Chapter 3. Image sampling and quantization

IMAGE SAMPLING AND IMAGE QUANTIZATION

1. Introduction

2. Sampling in the two-dimensional space Basics on image sampling The concept of spatial frequencies Images of limited bandwidth Two-dimensional sampling Image reconstruction from its samples The Nyquist rate. The alias effect and spectral replicas superposition The sampling theorem in the two-dimensional case Non-rectangular sampling grids and interlaced sampling The optimal sampling Practical limitations in sampling and reconstruction

3. Image quantization

- 4. The optimal quantizer The uniform quantizer
- 5. Visual quantization

Contrast quantization Pseudo-random noise quantization Halftone image generation Color image quantization

Fig 1 Image sampling and quantization / Analog image display

Chapter 3. Image sampling and quantization

Sampling in the two-dimensional space

Basics on image sampling

2.

The concept of spatial frequencies

- Grey scale images can be seen as a 2-D generalization of time-varying signals (both in the analog and in the digital case); the following equivalence applies:

1-D signal (time varying)	2-D signal (grey scale image)		
Time coordinate t	Space coordinates x,y		
Instantaneous value: f(t)	Brightness level, point-wise: f(x,y)		
A 1-D signal that doesn't vary in time (is constant) = has 0 A.C. component, and only a D.C. component	A perfectly uniform image (it has the same brightness in all spatial locations); the D.C. component = the brightness in any point		
The frequency content of a 1-D signal is proportional to the speed of variation of its instantaneous value in time: $v_{max} \sim max(df/dt)$	The frequency content of an image (2-D signal) is proportional to the speed of variation of its instantaneous value in space: $v_{max,x} \sim max(df/dx); v_{max,y} \sim max(df/dy)$ => $v_{max,x}, v_{max,y} =$ "spatial frequencies"		
Discrete 1-D signal: described by its samples => a vector: $\mathbf{u} = [u(0) \ u(1) \ \dots \ u(N-1)]$, <i>N</i> samples; <i>the position of the sample = the discrete time moment</i>	Discrete image (2-D signal): described by its samples, but in 2-D => a matrix: $U[M \times N]$, $U=\{u(m,n)\}, m=0,1,,M-1; n=0,1,,N-1.$		
The spectrum of the time varying signal = the real part of the Fourier transform of the signal, $F(\omega)$; $\omega = 2\pi v$.	The spectrum of the image = real part of the Fourier transform of the image = 2-D generalization of 1-D Fourier transform, $F(\omega_x, \omega_y)$ $\omega_x = 2\pi v_x; \ \omega_y = 2\pi v_y$		

Chapter 3. Image sampling and quantization

Images of limited bandwidth

Limited bandwidth image = 2-D signal with finite spectral support:

 $F(v_x, v_y)$ = the Fourier transform of the image:

$$F(v_x, v_y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) e^{-j \cdot \omega_x \cdot x} e^{-j \cdot \omega_y \cdot y} dx dy = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) e^{-j \cdot 2\pi \cdot (v_x \cdot x + v_y \cdot y)} dx dy.$$

The spectrum of a limited bandwidth image and its spectral support

Chapter 3. Image sampling and quantization

Two-dimensional sampling (1)

The common sampling grid = the uniformly spaced, rectangular grid:

Image sampling = read from the original, spatially continuous, brightness function f(x,y), only in the black dots positions (\Leftrightarrow only where the grid allows):

$$\Rightarrow f_s(x, y) = \begin{cases} f(x, y), & x = m\Delta x, y = n\Delta y \\ 0, & otherwise \end{cases}$$
$$\Rightarrow f_s(x, y) = f(x, y)g_{(\Delta x, \Delta y)}(x, y) = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} f(m\Delta x, n\Delta y)\delta(x - m\Delta x, y - n\Delta y)$$

Two-dimensional sampling (2)

• Question: How to choose the values Δx , Δy to achieve:

-the representation of the digital image by the min. number of samples,

-at (ideally) no loss of information?

(I. e.: for a perfectly uniform image, only 1 sample is enough to completely represent the image => sampling can be done with very large steps; on the opposite – if the brightness varies very sharply => very many samples needed)

 \Rightarrow The sampling intervals Δx , Δy needed to have no loss of information depend on the spatial frequency content of the image.

 \Rightarrow Sampling conditions for no information loss – derived by examining the spectrum of the image \Leftrightarrow by performing the Fourier analysis:

 $f_s(x, y) = f(x, y)g_{(\Delta x, \Delta y)}(x, y) \Rightarrow$ Fourier transform :

$$F_{S}(v_{x},v_{y}) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{S}(x,y) \cdot e^{-j2\pi \cdot v_{x} \cdot x} \cdot e^{-j2\pi \cdot v_{y} \cdot y} dxdy = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) \cdot g_{(\Delta x,\Delta y)}(x,y) \cdot e^{-j2\pi \cdot v_{x} \cdot x} \cdot e^{-j2\pi \cdot v_{y} \cdot y} dxdy.$$

The sampling grid function $g_{(\Delta x, \Delta y)}$ is periodical with period $(\Delta x, \Delta y) =>$ can be expressed by its Fourier series expansion: $2\pi \cdot \frac{k}{k} = i2\pi \cdot \frac{l}{k} \cdot y$

$$g_{(\Delta x, \Delta y)}(x, y) = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} a(k, l) \cdot e^{j2\pi \cdot \frac{1}{\Delta x} \cdot x} \cdot e^{j2\pi \cdot \frac{1}{\Delta y} \cdot y}$$

where:

$$a(k,l) = \frac{1}{\Delta x} \cdot \frac{1}{\Delta y} \cdot \int_{0}^{\Delta x \Delta y} \int_{0}^{y} g_{(\Delta x, \Delta y)}(x, y) e^{-j2\pi \cdot \frac{k}{\Delta x} \cdot x} \cdot e^{-j2\pi \cdot \frac{l}{\Delta y} \cdot y} dxdy.$$

Chapter 3. Image sampling and quantization

Two-dimensional sampling (3)

Since:

for
$$(x, y) \in [0; \Delta x) \times [0; \Delta y)$$
, $g_{(\Delta x, \Delta y)}(x, y) = \begin{cases} 1, & \text{if } x = y = 0 \\ 0, & \text{otherwise} \end{cases}$

$$\Rightarrow a(k,l) = \frac{1}{\Delta x} \cdot \frac{1}{\Delta y}, \quad \forall k, l \in (-\infty; \infty)$$

Therefore the Fourier transform of f_s is:

$$\begin{split} F_{S}(v_{x},v_{y}) &= \int_{-\infty-\infty}^{\infty} \int_{-\infty-\infty}^{\infty} f(x,y) \cdot \left(\sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} \frac{1}{\Delta x \cdot \Delta y} \cdot e^{j\frac{2\pi \cdot k \cdot x}{\Delta x}} \cdot e^{j\frac{2\pi \cdot l \cdot y}{\Delta y}} \right) \cdot e^{-j2\pi \cdot v_{x} \cdot x} \cdot e^{-j2\pi \cdot v_{y} \cdot y} dxdy \\ &=> F_{S}(v_{x},v_{y}) = \frac{1}{\Delta x \cdot \Delta y} \cdot \int_{-\infty-\infty}^{\infty} \int_{k=-\infty}^{\infty} \int_{l=-\infty}^{\infty} f(x,y) \cdot e^{-j2\pi \cdot x \cdot \left(v_{x} - \frac{k}{\Delta x}\right)} \cdot e^{-j2\pi \cdot y \cdot \left(v_{y} - \frac{l}{\Delta y}\right)} \right) dxdy \\ &\Leftrightarrow F_{S}(v_{x},v_{y}) = \frac{1}{\Delta x \cdot \Delta y} \cdot \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) \cdot e^{-j2\pi \cdot x \cdot \left(v_{x} - \frac{k}{\Delta x}\right)} \cdot e^{-j2\pi \cdot y \cdot \left(v_{y} - \frac{l}{\Delta y}\right)} dxdy \\ &\Leftrightarrow F_{S}(v_{x},v_{y}) = \frac{1}{\Delta x \cdot \Delta y} \cdot \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) \cdot e^{-j2\pi \cdot x \cdot \left(v_{x} - \frac{k}{\Delta x}\right)} \cdot e^{-j2\pi \cdot y \cdot \left(v_{y} - \frac{l}{\Delta y}\right)} dxdy \\ &\Leftrightarrow F_{S}(v_{x},v_{y}) = \frac{1}{\Delta x \cdot \Delta y} \cdot \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) \cdot e^{-j2\pi \cdot x \cdot \left(v_{x} - \frac{k}{\Delta x}\right)} \cdot e^{-j2\pi \cdot y \cdot \left(v_{y} - \frac{l}{\Delta y}\right)} dxdy \\ &\Leftrightarrow F_{S}(v_{x},v_{y}) = \frac{1}{\Delta x \cdot \Delta y} \cdot \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} F\left(v_{x} - \frac{k}{\Delta x}, v_{y} - \frac{l}{\Delta y}\right). \end{split}$$

 \Leftrightarrow The spectrum of the sampled image = the collection of an infinite number of scaled spectral replicas of the spectrum of the original image, centered at multiples of spatial frequencies $1/\Delta x$, $1/\Delta y$.

Chapter 3. Image sampling and quantization

Sampled image spectrum – 3D

Chapter 3. Image sampling and quantization

Image reconstruction from its samples

$$v_{xs} > 2v_{x0}, \quad v_{ys} > 2v_{y0} \quad \Delta x < \frac{1}{2v_{x0}}, \quad \Delta y < \frac{1}{2v_{y0}}$$

 $H(v_x, v_y) = \begin{cases} \frac{1}{(v_{xs}v_{ys})}, (v_x, v_y) \in \Re\\ 0, & \text{otherwise} \end{cases}$

$$F(v_x, v_y) = H(v_x, v_y)F_s(v_x, v_y) = F(v_x, v_y) \Leftrightarrow$$
$$\widetilde{f}(x, y) = h(x, y) * f_s(x, y)$$
$$\Leftrightarrow \widetilde{f}(x, y) = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} f_s(m\Delta x, n\Delta y)h(x - m\Delta x, y - n\Delta y)$$

Let us assume that the filtering region R is rectangular, at the middle distance between two spectral replicas:

$$H(v_x, v_y) = \begin{cases} \frac{1}{(v_{xs}v_{ys})}, |v_x| < \frac{v_{xs}}{2} \text{ and } |v_y| < \frac{v_{ys}}{2} \Rightarrow h(x, y) = \frac{\sin(\pi x v_{xs})}{\pi x v_{xs}}, \frac{\sin(\pi y v_{ys})}{\pi y v_{ys}} \end{cases}$$
otherwise

$$\Rightarrow \tilde{f}(x,y) = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} f_s(m\Delta x, n\Delta y)h(x-m\Delta x, y-n\Delta y) = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} f_s(m\Delta x, n\Delta y) \frac{\sin(\pi(xv_{xs}-m))}{\pi(xv_{xs}-m)} \cdot \frac{\sin(\pi(yv_{ys}-n))}{\pi(yv_{ys}-n)}$$

$$\Leftrightarrow \tilde{f}(x, y) = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} f_s(m\Delta x, n\Delta y) \operatorname{sinc}(xv_{xs} - m) \operatorname{sinc}(yv_{ys} - n), \quad \text{where sinc}(a) = \frac{\sin \pi a}{\pi a}$$

Since the sinc function has infinite extent => it is impossible to implement in practice the ideal LPF =it is impossible to reconstruct in practice an image from its samples without error if we sample it at the Nyquist rates.

Practical solution: sample the image at higher spatial frequencies + implement a real LPF (as close to the ideal as possible).

1-D sinc function

Chapter 3. Image sampling and quantization

The Nyquist rate. The aliasing. The fold-over frequencies

The Moire effect

Fig. 5 Aliasing – fold-over frequencies Note: Aliasing may also appear in the reconstruction process, due to the imperfections of the filter! How to avoid aliasing if cannot increase the sampling frequencies? By a LPF on the image applied prior to sampling!

"Jagged" boundaries

Chapter 3. Image sampling and quantization

m,n=0

Non-rectangular sampling grids. Interlaced sampling grids n

Image reconstruction from its samples in the real case

The question is: what to fill in the "interpolated" (new) dots? Several interpolation methods are available; ideally – sinc function in the spatial domain; in practice – simpler interpolation methods (i.e. approximations of LPFs).

Image interpolation filters:

The 1-D interpolation function	Graphical representation	p(x)	The 2-D interpolation function $p_a(x,y)=p(x)p(y)$	Frequency response $p_a(\xi_1,\xi_2)$	<i>p</i> _a (ξ ₁ ,0)
Rectangular (zero-order filter) $p_0(x)$	$-\Delta x/2$ 0 $\Delta x/2$ x	$\frac{1}{\Delta x} rect\left(\frac{x}{\Delta x}\right)$	$p_0(x)p_0(y)$	$\operatorname{sinc}\left(\frac{\xi_1}{2\xi_{x0}}\right)\operatorname{sinc}\left(\frac{\xi_2}{2\xi_{y0}}\right)$	0 $4\xi_{x0}$
Triangular (first order filter) p ₁ (x)	$-\Delta x = 0$ $\Delta x = x$	$\frac{1}{\Delta x} tri\left(\frac{x}{\Delta x}\right)$ $p_0(x) \otimes p_0(x)$	$p_1(x)p_1(y)$	$\left[\operatorname{sinc}\left(\frac{\xi_1}{2\xi_{x0}}\right)\operatorname{sinc}\left(\frac{\xi_2}{2\xi_{y0}}\right)\right]^2$	0 $4\xi_{x0}$
n-order filter n=2, quadratic n=3, cubic spline p _n (x)		$p_0(x)\otimes\cdots\otimes p_0$ n convolu@à	$p_n(x) p_n(x)p_n(y)$	$\left[\operatorname{sinc}\left(\frac{\xi_1}{2\xi_{x0}}\right)\operatorname{sinc}\left(\frac{\xi_2}{2\xi_{y0}}\right)\right]^{n+1}$	0 $4\xi_{x0}$
Gaussian p _g (x)	\downarrow	$\frac{1}{\sqrt{2\pi\sigma^2}}\exp\left[-\frac{1}{2}\right]$	$\frac{x^2}{x\sigma^2 2\pi\sigma^2} \exp\left[-\frac{(x^2+y^2)}{2\sigma^2}\right]$	$\exp\left[-2\pi^2\sigma^2(\xi_1^2+\xi_2^2)\right]$	
Sinc		$\frac{1}{\Delta x}\operatorname{sinc}\left(\frac{x}{\Delta x}\right)$	$\frac{1}{\Delta x \Delta y} \operatorname{sinc}\left(\frac{x}{\Delta x}\right) \operatorname{sinc}\left(\frac{y}{\Delta y}\right)$	$rect\left(\frac{\xi_1}{2\xi_{x0}}\right)rect\left(\frac{\xi_2}{2\xi_{y0}}\right)$	

Chapter 3. Image sampling and quantization

Image interpolation examples:

1. Rectangular (zero-order) filter, or *nearest neighbour filter*, or *box filter*:

Original

Sampled

Reconstructed

Chapter 3. Image sampling and quantization

Image interpolation examples:

2. Triangular (first-order) filter, or bilinear filter, or tent filter:

Original

Sampled

Reconstructed

Chapter 3. Image sampling and quantization

Image interpolation examples:

3. Cubic interpolation filter, or *bicubic filter* – begins to better approximate the sinc function:

Original

Sampled

Reconstructed

Chapter 3. Image sampling and quantization

Practical limitations in image sampling and reconstruction

Fig. 8 The real effect of the interpolation

Chapter 3. Image sampling and quantization

3. Image quantization 3.1. Overview

Fig. 9 The quantizer's transfer function

Chapter 3. Image sampling and quantization

3.2. The uniform quantizer

The quantizer's design:

- Denote the input brightness range:
- Let B the number of bits of the quantizer $=> L=2^{B}$ reconstruction levels
- The expressions of the decision levels:

 $t_1 = l_{\min}; \quad t_{L+1} = L_{Max}$ $t_k - t_{k-1} = t_{k+1} - t_k = \text{constant} = q$ $q = \frac{t_{L+1} - t_1}{I}, t_k = t_{k-1} + q \Longrightarrow q = \frac{L_{Max} - l_{min}}{I}$

• The expressions of the reconstruction levels:

$$r_k = \frac{t_k + t_{k+1}}{2} \Longrightarrow r_k = t_k + \frac{q}{2}$$

Uniform quantizer transfer function

• Computation of the quantization error: for a given image of size M × N pixels, \mathbf{U} - non-quantized, and \mathbf{U} ' - quantized => we estimate the MSE:

$$\varepsilon = \frac{1}{MN} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} (u(m,n) - u'(m,n))^2 = \sum_{k=1}^{L} \int_{t_k}^{t_{k+1}} (u - r_k)^2 h_{lin,U}(u) du$$

Examples of uniform quantization and the resulting errors:

t3=256

B=1 => L=2

The histogram of the non-quantized image

Non-quantized image

Quantized image

Quantization error; MSE=36.2

Examples of uniform quantization and the resulting errors:

B=2 => L=4

Non-quantized image

Quantized image

Quantization error; MSE=15

The histogram of the non-quantized image

Examples of uniform quantization and the resulting errors:

<section-header><section-header>

Quantized image

Quantization error; MSE=7.33

3.2. The optimal (MSE) quantizer (the Lloyd-Max quantizer)

Chapter 3. Image sampling and quantization

$$\varepsilon = \frac{1}{12L^2} \left\{ \int_{t_1}^{t_{L_1}} [h_u(u)]^{1/3} du \right\}^3$$

$$h_{u}(u) = \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\left(\frac{-(u-\mu)^{2}}{2\sigma^{2}}\right) \qquad \text{(Gaussian), or } h_{u}(u) = \frac{\alpha}{2} \exp\left(-\alpha|u-\mu|\right) \quad \text{(Laplacian)}$$
$$\sigma^{2} = \frac{2}{\alpha} \qquad \text{variance, } \mu\text{-mean)}$$

Examples of optimal quantization and the quantization error:

Nivelele de reconstructie

The non-quantized image histogram

The quantization error; MSE=19.5

250

Quantized image

The evolution of MSE in the optimization, starting from the uniform quantizer

Examples of optimal quantization and the quantization error:

B=2 => L=4

Nivelele de reconstructie

The non-quantized image histogram

The quantization error; MSE=9.6

Quantized image

The evolution of MSE in the optimization, starting from the uniform quantizer

12

10

Examples of optimal quantization and the quantization error: B=3 => L=8

Non-quantized image Quantized image Functia de transfer a cuantizorului optimal r8=224 r7=181 r6=165 r5=147 r4=125 r3=101 r2=54 r1=14 t3=78 t1=0 t2=34 t5=136 t6=156t7=173 t8=203 t9=2 t4=113 Nivelele de decizie The quantization error; The evolution of MSE 1000 MSE=5 900 in the optimization, starting 800 from the uniform quantizer 700 600 500 400 300 200 100 0 50 100 150 200 250 0

The non-quantized image histogram

3.3. The uniform quantizer = the optimal quantizer for the uniform grey level distribution:

$$h_{u}(u) = \begin{cases} \frac{1}{t_{L+1} - t_{1}}, & t_{1} \le u \le t_{L+1} \\ 0 & otherwise \end{cases}$$

$$r_k = \frac{(t_{k+1}^2 - t_k^2)}{2(t_{k+1} - t_k)} = \frac{t_{k+1} + t_k}{2}$$

$$t_{k} = \frac{t_{k+1} + t_{k-1}}{2} \qquad t_{k} - t_{k-1} = t_{k+1} - t_{k} = \text{constant} = q$$

$$q = \frac{t_{L+1} - t_{1}}{L}, \qquad t_{k} = t_{k-1} + q, \qquad r_{k} = t_{k} + \frac{q}{2}$$

$$\varepsilon = \frac{1}{q} \int_{-q/2}^{q/2} u^{2} du = \frac{q^{2}}{12}$$

$$\frac{\varepsilon}{\sigma_u^2} = 2^{-2B}$$
, therefore $SNR = 10\log_{10}2^{2B} = 6 \cdot B \, dB$

3.4. Visual quantization methods

- In general if B<6 (uniform quantization) or B<5 (optimal quantization) => the "contouring" effect (i.e. false contours) appears in the quantized image.
- The false contours ("contouring") = groups of neighbor pixels quantized to the same value <=> regions of constant gray levels; the boundaries of these regions are the false contours.
- The false contours do not contribute significantly to the MSE, but are very disturbing for the human eye => *it is important to reduce the visibility of the quantization error, not only the MSQE.* => Solutions: visual quantization schemes, to hold quantization error below the level of visibility. => Two main schemes: (a) contrast quantization; (b) pseudo-random noise quantization

Uniform quantization, B=4

Optimal quantization, B=4

Uniform quantization, B=6

3.4. Visual quantization methods

a. Contrast quantization

• The visual perception of the luminance is non-linear, *but the visual perception of contrast is linear* ⇒uniform quantization of the contrast is better than uniform quantization of the brightness ⇒*contrast* = ratio between the lightest and the darkest brightness in the spatial region ⇒just noticeable changes in contrast: 2% => 50 quantization levels needed ⇔ 6 bits needed with a uniform quantizer (or 4-5 bits needed with an optimal quantizer)

Chapter 3. Image sampling and quantization

The transfer function of the contrast quant

Examples of contrast quantization:

• For c=u^{1/3}:

Chapter 3. Image sampling and quantization

Examples of contrast quantization:

Chapter 3. Image sampling and quantization

b. Pseudorandom noise quantization ("dither")

Uniform quantization, B=4

u'(m,n)K bits v'(m,n)u(m,n)v(m,n)quantizer $\eta(m,n)$ Uniformly distributed pseudorandom noise, [-A,A]

Prior to dither subtraction

Large dither amplitude

Small dither amplitude

Chapter 3. Image sampling and quantization

Fig. 13

a b c d

- a. 3 bits quantizer =>visible false contours;
- b. 8 bits image, with pseudo-random noise added in the range [-16,16];
- c. the image from Figure b) quantized with a 3 bits quantizer
- d. the result of subtracting the pseudo-random noise from the image in
 Figure c)

Demo: http://markschulze.net/halftone/index.html

Fig.15 Halftone matrices

Chapter 3. Image sampling and quantization

Fig.3.16

Chapter 3. Image sampling and quantization

Color images quantization

Fig.17 Color images quantization