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RF Transceiver

Transceiver key RF components

• Antenna, Filters, Power Amplifier (PA), Low-Noise Amplifier 
(LNA), Oscillator (VCO), Mixer and Data converters (DAC/ADC)
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Nonlinear Device

In the most general sense, the output response of a nonlinear circuit 
can be modeled as a Taylor series in terms of the input signal voltage
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Gain Compression

Consider the case where a single frequency sinusoid is applied to the input of a 
nonlinear device such as a power amplifier
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Intermodulation Distortion

Consider two-tone input voltage consisting of two closely spaced frequencies
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Third-Order Intercept Point (IP3)
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Mixer
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Image Frequency
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Homodyne (Zero-IF) Receiver 
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Benefits Drawbacks

Less hardware LO Leakage 

Low power consumption DC offset errors 

No IF stage and hence no image filter I/Q mis-match 

Flicker (or 1/f) noise 



Super-heterodyne Receiver 

LO
f
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Benefits Drawbacks

Good sensitivity High Q filter 

Good selectivity High performance oscillator

LNA output impedance matched to 50 ohm is 

difficult

Integration of HF image reject filter is a major 

problem 



Wideband-IF Receiver 
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Benefits Drawbacks

Image cancellation by IR mixer IR Mixer

Image rejection from the RF front-end pre-

selection filter

Good phase noise performance



Wideband-IF Receiver (Image Rejection)
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Low-IF Receiver 
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Benefits Drawbacks

Potential advantages of both heterodyne and 

homodyne receivers.

ADC dynamic range 

The IF frequency is just one or two channels 

bandwith away from DC, which is just enough to 

overcome DC offset problems. 

Image reject mixer which is implemented in 

digital baseband



Downlink RF Transceiver Requirement

Base station transmitter

•Transmit antennas / antenna arrays

• 20 – 30 dB antenna gain, horn antennas or phase antenna arrays (64 – 1024 elements)

•Power amplifier

• 20 – 50 dBm, >20% efficiency, EVM < 5% for OFDM waveform

• Packaging

• Integrated solution of antenna array / PA / MMIC / RFIC to minimize transmission loss• Integrated solution of antenna array / PA / MMIC / RFIC to minimize transmission loss

Mobile station receiver

• Receive antenna arrays

• 6 – 18 dB antenna gain, phase antenna arrays (4 – 64 elements)

• Receiver sensitivity < -80dBm

• Total Rx chain Noise Figure < 7dB

• Similar solutions exist today!

• 60GHz CMOS RFIC with phase antenna array (BWRC)

• 60GHz Single-chip integrated antenna and RFIC (GEDC)

• Packaging

• Integrated solution of antenna array / LNA / MMIC / RFIC to minimize transmission loss

94
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Uplink RF Transceiver Requirement

Mobile station transmitter

• Transmit antenna arrays

• 6 – 18 dB antenna gain, phase antenna arrays (4 – 64 elements)

• Power amplifier

• 20 – 23 dBm, >20% efficiency, EVM < 5% for 16QAM single-carrier waveform

• Packaging• Packaging

• Integrated solution of antenna array / PA / MMIC / RFIC to minimize transmission loss

• Power consumption on the order of 100mW ~ 1W

Base station receiver

• Receiving antennas / antenna arrays

• 20 – 30 dB antenna gain, horn antennas or phase antenna arrays (64 – 1024 elements)

• Receiver sensitivity < -95 dBm

• Total Rx Noise Figure < 5dB

• Packaging

• Integrated solution of antenna array / PA / MMIC / RFIC to minimize transmission loss

95
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Travelling Wave Tube (TWT) Power Amplifier 

TWT amplifiers have been extensively used for high  power applications at millimeter wave 
frequencies 

• Provides KWs to MWs power for satellite and radar

• Cost in 10K’s of US$ (too expensive for cellular)

Need to consider solid-state amplifier design for MMB

Copyright by the authors, all rights reserved



Solid-state Power Amplifier

Gallium-Nitride based power amplifier

• Wide bandgap materials such as gallium nitride (GaN) or silicon carbide (SiC) have much larger bandgaps
than conventional semiconductors

• Gallium-nitride High Electron Mobility Transistor (GaN HEMT) devices have breakdown voltages 10 times 
higher than GaAs HEMT devices, allowing GaN HEMT devices to operate with much higher voltages

97

Source: “Gallium Nitride 

(GaN) Microwave 

Transistor  Technology 

For Radar Applications”, 

Microwave Journal, 

January 2008



Solid-state Power Amplifier

State-of-the-art for solid-state mmWave PAs

• 11 Watts at 34 GHz (D. C. Streit, et. al., “The future of compound semiconductors for aerospace and 
defense applications”, CSIC 2005)

• 842 mW at 88 GHz (M. Micovic, et. al., “W-Band GaN MMIC with 842mW output power at 88 GHz”, IMS 
2010)

• 5.2 Watts at 95 GHz with a 12-way radial-line combiner (James Schellenberg, et. al., “W-Band, 5W solid-
state power amplifier/combiner”, IMS 2010)
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Cascaded Constructive Wave Amplifier

• Forward wave is amplified as it propagates along the transmission line

• Backward wave is attenuated as it propagates

• Distribution of N cascaded traveling wave stages

• Active devices along the transmission line provide feedback

• Relative phase of transmission line and active device determines amplification/ 

attenuation.

Source: J. Buckwalter and J. Kim, ISSCC 2009



Low-Noise Amplifier [1/2]

Single Stage 60 GHz LNA

Source: Javier Alvarado, PhD thesis, May 2008

Gain 12 dB

Noise Figure 5 dB over 57 – 64 GHz

Power Consumption 4.5mA from a 1.8 V source

1-dB compression point +1.5dBm

Efficiency 17.4%

Process IBM0.12 μm, 200 GHz fT, SiGe technology.



Low-Noise Amplifier [2/2]

Two Stage 23–32GHz LNA
Source: El-Nozahi et al,

IEEE JOURNAL OF SOLID-STATE CIRCUITS, FEB 2010

Gain 12 dB

Noise Figure 4.5–6.3dB over 23–32 GHz

Power Consumption 13mW from a 1.5 V source

IP3 -4.5dBm to -6.3dBm [stage1=-2dBm, stage2=7dBm]

Efficiency NA

Process Jazz Semiconductor 0.18 m BiCMOS
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MMB downlink budget

MMB link downlink budget analysis Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8

Transmit Power (dBm) 35.00 40.00 35.00 40.00 35.00 40.00 35.00 40.00

Transmit Antenna Gain (dBi) 17.00 17.00 23.00 23.00 17.00 17.00 23.00 23.00

Carrier Frequency (GHz) 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00

Distance (km) 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

Key system configuration parameters

•Base station Tx power: 35dBm – 40dBm

•Base station Tx antenna gain: 17 dB – 23 dB

•Mobile station Rx antenna gain: 3 dB – 10 dB

Distance (km) 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

Propagation Loss (dB) 115.32 115.32 115.32 115.32 115.32 115.32 115.32 115.32

Other losses 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00

Receive Antenna Gain (dB) 3.00 3.00 3.00 3.00 10.00 10.00 10.00 10.00

Received Power (dBm) -80.32 -75.32 -74.32 -69.32 -73.32 -68.32 -67.32 -62.32

Bandwidth (MHz) 500 500 500 500 500 500 500 500

Thermal Noise PSD (dBm/Hz) -174.00 -174.00 -174.00 -174.00 -174.00 -174.00 -174.00 -174.00

Noise Figure 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00

Thermal Noise (dBm) -80.01 -80.01 -80.01 -80.01 -80.01 -80.01 -80.01 -80.01

SNR (dB) -0.31 4.69 5.69 10.69 6.69 11.69 12.69 17.69

Implementation loss (dB) 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00

Spectram Efficiency 0.37 0.95 1.12 2.23 1.31 2.50 2.78 4.29

Data rate (Mbps) 186.08 474.53 559.37 1117.08 653.70 1250.93 1390.35 2145.23

103Copyright  2011 by the authors.  All rights reserved.

Path loss formula: PL = 141.3 + 20log10d with d in km (free-space loss + 20dB)



MMB uplink budget

MMB uplink budget analysis Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8

Transmit Power (dBm) 20.00 23.00 20.00 23.00 20.00 23.00 20.00 23.00

Transmit Antenna Gain (dBi) 3.00 3.00 3.00 3.00 10.00 10.00 10.00 10.00

Carrier Frequency (GHz) 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00

Distance (km) 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

Key system configuration parameters

•Mobile station Tx power: 20dBm – 23dBm

•Mobile station Tx antenna gain: 3 dB – 10 dB

•Base station Rx antenna gain: 17 dB – 23 dB

Distance (km) 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

Propagation Loss (dB) 115.32 115.32 115.32 115.32 115.32 115.32 115.32 115.32

Other losses 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00

Receive Antenna Gain (dB) 17.00 17.00 23.00 23.00 17.00 17.00 23.00 23.00

Received Power (dBm) -95.32 -92.32 -89.32 -86.32 -88.32 -85.32 -82.32 -79.32

Bandwidth (MHz) 50 50 50 50 50 50 50 50

Thermal Noise PSD (dBm/Hz) -174.00 -174.00 -174.00 -174.00 -174.00 -174.00 -174.00 -174.00

Noise Figure 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00

Thermal Noise (dBm) -92.01 -92.01 -92.01 -92.01 -92.01 -92.01 -92.01 -92.01

SNR (dB) -3.31 -0.31 2.69 5.69 3.69 6.69 9.69 12.69

Implementation loss (dB) 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00

Spectram Efficiency 0.20 0.37 0.67 1.12 0.80 1.31 1.98 2.78

Data rate (Mbps) 9.92 18.61 33.32 55.94 39.92 65.37 98.96 139.03
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Path loss formula: PL = 141.3 + 20log10d with d in km (free-space loss + 20dB)



Link Budget Analysis Summary

MMB downlink budget

• Low end: 35 dBm Tx power, 17 dB Tx antenna gain, 3 dB Rx antenna gain, 5 dB 
implementation loss � 180 Mbps on 500 MHz bandwidth at 500 meters 

• High end: 40 dBm Tx power, 23 dB Tx antenna gain, 10 dB Rx antenna gain, 5 dB 
implementation loss)� 2145 Mbps on 500 MHz bandwidth at 500 meters

MMB uplink budgetMMB uplink budget

• Low end: 20 dBm Tx power, 3 dB Tx antenna gain, 17 dB Rx antenna gain, 5 dB 
implementation loss� 9.92 Mbps on 50 MHz bandwidth at 500 meters

• High end: 23 dBm Tx power, 10 dB Tx antenna gain, 23 dB Rx antenna gain, 5 dB 
implementation loss� 139 Mbps on 50 MHz bandwidth at 500 meters

Conclusion

• Assuming free-space plus 20dB path loss, MMB can provide 100 Mbps ~ 2 Gbps
cell-edge throughput on the downlink and 10 Mbps ~ 100 Mbps cell-edge

throughput on the uplink at 28 GHz for cell radius of 500 meters.
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Link Level Performance

Length-432 and Length-1728 LDPC

Code rate 1/2, 5/8, 3/4, 13/16

Layered decoding

Maximum number of iterations
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System Level Performance

19 cells wrap-around

12 sectors per cell

1 horn antenna per sector

20 dB antenna gain

• 17.5o 3-dB beamwidth in azimuth domain

• 10o 3-dB beamwidth in elevation domain

• 30 dB front-to-back ratio

Base station Tx power = 13, 16, 19, 
22 dBm/MHz

Mobile station uniformly dropped 
in the coverage area
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Geometry with Single Rx Antenna

Site-to-site distance = 500 
meters

Single Rx antenna with -1 dB 
antenna gain
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Interference 

limited
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geometry than cellular

No Rx beamforming

PLF1: PL = 141.3 + 20log10d 
with d in km

12dB Lognormal shadowing

•8dB Lognormal shadowing for 
cellular
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Geometry with Single Rx Antenna
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No Rx beamforming

PLF2: PL = 157.4 + 32log10d 
with d in km

12dB Lognormal shadowing

•8dB Lognormal shadowing for 
cellular
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4-element uniform linear array

N=4, d=λ/2, k=2π/λ

4 fixed beams (φ=0, π/2, π, 3π/2)

Mobile station orientation is random ~ 
U[0, 2π)

Mobile station selects the beam that 
maximizes geometry
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Geometry with Rx Beamforming
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Site-to-site distance = 500 
meters

4-element antenna array with -
3 dB antenna gain per element

Interference 

limited

The same 5%-tile 

geometry as cellular

0

0.1

0.2

0.3

0.4

0.5

0.6

-12.00 -9.00 -6.00 -3.00 0.00 3.00 6.00 9.00 12.00 15.00 18.00 

Cellular, 33dBmPerMHz 13dBmPerMHz, PLF1, RxBF

16dBmPerMHz, PLF1, RxBF 19dBmPerMHz, PLF1, RxBF

22dBmPerMHz, PLF1, RxBF

111Copyright  2011 by the authors.  All rights reserved.

Rx beamforming

PLF1: PL = 141.3 + 20log10d 
with d in km

12dB Lognormal shadowing

• 8dB Lognormal shadowing for cellular



Geometry with Rx Beamforming
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Site-to-site distance = 500 
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4-element antenna array with -
3 dB antenna gain per element

0-3dB worse 5%-tile 
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Rx beamforming

PLF1: PL = 157.4 + 32log10d 
with d in km

12dB Lognormal shadowing

• 8dB Lognormal shadowing for cellular



System Throughput Analysis
MMB system performance analysis assumptions

Number of cells 19

Number of sectors per cell 12

Site to site distance 500 meters

Carrier frequency 28 GHz

System bandwidth 500 MHz

Path loss model
141.3 + 20log10d, 

or 157.4 + 20log10d

Base station Tx power 40, 43, 46, or 49 dBmBase station Tx power 40, 43, 46, or 49 dBm

Base station Tx antenna configuration Single horn antenna

Base station Tx antenna gain 20 dB

Log-normal shadow fading STD 12 dB

Mobile station Rx noise figure 7 dB

Mobile station Rx antenna configuration
Single antenna, or Rx beamforming

with 4-element ULA

Mobile station Rx antenna gain
-1 dB for single antenna case, 

-3 dB for ULA case

System overhead (cyclic prefix, control channels, etc.) 40%

Transceiver implementation loss 3 dB
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System Throughput
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RxBF significantly 

improves system 

throughput

system bandwidth)



Cell-edge performance
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RxBF significantly 

improves system 

throughput
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Summary
Millimeter wave spectrum (3-300GHz) can potentially provide the bandwidth 
required for mobile broadband applications for the next few decades and 
beyond. 

•Opportunity to open 200 times the spectrum currently allocated for cellular below 3GHz. 

Propagation and other losses due to rain, foliage and penetration through 
building materials needs better understandingbuilding materials needs better understanding

Millimeter waves are also attractive for mobile application due to small 
component sizes such as antennas.

•Further research is needed towards components and devices that meets mobile application 
demand of higher power and efficiency

Wireless community should take on the growing data demand by exploiting 
millimeter wave spectrum paving the way for multi-Gbps mobile broadband.

117Copyright  2011 by the authors.  All rights reserved.




