
Assignment 2
CS283, Computer Vision

Harvard University

Due Monday, Sep. 24, at 5:00pm

This assignment deals with projective transformations. It is substantially longer than Assignment One, and
I strongly recommend that you complete Questions 1 & 2 before Friday. As usual, there is a helpful “Hints
and Information” section at the end of this document. Be sure to format your submission according to the
guidelines and submit using the iSites “drop-box”.

In Question 4, you will be computing and applying planar projective transformations to images. In recent
versions of Matlab there are functions that can do some of this for you. But since we want you to write your
own code, you are not allowed to use them. Specifically, the functions cp2tform, imtransform, tformarray,
tformfwd, tforminv, maketform, and findbounds are to be avoided.

In what follows, the notation is such that x and x̃ indicate homogeneous and inhomogeneous vectors,
respectively.

1. (20 points) A similarity transformation is a composition of a rotation, translation, and scaling. In the
special case of no rotation, a similarity can be written x′
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where, as usual, ‘=’ indicates equality up to scale. In matrix notation, this is written x′ = Tx.

(a) Suppose you are given a set of N inhomogeneous points x̃i = (xi, yi)
>, i = 1 . . . N . Write

expressions for s, tx and ty in Eq. 1 such that the set of points {x̃i} is mapped to the set of points
{x̃′i} with the following properties.

i. The centroid of the points {x̃′i} is the origin, (0, 0)>.

ii. The average distance from the origin to a point x̃′i is
√

2.

(b) Write a Matlab function T=getT(X1) that takes an N × 2 arrays of points (where each row is
(xi, yi)) and returns the 3× 3 similarity matrix T defined above.

(c) Test your function by plugging your transformation T into the following script.

X=rand(50,2)*100; % 50 random points in square [0,100]x[0,100]

Xn=(T*[X’;ones(1,50)])’;

Xni=Xn(:,1:2)./repmat(Xn(:,3),[1 2]);

% display results

figure;

subplot(1,2,1); plot(X(:,1),X(:,2),‘.’); axis equal; axis tight;

subplot(1,2,2); plot(Xni(:,1),Xni(:,2),‘.’); axis equal; axis tight;

Submit the resulting plot, and write a brief description of the operations being performed in lines
two and three of this script.

2. (20 points) A homography relating two images can be estimated from four or more pairs of correspond-
ing points. When these four points correspond to known metric points on a plane, such a homography
can be used to remove projective distortion via metric rectification.

(a) Write a function H=getH(X1,X2) that takes two N × 2 arrays of image coordinates (where each
row is (xi, yi)) and returns the 3×3 homography matrix that maps points in the first image (X1) to
points in the second (X2). Use your function getT() from Problem 1 to implement normalization
as discussed in Sect. 4.4.4 (and Algorithm 4.2) of Hartley & Zisserman.
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(b) Write a function Iout=applyH(Iin,H) that computes a new image by applying the homography
H to an h×w image Iin. The resolution of the output image should (on average) be comparable
to that of Iin, and the horizontal and vertical limits of the output image plane should be large
enough to include all mapped pixels from Iin. Pixels in Iout that do not correspond to any point
in Iin should be set to zero.

(c) The image MaxwellDworkin 01.jpg is available in the assgn2 files.zip on the course website.
Using your new Matlab functions, compute a metric rectification of the image of the wall. (You
may want to convert the image to grayscale first.) Submit your results and your code. Hint:
In the rectified image, the corners of one of the bricks will have inhomogeneous coordinates
(0, 0), (0, h), (w, 0) and (w, h), where h = 1 and w = 2.5 are the relative height and width
of the brick. The zoom, pixval and impixel commands can be used to manually identify pixel
coordinates in the image.

3. (15 points) Use your getH() function and (a modified version of) your applyH() function from Prob. 2
to create a planar mosaic from a sequence of three or more overlapping images captured with the same
projection center. You may use the images in the file assgn2 files.zip (with the center image
quad middle.jpg as the reference plane), or you may be creative and capture your own sequence of
images. Manually identify a sufficient number of corresponding points between the overlapping images,
estimate and apply the homographies, and then blend the overlapping regions using any method you
prefer. Submit your results and your code.

4. (15 points) You will now create a simple “Auto-stitch” script that accomplishes your matching and
stitching automatically! Download the open-source VLFeat library from http://www.vlfeat.org and
unpack it in a convenient location (see hints below for more details). This library includes an imple-
mentation of SIFT for robust matching. Begin with the skeleton code autostitch.m on the course
website, which will find (noisy, but pretty darn good) correspondences and produce the following figure.

Initial matched points using SIFT

As directed at the bottom of the skeleton code, and following Algorithm 4.4 of Hartley & Zisserman,
implement RANSAC to robustly estimate the homographies from these correspondences. (You should
be making a call to getH() in step (i) of the algorithm.) Then use these homographies to create a
mosaic similar to that of the previous question. Submit your results and your code.
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Hints and Information

• To create a Matlab function, open a new text file named <function name>.m and begin the file with
a line of the form

function [output1,output2,...]=<function name>(input1,input2,...)

For example, your getH.m function will begin with a line such as

function H = getH(X1,X2)

An M-file that does not begin with a function line can also be executed from the command line, but
it will be interpreted as a script instead of a function, and it will not have local variables or accept
input arguments.

• To get the VLFeat library to work, you will need to run the vl setup script in the package’s ‘toolbox’
sub-directory. For example, if you unpacked the library in /home/jdoe/vlfeat, type the following
commands in your Matlab command window before running autostitch.m.

>> addpath /home/jdoe/vlfeat/toolbox

>> vl_setup

For your submission, you should assume that your code is being executed on a machine that has
VLFeat similary installed somewhere in Matlab’s path. Do not include the library in your submission
directory, and do not include the above setup commands in your script.

• If you choose to capture your own panoramic images, here are a few suggestions. First, since your
rotation is only roughly about the center of projection, you will obtain better results for distant scenes.
Second, use a relatively long focal length (i.e., zoom in) to reduce the radial distortion (straight lines in
the world should be straight in your images.) Finally, include enough overlap of significant landmarks
to enable manual identification of corresponding points.

• To apply homography H to image I, you actually need to operate in reverse. Typically, you: 1) apply
H to the corners of I to determine the horizontal and vertical limits of the output image, 2) generate
a regular grid of (x, y) coordinates (with appropriate resolution) containing this output range (see
linspace and meshgrid), 3) allocate an array of zeros with the same dimensions as your grid in which
you will store the output intensities, 4) apply H−1 to your grid of coordinates to find the corresponding
locations in I, and 5) sample I at these (generally non-integer) points, using interp2.

As always, loops should be avoided. All of this can be done in parallel. In general, the Matlab
commands reshape, permute, repmat, ind2sub and sub2ind are very useful.

Here is some skeleton code that demonstrates some of these steps:

% create regularly-space grid of (x,y)-pixel coordinates

[x,y]=meshgrid(linspace(xmin,xmax,num_x_pts), linspace(ymin,ymax,num_y_pts));

% reshape them so that a homography can be applied to all points in parallel

X=[x(:) y(:)];

% [Apply a homography to homogeneous coordinates corresponding to ‘X’. ] %

% [Compute inhomogeneous coordinates of mapped points. ] %

% [Save result in Nx2 matrix named ‘Xh’. ] %

% interpolate I to get intensity values at image points ‘Xh’

Ih=interp2(I,Xh(:,1),Xh(:,2),‘linear’);
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% reshape intensity vector into image with correct height and width

Ih=reshape(Ih,[num_y_pts,num_x_pts]);

% Points in ‘Xh’ that are outside the boundaries of the image are assigned

% value ‘NaN’, which means ‘not a number’. The final step is to

% set the intensities at these points to zero.

Ih(find(isnan(Ih)))=0;
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