ANALYSIS OF POWER ELECTRONIC CONVERTERS DC/AC

- VOLTSIS GEORGIOS
- KOSTOPOULOS GEORGIOS
- ROUSSOS IOANNIS

exercises 25, 26

ΑΣΚΗΣΗ 25

For the inverter of the adjacent figure, design the ignition pulses of the transistors, so that the output voltage of the inverter consists of rectangular pulses of 120° width

Theoretical concepts:

- We have 2 states that produce voltage at the output in which two diagonal transistors close at the same time.
- We have 2 redundant states V0 = 0 where in practice we get the same result. We use both states, so that all transistors have the same thermal stress. Otherwise <<hotspots>> will be created.
- Deadtime mode is the period of time during which no transistor conducts to make the transition from one state to another (one of 4) without a short circuit.
- Each transistor opens and closes once in each period in order to simplify the implementation of the digital pulsation circuit or the programming of the microcontroller.
- Each transistor opens and closes once in each period in order to simplify the implementation of the digital pulsation circuit or the programming of the microcontroller.
- The interpolation of zeros (V0 = 0) allows us to change the Rms value of the output voltage.
- With 90 degrees symmetry avoid harmonic components.

Transistor conduction T1, T2

When transistors T1, T2 are pulsed, the voltage on load is V0 = 0 V, regardless of the current flow.

Transistor conduction T1,T4

When transistors T1, T4 are pulsed, the voltage on load is V0 = 100V

Transistor conduction T3,T4

When the transistors T3, T4 are pulsed, the voltage on load is V0 = 0V, regardless of the load current flow.

Transistor conduction T2,T3

When transistors T2, T3 are pulsed, the voltage on load is V0 = -100V

According to what has been said before, the conduction intervals in a period are the following:

- Interval 1: pulses T1, T2 from 330 to 30 degrees (0V)
- Interval 2: T1, T4 are pulsed from 30 to 150 degrees (100V)
- Interval 3: pulses T3, T4 from 150 to 210 degrees (0V)
- Interval 4: T2, T3 are pulsed from 210 to 330 degrees (-100V)
- Between 2 consecutive intervals is the dead time, in which T1, T2, T3, T4 are open.

All the previous lead to this type o Load Voltage

Waveform of Load voltage

Pulse on T4's base

EXERCISE 26

For the inverter of the previous example, the voltage and current waveform are shown above. What are the waveforms of current of the semiconductor devices?

Waveform of voltage

and

Waveform of current

0 voltage and negative output current -> zero power (V0 * 10 = 0), there is no energy transfer. In conduction: D1,T2

Positive voltage and negative current -> negative power(V0 * I0 < 0), energy is transferred from load to source. In conduction: D1,D4.

Positive voltage and positive current-> positive power (V0 * I0 > 0), energy is transferred from source to load. In conduction : T1,T4.

0 voltage and positive output current -> zero power (V0 * I0 = 0), there is no energy transfer. In conduction : T4,D3.

Negative voltage and positive output current-> negative power (V0 * I0 < 0), energy transferred from load to source. In conduction : D2,D3.

Negative voltage and negative output current -> positive power (V0 * I0 > 0), energy is transferred from source to load. In conduction : T2,T3.

0 voltage and negative output current-> zero power (V0 * I0 = 0), there is no energy transfer. In conduction : D1,T2.

T1's current

T2's current

T3's current

T4's current

D1's current

D2's current

D3's current

D4's current

