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Abstract
Geometric transformations are widely used for image registration

and the removal of geometric distortion. Common applications include
construction of mosaics, geographical mapping, stereo and video.
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Spatial Transformations of Images

A spatial transformation of an image is a geometric transformation of the
image coordinate system.

It is often necessary to perform a spatial transformation to:

• Align images that were taken at different times or with different sensors

• Correct images for lens distortion

• Correct effects of camera orientation

• Image morphing or other special effects
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Spatial Transformation

In a spatial transformation each point (x, y) of image A is mapped to a
point (u, v) in a new coordinate system.

u = f1(x, y)

v = f2(x, y)

Mapping from (x, y) to (u, v) coordinates. A digital image array has an implicit grid

that is mapped to discrete points in the new domain. These points may not fall on grid

points in the new domain.
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Affine Transformation

An affine transformation is any transformation that preserves collinearity
(i.e., all points lying on a line initially still lie on a line after transformation)
and ratios of distances (e.g., the midpoint of a line segment remains the
midpoint after transformation).

In general, an affine transformation is a composition of rotations,
translations, magnifications, and shears.

u = c11x + c12y + c13

v = c21x + c22y + c23

c13 and c23 affect translations, c11 and c22 affect magnifications, and the
combination affects rotations and shears.
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Affine Transformation
A shear in the x direction is produced by

u = x + 0.2y

v = y
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Affine Transformation
This produces as both a shear and a rotation.

u = x + 0.2y

v = −0.3x + y
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Affine Transformation

A rotation is produced by θ is produced by

u = x cos θ + y sin θ

v = −x sin θ + y cos θ
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Combinations of Transforms

Complex affine transforms can be constructed by a sequence of basic affine
transforms.

Transform combinations are most easily described in terms of matrix
operations. To use matrix operations we introduce homogeneous
coordinates. These enable all affine operations to be expressed as a
matrix multiplication. Otherwise, translation is an exception.

The affine equations are expressed asu
v
1

 =

a b c
d e f
0 0 1

x
y
1


An equivalent expression using matrix notation is

q = Tp

where q, T and q are the defined above.
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Transform Operations

The transformation matrices below can be used as building blocks.

T =

1 0 x0

0 1 y0

0 0 1

 Translation by (x0, y0)

T =

s1 0 0
0 s2 0
0 0 1

 Scale by s1 and s2

T =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 Rotate by θ

You will usually want to translate the center of the image to the origin of
the coordinate system, do any rotations and scalings, and then translate it
back.
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Combined Transform Operations

Operation Expression Result

Translate to
Origin

T1 =

1.00 0.00 −5.00
0.00 1.00 −5.00
0.00 0.00 1.00



Rotate by 23
degrees

T2 =

 0.92 0.39 0.00
−0.39 0.92 0.00
0.00 0.00 1.00



Translate to
original
location

T3 =

1.00 0.00 5.00
0.00 1.00 5.00
0.00 0.00 1.00


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Composite Affine Transformation

The transformation matrix of a sequence of affine transformations, say T1

then T2 then T3 is
T = T3T2T3

The composite transformation for the example above is

T = T3T2T1 =

 0.92 0.39 −1.56
−0.39 0.92 2.35
0.00 0.00 1.00


Any combination of affine transformations formed in this way is an affine
transformation.

The inverse transform is

T−1 = T−1
1 T−1

2 T−1
3

If we find the transform in one direction, we can invert it to go the other
way.
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Composite Affine Transformation RST

Suppose that you want the composite representation for translation, scaling
and rotation (in that order).

H = RST =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

s0 0 0
0 s1 0
0 0 1

1 0 x0

0 1 x1

0 0 1


=

[
s0 cos θ s1 sin θ s0x0 cos θ + s1x1 sin θ
−s0 sin θ s1 cos θ s1x1 cos θ − s0x0 sin θ

]

Given the matrix H one can solve for the five parameters.
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How to Find the Transformation

Suppose that you are given a pair of images to align. You want to try an
affine transform to register one to the coordinate system of the other. How
do you find the transform parameters?

Image A Image B
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Point Matching

Find a number of points {p0,p1, . . . ,pn−1} in image A that match
points {q0,q1, . . . ,qn−1} in image B. Use the homogeneous coordinate
representation of each point as a column in matrices P and Q:

P =

x0 x1 . . . xn−1

y0 y1 . . . yn−1

1 1 . . . 1

 =
[
p0 p1 . . . pn−1

]

Q =

u0 u1 . . . un−1

v0 v1 . . . vn−1

1 1 . . . 1

 =
[
q0 q1 . . . qn−1

]
Then

q = Hp becomes Q = HP
The solution for H that provides the minimum mean-squared error is

H = QPT (PPT )−1 = QP†

where P† = PT (PPT )−1 is the (right) pseudo-inverse of P.
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Point Matching

The transformation used in the previous example can be found from a few
matching points chosen randomly in each image.

Many image processing tools, such as ENVI, have tools to enable point-
and-click selection of matching points.
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Interpolation
Interpolation is needed to find the value of the image at the grid points in
the target coordinate system. The mapping T locates the grid points of A
in the coordinate system of B, but those grid points are not on the grid of
B.

To find the values on the grid points of B we need to interpolate from the
values at the projected locations.

Finding the closest projected points to a given grid point can be
computationally expensive.
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Inverse Projection

Projecting the grid of B into the coordinate system of A maintains the known image values

on a regular grid. This makes it simple to find the nearest points for each interpolation

calculation.

Let Qg be the homogeneous grid coordinates of B and let H be the transformation from

A to B. Then

P = H−1Qg

represents the projection from B to A. We want to find the value at each point P given

from the values on Pg, the homogeneous grid coordinates of A.
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Methods of Interpolation

There are several common methods of interpolation:

• Nearest neighbor – simplest and fastest

• Triangular – Uses three points from a bounding triangle. Useful even
when the known points are not on a regular grid.

• Bilinear – Uses points from a bounding rectangle. Useful when the known
points are on a regular grid.
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Bilinear Interpolation

Suppose that we want to find the value g(q) at a point q that is interior to a
four-sided figure with vertices {p0, p1, p2, p3}. Assume that these points are
in order of progression around the figure and that p0 is the point farthest
to the left.

1. Find the point (xq, ya) between p0

and p1. Compute g(xq, ya) by linear
interpolation between f(p0) and f(p1).

2. Find the point (xq, yb) between p3

and p2. Compute g(xq, yb) by linear
interpolation between f(p3) and f(p2).

3. Linearly interpolate between g(xq, ya)
and g(xq, yb) to find g(xq, yq).
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Triangular Interpolation
Let (xi, yi, zi) i = 0, 1, 2 be three points
that are not collinear. These points form
a triangle. Let (xq, yq) be a point inside
the triangle. We want to compute a value
zq such that (xq, yq, zq) falls on a plane
that contains (xi, yi, zi), i = 0, 1, 2.

This interpolation will work even if q is
not within the triangle, but, for accuracy,
we want to use a bounding triangle.

The plane is described by an equation

z = a0 + a1x + a2y

The coefficients must satisfy the three equations that correspond to the
corners of the triangle.
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Triangular Interpolation z0

z1

z2

 =

 1 x0 y0

1 x1 y1

1 x2 y2

 a0

a1

a2


In matrix notation we can write

z = Ca

so that
a = C−1z

The matrix C is nonsingular as long as the triangle corners do not fall along
a line. Then the value zq is given by

zq =
[

1 xq yq

]
a =

[
1 xq yq

]
C−1z

Since C depends only upon the locations of the triangle corners, (xi, yi),
i = 0, 1, 2 it can be computed once the triangles are known. This is useful
in processing large batches of images.
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Triangular Interpolation Coefficients

After some algebra we find the following equation for the coefficients needed
to calculate zq.

zq = c0z0 + c1z1 + c2z2

c0 =
x2y1 − x1y2 + xq(y2 − y1)− yq(x2 − x1)
(x1 − x2)y0 + (x2 − x0)y1 + (x0 − x1)y2

c1 =
x0y2 − x2y0 + xq(y0 − y2)− yq(x0 − x2)
(x1 − x2)y0 + (x2 − x0)y1 + (x0 − x1)y2

c2 =
x1y0 − x0y1 + xq(y1 − y0)− yq(x1 − x0)
(x1 − x2)y0 + (x2 − x0)y1 + (x0 − x1)y2

Some simple algebra shows that

c0 + c1 + c2 = 1

This is a useful computational check. It also enables the interpolation
calculation to be done with 33% less multiplications.
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Image Mapping A to B

If the projection from B to A is known then we can

1. Project the coordinates of the B pixels onto the A pixel grid.

2. Find the nearest A grid points for each projected B grid point.

3. Compute the value for the B pixels by interpolation of the A image.

Note that there is no projection back to B. We have computed the values
for each B pixel.

If we know that the coordinates of A are integers then we can find the four
pixels of A that surround (xq, yq) by quantizing the coordinate values.
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Image Mapping Example

Two images of the same scene with seven selected matching points are
shown below.

Image A Image B
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Affine Transform

The matching points have coordinates shown in the first four columns of the
table below. From this we can form the homogeneous coordinate matrices
P and Q. The mapping H from A to B is

H = QP† =

0.92 −0.39 224.17
0.39 0.92 10.93
0.00 −0.00 1.00


The projection of the (Xa, Ya) points by H is shown in the last
two columns. These are close to the matching (Xb, Yb) values.

Table of Matching Points

Xa Ya Xb Yb X ′
a Y ′

a

30.5 325.3 125.8 322.5 126.0 322.8

86.8 271.3 199.3 295.3 198.7 294.9

330.3 534.0 320.0 632.0 320.5 632.2

62.0 110.3 238.0 137.0 238.4 136.8

342.0 115.0 494.0 250.0 493.9 250.4

412.0 437.0 434.3 574.8 433.3 574.7

584.5 384.8 611.8 594.0 612.2 593.8
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Image Transformation

The transformed A image is on the right and the original B image is on the
left. The dark area on is the region of B that is not contained in A. The
gray image values were computed by triangular interpolation of the gray
values of A.

Mapped A Original B
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Mapping Parameters

We can determine the mapping transform H and the parameters of the
RST matrix (Slide 11) as follows:

RST =
[

s0 cos θ s1 sin θ s0x0 cos θ + s1x1 sin θ
−s0 sin θ s1 cos θ s1x1 cos θ − s0x0 sin θ

]

=

0.92 −0.39 224.17
0.39 0.92 10.93
0.00 −0.00 1.00



s0 =
√

H2
1,1 + H2

2,1 = 0.999

s1 =
√

H2
1,2 + H2

2,2 = 1.001

θ = − arctan(H2,1,H1,1) = −23◦

x0 = (H1,3 cos θ −H2,3 sin θ)/s0 = 210.9

x1 = (H1,3 sin θ + H2,3 cos θ)/s1 = −77.5

DIP Lecture 2 26



Mapping Program
function affine_mapping_demo,A,T
;Map image A using the affine transformation defined by T.
;T is assumed to be in the homogeneous coordinate form.

sa=size(A,/dim)
ncols=sa[0]
nrows=sa[1]
B=fltarr(ncols,nrows)
Ti=invert(float(T)) ;Projects into the A domain

;Set up the B-domain grid to project into the A domain
grid=[[Lindgen(ncols*nrows) mod ncols], $ ; x coordinate row

[Lindgen(ncols*nrows)/ncols], $ ; y coordinate row
[replicate(1.,ncols*nrows)]]

q=Ti##grid ;Do the inverse projection

;Throw away the points of q that are outside of the A image grid
k=where(q[*,0] GE 0 AND q[*,0] LT ncols AND q[*,1] GE 0 AND q[*,1] LT nrows)
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;Find the lower left corner of the pixel box that contains each point
xq=q[k,0]
yq=q[k,1]
x0=floor(xq)
y0=floor(yq)
kL=where(xq-x0 GE yq-y0) ;Points in the lower triangle
kU=where(xq-x0 LT yq-y0) ;Points in the upper triangle

;For the lower triangles
xL0=float(x0[kL]) & xL1=xL0+1 & xL2=xL0+1
yL0=float(y0[kL]) & yL1=yL0 & yL2=yL0+1
pL=xL0+yL0*ncols ;Location indexes
xqL=xq[kL] & yqL=yq[kL] ;Coordinates of projected grid
;Indexes of the grid points in the B image
qL=grid[k[kL],0]+grid[k[kL],1]*ncols

;Compute the triangular interpolation coefficients
d=float((xL1-xL2)*yL0 + (xL2-xL0)*yL1 + (xL0-xL1)*yL2)
c0=(xL2*yL1 - xL1*yL2 + xqL*(yL2 - yL1) - yqL*(xL2 - xL1))/d
c1=(xL0*yL2 - xL2*yL0 + xqL*(yL0 - yL2) - yqL*(xL0 - xL2))/d
c2=(xL1*yL0 - xL0*yL1 + xqL*(yL1 - yL0) - yqL*(xL1 - xL0))/d
;Interpolate and place into the image.

DIP Lecture 2 28



B[qL]=(c0*float(A[pL])+c1*float(A[pL+1])+c2*float(A[pL+1+ncols]))

;For the upper triangles
xU0=float(x0[kU]) & xU1=xU0 & xU2=xU0+1
yU0=float(y0[kU]) & yU1=yU0+1 & yU2=yU0+1
pU=xU0+yU0*ncols ;Location Indexes

xqU=xq[kU] & yqU=yq[kU] ;Coordinates of projected grid
;Indexes of grid points
qU=grid[k[kU],0]+grid[k[kU],1]*ncols

;Compute the triangular interpolation coefficients
d=float((xU1-xU2)*yU0 + (xU2-xU0)*yU1 + (xU0-xU1)*yU2)
c0=(xU2*yU1 - xU1*yU2 + xqU*(yU2 - yU1) - yqU*(xU2 - xU1))/d
c1=(xU0*yU2 - xU2*yU0 + xqU*(yU0 - yU2) - yqU*(xU0 - xU2))/d
c2=(xU1*yU0 - xU0*yU1 + xqU*(yU1 - yU0) - yqU*(xU1 - xU0))/d
;Interpolate and place into the image
B[qU]=(c0*float(A[pU])+c1*float(A[pU+ncols])+c2*float(A[pU+1+ncols]))

RETURN,B
END
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Projective Transform

The projective transform can handle changes caused by a tilt of the image
plane relative to the object plane.
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Projective Transform

The perspective transformation maps (X, Y, Z) points in 3D space to (x, y)
points in the image plane.

xi =
−fX0

Z0 − f
and yi =

−fY0

Z0 − f

Suppose that A and B are images taken at different camera angles.
Projection of one image plane onto the other to correct the relative tilt
requires a projective transform.

u =
ax + by + c

gx + hy + 1
and v =

dx + ey + f

gx + hy + 1

This eight-parameter transform maps (x, y) points in A to (u, v) points in
B.
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Projective Transform

The coefficients can be computed if n ≥ 4 matching points are known in A
and B. Arrange the equations as

axi + byi + c = gxiui + hyiui + ui

dxi + eyi + f = gxivi + hyivi + vi



x0 y0 1 0 0 0 −x0u0 −y0u0

0 0 0 x0 y0 1 −x0v0 −y0v0

x1 y1 1 0 0 0 −x1u1 −y1u1

0 0 0 x1 y1 1 −x1v1 −y1v1
... ... ...

xn−1 yn−1 1 0 0 0 −xn−1un−1 −yn−1un−1

0 0 0 xn−1 yn−1 1 −xn−1vn−1 −yn−1vn−1





a
b
c
d
e
f
g
h


=



u0

v0

u1

v1
...

un−1

vn−1


The parameters can be found by multiplying both sides with the pseudo-
inverse of the big matrix of coordinate terms.
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Projective Transform

The inverse projective transform can be found by exchanging the (x, y) and
(u, v) coordinates in the above equation. One can also solve directly for
the parameters of the inverse projective transform if one knows the forward
transform.

A program to compute the inversion is:

Function ProjectiveTransformInvert,c
;+
;d=ProjectiveTransformInvert(c) computes the coefficent vector
;d that will do the inverse projective transform defined by
;the coefficients in c.
; c[0]u+c[1]v+c[2] c[3]u+c[4]v+c[5]
; x=----------------- y=----------------
; c[6]u+c[7]v+1 c[6]u+c[7]v+1
;
; d[0]x+d[1]y+d[2] d[3]x+d[4]y+d[5]
; u=----------------- v=----------------
; d[6]x+d[7]y+1 d[6]x+d[7]y+1
;-

d=[c[4]-c[5]*c[7],$
c[2]*c[7]-c[1],$
c[1]*c[5]-c[2]*c[4],$
c[5]*c[6]-c[3],$
c[0]-c[2]*c[6],$
c[3]*c[2]-c[0]*c[5],$
c[3]*c[7]-c[4]*c[6],$
c[1]*c[6]-c[0]*c[7],$
c[0]*c[4]-c[1]*c[3]]

d=d[0:7]/d[8]
Return,d
END
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Lens Distortion Correction

The interior orientation of a camera is the relationship of the image
that is actually collected on the focal plane to an undistorted
image. The distortion correction is described by a set of equations:

r2 = (x− xp)2 + (y − yp)2

δr = ((K3r
2 + K2)r2 + K1)r2

x1 = x(1 + δr)

y1 = y(1 + δr)

where (xp, yp) are the coordinates
of the lens axis and K1, K2, K3

are distortion parameters. Effect of the radial distortion
projection
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Lens Distortion Correction

Direct calculation of the image on the corrected grid requires an inverse
mapping of the radial distortion. The inverse mapping equations

x = f(u, v)

y = g(u, v)

can be found by

1. Construct a grid (x, y) in domain A.

2. Project the (x, y) grid into B using the available radial distortion
correction equations to find matching points (u, v). These are on a
distorted grid in B.

3. Use regression techniques to find the parameters of functions f and g to
map (u, v) onto x and y.

4. Functions f and g can now be used to project a regular grid from B to
A for interpolation.

DIP Lecture 2 35



WASP Example

The false color image on the next page contains an original LWIR image
from WASP in the red layer and the distortion-corrected image in the green
layer.

The correction can be seen by finding matching red and green objects.
Yellow is where both layers are bright.
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