SOLUTIONS OF BOUSSINESQ EQUATION IN SEMIINFINITE
FLow REGION

By A. Upadhyaya' and H. S. Chauhan®

ABSTRACT: In a semiinfinite flow region, prediction of the water table profile due to an abrupt rise or drop
in the canal or drain water level in the cases of recharging and discharging aquifers has been done for times
equal to 1.0, 2.0, 3.0, 4.0, and 5.0 days by employing a numerical solution and five analytical solutions. Com-
parison of the water table profile predicted by the proposed numerical solution with the existing analytical
solutions (based on L2 and Tchebycheff norms) shows that the performance of Polubarinova-Kochina’s 1948
solution is the best, followed by Lockington’s 1997 solution, Verigin’s 1949 solution, Polubarinova-Kochina’s
1949 solution, and Edelman’s 1947 solution for both recharging and discharging aquifers. However, for the
example considered in this study, for practical purposes, any of these solutions except the Edelman solution may
be adopted for predicting water table heights, because the maximum relative percentage difference in water table
heights predicted by these analytical solutions and the proposed numerical solution is not more than *1.5%.

INTRODUCTION

The Boussinesq equation (1904) was derived using Dupuit’s
assumptions implying that the inertial forces are negligible and
that horizontal components of the velocities do not change
with height, thus are functions of only two coordinates, x and
y, and of time, ¢.

The boundary value problem for one-dimensional flow for
a semiinfinite unconfined aquifer replenished or drained by a
canal or drain may be represented as

h=h, x=0, t>0 )
h=hy, x>0, t=0 3)
h=hy, x> >0 @)

where & [L] = piezometric head; x [L] = horizontal space co-
ordinate; ¢ [T] = time; K [L/T] = hydraulic conductivity, and
S = specific yield. The heads A, and A, are water levels in the
canal/drain at x = 0 and in the aquifer at x = o. When the
aquifer is being recharged, h, > hy, and when the aquifer is
being discharged, A, < h,.

A number of investigators have studied this boundary value
problem and obtained analytical solutions using various ap-
proaches. Such studies include those by Edelman (1947), Po-
lubarinova-Kochina (1948, 1949), Verigin (1949), and recently,
by Lockington (1997). For minor differences in boundary con-
ditions, solutions of similar form have also been reported by
Carslaw and Jaeger (1959), Hantush (1964), Aravin and Nu-
merov (1965), and Bear (1979). Only a few numerical solu-
tions seem to have been developed. The objective of the pres-
ent study was to obtain a numerical solution of a nonlinear
Boussinesq equation for such a semiinfinite flow and to com-
pare it with some of the aforementioned analytical solutions
for their accuracy.
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Analytical Solutions Considered for Comparison

A brief description of the analytical solutions used in this
study is presented here for ready reference.

Edelman (1947) studied a problem in which the water level
in the ditch is lowered or raised, instantaneously causing water
to flow out of or into the adjoining aquifer until the water
table and the ditch levels are again in equilibrium. The influ-
ence of the change in the water level in the ditch was described
by the linearized Boussinesq equation by neglecting the term
(3h/9x)* given by

oh KD 9h

ot S ax? ®)
with the assumption that the difference in head |h; — ho| <<
D, so that D, the depth of flow, is not affected appreciably by
the rising water table and the flow in the aquifer is horizontal.
Here D was considered equal to h,. For the initial and bound-
ary conditions defined earlier by (2)—(4), Edelman (1947) ob-
tained the solution of (5) as follows:

X
h=~h ., = - —_—
ot (= ho) [1 ¢ (2\/KDt/S>] ©

Here, ¢(u) is the probability integral or error function, de-
fined as

u

2 2
) = e e du, )
[}

for which Edelman provided tables, which are also available
in standard texts.

Polubarinova-Kochina (1948) applied the Boltzman trans-
formation to the Boussinesq equation and obtained a nonlinear
ordinary differential equation as follows:

21,2 2,
d‘h +Soz'nﬁ_o

dn’ K dn ®

Transforming (8) with dimensionless variables

x'\/§ Khl
h = hu, = \ =2 4[— 9
1 n ) /_khlt a S ®

yields
d*? du
— t+4n—=

o 4n o 0 (10)

Polubarinova-Kochina expressed its solution in the form of a
power series. For a recharging aquifer, the solution is
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u=1+ lu + Puy + Puy + -+ (11)
where

ho = hy
hy

12)

She reported the expressions for the coefficients u,, u,, and
u; of this series as a function of m, through which u can be
computed. She also tabulated the values of u,, u;, and u, cor-
responding to various values of m. Because values of error
function u, are already available in textbooks, only values of
u, and u; corresponding to the various values of ny given by
Polubarinova-Kochina (1948) are reproduced in Table 1. Mul-
tiplying u by h, yields water table height as a function of time
and space coordinates. For a discharging aquifer, the solution
given was

v=1+ puw, + piw, + -+ (13)
where
v=u’ = (h/h)} (14)
_h ;,’ ha as)
and
wim=1—dm =y (16)

n2

) = o (1 — &) = =y = g b e
AN =2 IV A TR G Ry~
an

The value of h can be computed by taking the square root of
v and multiplying it by h,.

Polubarinova-Kochina (1949) further examined the problem
of water seeping from a canal or horizontal bed rock. She
considered a linearized form of the Boussinesq equation, ne-
glecting (9h/6x)* and considering A, the coefficient of 3°h/0x?,
approximately constant and equal to D,,. She suggested that
linearization is permissible if one wants to obtain crude results

TABLE 1. Values of Coefficients u, and u; Corresponding to
Various Values of n

m U, Uy

(1) 2) (3)
0.0 0.0 0.0

0.1 +0.0141 -0.0039
0.2 +0.0160 -0.0081
0.3 +0.0073 —0.0090
0.4 -0.0092 —0.0049
0.5 —0.0300 +0.0039
0.6 —-0.0519 +0.0159
0.7 —0.0718 +0.0280
0.8 —0.0874 +0.0373
0.9 —0.0975 +0.0422
1.0 —0.1017 +0.0418
1.1 -0.1004 +0.0368
1.2 —-0.0946 +0.0281
1.3 —0.0855 +0.0194
14 —0.0744 +0.0078
1.5 —0.0626 -0.0011
1.6 —0.0510 -0.0079
1.7 —0.0394 -0.0125
1.8 —0.0310 -0.0147
1.9 —0.0232 —0.0151
2.0 —0.0169 —0.0141
2.5 —0.0024 —0.0047
3.0 —0.0002 —0.0006
3.5 —0.0000 —0.0001
4.0 —0.0000 -0.0001

as a guidance. The linearized differential equation considered
was

oh _ KD

ot s o’ (18)

where D,, = average depth of seepage water, i.e., (h, + h,)/2.
For the initial and boundary conditions, (2)—(4), she obtained
a solution based on the theory of heat conduction, which is
similar to (6) except that in this case, D,, is taken as (h, +
ho)/2 in place of hy, as considered in the Edelman (1947) so-
lution.

For the solution of this boundary value problem, another
method of linearization as used by Verigin (1949), i.e., A> =
P, can be used. This transforms the boundary value problem
to exactly the same linearized form of the problem as given
by (5). Accordingly, the form of the solution remains the same,
giving results expressed in the form of A%

Lockington (1997) presented the analytical solution for the
boundary value problem defined by (1) and for initial and
boundary conditions (2)—(4) as given below.

In the case of a recharging aquifer, the solution is

S U
X
h=hy + (hy — ho) (l - ;\' _K_t) 19
and in the case of a discharging aquifer, it is
I A
h=hy — - 1+ = 4/=
ho — (ho — h1) < N Kt) (20€)

Parameters N and p are described both for recharging as well
as for discharging aquifers in the main text.

Numerical Solution

A proposed numerical solution to this boundary value prob-
lem was obtained by employing the Du Fort and Frankel
(1953) method, which is an explicit, three time level finite
difference technique. Let 4,,, denote h(x,,, ,). The first deriv-
ative of h with respect to x and ¢ and the second derivative of
h with respect to x may be obtained as

ahm,n hm+1,n —h

= m—1,n + A 2
ax 2Ax O@xy @b
ahmn hm,n+1 - hmn—l 2
— = . +
Y >Ar O(Ar) (22)
62h h +1,n 2h + h -1
ne Fmen =~ e T ncin oAy
ax? (Ax) @x) 23

where O denotes order of error.
Replacing h,,, in (23) with the mean of the values h,, .,
and A,,,-, yields

azhm.n - hm+l.n — hm.n+1 — hm.n—l + hm-l.n
axz (Ax)®
Neglecting the order of the error terms, (1) can be discretized
using (21), (22), and (24). Letting the time periods #,_,, #,, and
t,.; be replaced by U, V, and W, the discretized form of (1)
may be expressed as

Wn—Un) _K [V (Vm“ — W= Upn + V,.-l)

+ O(Axy* (24)

24t S (Ax)*

+ Vm+l — Vm—l :
2Ax 25)

or
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w | L, KVa]_Us K[, V,.+,—Um+vm-,)
"12Ar  SAx)*| 2Ar S| (Ax)?

+ Vm+l — Vm—l :
2Ax (26)

Because (26) requires calculation at three time levels, i.e., U,
V, and W, while other explicit methods require two time levels,
this scheme is discretized at intermediate time levels using the
forward and central difference formula as

Vo= Un) K[ (Unst=2Un+ Upet) , (Unsr = Uner)’
YA (Ax)? 2Ax
@7)

Here, V, = U, = h, for t > 0.
Putting i = 2 in (27) gives

2
- K_At U3_2U2+U1 Ug_Ul
e S (e (wou)]

Here, U, = U; = h, (initial condition). Use of (28), the initial
condition, and values of K and S help in determining the con-
dition on step size ratio, which is [Ar < (0.07Ax)’]. In the
present analysis, the values of Ar and Ax were taken as 0.0025
days and 2.0 m, respectively.

RESULTS AND DISCUSSION

For the purpose of comparative study, the example given by
Lockington (1997) was selected. In this example, the flow in a
shallow sand aquifer with hydraulic conductivity X = 20 m/d
and specific yield S = 0.27 was considered. The aquifer was

considered to be underlain by a horizontal impermeable base
taken as datum and initially having a uniform water level el-
evation, hy = 2 m. The water level in the adjoining trench was
abruptly raised to the elevation 4, = 3 m to provide a recharg-
ing aquifer. Similarly, when water level in the aquifer was at
an elevation b, = 3 m and in the canal/trench it was at an
elevation h, = 2 m, it provided a discharging aquifer. The
resulting water table profiles in the aquifer for both cases from
t =1 to ¢t =5 days were determined by various solutions, and
the results were compared.

In order to compare the analytical solutions with numerical
solution, L2 and Tchebycheff norms reported by Prenter
(1975) were employed to measure the goodness of the ana-
lytical solutions with respect to the proposed numerical solu-
tion. The two norms used are given as follows:

* L2 norm
1
(W) ICa = Cille
1 L 0s
= (W) [ fo [Calx, ) = Cy(x, O] dx] 9

This norm gives the average distance of the numeric so-
lution, C,(x, ), from the analytical solutions, C,(x, 1), at
time ¢. Here integration was performed using the trape-
zoidal rule.

* Tchebycheff norm

ICa(x, ) = Culx, ]| = max |Culx, & — Colx, | (30)
O=xsL

TABLE 2. Comparison of Water Table Heights for t= 1 Day as Predicted by Numerical Solution and Various Analytical Solutions for

Recharging Aquifer

Numerical Lockington Edelman Polubarinova-Kochina Polubarinova-Kochina Verigin
X solution (1997) (1947) (1948) (1949) (1949)
() (2 3 4) ®) ) @)
0.0 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000
10.0 2.6368 2.6250 2.5614 2.6367 2.6035 2.6491
20.0 2.3173 2.3349 2.2456 23184 2.2989 2.3441
30.0 2.1152 2.1321 2.0815 2.1164 2.1191 2.1437
40.0 2.0299 2.0202 2.0205 2.0293 2.0398 2.0491
50.0 2.0056 —_ 2.0038 2.0052 2.0095 2.0119
60.0 2.0008 — 2.0005 2.0005 2.0019 2.0023
70.0 2.0001 — 2.0001 1.9995 2.0003 2.0004
80.0 2.0000 — 2.0000 2.0001 2.0000 2.0001

TABLE 3. Comparison of Water Table Heights for t=5 Days as Predicted by Numerical Solution and Varlous Analytical Solutions for

Recharging Aquifer

Numerical Lockington Edelman Polubarinova-Kochina Polubarinova-Kochina Verigin
X solution (1997) (1947) (1948) (1949) (1949)
() G ) “ (6) (6) @
0.0 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000
10.0 2.8382 2.8219 2.7951 2.8377 2.8163 2.8428
20.0 2.6750 2.6606 2.6035 2.6748 2.6423 2.6854
30.0 2.5182 2.5163 2.4358 2.5180 2.4858 2.5356
40.0 2.3767 2.3890 2.2989 2.3770 2.3528 2.4008
50.0 2.2575 2.2791 2.1946 2.2586 2.2456 2.2864
60.0 2.1647 2.1867 2.1191 2.1659 2.1638 2.1952
70.0 2.0983 2.1122 2.0691 2.0996 2.1038 2.1258
80.0 2.0548 2.0560 2.0398 2.0550 2.0632 2.0774
90.0 2.0286 2.0186 2.0197 2.0280 2.0395 2.0488
100.0 2.0139 2.0010 2.0095 2.0183 2.0205 2.0254
110.0 2.0064 — 2.0043 2.0060 2.0106 2.0132
120.0 2.0027 — 2.0019 2.0022 2.0054 2.0067
130.0 2.0011 — 2.0007 2.0009 2.0026 2.0033
140.0 2.0004 — 2.0003 1.9997 2.0011 2.0014
150.0 2.0001 — 2.0002 1.9993 2.0005 2.0006
160.0 2.0000 — 2.0000 1.9997 2.0003 2.0004
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TABLE 4. Comparison of Water Table Heights for t = 1 Day as Predicted by Numerical Solution and Various Analytical Solutions for

Discharging Aquifer

Numerical Lockington Edelman Polubarinova-Kochina Polubarinova-Kochina Verigin
X solution (1997) (1947) (1948) (1949) (1949)
) (2 ® 4 ®) (6) @
0.0 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
10.0 24325 2.4368 2.3646 2.4290 2.3965 2.4459
20.0 2.7159 2.7126 2.6569 2.7150 2.7011 2.7396
30.0 2.8781 2.8724 2.8452 2.8775 2.8809 2.8991
40.0 2.9548 2.9542 2.9422 2.9554 2.9602 2.9667
50.0 2.9864 2.9886 2.9821 2.9863 2.9905 2.9921
60.0 2.9965 2.9987 2.9955 2.9966 2.9981 2.9984
70.0 2.9993 3.0000 2.9991 2.9993 2.9997 2.9997
80.0 2.9999 — 2.9997 2.9999 3.0000 3.0000
90.0 3.0000 — 3.0000 3.0000 3.0000 3.0000

TABLE 5. Comparison of Water Table Heights for t=5 Days as Predicted by Numerical Solution and Various Analytical Solutions for

Discharging Aquifer

Numerical Lockington Edelman Polubarinova-Kochina Polubarinova-Kochina Verigin
X solution (1997) (1947) (1948) (1949) (1949)

(1) (2 (3 4 (5) (6) @)
0.0 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
10.0 2.2116 22184 2.1680 2.2093 2.1837 22177
20.0 2.3936 2.3992 2.3286 2.3906 2.3577 2.4059
30.0 2.5458 2.5467 2.4755 2.5427 2.5142 2.5634
40.0 2.6683 2.6654 2.6039 2.6663 2.6472 2.6900
50.0 2.7650 2.7592 2.7112 2.7635 2.7544 2.7879
60.0 2.8380 2.8318 2.7969 2.8373 2.8362 2.8603
70.0 2.8922 2.8867 2.8624 2.8917 2.8962 29122
80.0 2.9303 2.9270 2.9103 2.9302 2.9368 2.9469
90.0 2.9567 2.9555 2.9438 2.9567 2.9605 2.9669
100.0 2.9740 2.9747 2.9610 2.9702 2.9795 2.9829
110.0 2.9850 2.9870 2.9801 2.9848 2.9894 29911
120.0 2.9916 2.9941 2.9891 29917 2.9946 2.9955
130.0 2.9955 2.9978 2.9941 2.9955 2.9974 2.9978
140.0 2.9977 2.9994 2.9970 2.9977 2.9989 2.9991
150.0 2.9989 2.9999 2.9985 2.9989 2.9995 2.9996
160.0 2.9995 — 2.9993 2.9995 2.9997 2.9998
170.0 2.9997 — 2.9996 2.9997 2.9998 2.9999
180.0 2.9999 — 2.9998 2.9999 3.0000 3.0000
190.0 2.9999 — 2.9999 2.9999 3.0000 3.0000
200.0 3.0000 — 3.0000 3.0000 3.0000 3.0000

This describes the maximum difference between the an-
alytical and numerical solutions in the flow domain 0 =
x =< L at time ¢.

The piezometric head as a function of space and time co-
ordinates computed by employing the proposed numerical so-
lution based on the Du Fort and Frankel (1953) method was
compared with the piezometric head obtained by the analytical
solutions of Edelman (1947), Polubarinova-Kochina (1948,
1949), Verigin (1949), and Lockington (1997) for recharging
and discharging aquifers for each of the first 5 days. The re-
sults, however, have been presented here only for recharging
and discharging aquifers at # = 1 and 5 days, as given in Tables
2-5.

For recharging end discharging aquifers, the relative per-
centage difference in spatial and temporal variation of the wa-
ter table heights predicted by the solutions of Edelman (1947),
Polubarinova-Kochina (1948, 1949), Verigin (1949), and Lock-
ington (1997) with respect to the proposed numerical solution
was computed, and the range of relative percentage difference
is given in Table 6. There was no definite trend of variation
in the relative percentage difference with respect to time. With
respect to space, the water table heights predicted by Edelman
(1947) were slightly lower than the proposed numerical solu-
tion, whereas the water table heights predicted by Verigin
(1949) were slightly higher than the proposed numerical so-
lution both for recharging and discharging aquifers. For the

TABLE 6. Range of Relative Percentage Difference of Various
Solutions with Respect to Numerical Solution

Recharging Discharging
Solution aquifer aquifer
(1) (2) @)

Edelman (1947) 0.0-3.33 0.0-2.80
Polubarinova-Kochina (1948) -0.22-0.04 —0.02-0.14
Polubarinova-Kochina (1949) -0.57-1.30 —-0.22-1.50
Verigin (1949) —1.41-0.0 —0.85-0.0
Lockington (1997) -1.05-0.64 —0.31-0.23

other three analytical solutions, there was no distinct trend
with respect to space.

The L2 and Tchebycheff norms were computed to compare
the numerical solution with the analytical solutions for ¢ = 1.0,
2.0, 3.0, 4.0, and 5.0 days; results are given in Tables 7 and
8. Results reveal that, for a discharging aquifer, the values of
L2 and Tchebycheff norms were minimum for the Polubari-
nova-Kochina (1948) solution, with successively increasing
values, respectively, for the solutions of Lockington (1997),
Verigin (1949), Polubarinova-Kochina (1949), and Edelman
(1947).

In the case of recharging aquifers, both L2 and Tchebycheff
norms provided a trend similar to that of discharging aquifers,
establishing a first and second rank of performance for the
solutions of Polubarinova-Kochina (1948) and Lockington
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TABLE 7. L2 and Tchebycheff Norms for Recharging Aquifer

Comparison with Numerical Solution
Lockington Edelman Polubarinova-Kochina Polubarinova-Kochina Verigin
Norms Day (1997) (1947) (1948) (1949) (1949)

M &) (3) “) ®) (6) @
L2 norm 1 0.0130 0.0388 0.0007 0.0140 0.0162
Tch. norm 1 0.0176 0.0754 0.0012 0.0333 0.0285
L2 norm 2 0.0135 0.0394 0.0009 0.0143 0.0164
Tch. norm 2 0.0201 0.0824 0.0025 0.0313 0.0296
L2 norm 3 0.0142 0.0401 0.0010 0.0147 0.0167
Tch. norm 3 0.0223 0.0798 0.0023 0.0337 0.0294
L2 norm 4 0.0139 0.0402 0.0013 0.0146 0.0166
Tch. norm 4 0.0230 0.0822 0.0040 0.0336 0.0306
L2 norm 5 0.0140 0.0425 0.0013 0.0155 0.0171
Tch. norm 5 0.0220 0.0824 0.0040 0.0327 0.0305
Note: Tch. norm = Tchebycheff norm.

TABLE 8. L2and Tchebycheff Norms for Discharging Aquifer

Comparison with Numerical Solution
Lockington Edelman Polubarinova-Kochina Polubarinova-Kochina Verigin
Norms Day (1997) (1947) (1948) (1949) (1949)

(1 () (3) ) () (6) 4]

L2 norm 1 0.0032 0.0322 0.0012 0.0132 0.0123
Tch. norm 1 0.0057 0.0679 0.0035 0.0360 0.0237
L2 norm 2 0.0032 0.0323 0.0012 0.0134 0.0120
Tch. norm 2 0.0066 0.0695 0.0032 0.0346 0.0227
L2 norm 3 0.0037 0.0334 0.0014 0.0139 0.0123
Tch. norm 3 0.0069 0.0695 0.0030 0.0342 0.0237
L2 norm 4 0.0037 0.0327 0.0016 0.0137 0.0121
Tch. norm 4 0.0070 0.0693 0.0036 0.0356 0.0228
L2 norm 5 0.0038 0.0378 0.0017 0.0158 0.0121
Tch. norm 5 0.0068 0.0702 0.0038 0.0359 0.0229

Note: Tch. norm = Tchebycheff norm.

(1997), respectively. The two selected norms, however, could
not consistently establish the order of performance for the so-
lutions of Polubarinova-Kochina (1949) and Verigin (1949),
because the smaller value of L2 norm was observed with the
Polubarinova-Kochina (1949) solution and the smaller Tche-
bycheff norm was observed for the Verigin (1949) solution.
Whether one should select the solution on the basis of the
smallest L2 norm or the smallest Tchebycheff norm is a moot
point in numerical analysis. Since Verigin (1949) takes into
account the nonlinear term in the governing differential equa-
tion, his solution was ranked at third place and Polubarinova-
Kochina’s (1949) solution at fourth place. Edelman’s (1947)
solution was observed to have the lowest rank of performance.

The following reasons may account for the difference in
performance of the analytical solutions from the numerical so-
lution. Edelman (1947) assumed that the distance of the water
level from the impervious layer is much greater than the head
difference. Such a condition is not met in the present example.
This may be a possible reason for the lower predicted values
of water table heights in comparison with the numerical so-
Iution and for the relative percentage difference up to 3.33
percent. In the case |h, — ho| << D, the performance of this
solution may be expected to improve. Polubarinova-Kochina
(1948) gave the solution of the nonlinear ordinary differential
equation in terms of the power series. Since she considered
the nonlinear terms of the equation to obtain the solution, this
may be the reason why her solution yields results closer to the
numerical solution. Her solution requires different values of
coefficients to be used in the power series. However, expres-
sions and values are provided only for u,, u,, and us,, respec-
tively. If more coefficients were considered, the accuracy of
her solution might improve further. This process of computa-
tion is slightly difficult in comparison with other methods. Po-

lubarinova-Kochina (1949) obtained a solution after neglecting
the nonlinear term (9h/dx)% this may be the reason why her
solution is inferior to the numerical solution. The method of
linearization with A* = P used by Verigin (1949) to account
for the term (8h/dx)* in his solution seems to have improved
his results compared to Polubarinova-Kochina (1949). Because
in all of these solutions, the average depth of flow was con-
sidered, whereas in the numerical solution the actual depth was
considered, the numerical solution may be considered more
accurate than the other solutions. Lockington (1997) also con-
sidered nonlinear terms, obtained the analytical solution using
a weighted residual method, and expressed his solution in the
form of simple algebraic equations. His solution is thus easy
and handy for computation.

CONCLUSIONS

A numerical solution was obtained for the boundary value
problem in a semiinfinite flow region using the three time level
explicit Du Fort and Frankel (1953) finite difference method.
The analytical solutions of Edelman (1947), Polubarinova-Ko-
china (1948, 1949), Verigin (1949), and Lockington (1997)
were compared with a numerical solution for their perfor-
mance in predicting water table heights. L2 and Tchebycheff
norms were used as theoretical tools to rank the performance
of various analytical solutions with respect to the numerical
solution for ¢ = 1.0, 2.0, 3.0, 4.0, and 5.0 days. According to
these norms, in both recharging and discharging aquifers, the
solution of Polubarinova-Kochina (1948) predicted water table
heights closest to the values obtained by the proposed numer-
ical solution, followed in decreasing order of performance by
Lockington (1997), Verigin (1949), Polubarinova-Kochina
(1949), and Edelman (1947). For the example considered in
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this study, the overall range of relative percentage difference
for all the analytical solutions except the Edelman (1947) so-
lution with respect to the numerical solution was observed to
be always less than +1.5% for both recharging and discharg-
ing aquifers.

It may be thus concluded that, besides the theoretical rank-
ing based on L2 and Tchebycheff norms as given above, for
the example studied, for practical purposes all the analytical
solutions considered except the Edelman (1947) solution could
be used to predict water table heights in semiinfinite aquifers.
The Edelman (1947) solution may be used to predict water
table heights provided the condition |k, — h,| << D is strictly
satisfied and D may be approximated equal to h,.
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