Full Bridge Inverter (Single Phase) -

 Autonomous Square Wave Operation (50 Hz)Maria Basio

AM: 60604

Theory

- Full bridge inverter is a topology of H-bridge inverter used for converting DC power into AC power. The components required for conversion are two times more than that used in single phase Half bridge inverters. The circuit of a full bridge inverter consists of 4 diodes and 4 controlled switches as shown below.
- The general concept of a full bridge inverter is to alternate the polarity of voltage across the load by operating two switches at a time. Positive input voltage will appear across the load by the operation of T1 and T2 for a half time period. The polarity of voltage across load will be changed for the other half period by operating T3 and T4.

The circuit arrangement for the full-bridge inverter is shown in Figure.

i) Calculate the V_{s}, when $V_{o, s}=230 \mathrm{~V}$

$$
V_{o, s}=\frac{4 V_{s}}{\sqrt{2} \pi}=\frac{2 \sqrt{2} V_{s}}{\pi}=>V_{s}=\frac{\pi V_{o, s}}{2 \sqrt{2}}=\frac{3,14 \cdot 230}{2 \sqrt{2}}=255,3 \mathrm{~V}
$$

ii) Calculate the active, reactive, and the apparent power at 50 Hz

$$
\begin{aligned}
& \mathrm{I}_{1, \mathrm{rms}}=\frac{V_{o, L}}{\sqrt{R^{2}+X_{L 1}^{2}}}=23 \mathrm{~A} \\
& P_{1}=I_{r m s}^{2} \cdot R=5290 \mathrm{~W}
\end{aligned}
$$

$Q_{1}=I_{r m s}^{2} \cdot X_{L 1}=166 \mathrm{VAr}$
$S_{1}=\sqrt{P_{1}^{2}+Q_{1}^{2}}=5293 \mathrm{VA}$

iii) Calculate the THD $_{v}$ (\%)

$\mathrm{THD}_{\mathrm{v}}=\frac{V_{o H, r m s}}{V_{0, s}} \cdot 100 \%=\frac{\sqrt{V_{o}^{2}-V_{o, s}^{2}}}{V_{o, s}} \cdot 100 \%=\sqrt{\left(\frac{V_{o}}{V_{0, s}}\right)^{2}-1} \cdot 100 \%=47,9 \%$

iv) Calculate the THD_{i} (\%) for $n_{\max }=21$.

$>\underline{\mathrm{n}-50 \mathrm{~Hz} \text { Equivalent Circuit }}$
$I_{n . r m s}=\frac{V_{o, n}}{\sqrt{R^{2}+X_{L n}^{2}}}=\frac{V_{o, s}}{n \sqrt{R^{2}+X_{L 1}^{2}}}$

$$
V_{o, n}=\frac{V_{o, s}}{n}
$$

$I_{o, r m s H}=\left[\sum_{n=3}^{21} I_{n, r m s}^{2}\right]^{2}=10,4 \mathrm{~A}$
$\mathrm{THD}_{\mathrm{i}}(\%)=\frac{I_{o, H}}{I_{o, S}} \cdot 100 \%=45,2 \%$

$$
\begin{array}{|ll}
\hline I_{3, r m s}=7,7 \mathrm{~A} & I_{13, r m s}=1,6 \mathrm{~A} \\
I_{5, r m s}=4,5 \mathrm{~A} & I_{15, r m s}=1,4 \mathrm{~A} \\
I_{7, r m s}=3,2 \mathrm{~A} & I_{17, r m s}=1,2 \mathrm{~A} \\
I_{9, r m s}=2,5 \mathrm{~A} & I_{19, r m s}=1 \mathrm{~A} \\
I_{11, r m s}=2 \mathrm{~A} & I_{21, r m s}=0,1 \mathrm{~A}
\end{array}
$$

v) Calculate $u_{0}(t), i_{0}(t), i_{s}(t)$

Figure shows the voltage and current waveforms in the circuit.

> $z=\frac{L}{R}=\frac{1 m}{10} \sec =0,1 \mathrm{msec}$

- $I_{p}=\frac{V_{s}}{R}=25,5 \mathrm{~A}$

vi) Calculate the I_{s}

$$
\begin{gathered}
I_{o, r m s}=\sqrt{I_{o s, r m s}^{2}+I_{o H, r m s}^{2}}=25,2 \mathrm{~A} \\
P_{o}=I_{o, r m s}^{2} \cdot R=6350,4 \mathrm{~W} \\
P_{o}=V_{S} \cdot I_{S}=>I_{S}=\frac{P_{o}}{V_{S}}=24,9 \mathrm{~A}
\end{gathered}
$$

