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@ Background

e Fourier analysis (Fourier series and Fourier
transforms) is quite useful in many engineering fields

e Linear image filtering can be performed in the
frequency domain

e A working knowledge of the Fourier analysis can help
us have a thorough understanding of the image
filtering

Lin ZHANG, SSE, 2014



@ Background

e Jean Baptiste Joseph Fourier was born in 1768, in
France

e Most famous for his work “La Théorie Analitique de |la
Chaleur” published in 1822

e Translated into English in 1878: “The Analytic Theory of Heat”

21 March 1768 — 16 May 1830
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e From Fourier series to Fourier transform

e Properties of the Fourier transform

e Discrete Fourier transforms

e The basics of filtering in the frequency domain

e |[mage smoothing using frequency domain filters
e |mage sharpening using frequency domain filters
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@@ Fourier Series

e For any periodic function f(t), how to extract the
component of f at a specific frequency?
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@@ Fourier Series

e For any periodic function f(t), how to extract the

component of f at a specific frequency?
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C@@ Fourier Series

e For any periodic function f(t), how to extract the
component of f at a specific frequency?
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t@ Fourier Series

e For any periodic function f(t), how to extract the
component of f at a specific frequency?

Fourier Series

Any periodic function can be expressed as a sum of sines
and cosines of different frequencies each multiplied by a
different coefficient

t(t) =

0 0]

+ > (@, cosnet + b, sinnat)
:1

_0
2
1 more details
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@@ Fourier Series

For a periodic functionf (t), with period T

Fourier Series a .
f(t)=—+> (a,cosnat+b,sinnet)

2 ot .
b, == jzg f (t)sin ntdt
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@ Fourier Transforms

Fourier transform of f(t) (maybe is not periodic) is defined
as -~ _
F(u) = j f(t)e 2™t

ier transform f (t) = roo F(u)e'”™d u

Inverse Fo

How to get these formulas?

Let’s start the story from Fourier series to

Fourier transform...

Lin ZHANG, SSE, 2014



t@ From Fourier Series to Fourier Transforms

According to Euler formula e’ =cosé@ + jsind
Easy to have

Jnot + — jnat - - ejna)'[ . e—jna)t
cosnwt = ,SINnNat = — |
2 2
Then, Fourier series become
d = )
f(t)= ?O +> (a, cosnat + b, sinnet)

n=1

Lin ZHANG, SSE, 2014



t@ From Fourier Series to Fourier Transforms

According to Euler formula e’ =cosé@ + jsin@

Easy to have gind | oo ginet _ o= jnat

cosnat = Sinnat = — |
2 2

Then, Fourier series become
a o0 ejna)t + e—jna)t - ejna)t . e—jna)t
+> | a — jb
" 2 " 2

(an B an ejna)t n a‘n + an ejna)tj
2
d

C0: 0’ n n:Cn’an_I_.lbn:dn
2 2 2

f(t) =co+ Y (c.e™ +d,e ™) (1)
n=1
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t@ From Fourier Series to Fourier Transforms

1 ot
Co = j_zl f (t)dt,
2

T T _
¢ = % [2 (1) (cosnet— jsinnat)dt - % [2 f(he ™dt ()
2 2

T T

d - % [2 (t)(cosnet+ jsinnat)dt - % [2 (e dt
2 2
We can see that
d =c_,

Thus, )

Zdne—jna}t _ ZC_ne—jna)t _ Z Cnejna)t (3)

n=1 n=1 N=—o0
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&) From Fourier Series to Fourier Transforms

f(t)=c,+ > (c,e™ +d,e ™) (according to (1))
n=1

. JOwt C jnot C — jnawt
=ce!™ +> cel+> de’
=1 =1

o0 -1
=ce!™ + > cel+ » c.e™ (according to (3))
n=1

N=—o0

+00
— Z Cnemwt ,where C_ is defined by (2)

N=—o0

This is the Fourier series in complex form

How about a non-periodic function?

Lin ZHANG, SSE, 2014



t@ From Fourier Series to Fourier Transforms

f (t) is a non-periodic function

We make a new function f_(t) which is periodic and the period
is T

f-(t)="1(),1f te[-T/2,T/2]
fT — 400, 1 () becomes f(t)

According to Fourier series

+00 _ T _
f.()=> celc, = % I_ZI f(t)e™"dt
2

Let S, = Nw
+0 1 T _ _ 1 & T _ |
fT (t) = Z (?I T fT (t)eJSntdt]eJSnt — ? Z [jz_r .I:T (t)ejsntdt]ejsnt
N=- _E N=—00 _E
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t@ From Fourier Series to Fourier Transforms

+00

I - :
(0= % 2 U 3 h (t)e’sf‘tdtj e’
2

when T — 400

+00 I _ |
T(t) = TILrPoo (1) = TILrPoo% Z (IZT f; (t)eJS”tdt] g Jsit
2

N=—o0

2
As:sn—sn_lza):?ﬂ —) T:2_”

AS

+00

AS L . |
f(t) = |lim — Z (IZT fT (t)eJSntdt]eJSnt
2

AS—0 272' St

——Ilm ZU f(t)e JStdt] et As

272' AsS—0
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t@ From Fourier Series to Fourier Transforms

_ 1 " N % — syt Jspt
f (t) _Zgr_n)om(j ' f(t)e dtje As
when T — +00(As — 0)

S, mmp S, AS-dS' Z-I

£ty =— [ f (t)e Mt ds

27T 40| \¥~
Denote by F(s)

F(s) = jj: f (t)e dt Fourier transform

—00
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1 oo |
f(t) = - F(s)e’™ds Inverse Fourier transform
L 7T



&) From Fourier Series to Fourier Transforms

F(s)= [ f (e M

—00

f(t)= L = (s)e™ds
k 27T

S here actually is the angular frequency

In the signal processing domain, we usually use another form by

substituting s by S = 27711 , where 1 is the frequency (measured
by Herz)

F(u) = f(t)e >™dt

f(t)=[ F(ue”*du




@@ Related Concepts to Fourier Transform

e Fourier transform F () is complex in general
F(u)=[ " f(t)cosrut)dt— j[  f (t)sin(2zut)dt
= R(u) + 11 (1)

In polar form, it can be expressed as
F (1) = |F(u)|e”

2 1 (1)
, =atan 2———=
¢(U) = atan R(2)

where

i

Phase Angle

P(u) = ‘F(,u)‘2 = R?(u) + 1°(1) is called the power spectrum

Lin ZHANG, SSE, 2014




@@ Related Concepts to Fourier Transform

Implementation Tips

1) For computing the image’s Fourier transform, you can
use fft2()

ifft2() can compute the inverse Fourier transform

‘can compute the Fourier spectrum '

an compute the phase angle

Lin ZHANG, SSE, 2014
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e Properties of the Fourier transform

e Discrete Fourier transforms

e The basics of filtering in the frequency domain

e |[mage smoothing using frequency domain filters
e |mage sharpening using frequency domain filters
e Periodic noise reduction
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@@ Symmetry Properties of the Fourier Transform

Real f(t) Fourier transform F () | Symmetry of F(u)

conjugate «
general complex symmetric (F(—y) =F (,u))
even only real even (F(u)=F(-u))

(f)=1(-1)

odd only imaginary odd (—F(u)=F(-u))
(=f ()= f(-1))

Lin ZHANG, SSE, 2014




@@ Why Study Fourier Transform?

e Observe the image in the frequency domain; has some
related applications, e.g., de-noising and phase-based
image matching; directly manipulating the image in
the frequency domain

* We can make use of Fourier transform to compute the
convolution efficiently; thanks to FFT

The underlying theory is the convolution theorem!

Lin ZHANG, SSE, 2014



@@ Convolution Theorem

e Still remember the convolution? (Lecture 3)

For 1D continuous case, it is defined as

fO*ht)=[ " f(D)h(t-r)dz

e Convolution theorem

e The Fourier transform of a convolution is the point-wise
product of Fourier transforms

it Z(f(t))=F(w), A ((t)=H(w)
then 7 (f(t)*h(t))=F(u)-H (1)

Proof: 1
Lin ZHANG, SSE, 2014




t@ Convolution Theorem

F (£ 1) *h(t)) = j:(j: f(r)h(t—r)dr)ejz””tdt

=" f ()

o —C0

.+ooh(t_z_)e_]27z;utdt)dz' (l_et X:t_T)

.+

=" f ()

o —0O0

" n(e 0 dr

/N I TN
Q Q Q

-[ ()

= [ f()H(w)e ™ dz

[ 0 — ) 2 mux —J27mur
h(x)e dx)e dr

=H()[ f(z)e "™ dr = H(u)F ()
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t@ Revisit Gaussian Filter

In spatial domain

1 X° + y°
G(X,y) = exp| —
(%) 270" p( 20° j

In frequency domain 1 . \

u2 V2 2 u2 V2
g’(u,v):exp(—( +2 Jo ]:exp _{ J; 2)

[,
o/ )

\

The Fourier transform of a Gaussian function is also of a
Gaussian shape in the frequency domain

Lin ZHANG, SSE, 2014




t@ Revisit Gaussian Filter

Gaussian filter is a low-pass filter
Consider the 1D case

f (X) if filtered by g(X) = L exp| — X
J2ro 20°

What will happen to the frequency components of
f(x) ? [ )

FT (f(x)*g(x)) = F(@)-G(w) = F(w)-exp| - i’

2
1 ()
SR

=F(w)- ;..

0.2

o 1 L
4 -2 w
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@@ Revisit Gaussian Filter

original smoothed (5x5 Gaussian)

Why does this work?

smoothed — original

Lin ZHANG, SSE, 2014
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e Discrete Fourier transforms

e The basics of filtering in the frequency domain

e |[mage smoothing using frequency domain filters
e |mage sharpening using frequency domain filters
e Periodic noise reduction
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@@ Discrete Fourier Transform (DFT) in 1D Case

Given a discrete sequence with M points

f=[f, f,..... T, ]
Its DFT also has M points

F = [Fo Fl’ ey Fl\/l—l]
and

M-1 _
F(uy=> f(x)e *™" u=0,12,.,M -1
x=0

M -1 _
IDFT f (X) = ﬁZ F(u)e?™™ x=0,1,2,...,M -1
u=0

For DFT, there is a fast algorithm for computation, FFT (Fast
Fourier Transform)

Lin ZHANG, SSE, 2014




@@ Discrete Fourier Transform (DFT) in 2D Case

In continuous case

F(u,V) = j: j: f(x,y)e 127 Wgxdy

f(x,y)= jj: Ij: F(u,v)e! = dudv

In discrete case

M-1N-1 _
F(U,V) _ ZZ f(X, y)e—j27Z'(UX/|\/|+Vy/N)’
x=0 y=0
whereu=0,1,..,.M -1v=0,1,...,,N -1
M-1N-1
f(X y)_ ZZF(U V)ej27Z'(UX/|\/|+Vy/N)
u=0 v=0

where x = O,l,..., M-1y=01..N-1

Lin ZHANG, SSE, 2014



t@ Some Notes on DFT Visualization

e For DFT, the origin is not at the center of the matrix

e Assume the original spectrum is divided into four quadrants;
the small gray-filled squares in the corners represent
positions of low frequencies

e Due to the symmetries of the spectrum the quadrant
positions can be swapped diagonally and the low
frequencies locations appear in the middle of the image

[

A

D

]

C

B

—

B

C

.

D

A

original spectrum shifted spectrum
low frequencies in corners with the origin at (M/2, N/2)
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&) some Notes on DFT Visualization

e For visualization, we usually rearrange the DFT matrix
to make its low frequencies at the center of the
rectangle; it equals to f (X, y)(-1)*"’

fxX,Y)-D"" < FUu-M/2,v—N/2)

m A W% i

Lin ZHANG, SSE, 2014

Implement
In Matlab, i

ng fftshift



t@ DFT Visualization Samples

e Since each field of the Fourier transform is a complex
number, we cannot show Fourier map in a single
figure; instead, magnitude and phase maps are shown

separately

Lin ZHANG, SSE, 2014

im = imread('im.bmp");
figure;
imshow(im,[]);

Imfft = abs(fft2(im));
Imfftlog = log10(1+imfft);
figure;
imshow(imfftlog,[]);

imfftshifted = fftshift(imfftlog);
figure;
imshow(imfftshifted,[]);




&) pFT Visualization Samples

e An example

P =N

Original image Spectrum without Spectrum using
using fftshift fftshift

Lin ZHANG, SSE, 2014
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@@ DFT Visualization Samples

%
ADO0 > N\ 3
)
57

111

DFT

111

Any
relationship?
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e The basics of filtering in the frequency domain

e |[mage smoothing using frequency domain filters
e |mage sharpening using frequency domain filters
e Periodic noise reduction
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@@ The Basics of Filtering in the Frequency Domain

To filter an image in the frequency domain:
1. Compute F(u,v), the DFT of the image
2. Multiply F(u,v) by a filter function H(u,v)
3. Compute the inverse DFT of the result

Frequency domain filtering operation

Filter [nverse

Fourier T [
transform g function g Fourier
o Hiu v) transform

Flu,v) H{u, v)Fu.v)
Post-
processing

Pre-
processing,

flx.y) g(x. y)
[nput Enhanced
image image

Lin ZHANG, SSE, 2014



@@ Directly Filtering in the Frequency Domain

1. Givenanimage f(X, y) of size M x N , set P =2M and Q = 2N

2. Formapaddedimage, T (X,Y) of size PxQ by appending
the necessary number of zeros to (X, y)

3. Multiply f (x,¥) by (=1)"” to center its transform

4. Compute F(u, v) of f,(X,Y)

5. Generate a filter function H(u, v) of the size P xQ

6. Get the modified Fourier transform G(u,v) = F(u,v)H (u,v)

7. Obtain the processed image

g,(x,¥)=F(G(u,v) (-1
8. Obtain the final result g(X, y) by extracting the M x N region
from the top, left corner of g,(X,Y)

Lin ZHANG, SSE, 2014



&) pirectly Filtering in the Frequency Domain—Example

H(u,v)

G(u,v)=F(u,v)H(u,v)

Source codes are available on our course website

Lin ZHANG, SSE, 2014




@@ Convolution via Fourier Transform

1. Given animage f(X, y) of size AxB , and a spatial filter h(x, y)
of size Cx D ; set P >= A+C-1 and Q >=B+D-1

2. Form a padded image fp of size P xQ by appending the
necessary number of zeros to f(X, y); form a padded filter h_
of size P xQ in a similar way

3. Compute the DFT F(u, v) of the image, and H(u, V) of the
filter

4.  Get the modified Fourier transform G(u,v) = F(u,v)H (u,V)
5. Obtain the processed image

g,(xy) = (G(u,v))
6. Obtain the final result g(X, y) by extracting the central Ax B
region from 9,(X,Y)

Lin ZHANG, SSE, 2014



@@ Convolution via Fourier Transform—Example

& <Y - = ‘ ~~~~~~ - _____
f(xy) Ff.(xy)  F(u,v)

= mfe
H = -}.

G(u,v) 9,(xYy) dg(xy)
h(x,y)  h,(Xy)  H(u,v)

Source codes are available on our course website

Lin ZHANG, SSE, 2014




@@ Some Tips on Filtering via Fourier Transform

e When the filter kernel is small, it’s better to implement
the filtering in the spatial domain; otherwise, you can
realize the filtering via the Fourier transform

e |n practice, when padding the images or filters, it’s
better to make it has a size which is the power of 2;
this criterion is based on the computer architecture

Lin ZHANG, SSE, 2014
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e |[mage smoothing using frequency domain filters
e |mage sharpening using frequency domain filters
e Periodic noise reduction
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@@ Smoothing is Low-Pass Filtering

e |[mage smoothing actually is performing a low-pass
filtering to the image

e Edges and other sharp intensity transitions, such as
noise, in an image contribute significantly to the high
frequency content of its Fourier transform

e Three commonly used low-pass filtering techniques
e |deal low-pass filters
e Butterworth low-pass filters
e Gaussian low-pass filters

Lin ZHANG, SSE, 2014



) |deal Low-Pass Filter

e Simply cut off all high frequency components that are
within a specified distance D, from the origin of the
transform

e |ts drawback is that the filtering result has obvious ringing
artifacts

e |deal low-pass filter is rarely used in practice

H(u. v) H{u.v)
r
| |

= D(u, v)

Lin ZHANG, SSE, 2014
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t@ |deal Low-Pass Filter

The transfer function for the ideal low pass filter can be
given as:

(1 if D(u,v) <D,

H(u,v)=+ .
0 1f D(u,v) > D,

where D(u,v) is the distance of (U, V) to the frequency
centre (0, 0) and it is given as:

D(u,v) =[u® +v°]"

Lin ZHANG, SSE, 2014



) |deal Low-Pass Filter

i

aaaaaaadd

Above we show an image, it’s Fourier spectrum and a
series of ideal low pass filters of radius 5, 15, 30, 80 and
230 superimposed on top of it

Lin ZHANG, SSE, 2014



J ldeal Low-Pass Filter

F ™
Ll -
. a . Result of filtering
O_”Qmal |||||||| with ideal low
Image " pass filter of
aaaaﬂaaa radius 5
22 ) | ~ecum@B
Resu.lttho.ilfllttfrllng ‘.o a see a Result of filtering
N s Tiltor of ', m with ideal low
pass |_ter ° ' ass filter of
radius 15 P
YT Y saannnngad radius 30
.-..-.. ...--...
Result of filtering | eee a Syl a ' Result of filtering

with ideal low with ideal low
pass filter of ”“l”” . ””“” pass filter of
radius80 aaaaaaaad aaaaﬂﬁaa radius 230
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t@ Butterworth Low-pass Filters

e |t was proposed by the British engineer Stephen
Butterworth

e Filter order can change the shape of the Butterworth
filter; for high order values, the Butterworth filter
approaches the ideal filter; for low order values, it
approaches the Gaussian filter

Lin ZHANG, SSE, 2014



&) utterworth Low-pass Filters

e The transfer function of a Butterworth low-pass filter
of order n with cutoff frequency at distance D, from
the origin is defined as:

1
H(u,v) = —
1+[D(u,v)/ D]
Hu, v) H(
,T--: 1.0
== I =
“,r.’”;” Ty p

Lin ZHANG, SSE, 2014



”) Butterworth Low-pass Filters

Original
image

Result of filtering
with Butterworth
filter of order 2 and
cutoff radius 15

Result of filtering
with Butterworth
filter of order 2 and
cutoff radius 80

--umnEH [ -
111} |
1aaaﬂaaa
xnD ~«ummB
.--a -:.a
NI T
,aaB82208 |s2aaaaaad
YT ] BT 1
coe a : coe a
111} I
aaaaaaad aaﬂaﬂaaa

Result of filtering
with Butterworth
filter of order 2 and
cutoff radius 5

Result of filtering
with Butterworth
filter of order 2 and
cutoff radius 30

Result of filtering
with Butterworth
filter of order 2 and
cutoff radius 230
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Butterworth Low-pass Filters

Original image Filtering result of Butterworth

Source codes are available on course website
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t@ Gaussian Low-pass Filters

The transfer function of a Gaussian lowpass filter is
defined as:

H (u,v) _ e—Dz(u,v)/ZDOZ

where D(u,v) is the distance from the center of the
frequency rectangle

Hiu, v) Hu.v)
4
1.0

D, =10
D, =20
D, = 40

0.667

D, = 100

e

'''''
o i

= D, v)

Lin ZHANG, SSE, 2014



&% Gaussian Lowpass Filters

Original
image

Result of filtering
with Gaussian
filter with cutoff
radius 15

Result of
filtering with
Gaussian filter
with cutoff
radius 85
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Result of filtering
with Gaussian
filter with cutoff
radius 5

Result of filtering
with Gaussian
filter with cutoff
radius 30

Result of filtering
with Gaussian
filter with cutoff
radius 230
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@ Low-pass Filtering Examples

A low pass Gaussian filter is used to connect broken

text
Historically, certain computer Historically, certain computer
programs were written using programs were written using
only two digits rather than only two digits rather than
four to define the applicable four to define the applicable
yaar. Accordingly, the yvear. Accordingly, the
company's software may company's software may
recognize a date using "G0° recognize a date using "00"
as 1900 rather than the vEFr as 1900 rather than the yEar
2000. 2000.

-m g
wpll s
= ] :
Lin ZHANG, SSE, 2014




@ Low-pass Filtering Examples

Gaussian filters used to remove blemishes in a
photograph for publishing

Lin ZHANG, SSE, 2014
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e |mage sharpening using frequency domain filters
e Periodic noise reduction
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@@ Sharpening in the Frequency Domain

e Edges and fine detail in images are associated with
high frequency components

e High pass filters — only pass the high frequencies, drop
the low ones

e High pass filters are precisely the reverse of low pass
filters, so,

Hip =1- HLP(U’V)

Lin ZHANG, SSE, 2014



& |deal High-Pass Filters

The ideal high pass filter is given as:
0 if D(u,v) <D,

H(u,v)=< .
1 1f D(u,v) > D,

where Dy is the cut off distance as before

Hiu, v)

i
o Hiww) | | Loy

i

= [Mu, v

Lin ZHANG, SSE, 2014



/ |deal High-Pass Filters

1]

aaaaaaadd

a 9 \ ‘_\ - 5

Results of ideal Results of ideal Results of ideal
high pass filtering  high pass filtering  high pass filtering
with D, = 15 with D, = 30 with D, = 80

Lin ZHANG, SSE, 2014



&) utterworth High Pass Filters

The Butterworth high pass filter is given as:

1
H(u,v) = —
1+[D,/D(u,v)]
where n is the order and D is the cut off distance as
before
Hiw, v)
..... T Lot
.................. h\tﬁmwmwﬁﬁ
“..r": ‘-1., " * [D{u, v)

Lin ZHANG, SSE, 2014
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@@ Butterworth High Pass Filters

e

i
-
ot

aaaaaaadd

Results of Results of
Butterworth p ; Butterworth
high pass y B high pass

filtering of
order 2 with

filtering of
I

order 2 with
Do =15 aaadadade

Results of Butterworth high pass
filtering of order 2 with D, = 30

Lin ZHANG, SSE, 2014
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&) utterworth High Pass Filters

Original image Filtering result of Butterworth
high-pass filtering

Source codes are available on course website

Lin ZHANG, SSE, 2014



t@ Gaussian High Pass Filters

The Gaussian high pass filter is given as:
H (u, V) :1_e—D2(u,v)/2D02
where Dy is the cut off distance as before

Hiu, v)
L

|
. Hiu, v) ' ' 1.0

= [Mu, v)

Lin ZHANG, SSE, 2014
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) Gaussian High Pass Filters

i)
L
s
g

aaaaaaadd

Results of Results of
Gaussian Gaussian
high pass high pass
filtering with filtering with
D,=15 D, =80

Results of Gaussian high
pass filtering with D, = 30

Lin ZHANG, SSE, 2014
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e Periodic noise reduction
e Selective filtering
e Periodic noise reduction by selective filters
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) selective Filtering

e Review: low pass filters (lecture 4)

The transfer function for the ideal low pass filter can be given
as: 1if D(u,v) <D,
H(u,v)=< .
0 if D(u,v) > D,
where D(u,v) is the distance of (u, V) to the frequency centre
(0, 0) and it is given as: D(u,v) = [u® +v°]"*

H(:Tf. v) Hu, v)
I

1

w D, v)

Lin ZHANG, SSE, 2014



) selective Filtering

e Bandreject filters (remove frequency components
within a specific range)

-

0 if D, —W?S D(u,v) <D, +W?

1 otherwise
H(u,v) = 1 —
Butterworth WD(u, V)
1+ ’
D?(u,v)- D

D2(u,v)—D§ i
WD (u,v)

Gaussian H(u,v) :1—e{

where W is the width of the band

Lin ZHANG, SSE, 2014
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@@ Selective Filtering

e Bandreject filters (remove frequency components
within a specific range)

0.8-
0.6-
0.4-
0.2~

300
30

ideal band reject filter
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@@ Selective Filtering

e Bandreject filters (remove frequency components
within a specific range)

0.8+
0.6
0.4
0.2+

300
300

Butterworth band reject filter (of order 1)
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@@ Selective Filtering

e Bandreject filters (remove frequency components
within a specific range)

0.8+
0.6+
0.4
0.2+

300
300

100

100

Gaussian band reject filter
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) selective Filtering

e Bandpass filters
e Let only a portion of the frequency components pass
e They can be constructed by

HBP(U1V) =1- HBR(U1V)

Lin ZHANG, SSE, 2014
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@@ Selective Filtering

e Bandpass filters

e Let only a portion of the frequency components pass

0.8-
0.6-
0.4-
0.2~

300
300

ideal band pass filter
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@@ Selective Filtering

e Bandpass filters

e Let only a portion of the frequency components pass

0.8-
0.6-
0.4-
0.2~

300
300

0 0

Butterworth band pass filter (of order 1)
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) selective Filtering

e Bandpass filters

e Let only a portion of the frequency components pass

0.8-
0.6-
0.4-
0.2~

300
300

Gaussian band pass filter
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) selective Filtering

e Notch filters

e They are the most useful of the selective filters

e A notch filter rejects (or passes) frequencies in a predefined
neighborhood

e Zero-phase-shifted filters must be symmetric about the
origins, so a notch with center at (U, V,) must have a
corresponding notch at location (-U,, -V)

Lin ZHANG, SSE, 2014



) selective Filtering

e Notch filters

e Notch reject filters are constructed as products of highpass
filters whose centers are translated to the centers of the
notches

HNR(U’V) :12[ Hk(U1V)H_k(U’V)

where H, (u,v), H_, (u,V) are highpass filters whose centres
are at (u.,v, ), (-u,,—Vv,) , respectively

The distance computations for each filter are
2 2
D, (u,v)=(u—-u,) +(v-v,)

D_, (u,v) :(u+uk)2 +(v+vk)2

Lin ZHANG, SSE, 2014



) selective Filtering

e Notch filters—An example

Butterworth notch reject filter of order n, containing three
notch pairs,

3 1 1
Hg(U,V) =
(1) H_1+[Dk0/Dk(u,v)]zn__1+[Dk0/Dk(u,v)]zn

The constant D, is the same for each pair of notches, but it can
be different for different pairs

A notch pass filter is obtained from a notch reject filter by

HNP(U’V) =1- HNR(U’V)

Lin ZHANG, SSE, 2014
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Selective Filtering

e Notch filters—An example

150

A Butterworth notch reject filter, containing one notch pair

Lin ZHANG, SSE, 2014
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@ Selective Filtering

e Notch filters—An example

150

s g 100

A Butterworth notch reject filter, containing two notch pairs

Source code for this demo is available on our course website

Lin ZHANG, SSE, 2014
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e Periodic noise reduction by selective filters
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@@ Periodic noise reduction by selective filters

Typically arises due to
electrical or electromagnetic
interference

Gives rise to regular noise
patterns in an image

Frequency domain techniques in
the Fourier domain are most
effective at removing periodic
noise

Lin ZHANG, SSE, 2014




t@ Periodic noise reduction by selective filters

e Notch filters can efficiently remove the periodic noise
e Step 1: analyze the Fourier spectrum F of the image
e Step 2: identify the locations of the peaks in F

e Step 3: construct a notch reject filter H in Fourier
domain, whose centers are at peaks

e Step 4: use H to filter F to get the result

Lin ZHANG, SSE, 2014



@@ Periodic noise reduction by selective filters

e Notch filters can efficiently remove the periodic noise

Step 1: analyze the Fourier spectrum F of the image

Noisy image Fourier spectrum F

Lin ZHANG, SSE, 2014
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@@ Periodic noise reduction by selective filters

e Notch filters can efficiently remove the periodic noise

Step 2: identify the locations of the peaks in F

Padded image

Lin ZHANG, SSE, 2014



@@ Periodic noise reduction by selective filters

e Notch filters can efficiently remove the periodic noise

Step 2: identify the locations of the peaks in F

Fourier spectrum F

Lin ZHANG, SSE, 2014



t@ Periodic noise reduction by selective filters

e Notch filters can efficiently remove the periodic noise
Step 3: construct a notch reject filter H in Fourier
domain, whose centers are at peaks

Notch filter H

Lin ZHANG, SSE, 2014



@@ Periodic noise reduction by selective filters

e Notch filters can efficiently remove the periodic noise
Step 4: use H to filter F to get the result

HF in the Fourier domain

Lin ZHANG, SSE, 2014



@@ Periodic noise reduction by selective filters

e Notch filters can efficiently remove the periodic noise
Step 4: use H to filter F to get the result

Final result in the spatial domain

Lin ZHANG, SSE, 2014
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@ Periodic noise reduction by selective filters

e Notch filters can efficiently remove the periodic noise
Let’s see the power of such a technology

Noisy image

Lin ZHANG, SSE, 2014



@@ Fast Fourier Transform

e The reason that Fourier based techniques have
become so popular is the development of the Fast
Fourier Transform (FFT) algorithm

e Allows the Fourier transform to be carried out in a
reasonable amount of time

e Reduces the amount of time required to perform a
Fourier transform by a factor of 100 — 600 times!

Lin ZHANG, SSE, 2014



@@ Fourier Domain Filtering & Spatial Domain Filtering

e Similar jobs can be done in the spatial and frequency
domains

e Filtering in the spatial domain can be easier to
understand

e Filtering in the frequency domain can be much faster
— especially for large images

Lin ZHANG, SSE, 2014



T
& A0 > N\ ¥
2 &
C’J % S u a r
L UMY IIIlIl

In this lecture we examined image filtering in the
frequency domain

e Background

e From Fourier series to Fourier transform

e Properties of the Fourier transform

e Discrete Fourier transforms

e The basics of filtering in the frequency domain

e Image smoothing using frequency domain filters

e |Image sharpening using frequency domain filters

Lin ZHANG, SSE, 2014



Thanks for your attention
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