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The importance of wastewater treatment

➢ Environmental problem solution

Eutrophication

– Impact of the human water use

➢ Wastewater treatment plants (WWTPs) are designed or upgraded for biological

nutrient removal (BNR)

➢ Activated sludge systems:

‒ separate anaerobic, anoxic and aerobic reactors

‒ single reactors → intermittent aeration

30/5/2023 4

In
tr

o
d

u
ct

io
n



Intermittent aeration method
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▪ Applied in the same bioreactor

▪ Alternate aerobic – anoxic conditions

▪ Improvement of biological nitrogen removal

▪ Improvement of effluent quality

▪ Energy saving (25%)

▪ Applied in a short time at the beginning of anoxic phase
▪ Substrate saturation
▪ Increase of denitrification rates
▪ Inhibition of filamentous bacterial growth
▪ Low SVI

Intermittent feeding method
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Organic carbon removal
Aerobic conditions
Heterotrophic biomass

Nitrogen removal
➢ Nitrification

Aerobic conditions
Autotrophic biomass

➢ Denitrification
Anoxic conditions (presence of NO3

--N)
Heterotrophic biomass
Readily biodegradable organic carbon
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Αdvanced AS system: Membrane bioreactor (MBR) systems 

Complete removal of suspended solids

High effluent quality

Reclamation and reuse for treated wastewater (JMD 145116/11)
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MBR systems can operate at:

✓high loading rates, 

✓high MLSS concentration, 

✓ long SRT, 

✓ low F/M ratios
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Membrane bioreactor (MBR) systems 

Membrane performance control parameters: 

Transmembrane pressure (TMP) TMP = 𝑃𝑓𝑒𝑒𝑑 − 𝑃permeate      (bar ή mbar)

Permeate flux (J)                                        J =
𝑄
𝑜𝑢𝑡

𝐴
(L m-2 h-1)

Membrane permeability (P)                    𝑃 =
𝐽

𝑇𝑀𝑃
(L m-2 h-1 bar-1)

Resistance (R) 𝑅 =
𝑇𝑀𝑃

𝐽×𝑛
(m-1)
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Membrane bioreactor (MBR) systems 

Classification of MBR control parameters 
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Membrane bioreactor (MBR) systems 

MBR system limitation - Membrane fouling

flux decline

higher applied pressures

higher energy consumption

frequent chemical cleaning
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Factors affecting membrane fouling

Composition of the wastewater 

SRT

F/M ratio

Temperature

Sludge characteristics 

Extracellular polymeric substances (EPS) and soluble microbial products (SMP) 



Membrane bioreactor (MBR) systems 
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MBR system limitation - Membrane fouling classification

➢ Reversible physical cleaning

➢ Irreversible chemical cleaning

➢ Irrecoverable foulants are not removed by any cleaning method



Disturbances in process control of activated sludge systems
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Classification of disturbances 

Need for Instrumentation, Control and Automation (ICA)
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Instrumentation, Control and Automation (ICA) in WWTPs
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• Instrumentation technology, including online nutrient sensors

• Actuators, including variable speed pumps, compressors, stirrers etc.

• Data collection includes data acquisition is available for WWTP supervision 
and control through software packages 

• Computing power 

• Advanced dynamical models of many unit processes 
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Process control in activated sludge systems
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Aim and objectives

➢ To implement and assess advanced real-time control strategies of nitrification
and denitrification applied in both an intermittently aerated and fed activated
sludge system (IAF-AS) and an MBR system (IAF-MBR).

➢ Process control optimization using in-situ sensors:

ISE NH4
+-N and NO3

+-N,

pH,

oxidation-reduction potential (ORP),

dissolved oxygen (DO),

oxygen uptake rate (OUR) biosensor.

➢ Membrane operation control and filtration performance:

a) through online transmembrane pressure (TMP) monitoring

b) through EPS and SMP monitoring
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NEW APPROACH IN PROCESS CONTROL

Instrumentation - Control - Automation 
applied in the Intermittently Aerated and Fed

Activated Sludge System (IAF-AS) with settling tank  
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Instrumentation of IAF-AS system with settling tank
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V, 45 L
MLSS, 3 g L-1

V, 8 L
MLSSwas,10 g L-1V, 3 L

Qinf, 37-67 L  d-1

Qair, 270 L h-1



Graphical user interface to regulate the phases duration and the 
operation of mechanical apparatus
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Indusoft Web Studio
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• Programmable Logic Controller (PLC-FATEK FBs-20MC) 

• WinProladder V3.21 software package for PLC programming

• Indusoft Web Studio (IWS) software used for SCADA system

• Ion selective electrodes (ISE) VARiON® Plus 700 IQ AmmoLyt® Plus 

& NitraLyt® Plus 

Parts of control system
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ISE NH4
+-N and NO3

--N Sensors

❖ need rarely cleaning
❖ high measurement accuracy level
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Sewage characteristics

Parameters Average (± St. Deviation)

Total COD (mg L-1) 375  72.7

Soluble COD (mg L-1) 185  68.9

BOD5 (mg L-1) 230  33.2

NH4
+-N (mg L-1) 57.3  15.8

TKN (mg L-1) 73.8  12.9

SS (mg L-1) 132  39.1

PO4
3+-P (mg L-1) 5.87  1.40

pH 7.67  0.19

EC (μS cm-1) 1318  98.9M
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The domestic wastewater was obtained from University Campus of Xanthi 



Applied real time control strategy

• Feedback control strategy based on rules (set points)

– Threshold limit NH4
+-N value: 2 mg L-1

– Threshold limit NO3
--N value: 1 mg L-1

• The duration of nitrification and denitrification phases was dynamically 
regulated depending on nitrogen loading

– Upper time limit of nitrification: t1=75 min 

– Upper time limit of denitrification: t2=60 minM
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Flow chart using in-situ online NH4
+-N and NO3

--N ISE sensors

ISE NH4
+-N sensor

ISE NO3
--N sensor

Applied real time control strategy



Alternating anoxic/aerobic cyclic process control during an 
operational cycle
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ALR increase
ALR increase

A high ammonium-N loading rate increase would lead to 
a time-based extension of the air-supply



Fluctuation of specific nitrification (SNr) and denitrification rates 
(SDNr) at NH4

+-N and NO3
--N profiles
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NEW APPROACHES IN ADVANCED PROCESS 
CONTROL

Instrumentation - Control - Automation 
applied in the Intermittently Aerated and Fed 

MBR system
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Control of biological process

Control of filtration process



Graphical user interface of the IAF-MBR system 
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CODESYS software
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Filtration process

Chemical 
cleaning 
program

Operation of 
mechanical apparatus

Biological process



Instrumentation of the IAF-MBR system

30/5/2023
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V, 40 L
Qinf, 96-240 L d-1

(Avg, 180 L d-1) 

V, 80 L
MLSS ≤ 9 g L-1

UF membranes

V, 100 L
MLSS ≤ 9 g L-1



• ABB’s Programmable Logic Controller PLC (ac500 echo PM564)

• Controller Functionality Software (CODESYS)

• HACH LANGE & IQ2020XT WTW Controller

• HACH LANGE ORP and pH GmbH sensors

• Optical WTW FDO 700 IQ sensor 

Parts of control system
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Recording data through Modsca32 software
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TMP1 (mbar)
TMP2 (mbar)
NH4

+-N (mg L-1)
NO3

--N (mg L-1)
pH (-)
DO (mg L-1)
Open/close valve (%)
DOsp (mg L-1)



Characteristics of the ultrafiltration membrane module
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Membrane type

Flat sheet 

(Microdyn Nadir) 

(UP-150)

Pore size 0.04 μm

Construction 

material

Hydrophilic 

polyether-sulfone 

Effective 

filtration 

area

0.34 m2

Maximum operating 

pressure during 

filtration

-400 mbar

Maximum 

operating 

backwash 

pressure

+150 mbar
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Filtration process control 
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Categorization of control parameters for filtration process control
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Each filtration cycle program includes: 
- 480 sec filtration phase
- 30 sec relax phase I
- 60 sec back-wash
- 30 sec relax phase II



TMP monitoring and control
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• The recording TMP data were online logged (every minute)

• Filtration limit TMP -300 mbar 

• If TMP ≥ -300 mbar filtration was stopped (membrane fouling)

• Emergency backwash

• If TMP recording ≥ -300 mbar backwash was replicated

(Backwash limit TMP < 150 mbar) 
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If TMP remains greater than -300 mbar, membrane cleaning was initiated

Pressure transmitter
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Membrane cleaning methods

• Physical cleaning is applied to remove reversible fouling

Methods
✓ Backflushing (frequency/volume increase) 
✓Air flow velocity increase

• Mechanical cleaning is referred to:

Method
✓ sweeping (sponge)

• Chemical cleaning is applied to remove irreversible fouling

Methods
✓ In-situ (automated cleaning method) – ex-situ (intensive cleaning method)
✓ Use of citric acid (0,2% w/v) and NaOCl (100-1000 ppm)
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TMP profile after physical cleaning
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Gradual backwash volume increase and successive backflushing applications
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P2, 99.4 to 126 L m2 h-1 bar-1

P3, 126 to 221 L m2 h-1 bar-1

3 replicates per 3 backwash cycles

3 Backwash cycles

𝑃 =
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TMP profile under various aeration velocities for air scouring

TMP profile after physical cleaning

 

Qaer, 6.0 L/min 

Qaer, 8.0 L/min 

Qaer, 10 L/min 
Qaer, 12 L/min 

Qaer, 4.5 L/min 

16% TMP improvement 

26% TMP improvement 

38% TMP improvement 
9% TMP improvement 

P1 increase from 38.6 to 47.7 L m2 h-1 bar-1

P2 increase from 47.7 to 81 L m2 h-1 bar-1

P3 increase from to 81 to 151 L m2 h-1 bar-1

P4 increase from 151 to 181 L m2 h-1 bar-1
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TMP improvement, 80%
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TMP profile after in-situ membrane layer scrapping

TMP profile after mechanical cleaning

𝑃 =
𝐽

𝑇𝑀𝑃



TMP profiles after chemical cleaning

-200

-150

-100

-50

0

50

100

0 400 800 1200 1600 2000 2400 2800 3200 3600 4000 4400

Tr
an

sm
em

b
ra

n
e 

p
re

ss
u

re
 [

m
b

ar
]

Operating time [min]

TMP

44% TMP improvement

Fig. 1. Ex-situ chemical  cleaning with 750 ppm NaOCl solution. 
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Fig. 2. Ex-situ chemical cleaning with 0.2 w/v citric acid solution.

P increase from 36 to 180 L m-2 h-1 bar-1
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R
es

u
lt

s

4130/5/2023

𝑃 =
𝐽

𝑇𝑀𝑃

𝑃 =
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Fouling prevention methods

Fouling prevention methods (membrane remains clean for extended time)

▪ Intermittent aeration (anoxic/aerobic phase duration ratios)

▪ Filtration process below critical flux

Evaluation of the main factors affecting membrane fouling

▪ Extracellular polymeric substances (EPS) and

▪ Soluble microbial products (SMP)

✓ produced by bacteria

✓ fouling propensity monitoring

✓ Strong impact on EPS and SMP level:

Composition of wastewater- F/M ratio



EPS and SMP concentration profiles
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SMPc (by glycerol addition): 

21.5 mg g-1 VSS (day 86) 
16.9 mg g-1 VSS (day 95) 
31.1 mg g-1 VSS (day 102)

EPSc (by biosolids addition):

12.3 mg g-1 VSS (day 144)
12.8 mg g-1 VSS (day 146)  
12.4 mg g-1 VSS (day 154)
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The production of EPS and SMP was low, due to the fact that the 
influent COD was used for energy production and to a lesser extent 
for cell synthesis. 



Correlation between SMPc and membrane resistance
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SMP concentration was greatly affected at high F/M 
ratio (glycerol addition), resulting in membrane 
resistance. 



EPSc, SMPc and permeate flux at various anoxic/aerobic phase 
duration ratios
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Critical flux evaluation by dΤΜP/dt determination
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dΤΜP/dt jump from 0.75 to 6.96 mbar min-1

critical flux: 32.6 L m-2 h-1

flux-step method

The dΤΜP/dt was found to be a suitable indicator of critical flux, since a sharp 
increase in its value was observed at the critical flux



Effluent parameters comparison (IAF-AS vs IF-MBR system)

IAF-MBR system IAF-AS system IAF-MBR 
improvement

Parameters Average St. Deviation Average St. Deviation (%)

BOD5 (mg L-1) 3.4 1.5 12.7 4.6 73

COD (mg L-1) 17.6 1.54 49.2 14.6 64

NH4
+-N (mg L-1) 1.03 0.31 2.43 1.0 58

TKN (mg L-1) 6.76 1.39 8.27 2.2 18

NO3
--N (mg L-1) 0.48 0.52 0.7 0.5 31

PO4
3- (mg L-1) 0.21 0.1 0.72 0.25 71

SS (mg L-1) 0 0 21 3.17 100

Energy saving (%) 33 34

Cost (€ m-3 d-1) 0.3-0.8 0.3-0.5
47
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Control of biological processes in IAF-MBR 
system
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Correlation between pH/NH4
+-N and ORP/NO3

--N 
for aeration and anoxic phase control

30/5/2023 49



Inflection points detection

➢ For the anoxic period, through ‘‘nitrate knee’’ detection using ORP profile, 

corresponding to the end of nitrate concentration and the anoxic period. 

➢ For the aerobic period, through “ammonia valley” detection using pH 

profile, corresponding to the end of ammonia concentration and the 

aeration period. 

➢The dpH/dt and dORP/dt first derivatives were used as control parameters 

to detect ammonia and nitrates depletion. 
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dpH/dt = 0  &  dORP/dt =0



NH4
+-N and pΗ profiles during successive aerobic/anoxic phases
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pH, dpH/dt, NH4
+-N profiles and their inflection points
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The “ammonia valley” could be better identified by 
the calculation of the pH first order derivative 

Ammonia depletion, dpH/dt = 0



ORP 
and 
NO3

--N 
profiles 
during 
success
ive 
anoxic/
aerobic 
cycles
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ORP, dORP/dt, NO3
--N profiles and their inflection points
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dORP/dt increase was observed earlier and in a much 
clearer manner than the detection of “nitrate knee” 
through the untransformed ORP data Nitrates depletion, dORP/dt = 0



Cascade DO control for nitrification process
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NH4/DO cascade control strategy

• PI-NH4 → Primary controller 

• PI-DO → Secondary controller

• NH4sp: Ammonium-N set point → 3-4 mg L-1

• DOsp: The input DO set point in the PI-DO

• air flow electro-valve regulation
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Control-loop of cascade control process



Performance of cascade control
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The nitrification process was optimized meaning maximizing the 
ammonium-N removal at the lowest possible operational cost. 

Controlled DO level in the region of 1.5 -3 mg L-1

ALR increase ALR increase DOsp ≤ 3 mg L-1

DOsp ≥ 1.5 mg L-1

• ΝΗ4
+-Ν , 1 ± 0.6 mg L-1

• ΤΚΝ, 4.7 ± 3.3 mg L-1

Air-flow rate regulation



Aeration control by OUR biosensor
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Aerobic phase length control through oxygen uptake rate (OUR)
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OUR calculation was based on the following equation:

𝑂𝑈𝑅 =
𝐷𝑂0−𝐷𝑂𝑖

𝑡0−𝑡𝑖

OUR was calculated from DO depletion when the air-valve was switched
off by applying aeration cascade control during the nitrification process.

where DO0 the highest DO value before air-supply switched off (mg L-1), DOi

is the lowest DO value at the end of the non-aeration period (mg L-1) and t0,
ti corresponds to initial and end-time (min).
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NH4
+-N , OUR and DO profiles during a typical operating cycle
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Two successive threshold OUR values with a difference between 
them less than 1 mg O2 L-1 h-1 indicate the end of nitrification 

The highest OUR value (25.7 mg O2 L-1 h-1) at the 
beginning of anoxic phase associated with sewage 
addition.

High OUR values are due to readily biodegradable COD (rbCOD) and ammonia oxidation 
at aeration initiation



Monitoring of NH4
+-N , OUR and DO profiles during alternating 

anoxic/aerobic cycles
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The OUR level was both affected by organic and ammonium nitrogen content 



Monitoring of NH4
+-N , OUR and DO profiles during alternating 

anoxic/aerobic cycles in low ammonium-N loads
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The OUR level was both affected by organic and ammonium nitrogen content 



Dynamic aerobic 
phase control by 
OUR biosensor
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Conclusions
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Positive impacts of implemented ICA (1/2)

✓ Optimization of control parameters in activated sludge systems.

✓ The in-situ ammonium-N, pH, nitrate-N and ORP sensors eliminates internal and
external disturbances.

✓ Optimal control adjustment of nitrification and denitrification cycle period
lengths.

✓ Intermittently aerated and fed (IAF) activated sludge systems improve the
biological processes and minimize the operational costs.

✓ A novel membrane bioreactor achieves excellent effluent quality.

✓dpH/dt and dORP/dt first derivatives can be used to develop a control strategy
around the identification of the completion of nitrification and denitrification.

✓OUR biosensor can be successfully used to supervise dynamically the aeration
period.
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Positive impacts of implemented ICA (2/2)

▪ Controlled DO level in the region of 1.5-3 mg L-1 secured the complete 
oxidation of ammonium nitrogen and the total nitrogen removal 
improvement.

▪ Energy savings are achieved through aeration reduction.
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✓ Benefits of cascade control:



Filtration process in MBR operation

✓ Online TMP monitoring is an effective tool to detect the membrane fouling
grade in order to apply the appropriate cleaning method.

✓ The most optimal cleaning method was suggested to be a suitable combination
of both backwash flow and air-flow rate in a long-term to face reversible fouling
problems.

✓Regarding irreversible fouling, extensive chemical cleaning with NaOCl and citric
acid solution can restore membrane efficiency.

✓The anoxic/aerobic phase duration ratio increase led to elevated membrane
fouling rate under intermittent aeration and feeding conditions.
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Novelty

• Optimization in process control of an intermittently aerated and fed (IAF)
activated sludge system was performed, applying real time control strategy,
using in-situ ion selective electrodes (ISE) NH4

+-N and NO3
--N sensors.

• pH, οxidation-reduction potential (ORP) sensors and Oxygen Uptake Rate
biosensor were proved to be effective in order to control nitrification and
denitrification processes.

• For the first time air flow rate was controlled by an ammonium-based cascade
modification.

• For the first time an integrated, sophisticated control system was developed to
supervise and control simultaneously both biological nutrient removal processes,
membrane fouling and filtration process applied in an IAF-MBR system.
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