present 
in the controller, the output of the controller would return quickly to a mid-scale value; 
however, because of the integral action, the controller output remains high, at its satura-
tion value, long after the process variable first reaches the set point. To reduce the output 

FIGURE 26–3
Plant start-up illustrating reset windup (tanks are initially empty): (a) process, (b) linear valve 
with saturation limits, and (c) block diagram of process.
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 M,  the integral action must be applied to negative error so that the integration can lower 
the output to mid-scale. This negative error occurs as a result of the tank level remaining 
 above  the set point for some time after the tank level reaches the set point. Other causes 
of reset windup and some methods to prevent it are discussed by Shinskey (1979). 

 The control system shown in  Fig. 26–3 c   was simulated for a start-up transient 
with the tanks initially empty; the transient is shown as curve I in  Fig. 26–4 . The large 
overshoot in tank level after the level reaches the set point is clearly illustrated. Now 
that the problem of reset windup has been described, we focus our attention on how to 
reduce or eliminate it. The development that follows on the use of external feedback to 
eliminate reset windup is based on the work of Shunta and Klein (1979). 

FIGURE 26–4
Start-up transients for system in Fig. 26–3 with and without external feedback.
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 A feature of microprocessor-based controllers is the availability of external feed-
back in the configuration of a PI or PID controller. The block diagram of a PI controller 
with external feedback is shown in  Fig. 26–5 . 

FIGURE 26–5
Controller with external feedback for use in anti-reset windup.

Control variable

+

Set point

Controller

M

M
F

−

 The output of this controller is given by 
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 (26.3)  

where
    M ( t )  �  controller output  

   e ( t )  �  error  �  set point  �  control variable  

   F ( t )  �  external feedback signal   
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If the Laplace transform of both sides of Eq. (26.1) is taken, the result is 
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(26.4)  

If the feedback signal is the controller output  F ( s )  �   M ( s ), Eq. (26.4) becomes the usual 
transfer function for a PI controller: 
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The feedback signal  F ( t ) can be any signal available to the microprocessor-based con-
troller. When  F ( t ) is not equal to  M ( t ), Eq. (26.4) can be solved for  M ( s ) to give 
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 (26.6)
   

 A controller following this equation provides a signal consisting of proportional 
action plus first-order tracking of  F ( t ). If  F ( t ) in Eq. (26.3) is taken as the output of the 
valve (or the output signal of the current-to-pressure transducer that goes to the valve) 
in our example in  Fig. 26–3 c,   we have the basis for eliminating reset windup. During 
the filling stage of the tank, the feedback signal  F ( t ) will be constant at the saturation 
value of the valve output. When the tank level reaches the set point, the error will be 
zero and the only contribution from the controller output will be the tracked signal rep-
resented by the second term on the right side of Eq. (26.6). This value will be less than 
would be the case if external feedback were not employed. The overall result is that the 
controller output is less with the external feedback at the time the level first equals the 
set point, and the overshoot is reduced. The transient using external feedback is also 
shown in  Fig. 26–4  as curve II. Notice that the overshoot is less when external feedback 
is used. To emphasize the benefit of external feedback for eliminating reset windup, 
no limits were placed on the output of the controller in the simulation of  Fig. 26–3 . In 
practice, there are physical limits on the controller output, and when this is the case, the 
reduction of overshoot with the use of external feedback may not be so pronounced as 
shown in  Fig. 26–4 .    

  26.5 DISTRIBUTED CONTROL 

  So far we have been concerned in this chapter with the operation of a single control-
ler. Such a controller is referred to as a  stand-alone controller  because it is not com-
municating with other controllers, but only with the one control loop of which it is a 
part. Present-day microcomputer-based control systems have the capability of commu-
nicating with other controllers through a network, which is called  distributed control.  
 Figure 26–6  shows one version of the communication linkages that are usually present 
in a distributed control system. Each manufacturer of distributed control systems has a 
different way of organizing them. 
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 A distributed control system is intended to be used for a large processing facility 
that involves as many as 50 to 100 loops. Some examples of these types of installations 
are a refinery, a brewery, and a power plant. In  Fig. 26–6 , the modules of control equip-
ment that communicate with each other are

   Control processor (CP)  
  Applications processor (AP)  
  Workstation (WS)  
  Field bus module (FBM)   

The first three of these modules communicate with one another through a nodebus or 
“data highway,” as it has been called. The field bus modules serve as devices that inter-
face with transducers and valves in the process. Distributed control systems thus involve 
small modular controllers mounted in the field, process operator PC workstations in the 
control room or distributed throughout the plant, and a data highway (perhaps an Ether-
net network) connecting the components. 

 The control processor contains the blocks described earlier (analog input, analog 
output, control, linearization, etc.) that are connected by softwiring to provide the con-
trol algorithm required for each loop. Communication between the control processor 
and the process (a distance away) in the field takes place in the field bus module. 

FIGURE 26–6
Typical connections in a distributed control system: CP: central processor, 
AP: applications processor, WS: workstation, FBM: field bus module.
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 One type of field bus module provides a set of analog inputs and a set of analog 
outputs that send to and receive from the field continuous signals (4 to 20 mA). Another 
type of module sends to and receives from the field digital signals that often take the 
form of switch-contact closures. 

 The application processor is a computer (which runs software) for performing the 
many tasks described earlier and for managing the communication among modules. 

 The workstation module is connected to a keyboard, a mouse, a monitor, and a 
printer for use by process operators to interact with the system. At the workstation, the 
process operator can call up on the screen various displays, change set points and con-
troller parameters, switch from automatic to manual, acknowledge alarms, and perform 
other tasks needed to operate a control system consisting of many loops. 

cou9789x_ch26_579-596.indd   593cou9789x_ch26_579-596.indd   593 8/22/08   3:44:02 PM8/22/08   3:44:02 PM



Confirming Pages

594 PART 8 COMPUTERS IN PROCESS CONTROL

 There are currently a number of types of digital networks (or buses) for plant 
control systems. In order of increasing complexity, they are sensor buses (used for 
simple devices and manufacturing control), device buses (which include Profibus and 
DeviceNet), and field buses (which include Profibus and Foundation Fieldbus) which 
are used for process control and diagnostics. These types of buses or networks are sup-
ported by numerous hardware vendors. “Smart” instrumentation is becoming more and 
more popular as equipment and control systems are replaced. Smart instrumentation 
has the capability to provide the control system with additional information and func-
tion that “nonsmart” devices do not, such as device ID verification, device diagnostics 
and status information, secondary process and device variables, remote device configu-
ration and setup. According to the ARC Advisory Group of Dedham, Massachusetts 
( Fig. 26–7 ), worldwide about 40 percent of the installed devices are now smart devices 
D’Aquino and Greene, (May 2003). The rest are pneumatic and electronic. 

FIGURE 26–7
Nature of installed process instrumentation worldwide according to the ARC Advisory Group of 
Dedham, Massachusetts.
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 The trend is certainly moving toward the installation of computer control systems 
and smart instrumentation devices. Some of the challenges to be overcome include lack 
of compatibility with existing plant control systems and wiring, lack of a standard digi-
tal protocol, and initial cost. As these systems mature and the obstacles are overcome, 
we can look forward to exciting advances in process monitoring and control systems’ 
hardware and software. The net result will be better controlled processes, and better 
access to process data for monitoring, diagnostics, and reporting capabilities.    

   SUMMARY 

 The computer has greatly changed the nature of industrial process control equipment. 
The microprocessor has become the heart of control instruments, and software has pro-
vided many functions besides the basic control algorithm. When the pneumatic controller
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was the predominant type, one purchased a controller with very specific attributes (e.g., 
mode of control, type of measured variable, chart speed). The smart instruments and 
controllers available today contain not only the conventional control algorithms, but 
also many other functions such as simulation of basic transfer functions (e.g., lead-
lag and transport lag), display building, mathematical functions, process and diagnostic 
alarms, and data acquisition. They also provide logic functions (comparators, timers, 
counters, etc.) for use in batch control and plant start-up and shutdown, as well as self-
tuning algorithms. 

 In this chapter, some of the features of modern controllers were discussed (e.g., 
limiting, tracking, and anti-reset windup). Any controller having integral action can 
cause reset windup under certain conditions when the error persists for a long time. The 
result of such a phenomenon is a transient that has large overshoot. Manufacturers of 
control instruments now offer several methods for reducing reset windup; the one pre-
sented in this chapter was use of external feedback. 

 Before computer control appeared, most process loops were served by individual 
controllers with signals to and from these controllers being collected on a large panel 
board in a special control room. To obtain communication between the control room 
and the controllers required much wiring and piping (for pneumatic systems). Today, 
microprocessor-based control systems have the capability of communicating with other 
control instruments through networks, called distributed control. A distributed control 
system can control an entire plant and involve as many as one hundred or more control 
loops. Since each manufacturer has a different way of organizing a distributed control 
system, the practicing engineer must obtain the details of a particular system from the 
manufacturer. Most manufacturers offer a variety of short courses for technicians and 
engineers on the installation and use of their hardware and software.  

cou9789x_ch26_579-596.indd   595cou9789x_ch26_579-596.indd   595 8/22/08   3:44:02 PM8/22/08   3:44:02 PM



Confirming Pages

596

  CHAPTER 

26 
CAPSULE SUMMARY 

  DISTRIBUTED CONTROL SYSTEM 
SCHEMATIC 

       
Process

Node bus

CPCP CP AP WS

FBMFBM FBM

Printer Monitor Keyboard

FIGURE 26-6
Typical connections in a distributed 
control system: CP: central processor, 
AP: applications processor, 
WS: workstation, FBM: field bus module.

  SMART INSTRUMENTS 

 Smart instruments have the capability to provide the control system with additional 
information and function that “nonsmart” devices do not, such as device ID verifica-
tion, device diagnostics and status information, secondary process and device variables, 
remote device configuration and setup.  

  FORMS OF PID ALGORITHM FOR DIGITAL 
IMPLEMENTATION  

  Standard continuous form  
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  Position form of PID algorithm  
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  Velocity form of PID algorithm  
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Either the form of Eq. (26.1) or that of Eq. (26.2) can be used for the PID controller. 
Each is used in commercially available control systems.       .       
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A  
   Absorption, dynamics of,   453–57   
   Adjoint of matrix,   492   
   Alarm, process and diagnostic,   587   
   Amplitude ratio,   289   
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Batch control,   584   
   Block diagram,   77, 166–67  
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  standard symbols,   218–19   

   Bode diagram  
  asymptotic approximations,   302–4  
  controllers,   311–13  
  defi nition,   300  
  fi rst-order system,   302–5  
  graphical rules,   307–8  
  second-order system,   308–11  
  systems in series,   305–7  
  transportation lag,   311   

   Bode stability criterion,   326–27   
   Bumpless transfer,   398, 589   
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Cascade control,   353–60  

  in valve positioner,   439   
   Characteristic equation,   255  

  roots of,   43–44   
   Chattering, in on-off control,   564   
   Chemical reactor,   205–8  

  phase plane of,   569–73   
   Closed-loop system,   167   
   Closed-loop transfer functions,   220–23   
   Cofactor matrix,   492   

   Cohen-Coon process reaction curve,   397–401  
  comparison of methods,   401–10   

   Cohen-Coon tuning,   397–401   
   Comparator,   166–67   
   Computer control,   581–94   
   Control Station, 401–19.  See also  L OOP  P RO    
   Control system response,   228–46   
   Controller,   192–98  

  calibration of,   196  
  cascade,   353–60  
  digital,   582  
  feedforward,   361–70  
  internal model,   378–85  
  microprocessor-based,   581–94  
  pneumatic versus electronic,   581–82  
  ratio,   370–73  
  Smith Predictor,   373–78   

   Controller mechanism,   190   
   Controller modes, choice of,   391–93  

  motivation for,   197–98   
   Controller tuning,   391–410   
   Corner frequency,   302   
   Criteria of control quality,   393–94   
   Critical damping,   142   
   Critical points, analysis of,   556–60  

  defi nition of,   554   
   Cross-controller,   515   
   Crossover frequency,   326   
   Custom inputs,   57–58   
   C 

v
  for valve,   425   

D   
Damping, viscous,   539   
   Dead zone, in on-off control,   565–69   
   Decay ratio,   148   
   Decibel,   303   
   Derivative action in control,   196   
   Derivatives, Laplace transform of,   23–25   
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   Determinant of matrix,   491   
   Deviation variables,   74  

  in distributed parameter systems,   458   
   Differential equations,   26  

  MATLAB solution,   27, 38   
   Displays,   587   
   Distributed control,   592   
   Distributed-parameter systems,   458–71   

E
   Error,   2–3   
   External feedback for anti-reset windup,   

589–92   

F
   Feedback  

  negative,   167  
  positive,   167   

   Feedforward control,   361–70  
  Foxboro tuning rules,   367   

   Fieldbus module,   592–95   
   Figure of merit,   393–404   
   Filter in internal model control,   381   
   Final-value theorem,   49   
   First order plus dead time model,   408–18   
   First-order lag,   75   
   First-order system,   71–77  

  MATLAB/Simulink simulation,   81–84  
  impulse response,   85–87  
  in series arrangement,   123–30  
  interacting,   128–30  
  noninteracting,   123–27  
  sinusoidal response,   87–92  
  step response,   79–84  
  transfer function,   75   

   Flow control,   585–86   
   Focus,   556–57   
   FOPDT,   408–18   
   Forcing function,   32   
   Frequency response,   287–350  

  Bode diagram,   300–17  
  Bode stability criterion,   326–27  
  in control system design,   323–43  
  of controllers,   311–14  
  of distributed-parameter systems,   462–63  
  defi nition,   300–301  
  from elliptical phase diagram,   319  
  experimental determination of,   418–19  
  gain and phase margins,   327–29  
  heuristic stability arguments,   299–300, 

326–28  
  Nyquist stability criterion,   326  
  from pulse test,   415–18  
  substitution rule,   287–89, 316–17  

  of systems,   302–11  
  in series,   305–7  
  Ziegler-Nichols settings,   335–37, 394–97   

   Frequency testing,   418–19   

   G
Gain margin,   328–30  

  design specifi cations,   328   
   Gas absorber, dynamics of,   453–57   
   Goal Seek Excel,   333   

H   
Heat conduction, dynamics of,   458–63  

  dynamics, of counterfl ow,   464–71  
  steam-jacketed kettle,   443–53   

   Hysteresis in valves,   438–39   

I
   Impulse function,   22, 54   
   Initial-value theorem,   51   
   Instrumentation symbols for P&IDs,   204   
   Integral action in control,   194–96   
   Integral of error criteria  

  absolute value of error (IAE),   394  
  square of error (ISE),   393  
  time-weighted absolute error (ITAE),   394   

   Integral, Laplace transform of,   55   
   Interacting systems,   128–30  

  in control system,   514–24  
  in mercury thermometer,   131   

   Internal model control,   378–85   
   Inverse of matrix,   491   
   Inversion of Laplace transforms,   26, 32–42   

L
   Laplace transform,   18–42  

  of integral,   55  
  inversion of,   26, 32–42  
  table,   21–22  
  use in partial differential equations,   459–61   

   Lead-lag transfer function,   585   
   Liapunov, Theorem of,   559–60   
   Limit cycle,   560–73  

  in exothermic chemical reactor,   569–73  
  in on-off control,   560–69   

   Limiting in controller and valve,   588–92   
   Linearization,   109–14, 446  

  in analysis of critical points,   558   
   Liquid level,   99–105  

  L OOP  P RO  simulation,   412–15   
   Load change,   222, 234–40   
   Loading, in liquid-level process,   129   
   L OOP  P RO,    401–19   
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   Lumped-parameter model, of distance-velocity lag,  
 463–64  

  for mercury thermometer,   80   

M   
Manometer,   137–47   
   MATLAB m-fi le for varying controller gain in 

Simulink,   232   
   MATLAB symbolic processing,   23, 26–27   
   Matrix,   490–95   
   Matrix differential equation,   479–80   
   Minor of matrix,   492   
   Mixing process,   11–12, 14–18, 34–35, 96, 105–06, 

117–19, 200, 370–71   
   Multiloop system, block diagram reduction,   219, 

224, 514   
   Multiple input-multiple output system 

(MIMO),   512   
   Multivariable control,   512–29  

  decoupling,   523  
  interaction,   512–14  
  stability,   525–26   

   Mybode m-fi le for MATLAB,   304   

N   
Natural frequency,   149   
   Natural period,   149   
   Negative feedback,   167  

  overall transfer function,   222   
   Node,   557   
   Nodebus in distributed control,   593   
   Noninteracting control,   517–24   
   Nonlinear systems,   533–52  

  defi nition of,   533   
   Nonminimum phase characteristics,   381   
   Nonminimum phase lag,   463   
   Nyquist stability criterion,   326   

   O
Offset, defi nition,   4, 198   
   On-off control,   3, 192, 194  

  of stirred-tank heater,   561–69   
   Open-loop transfer function,   219   
   Overall transfer function, from block diagram,   219–24  

  for positive feedback system,   223   
   Overdamped response,   141   
   Overshoot,   147   

P   
Padè approximation to transport lag,   154–55   
   Partial fractions,   32–42   
   Pendulum,   543–46  

  phase plane of,   546   

   Period  
  of oscillation,   149  
  ultimate,   336   

   Phase angle,   89, 152, 289   
   Phase lag,   89   
   Phase lead,   89   
   Phase margin,   327–29  

  design specifi cation,   329   
   Phase plane,   534–46   
   Phase space,   534–46   
   PID equation position form,   585   
   PID equation velocity form,   585   
   Poles and zeros,   270, 275   
   Positive feedback,   167  

  overall transfer function,   223   
   Process dynamics, experimental,   410–19  

  theoretical,   443–71   
   Process identifi cation,   410–19   
   Process reaction curve,   398–99   
   Proportional control,   192   
   Proportional controller, ideal transfer 

function,   193   
   Proportional-derivative control, ideal transfer 

function,   196–97   
   Proportional-integral control, ideal transfer 

function,   194–96   
   Proportional-integral-derivative control, ideal 

transfer function,   197   
   Pulse and doublet testing,   415–18   
   Pulse function  

  as approximation to unit impulse,   54  
  response of liquid-level system to,   102–3   

   Pulse transfer function,   54   

Q   
Qualitative nature of solutions,   43–44   

R   
Ramp function,   78   
   Ratio control,   370–73   
   Regulator problem,   167–68   
   Relay in on-off control,   561–62   
   Reset windup,   589–92   
   Resistance,   99  

  linear,   99   
   Resonance,   311   
   Resonant peak,   310–12   
   Response time,   148–49   
   Rise time,   148–49   
   RLOCUS tool MATLAB,   276   
   Root locus,   269–284  

  comparison with frequency response,   264  
  concept,   269  
  plotting of diagrams with MATLAB,   273   
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   Roots of equation, MATLAB,   261, 271   
   Routh test for stability,   258–60   

S
   Saddle point,   557–58   
   Second order plus dead time model,   408–18   
   Second-order system,   137–53  

  simulation with Simulink,   144–47  
  dynamic parameters  τ  and  ζ,    140–41  
  impulse response,   150–51  
  sinusoidal response,   151–53  
  step response,   141–47  
  transfer function,   140   

   Self-tuner,   586   
   Sensitivity, controller,   179   
   Servomechanism problem,   167–68   
   Set point, defi nition,   1–2   
   Simulink model of fi rst order system,   83–84   
   Single input-single output system (SISO),   

274, 512   
   Sinusoidal response with MATLAB,   90–91   
   SISO tool MATLAB,   274   
   SOPDT,   408–18   
   Spring-mass-damper system,   538–43  

  phase plane of,   541–42   
   Stability,   252–68  

  Bode criterion,   326–27  
  defi nition,   254–56  
in multivariable systems,  525 
  in nonlinear systems,   560  
  Routh test,   258–59   

   Stability of typical roots in characteristic 
equation,   257   

   State of system, defi nition,   553   
   State variable,   477–78  

  selection and types,   482–83   
   State-space methods,   477–529  

  transfer function matrix,   502–3  
  transition matrix,   499–500   

   Steady-state gain,   76   
   Step function,   19, 78   
   Step testing,   411–15   
   Stirred Tank Heater  

  examples,   11–17, 106–9, 231, 235, 238, 242, 
243, 245, 296–301, 324 29, 561–69  

  block diagram for control of,   165–182  
  closed-loop response of,   235–46  
  on-off control,   561–69   

   Substitution rule in frequency response,   287–89   
   Superposition,   77   
   Sutro weir,   99   

T   
Taylor-series expansion,   110, 122, 154–55, 446   
   Thermometer dynamics,   71–74   
   Time constant,   74, 80   
   Tracking in controller and valve,   588–89   
   Trajectory, defi nition of,   553   
   Transducer,   188   
   Transfer function,   71, 74–77  

  for distributed-parameter systems,   461, 468  
  simulation using MATLAB and Simulink,   

81–84   
   Transfer function matrix,   502–3   
   Transfer lag,   126   
   Transition matrix,   499–500   
   Translation  

  of function,   52–54  
  of transform,   52   

   Transportation lag  
  simulation with MATLAB and Simulink,   

332, 395  
  as a distributed parameter system,   463–64  
  Padè approximation,   154–5  
  transfer function,   154   

   Tuning rules,   391–410   

U
   Ultimate periodic response,   89   
   Underdamped response,   141–42   
   Unity feedback,   229   

V
   Valve, control,   423–42  

  C 
v 
,   425  

  characteristics,   427–38  
  construction,   424–25  
  equal percentage,   428–30  
  hysteresis,   438  
  linear,   428  
  positioner,   438–39  
  sizing,   425–26  
  transfer function,   209–10   

   Vector, column and row,   490   

W
   Weir,   99   

Z
   Zeros and poles,   270, 275   
   Ziegler-Nichols settings,   394–97   
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  Useful Functions and Laplace Transforms    

TABLE 2.1

Function Graph Transform

u(t)

1

1

s

tu(t)
1
2s

tnu(t)
n

sn

!
� 1

e�atu(t)

1
1

s a� 

tne�atu(t)
n

s an

!

� � 1

sin kt u(t)
k

s k2 2 � 
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TABLE 2.1 (Continued)

Function Graph Transform

cos kt u(t)
s

s k2 2 � 

sinh kt u(t)
k

s k2 2 � 

cosh kt u(t) 1
s

s k2 2 � 

e�at sin kt u(t)
k

s a k( )�  � 2 2

e�at cos kt u(t)
s a

s a k

� 

�  � ( )2 2

�(t), unit impulse

Area = 1

1
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       Key Features of Standard Responses of First Order Systems 
to Common Inputs 

Step Response of First Order System
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Impulse Response of a First Order System
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Sinusoidal Response of a First Order System

t/τ

5 10 15 20
−1.5

−1

−0.5

0

0.5

1

1.5

Y
/A

K
p

Y
/K

p

After an initial transient period,
the response is periodic with
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Response of First Order System to Ramp Input
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       Standard Form for a Second Order System: 

          �   �  Time Constant  

   �   �  Damping Coefficient, the magnitude of this parameter determines the nature of the 
response   
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Sample Second Order System Response
to a Unit Step Input
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Sample Second Order System Response
to a Unit Impulse Input
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dY

dt
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       Terms to Describe an Underdamped (Oscillatory) Second Order Response   

Overshoot exp� � �  � �� �/ 1 2( ) A

B

Decay ratio exp overshoot� � �  � 2 1 2�� �/ (( ) ))2  � 
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, radian frequency � 
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1
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Process Systems Analysis and Control, Third Edition retains the clarity of presentation for which 
this book is well known. It is an ideal teaching and learning tool for a semester-long undergraduate 
chemical engineering course in process dynamics and control. It avoids the encyclopedic approach 
of many other texts on this topic. Computer examples using MATLAB¨ and Simulink¨ have been 
introduced throughout the book to supplement and enhance standard hand-solved examples. These 
packages allow the easy construction of block diagrams and quick analysis of control concepts to enable 
the student to explore Òwhat-ifÓ type problems that would be much more dif�cult and time consuming 
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