Epүaotnpiaká Өźцата

Aофа入тікá Y入ıкá［ү］

Eıoaү（uүıká

 ó入a та סорика́ u入ıкá．
 tnv aпорákрuvon tou фортíou．
 параן ह́vouoa парацо́рфшon．
To qaivópevo autó opeíhetal otn un eגaotikń oupाepipopá tnc

 aıtía tou qaivopévou tou au入akiáopato̧ tav od̃ootpøpátav to
 обоотра́ן＿атос．

EıoaүलүIká

Eпı甲аvєıaкȩ́ парацорфผ́бєıৎ

Паранорфшо\｜иóтпта каı паранદ́vouoa паранóрфшon

 фортícov．

 inç парацо́pфшonç катá Marshall．

Параце́vouoa парацо́ppшon：

 оишпєрь甲ори́）．
 параио́рфшоп．
2．Me tnv anouákpuvon Tnc táonc éva uépoc inc пapauópфшoņ avaipeítal（Eגaotikí параио́pф由on）．
3．Мє Tnv пápō̃o tou xpóvou μ époc iņ параио́pфюoņ

І६ळठ̄ов入аотіки́ бuрпєріфорá абфа入тоці́үиатоя

 in סokıuń Marshall．

$>$ H quotóOEio Marshall
＞H пороро́рфшon Marshall
$>$ To nooootó TんV Kevóv

$>$ То поооото́ Tov kevóv поu yéuloav ue áo甲a入to－VFA

		Mévos $\boldsymbol{\kappa} / \boldsymbol{\varphi}$	Bapús κ／φ
	2×35	2x50	2x75
（lb）	3.3 （750）	5.3 （1200）	8.0 （1800）
Парацо́р甲шоך，mm	20－4．5	20－4．0	20－3．5
Kevá aépos，\％	3－5	3－5	3－5
$\dot{\alpha} \sigma \varphi \alpha \lambda \tau 0, \mathrm{VFA}, \%$	70－80	65－78	65－75
K $\varepsilon v \alpha ́ ~ \sigma \tau о v ~ \sigma к \varepsilon \lambda \varepsilon \tau o ́ ~ \tau \omega v ~$ $\alpha \delta \rho \alpha v ต ́ v$（VMA），\％			
	Мદ́ $\gamma \varepsilon$ Өо кобкі́vou，mm	$\underset{\%}{\text { E } \lambda \alpha ́ ⿱ ㇒ 木 刂 1 \sigma \tau o ~ V M A ~}$	
	63	9.0	10.0
	50	9.5	10.511 .5
	37.5 25	10.0 11.0	$\begin{array}{ll} 11.0 & 120 \\ 120 & 13.0 \end{array}$
	19	120	13.014 .0
	125	13.0	$14.0 \quad 15.0$
	9.5	14.0	$15.0 \quad 16.0$
	4.75 2.36	16.0 19.0	$\begin{array}{ll} 17.0 & 18.0 \\ 20.0 & 21.0 \end{array}$
	1.18	21.5	$22.5 \quad 23.5$

ミxєठıаотıкá крıтńpıa xapaктnpıotıкம́v Iঠ̄оти́тшv Marshall

©okıjń Marshall

 Marshall.

 tou kal tinv avęktikótntá tou oto xpóvo.

Sokjuń Marshall:

Zuokeuń Marshall

©okıjń Marshall

H unxaví autópaiņ סокıuńৎ otaӨॄро́tnią Marshall
 kal рعuotótntac tav aopaגtikóv uyүuátov. H unxaví aпотèéíal
 áva eүкápola докó, nגєктрокıvnтípa каı évav atépuova поu

 inc пnákac yivetal ypóvopa $\mu \varepsilon ́ o \omega$ tov aviotoixov пスńkipov otn

Zuokeuń Marshall $\mu \varepsilon \mu \beta$ ávñs. 2

©okןuń Marshall

Autópatoc бupпukv由тńs Marshall

©ok|uń Marshall

Mńtpa oupnukvตtńs Marshall

©okjuń Marshall

- Мদ́тра отаӨєро́тๆтаऽ (stability mould)
- ¿úбiqua катаүрари́s

© okípıa otn ouokeuń Marshall

©okıjń Marshall

 ס̄akтú入ıos Marshall ń kєøa入ń Marshall－kal unókeıvial oe Oスíwn．

 то́te то ঠокі́ріо．

Zuokeuń Marshall

 проб̇ıүрафф́v عíval:

> H коккоиетріки́ ঠıaßáOuıon tav aঠ̃pavóv
> 0 иદ́үіотос ко́кко̧ tav ad̃pavóv
 uíyuo

Túnos aoథá入tou

H okגnpótnia tnc aopóגtou kaӨopí̧દtal anó in عוoסutikótnta kal to onusío uáh θ ©onc autíc．

 To Yeyovóc autó opéhectal otinv aúદnon tou मétpou סuokapuíac tou aOpa入topíyuatos．
 параре́vouoo парацо́рфюon β рє́Өnкє о́тı єívaı перıооо́тєро

H xprion тропопоınuévnc aoфáגtou ße入tióveı tnv oupперı甲орá

Kоккорєтрıки́ סıaßáӨpıon t由v aס̄pavఱ̃v

Autó opعínctal oto vevovóc óti ota прळ́ta oe avtí̈zon $\mu \varepsilon$ Ta

 oúpпえє६п tav ad̃pavóv.

 ці́үцатоৎ оє парацц́vouסa парацо́рфюоп．

Ava入oyía xovōpóкоккढv／入eптóкоккшv aठ̄pavóv ото $\boldsymbol{\mu} \mathbf{i ́ y}$

Ooo n ava入oyía xovōpókokkav／גeптókokkav ad̃paváv ото

 параро́рфшоп tou aофа入тоцíyиатоৎ．

Епí入oүos

 одоотррии́т́тv.

 параио́рршоп:

* Eưvezon aopaהтоиíyparos $\mu \varepsilon$ típnon anairíozav kal прод́laypaqúv
* Еौеухос иі́үнатос ое параио́ррюоп
 тропопопnuévav aopó̂trav ń aúEnon tou nоооотоú xovōpókokkav ad̃pavóv.

Tと́入oc evótntac
 Euxapıoтळ́ үıa tnv прооoxń oac!

