
IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 24, NO. 11, NOVEMBER 2009 2417

Optimized Design of Stationary Frame Three Phase
AC Current Regulators

D. G. Holmes, T. A. Lipo, B. P. McGrath, and W. Y. Kong

(Invited Paper)

Abstract—Current regulation plays an important role in modern
power electronic ac conversion systems. The most direct strategy to
regulate such currents is to use a simple closed loop proportional-
integral (PI) regulator, which has no theoretical stability limits as
the proportional and integral gains are increased, since it is only
a second order system. However, pulsewidth modulation (PWM)
transport and controller sampling delays limit the gain values that
can be achieved in practical systems. Taking these limitations into
account, this paper presents an analytical method to determine the
best possible gains that can be achieved for any class of practical
linear ac current controller. The analysis shows that the maxi-
mum possible proportional gain is determined by the plant series
inductance, the dc bus voltage and the transport and sampling
delays, while the maximum possible integral gain is determined
primarily by the transport and sampling delays. The work is ap-
plicable to stationary frame PI regulators, stationary frame con-
trollers with back electromotive force compensation, stationary
frame P+resonant (PR) controllers, and synchronous d–q frame
controllers, since they all have identical proportional and integral
gains that must be optimized for any particular application.

Index Terms—Back electromotive force (EMF) compensation,
current regulation, feed forward, P+resonant (PR), proportional
integral (PI), stationary frame, synchronous d–q frame.

I. INTRODUCTION

CURRENT regulation plays a key role in modern power
electronic ac conversion systems such as variable speed

drive systems, reactive power controllers and active filter sys-
tems [1], [2]. High performance drive systems, for example,
require control strategies which directly command motor cur-
rents rather than just specifying motor terminal voltages, since
precise control of motor currents is a mandatory prerequisite for
accurate torque and speed control [3], [4]. For uninterruptible
power supplies [5], high bandwidth current control is essential
to achieve good dynamic response, when the system supplies
nonlinear loads such as diode rectifiers, while for grid connected
systems [2], accurate current control is important to effectively
regulate real and reactive power flow between the grid and the
inverter. However, irrespective of the application, the essential

Manuscript received March 25, 2009. Current version published November
18, 2009. This work was supported by the Australian Research Council under
Project DP0666176. Recommended for publication by Associate Editor J. Sun.

D. G. Holmes, B. P. McGrath, and W. Y. Kong are with Monash
University, Molbourne, Vic. 3800, Australia (e-mail: grahame.holmes@
eng.monash.edu.au; brendan.mcgrath@eng.monash.edu.au; wang.kong@eng.
monash.edu.au).

T. A. Lipo is with the University of Wisconsin, Madison, WI 53201-0413
USA (e-mail: lipo@eceserv0.ece.wisc.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TPEL.2009.2029548

Fig. 1. Current regulated three-phase VSI connected to a back EMF type load
(induction motor) through a series impedance.

concept of a current regulator is always to compare a measured
load current against a reference target, and use the difference
(“error”) between these two quantities to adjust the switching
of the associated power electronic converter so as to minimize
this tracking error. Specifically, the primary goals of a current
regulator can be summarized as [6], [7]:

1) minimize the steady-state magnitude and phase error,
preferably achieving zero steady-state error;

2) accurately track the commanded reference current during
transient changes. This requires a control system with as
high a bandwidth as possible, to achieve the best possible
dynamic response;

3) limit the peak current, to avoid overload conditions;
4) minimize low order harmonics in the load current, and

compensate for dc-link voltage ripple, deadtime delays,
semiconductor device voltage drops and other practical
second order effects associated with the inverter operation.

Achieving these goals, particularly for ac current regulators,
has proved to be very challenging problem for several decades,
and has been the subject of substantial research effort throughout
this period [2], [6], [7].

Fig. 1 shows the essential structure of a current regulated
three phase ac system, driven from a standard dc–ac voltage
source inverter (VSI) into an induction motor load [12]. While
simple, this structure is a very effective representation of the vast
majority of ac current regulated applications [7]. For the current
regulator itself, there are two major alternative approaches in
common use, as follows.

Nonlinear current regulators use the instantaneous current
error to directly control the VSI switching states, by explicitly
switching the converter phase legs as the current error(s) exceed
predefined “hysteresis” boundaries that are located around the
target reference. This class of controller has the advantage of
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implicit peak current regulation, very rapid dynamic response,
and direct compensation for second order inverter distortion
effects, but it can have a highly variable switching frequency and
must be matched to any particular load system. Many variations
of this strategy have been proposed over the years to improve
its performance in a multitude of ways [7], [11].

Linear current regulators operate by calculating the low-
frequency averaged voltage that minimizes the current error,
and then commanding a VSI modulator to implement this volt-
age over the pulsewidth modulation (PWM) switching period
as an equivalent volt-second switched waveform. This process
decouples the error correction and the inverter modulation func-
tions. However, it is important for this class of controller that
the PWM switching current ripple is not included in the mea-
sured current error using techniques such as synchronous sam-
pling, to achieve optimum performance. The most well known
of these strategies are the stationary frame proportional-integral
(PI) [7], stationary frame P+resonant (PR) [9], synchronous d–q
frame [6] controllers, and predictive deadbeat controllers [15].
The focus of this paper is this second class of current regulator.

For the simple first-order type system shown in Fig. 1, classi-
cal linear control theory suggests that simple PI control should
be quite effective as a regulator, with the proportional action
managing the high frequency system response and the integral
control minimizing the steady-state error. In fact, these systems
do achieve excellent dc current control, with minimal steady-
state error because of the (almost) infinite dc gain provided by
the integral control action. However, in contrast their ac current
control performance is generally unsatisfactory [8], because the
PI controller gains cannot be set high enough to avoid a delayed
tracking response, with a consequential steady-state error [9].
The usual strategy to solve this limitation is to transform the
current regulation process into the synchronous d–q rotating
frame for a three-phase system [6], or use a PR controller as a
stationary frame equivalent [9], although in principle it is not
immediately obvious why a simple PI controller is not an ade-
quate solution. Simple linear analysis identifies a PI regulated
system as second order with no theoretical stability limits as the
gains are increased. However, since it is well established that
system instability inevitably eventually occurs as the PI gains
are increased [12], clearly the PI gains of practical systems must
be limited by second order effects. But identification of these
effects, and hence identification of the boundaries of the practi-
cal achievable response of a simple PI controller for ac current
regulation, have to date not been well reported in the literature.

This paper presents an analytical basis to optimally design the
gains of practical closed loop ac current regulators. It identifies
PWM transport and digital sampling delay as the main second
order factors that limit these gains, and shows how these limita-
tions influence both reference tracking and back electromotive
force (EMF) disturbance errors. From this understanding, back
EMF feed forward compensation is proposed as a way in many
cases of achieving satisfactory stationary frame PI regulator
performance without requiring the use of more advanced regu-
lation strategies. The outcome of the work allows a considered
design choice to be made as to whether a simple stationary frame
PI regulator or a more sophisticated current regulation concept

should be used to achieve a particular level of performance for
any specific application.

II. AC CURRENT REGULATION USING AN IDEALIZED

STATIONARY FRAME PI REGULATOR

A well-established strategy to simplify the analysis of a power
electronic conversion system is to replace the power stage with a
linear amplifier that produces the same output as the commanded
volt-second average of the switched output over each PWM
(half) period [7]. With this simplification, the voltages across
the three phases of the motor load shown in Fig. 1 can be written
as

v̂as = v̂an − v̂sn

= Rsia +Ll
dia
dt

+
Lm

Lm + Llr

d

dt
λar =Rsia + Ll

dia
dt

+ eas

(1)

v̂bs = v̂bn − v̂sn

=Rsib +Ll
dib
dt

+
Lm

Lm + Llr

d

dt
λbr =Rsib + Ll

dib
dt

+ ebs

(2)

v̂cs = v̂cn − v̂sn

=Rsic +Ll
dic
dt

+
Lm

Lm + Llr

d

dt
λcr = Rsic + Ll

dic
dt

+ ecs

(3)

where v̂ represents the average value of the switched voltage v
over a half carrier period, “s” is the neutral point of the motor
“stator” windings, “n” is the dc bus center point (i.e., the inverter
“neutral” point), Ll is the machine “transient” inductance, given
by

Ll = Lls +
LlrLm

Llr + Lm
(4)

with Lls , Llr , and Lm being the stator leakage, rotor leakage,
and magnetizing inductances, respectively, and exs is the back
EMF of phase “x” created by the rotating rotor flux linkages,
defined by

exs =
Lm

Lm + Llr

d

dt
λxr . (5)

Equations (1)–(3) are coupled by v̂sn , which appears in all
three equations. Summing these equations gives

v̂an + v̂bn + v̂cn − 3v̂sn = Rs(ia + ib + ic)

+Ll
d

dt
(ia+ib+ic)+

Lm

Llr+Lm

d

dt
(λar + λbr + λcr ). (6)

For a three wire system ia + ib + ic = 0. Furthermore, by
Gauss’ Law the total rotor flux linking to the stator also equals
zero, so that λar + λbr + λcr = 0. Hence (6) reduces to

v̂sn =
1
3
(v̂an + v̂bn + v̂cn ). (7)



HOLMES et al.: OPTIMIZED DESIGN OF STATIONARY FRAME THREE PHASE AC CURRENT REGULATORS 2419

Fig. 2. Average value model block diagram representation of Fig. 1.

If the sum of the commanded average inverter voltages v̂an +
v̂bn + v̂cn equals zero, substituting (7) into (1) gives

v̂as = v̂an = Rsia + Ll
dia
dt

+ eas (8)

which is an independent current regulator for phase “a” only.
Clearly, a similar result can be obtained for phases “b” and
“c” under the same voltage summation constraint. Hence, any
two of the three phase currents can be independently regulated
provided that the commanded third phase voltage for the inverter
is made equal to the negative of the sum of the two controlled
phase voltages for each PWM average (typically half carrier)
period, i.e., for example v̂cn = −(v̂an + v̂bn ).

It should be noted that this control constraint is independent
of any common mode voltage that may be added to the PWM
commanded voltage references after the control loop calcula-
tion, to either increase the inverter voltage headroom, using
third harmonic injection or a space vector offset component,
or to achieve some other PWM harmonic advantage, such as
offered by discontinuous PWM.

The plant transfer function for this system is found by taking
the Laplace transform of (8), to give

Gp(s) =
1
R

(
1

1 + sTp

)
(9)

where Tp = L/R, and R and L include both the load resistance
Rs and load inductance Ll , and the resistance and inductance of
the converter switches and feeder cables to the motor (respec-
tively). Fig. 2 shows the resulting closed loop regulator for each
independent controlled current, where I∗(s) is the commanded
current input, ∆I(s) is the current error, Vs(s) is the “average”
commanded voltage fed to the PWM modulator and I(s) is the
regulated current output. Note that the Vdc gain provided by the
PWM modulator has been integrated into the controller block
function Gc(s), and the load back EMF effect has been modeled
as a disturbance input EMF(s).

The overall closed loop transfer function for this system is
given by

I(s) = I∗(s)
Gc(s)Gp(s)

1 + Gc(s)Gp(s)
− EMF(s)

Gp(s)
1 + Gc(s)Gp(s)

(10)
where the function of the controller Gc(s) is to match the output
I(s) to the commanded input I∗(s) as closely as possible, while
minimizing any error caused by the back EMF disturbance. In
principle, this is achieved by making the gain of the forward con-
troller block Gc(s) as large as possible, since the plant transfer
block Gp(s) is defined by the primary plant equipment and is
generally unchangeable for any particular application.

It is instructive to develop a transfer function for the current
error ∆I(s) as a function of the control and disturbance inputs.
This can be readily developed as

∆I(s) =
I∗(s) + EMF(s)Gp(s)

1 + Gc(s)Gp(s)
= ∆II (s) + ∆ID (s).

(11)
This transfer function has two elements-–a closed loop track-

ing error sensitivity given by

EI (s) =
∆II (s)
I∗(s)

=
1

1 + Gc(s)Gp(s)
(12)

which identifies the ability of the plant to follow the commanded
current reference, and a closed loop disturbance rejection error
sensitivity given by

ED (s) =
∆ID (s)
EMF(s)

=
Gp(s)

1 + Gc(s)Gp(s)
(13)

which identifies the plant sensitivity to a back EMF disturbance.
The ratio of disturbance to tracking error sensitivity is given by

ED (s)
EI (s)

=
I∗(s)

EMF(s)
= Gp(s) =

1
R

(
1

1 + sTp

)
(14)

which is independent of the controller block Gc(s), and depends
only on the plant load resistance R and the plant operating fre-
quency (i.e., disturbance error falls away compared to tracking
error as the reference frequency increases above the plant time
constant Tp ). To achieve minimal overall steady-state error, both
EI (s) and ED (s) need to approach zero, which for a given plant
requires the magnitude of the controller function Gc(s) to be
made as large as possible.

The forward transfer block Gc(s) for a simple PI controller
is defined by

Gc(s) = kpVdc

(
1 +

1
sτi

)
(15)

where kp is the proportional gain, and τi is the reciprocal of
the integrator gain (expressed as a time constant in accordance
with normal PI controller convention). While the magnitude of
Gc(s) is essentially infinite at dc because of the 1/sτi term, it
rolls down to kp at the integrator breakpoint frequency. Hence, to
use this controller as an ac current regulator, kp should be made
as large as possible and τi should be made as small as possible,
to maximize the magnitude of Gc(s) (i.e., the controller band-
width) up to the maximum system operating frequency and thus
minimize the reference and tracking errors.

The overall system forward path open loop gain is given by

Gc(s)Gp(s) =
kpVdc

Rτi

1 + sτi

s(1 + sTp)
(16)

which has two poles located at the origin and at −1/Tp , and a
zero located at −1/τi by the integrator gain. Consequently, the
system phase response has an asymptote at -90◦ for high fre-
quencies, and hence the system is unconditionally stable for any
value of controller gain kp . Fig. 3 confirms this conclusion by
presenting the simulated response of a controller with very high
gain tracking a target ac current reference, for the test system
with parameters as defined in Table I. It can be seen in this figure
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Fig. 3. Simulated response of ideal average value model ac current system
with PI regulator, kp = 1, τi = 0.0002, 80 Vrm s back EMF.

TABLE I
TEST SYSTEM CIRCUIT PARAMETERS

that the regulated current has negligible magnitude and phase
error compared with the commanded target, with no suggestion
of an unstable transient response despite the relatively high pro-
portional gain that was required to achieve this performance. Of
course, it is well known that this idealized response cannot be
achieved in practice, since the effects of transport and sampling
delays mean that any real system response becomes unstable
well before the proportional gain is high enough to achieve this
level of performance, as will now be explored.

III. ANALYSIS OF TRANSPORT AND SAMPLING DELAYS

Most modern converter control systems use digital proces-
sors to implement the modulation process, implementing some
variation of asymmetrical regular sampled PWM [14]. Fig. 4
shows the essential concept of PWM for a single phase leg,
where the commanded phase leg voltage reference is frozen at
the start of each half carrier period ∆T/2 and compared against
a triangular carrier “ramp” using a digital counter/comparator
circuit that toggles the phase leg output as the ramp crosses
the sampled command voltage. Intrinsically, this process intro-
duces a quarter-carrier-period transport delay into the control

Fig. 4. Transport and sampling delay caused by the PWM process and digital
controller sampling/computation.

loop, since the volt-second contribution of the switching process
is delivered over the half-carrier period that follows the time in-
stant at which the required volt-seconds were commanded by
the current regulator for that period.

Practical digital controllers also require nonzero time to com-
plete their control loop calculation after sampling the measured
current. While this delay may be small for a high speed digi-
tal controller [i.e., a digital signal processor (DSP)], the mea-
sured current should be sampled exactly at the transition of each
half-carrier interval to avoid sampling the switching ripple cur-
rent as well as the underlying fundamental current (this is the
time instant when the volt-second contribution of the phase leg
switched output exactly matches the volt-second contribution
commanded by the controller at the start of the half-carrier pe-
riod). This introduces a further half-carrier sampling delay into
the control loop. However, if the current is not synchronously
sampled in this way, in most cases the measurement errors intro-
duced will usually compromise the system performance much
more seriously than the effects of this additional sampling delay.

Fig. 4 shows how sampling and transport delays, thus com-
bine to create an overall 0.75 carrier period delay Td = 0.75∆T
in the control loop. These delays can be incorporated into the
system model either using a z-transform approach, or by simply
including an e−sTd time delay block in series with the forward
path controller, as shown in Fig. 5. Fig. 6 presents a Bode plot
showing the effect of these delays on the forward path open loop
gain for the test system described in Table I. Note that for this
example, the integrator time constant has been set to 1.72 ms (ap-
proximately a decade above the plant time constant of 16.67 ms).
From Fig. 6, it can be seen how the ideal forward path phase
response approaches −180◦ above the plant pole breakpoint
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Fig. 5. Average value model block diagram representation of Fig. 1 including
the effects of sampling and transport delay.

Fig. 6. Magnitude and phase Bode plot of open loop forward path loop gain
for ideal controller, transport delay only, transport and sampling delay τi =
1.72 ms.

frequency of 9.5 Hz, and then tracks back to the −90◦ asymp-
tote as the frequency continues to increase and the integrator
zero influence becomes significant. However, when transport
and sampling delays are taken into account, the forward path
phase response never reaches the −90◦ asymptote despite the
integrator zero, but instead lifts up briefly from −180◦ and then
falls back to track toward −∞◦, as the frequency increases. The
impact of this effect is considerable on the practical forward
controller gain that can be achieved, since it is now possible to
have an open loop phase shift exceeding −180◦ as the loop gain
passes through unity (0 dB), and this is well known to produce
an unstable system. The two magnitude plots shown in Fig. 6
show how increasing kp simply raises the frequency response
characteristic without changing its shape, from which it can be
immediately argued that the maximum achievable value for kp

is the value that sets the open loop gain to unity as the open loop
phase reaches −180◦ + φm , where φm is the required stability
phase margin (classical control suggests a phase margin of 40◦

is an appropriate target to achieve an acceptably damped system
response). However, determining the precise value of kp and
then τi needs further analysis.

IV. OPTIMIZED PI STATIONARY FRAME CONTROLLER GAINS

The key to determining the optimized stationary frame PI
controller gains is found by more carefully examining the phase
response curve shown in Fig. 6. The target objectives are to

maximize the proportional gain kp and then to minimize the
integrator time constant τi (maximize the integrator gain), while
taking into account the effect of sampling and transport delay
and still retaining a phase margin of φm as the forward path
open loop gain tracks through unity.

From Fig. 6, it is clear that maximum proportional gain is
best achieved if the system crossover frequency ωc (i.e., the
frequency at which unity gain occurs with the required phase
margin φm ) is made as high as possible. Minimizing the inte-
grator time constant then follows on accordingly.

Representing sampling and transport delay as an e−sTd time
delay in the forward path, the system open loop gain becomes

Gc(s)Gp(s) =
kpVdc

Rτi

(1 + sτi)e−sTd

s(1 + sTp)
. (17)

The phase angle of this forward path loop gain at the cross
over frequency ωc is given by (in radians)

� {Gc(jωc)Gp(jωc)}

= �
{

kpVdc

Rτi

(1 + jωcτi)e−jωc Td

jωc(1 + jωcTp)

}

= −π + φm

= tan(ωcτi)−1 − π/2 − ωcTd − tan(ωcTp)−1 . (18)

Almost invariably, the system cross over frequency will be
well above the plant pole frequency, and hence the angular
contribution of tan−1(ωcTp) will be approximately π/2. Thus,
from (18)

φm ≈ tan−1(ωcτi) − ωcTd (19)

which gives

ωc =
tan−1(ωcτi) − φm

Td
. (20)

From (20), the maximum value of ωc for a given φm clearly
occurs when tan−1(ωcτi) = π/2, so that

ωc(max) =
π/2 − φm

Td
. (21)

The maximum possible magnitude of kp can now be found
by setting the open loop gain at this value of ωc(max) to unity
using (17), which gives

kp =
Rτi

Vdc
ωc (max)

√√√√ (1 + ω2
c(max)T

2
p )

(1 + ω2
c(max)τ

2
i )

. (22)

If ωc(max)τi � 1 and ωc(max)Tp � 1, as is usually the case
for a typical ac current regulated system controlled by a PWM
inverter, (22) reduces to

kp ≈
ωc(max)L

Vdc
(23)

which is dependant only on the plant series inductance, the
cross over frequency (determined by the transport and sampling
delays) and the dc bus voltage. Finally, the integral time constant
τi can be minimized by making tan−1(ωc(max)τi) ≈ π/2 (say
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Fig. 7. Tracking and disturbance error for optimized PI stationary frame cur-
rent regulator kp = 0.58, τi = 1.72 ms.

85◦), which gives

τi ≈
10

ωc(max)
. (24)

Taken together, this strategy allows the optimized gain values
for any particular plant system to be deterministically calcu-
lated. Applying the approach to the test system described in
Table I gives controller gains of kp = 0.58 and τi = 1.72 ms for
a phase margin of φm = 40◦, with the resulting forward open
loop magnitude and phase responses as already shown in Fig. 6.

V. OPTIMIZED STATIONARY FRAME PI REGULATOR

PERFORMANCE

Once the controller gains have been optimized, the perfor-
mance of the regulator can be readily evaluated by looking
again at the tracking and disturbance errors as defined by (12)
and (13), respectively. Fig. 7 shows these errors as a function of
the frequency of the ac reference current. From this figure, it can
be seen how the errors at dc are essentially zero, because of the
almost infinite Gc(s) controller gain that occurs at dc, and then
increase as the target frequency increases and the magnitude
of Gc(s) correspondingly reduces. It can also be seen how the
tracking error increases more rapidly than the disturbance error,
because of the beneficial contribution made to the disturbance
error by the plant dominant pole defined in the plant transfer
function (9).

For the example system used in this paper, the error sensi-
tivities at the nominal reference target frequency of 50 Hz can
be calculated as 0.026 A/A for the tracking error, and 0.0042
A/V for the disturbance error. However, despite the fact that the
disturbance error sensitivity is smaller than the tracking error
sensitivity, for many ac current regulated systems the absolute
magnitude of the disturbance injection (i.e., the back EMF)
is substantially larger than the commanded reference current.
Thus, in most cases the actual magnitude of the disturbance
error will exceed the tracking error. For example, considering

the test system used in this paper, the 80 Vrms back EMF will
cause an absolute disturbance of ∆ID = 0.0042 ×

√
2 × 80 =

0.48Apeak while an 8Apeak commanded current will only cause
a tracking error of ∆II = 0.026 × 7.5 = 0.195Apeak . Hence,
the absolute current error caused by the back EMF disturbance
is more than twice the error caused by current reference track-
ing, and this is often the case in a practical ac current regulation
system. Fig. 10(a) and (b) illustrates this error response, by pre-
senting simulation and matching experimental results for the
test system when commanded to produce a 5Apeak , step chang-
ing to 7.5Apeak , 50 Hz ac sine wave current, without and then
with a back EMF disturbance present. From this figure, it can be
seen how the phase a fundamental error peaks at 0.195 A with-
out any back EMF present, but increases to nearly 0.5 A when
back EMF is introduced into the system. These results almost
exactly match the predictions based on the theoretical analysis
presented above, and clearly confirm that sampling and transport
delays are the dominant second order effects that constrain the
proportional and integral gains of a practical PI stationary frame
current regulation system. Furthermore, since the design strat-
egy outlined previously optimizes the PI controller gains to their
maximum possible achievable values for a given stability phase
margin, the transient responses exhibited by the controller as
shown in Fig. 10(a) and (b) will be the best that can be achieved
with this type of controller structure.

The experimental results were obtained using a standard lab-
oratory inverter controlled by a TI TMS320C240 digital sig-
nal processor operated with a center tapped 400 Vdc bus. The
load was a three phase inductor set with parameters as listed in
Table I, feeding into an 80 Vrms back EMF generated by a variac
transformer, so that the back EMF could be readily measured
and fed back to the controller to create the back EMF compen-
sation signal when required.

VI. REDUCTION OF BACK EMF DISTURBANCE ERROR USING

FEED FORWARD COMPENSATION

The analysis and results presented so far clearly illustrate the
central limitation of a stationary frame PI regulator for ac cur-
rent control—the proportional and integral gains are limited by
the effects of sampling and transport delays, and when these
gains are set to their maximum possible values as determined
by stability considerations, there will often still be some resid-
ual fundamental target tracking error depending on the ratio of
fundamental frequency to sampling frequency. The only way
to reduce this error is to either increase the system controller
gain at the fundamental reference frequency without affecting
its higher frequency response (which would compromise the
system stability), or to reduce the influence of at least one of the
factors that cause steady-state error, such as back EMF [16].

Since back EMF is not a random disturbance input, its ef-
fect on fundamental tracking error can be substantially reduced
by incorporating feed forward injection of a measured or esti-
mated compensation signal into the current regulator, as shown
in Fig. 8. Of course, when the back EMF is measured to pro-
vide the feed forward injection signal, it is subject to the same
sampling and transport delay effects as for the main current
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Fig. 8. Average value model block diagram representation of a PI current
regulator with delay effects and feed forward compensation.

Fig. 9. Magnitude and phase Bode plot of Gc (s)Gp (s) for PI and PR regu-
lators with sampling/transport delay Td = 0.15 ms, kp = 0.58, τi = 1.72 ms,
ωr = 0.1 Hz.

regulator path, for the same practical implementation reasons.
Equations (25) and (26) show the effect of this compensation
on the output current and current error transfer functions, where
F (s) is a mismatch factor that can be used to assess the effect
of inaccuracy in measuring or estimating the back EMF

I(s) = I∗(s)
Gc(s)e−sTd Gp(s)

1 + Gc(s)e−sTd Gp(s)

− EMF(s)
Gp(s)(1 − F (s)e−sTd )
1 + Gc(s)e−sTd Gp(s)

(25)

∆I(s) =
I∗(s) + EMF(s)

{
Gp(s)(1 − F (s)e−sTd )

}
1 + Gc(s)e−sTd Gp(s)

. (26)

With perfect feed forward, the second terms in (25) and (26)
become zero, the back EMF disturbance error is eliminated
(ED (s) = 0) and only the current reference tracking error EI (s)
remains. The controller design process remains the same, opti-
mizing kp , and then τi as discussed previously, but the control
decision now reduces to deciding whether the remaining EI (s)
at the maximum required ac reference target frequency is suf-

ficiently small to allow this simple PI regulator to be used.
Fig. 10(c) shows the simulated and experimental test system
responses for the test system controlled by a PI regulator with
feed forward back EMF compensation, where it can be seen
how the tracking error response has now returned to essentially
that which was achieved without any back EMF disturbance,
Fig. 10(a). However, it must be appreciated that back EMF
compensation does not change the closed loop disturbance re-
jection error sensitivity defined by (13). Rather, it significantly
reduces the level of disturbance input injection into the control
loop, to the point where the tracking error introduced by this
disturbance then becomes negligible. Overall, the results shown
in Fig. 10 show that with optimized gain tuning and appropriate
back EMF feed forward compensation, a simple PI regulator can
achieve an excellent ac current regulation response and in many
cases a more sophisticated strategy may be quite unnecessary.

It is interesting to reflect on the sensitivity of the feed forward
disturbance cancellation to measurement or estimation error of
the load back EMF [16]. From (26), it can be seen that even
if there is a substantial 10% error in back EMF estimation,
F (s) = 0.9 the strategy will still achieve a 20 dB improvement
in the disturbance error contribution ∆ID (s). For the test system
considered in this paper, this would still reduce the back EMF
disturbance error contribution to approximately 0.05 Apeak for
the 80 Vrms back EMF (10 times less than the previously cal-
culated 0.48 Apeak ), and this is much less than the closed loop
reference tracking error of 0.195 Apeak , which of course is still
present in the system.

VII. FURTHER REDUCTION OF STEADY-STATE ERROR USING A

PR REGULATOR

For higher performance or lower switching frequency ac cur-
rent regulation systems, the residual reference tracking error
even after introducing back EMF compensation may still be
unacceptably large. In this situation, the only remaining alter-
native is to increase the gain of the forward controller block at
the target reference frequency, but without increasing the high
frequency open loop gain since this would reduce the system
phase stability margin. This is the essential strategy of the syn-
chronous frame d–q controller for a three-phase system [6] and
the PR controller in the stationary frame [9]. However, since the
PR controller has previously been established to be essentially
the stationary frame equivalent of the three-phase synchronous
frame d–q controller [10], only the PR controller will be con-
sidered further in this paper.

The forward gain block Gc(s) of an ideal PR controller is
described by the transfer function

Gc(s) = kpVdc

[
1 +

s

τi(s2 + ω2
0 )

]
(27)

where ω0 is the target reference current frequency. From this
expression it can be seen how the (s2 + ω2

0 ) term in the denom-
inator creates infinite forward controller gain at ω0 . For higher
frequencies, (27) gradually returns to the same transfer function
as the simple PI regulator (15), and hence a similar high fre-
quency response is to be expected for the two controller types.



2424 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 24, NO. 11, NOVEMBER 2009

Fig. 10. AC current regulation response of simulated and experimental optimized stationary frame PI and PR current regulators kp = 0.58, τi = 1.72 ms. (a) PI
controller, without back EMF. (b) PI controller, with back EMF, no feed forward compensation. (c) PI controller, with back EMF, with feed forward compensation.
(d) PR controller, with back EMF.
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Unfortunately, the ideal PR controller response defined by (27)
can be challenging to physically realize [10], particularly us-
ing a fixed-point calculation as is typically available in current
generation DSPs with PWM capability. Hence, a more practical
alternative with damping is [9], [10]

Gc(s) = kpVdc

[
1 +

s

τi(s2 + ωrs + ω2
0 )

]
(28)

where ωr is the resonant cut off frequency. While this form
of controller limits the forward gain at ω0 to Gc(jω0 ) =
kpVdc [1 + 1/τiωr ], this is still a large gain increase of ap-
proximately ω0/ωr compared to the PI controller at the same
frequency. In practice, gain increases of 40–60 dB are read-
ily achievable using this PR formulation. As before, the effects
of sampling and transport delay can be taken into account by
adding an e−sTd term after Gc(s). Fig. 9 illustrates the im-
provement that can be gained with a PR regulator by comparing
the forward path open loop gain and phase responses for both
controllers for the test system used in this paper.

In particular, it can be seen from this response how the PR
controller phase reverts back to the PI controller phase response
at higher frequencies, including the lift above the −180◦ asymp-
tote because of the influence of the high frequency integrator
zero, before the roll off caused by sampling and transport delays
becomes dominant. Since this phase lead was used for the PI
controller to maximize kp while achieving unity loop gain with
a required φm phase margin at the maximum possible crossover
frequency ωc(max) and then to minimize the integral gain τi ,
exactly the same approach can be used to optimize the kp and
τi gains for the PR regulator, as follows:

The phase angle of the PR controller forward path at the cross
over frequency ωc is given by

� Gc(jωc)Gp(jωc)

= �
{

kpVdc

R

[
1 +

jωc

τi {(ω2
0 − ω2

c ) + jωrωc}

]
e−jωc Td

(1 + jωcTp)

}

= (−π + φm )

≈ tan−1(ωcτi) − π/2 − ωcTd − tan−1(ωcTp) (29)

provided that the crossover frequency is high enough so that∣∣∣∣ jωc

τi {(ω2
0 − ω2

c ) + jωrωc}

∣∣∣∣ ≈
∣∣∣∣ 1
jωcτi

∣∣∣∣ . (30)

Using a similar approximation as was used to develop (19)
for the PI regulator, the forward path open loop phase margin
can be expressed as

φm ≈ tan−1(ωcτi) − ωcTd. (31)

Since (31) is the same condition as (19), the solution process
leads to optimized PR controller kp and τi gains (or synchronous
d–q frame controller gains since this controller is equivalent
to a PR controller) that are identical to those calculated for
the PI controller, as might have been expected from the above
discussion. This leads to the further conclusion that an identical
transient response will be expected from an optimally tuned PR
controller as from an optimally tuned PI controller. Matching

simulation and experimental steady state and transient responses
are shown in Fig. 10(d) for a PR regulator designed for the test
system to confirm these concepts and analysis, with the same
controller gains of kp = 0.58 and τi = 1.72 ms for all examples.

VIII. CONCLUSION

The analysis presented in this paper has been that the major
performance constraint for linear closed loop ac current regu-
lators is the proportional gain limitation imposed by transport
and sampling delays associated with the control calculation and
modulation processes. To improve the performance of an ac
current controller beyond what can be achieved with a PI regu-
lator, it is necessary to use PR or synchronous frame controllers
that introduce a gain resonance at the reference target frequency
without affecting the high frequency stability.

From this understanding, a method has been presented to
deterministically calculate the maximum possible proportional
and integral gain settings for a stationary frame PI ac current
regulator, so as to achieve the lowest possible regulation error
for this class of controller. The basic controller was then ex-
tended to implement feed forward compensation of the load
back EMF to minimize the error caused by this disturbance, and
leave only a reference tracking error that cannot be eliminated
because of the controller gain limitations. The analysis was then
applied to a PR regulator (and by association to a synchronous
d–q frame regulator) to identify that the same delay limitations
constrain the maximum proportional and integral gains for these
controllers. In fact, the same gain optimizing design process can
be used for all forms of linearized ac current regulators with, in
most cases, the integrator time constant thus obtained being es-
sentially independent of the parameters of the load. The analysis
and conclusions are supported by precisely matched simulation
and experimental results for a test system that is representative
of a low to medium power level motor drive.
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