MICHIGAN STATE

Medical Instrument Electrical Safety

- Significance of safety
 - 10s of thousands device related patient injuries in U.S every year.
 - Even a single harmful event can lead to significant damage in terms of reputation and legal action.
 - Different level of protection required as compared to household equipment.
 - Minimum performance standards introduced in 1980s –relatively new practice.

ECE 445: Biomedical Instrumentation

Ch14 Safety. p. 1

MICHIGAN STAT

Susceptibility Parameters

Susceptibility Factors

- Shock (stimulation) duration
 - Fibrillation current is inversely proportional to the shock pulse duration
 - longer pulses \rightarrow lower current does damage
- Body weight
 - Fibrillation current increases with body weight
 - 50 mA RMS for 6 Kg dogs
 - 130 mA RMS for 24 Kg dogs
- Points of entry
 - Skin impedance varies: 15 kΩ to 1 MΩ
 Resistive barrier that limits current flow
 - Tissue (beneath skin) has low impedance

Macro vs. Micro Shock

- Macroshock
 - externally applied current
 - spreads through the body so less concentrated
- Microshock
 - applied current is concentrated at an invasive point
 - accepted safety limit is only 10 μA
 - generally only dangerous if current flows through the heart

Ch14 Safety. p. 5

ICHIGAN STAT

Macroshock Hazards

- Most probable cause of death due to macroshock
 - ventricular fibrillation
- Factors
 - skin/body resistance
 - design of electrical equipment
- Skin and body resistance
 - dry skin has high resistance (~15k-1M ohm)
 - limits current through body
 - wet/broken skin has low resistance (~1% that of dry skin)
 - internal body resistance
 - ~200 ohm for each limb
 - ~100 ohm for trunk of body
 - resistance between two limbs = ~500 ohm
 - procedures that bypass skin resistance can be dangerous
 - example: gel electrodes, surgery, oral/rectal thermometers

MICHIGAN STATE

Microshock Hazards

Main causes

leakage currents in line-operated equipment

- undesired currents through insolated conductors at different potentials
- differences in voltage between grounded conductive surfaces
- Leakage currents
 - if low resistance ground is available → no problem
 - if ground is broken
 → current flows through patient

MICHIGAN STA

Conductive Paths

- Direct connection to an internal organ (during measurement or surgery) makes patients susceptible to mircoshock
 - External electrodes of temporary cardiac pacemakers
 - Electrodes for intracardiac measuring devices
 - Liquid filled catheters placed in the heart
 - liquid filled catheters have much greater resistance than electrodes
- Worst !danger!
 - currents flowing through the heart
- Electrode current density
 - experiments suggest smaller electrode are more dangerous

Power Distribution

ECE 445: Biomedical Instrumentation

Ch14 Safety. p. 10

Electrical Isolation

• devices that break ohmic continuity of electric signals between input and output of the amplifier

• different supply voltage sources and different grounds on each side of the barrier

Barrier isolation

- transformer, optical or capacitive isolation
 - no current across barrier
- Implants
 - proper insulation required to prevent microshocks

ECE 445: Biomedical Instrumentation

Ch14 Safety. p. 11

