This article was downloaded by: [HEAL-Link Consortium]
On: 25 November 2008
Access details: Access Details: [subscription number 786636646]
Publisher Routledge
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

The International Trade Journal

Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713772442

A SENSITIVITY ANALYSIS OF THE GRAVITY MODEL

Steven Yamarik ${ }^{\text {a }}$; Sucharita Ghosh ${ }^{\text {b }}$
${ }^{\text {a }}$ Steven Yamarik is Visiting Assistant Professor in the Department of Economics, in Tufts University, Medford, Massachusetts ${ }^{\text {b }}$ Sucharita Ghosh is Associate Professor in the Department of Economics at the University of Akron, Akron, Ohio

Online Publication Date: 16 February 2005

To cite this Article Yamarik, Steven and Ghosh, Sucharita(2005)'A SENSITIVITY ANALYSIS OF THE GRAVITY MODEL',The International Trade Journal,19:1,83 - 126
To link to this Article: DOI: 10.1080/08853900590905784
URL: http://dx.doi.org/10.1080/08853900590905784

PLEASE SCROLL DOWN FOR ARTICLE

[^0]
A SENSITIVITY ANALYSIS OF THE GRAVITY MODEL

Steven Yamarik Sucharita Ghosh

Abstract

In this article, we examine the robustness of variables used in the gravity model literature. We use a variant of Leamer's extremebounds analysis, which tracks the sign and significance level of the variable of interest to changes in the conditioning set of variables. Of the 47 variables investigated, we find 20 measuring level of development, trade policy, linguistic and colonial ties, geographic factors, relative population density, common currency, and membership in the Central American Common Market (CACM), Caribbean Community (Caricom), Mercado Común del Sur (Mercosur), AustraliaNew Zealand Closer Economic Relations Trade Agreement (ANZCERTA), and Asian Pacific Economic Cooperation (APEC) are robustly linked to trade. As a result, this study provides researchers with a suitable starting point in which to examine new potential determinants of international trade.

I. INTRODUCTION

During the past 40 years, the volume of international trade has increased markedly across the world. In 1960, the worldwide ratio of exports plus imports of goods and services to GDP stood

[^1]at 24 percent. By 2002, this ratio has doubled to 47 percent. Similarly, for low income countries, the ratio has risen from 19 to 46 percent during the same time period (World Development Indicators, 2004).

The rise in the flow of trade has led to an increase in the number of studies investigating the sources of trade. The gravity model has long been the workhorse model used to explain bilateral trade. ${ }^{1}$ Based upon Newton's Law of Gravitation, the gravity model predicts that the volume of trade between two economies should increase with their size (proxied by real GDP) and decrease with transactions cost (measured as bilateral distance).

Even though the gravity model initially suffered from a weak theoretical foundation, it has recently become extremely popular in the empirical trade literature. The reasons for its popularity are four-fold. First, modern theories of trade based on differentiated products provide an improved theoretical foundation for the gravity equation. Second, the gravity model has proved quite successful in estimating bilateral trade flows. Third, there has been an increased interest in empirically testing the trade effects of regional trading arrangements. Fourth, there has been a new interest among economists in the subject of geography and trade (c.f. Frankel, 1997).

At the core, the gravity model predicts that bilateral trade should increase with GDP and decrease with distance. There are theoretical reasons to include additional variables. For instance, Frankel (1997) described three types of transaction costs faced by the firm: shipping, time elapsed in transporting and cultural unfamiliarity. Geographical factors such as land area, common

[^2]border, and being landlocked affect the first two costs, while linguistic and historical ties such as common language and former colonial ties impact the third cost. Furthermore, Heckscher-Ohlin predict that countries with different factor endowments will trade more with each other, while Linder (1961) hypothesized that nations of similar development level will have similar preferences and thus will trade less with countries possessing different factor endowments.

For the most part, researchers have extended the gravity model beyond the core in an ad hoc fashion. For instance, early work by Bergstrand (1985), Thursby and Thursby (1987), and De Grauwe (1988) included adjacency and regional trading arrangement dummies and measures of relative prices and exchange rate volatility. Despite the significance of relative prices and exchange rate volatility, later studies by Frankel and Wei do not include such measures, but instead consider new variables like common language, colonial ties and real GDP per capita along with adjacency and membership in trading blocs. More recent work by Rose (2000) and Frankel and Rose (2002) included exchange rate volatility in the form of currency unions along with thirty other potential independent variables.

Given the numerous gravity model specifications, each with a partial listing of variables that are significantly correlated with bilateral trade, researchers are uncertain as to the confidence they should place in the results of any one study. The choice of which variables to include and which to omit is of utmost importance since misspecification either lowers the precision of the estimates, or worse, biases the estimates. ${ }^{2}$ Gravity empirics in the international trade literature would thus

[^3]benefit greatly from robustness checking, which is the objective of this article.

In this study, we examine the robustness of variables used in the gravity model literature. We use a variant of Leamer's $(1983,1985)$ extreme-bounds analysis, which tracks the sign and significance level of the variable of interest to changes in the conditioning set of variables. By following a systematic approach to testing the fragility of coefficient estimates, extreme-bounds analysis allows us to identify which independent variables are robustly linked to bilateral trade and which are not. ${ }^{3}$

We find that of the 47 variables investigated only 20 variables are robustly linked to trade. These variables are the level of development, trade policy, linguistic and colonial ties, geographic factors, relative population density, common currency, and membership in the Central American Common Market (CACM), Caribbean Community (Caricom), Mercado Común del Sur (Mercosur), Australia-New Zealand Closer Economic Relations Trade Agreement (ANZCERTA), and Asian Pacific Economic Cooperation (APEC). As a result, this study provides researchers with a suitable starting point in which to examine new potential determinants of international trade flows.

The rest of the article is organized as follows. Section II derives the gravity model equation, while Section III explains the methodology of the sensitivity analysis. Section IV describes

[^4]the data and econometric issues. Section V presents the results and interpretations. Section VI proposes a preferred gravity model specification based on the sensitivity analysis. Section VII concludes.

II. THE GRAVITY MODEL

In its earliest form, Tinbergen (1962) and Pöyhönen (1963) posited the following gravity model equation:

$$
\begin{equation*}
\text { trade }_{i j}=A \frac{\left(G D P_{i} G D P_{j}\right)^{b_{1}}}{\left(\text { distance }_{i j}\right)^{b_{2}}} \tag{1}
\end{equation*}
$$

where $\operatorname{trade}_{i j}$ is the value of bilateral trade between country i and $j, G D P_{i}$ and $G D P_{j}$ are country i and j 's respective national incomes, distance $_{i j}$ is a measure of the bilateral distance between the two countries and A is a constant of proportionality.

While the core gravity model has been used empirically since the studies of Tinbergen (1962) and Pöyhönen (1963), the theoretical justification behind the core gravity model has evolved gradually. Trade theorists have found that the core model is consistent with models of imperfect competition and HeckscherOhlin. Anderson (1979), Helpman and Krugman (1985), and Bergstrand (1985, 1989, 1990) obtained the core Eq. (1) from various trade models with increasing returns and monopolistically competitive markets. More recently, Deardorff (1998) derived the gravity model equation from two extreme cases of the Heckscher-Ohlin model - the first case based upon frictionless trade between nations and the second case premised upon different countries producing different goods. Deardorff (1998) and Feenstra, Markusen, and Rose (2001) provided recent contributions and references of the theoretical work behind the gravity model.

To get the estimable form of the gravity equation, we take the natural logarithm of the gravity model equation (1) and add an error term to get

$$
\text { (2) } \quad \begin{aligned}
\log \left(\text { trade }_{i j}\right)= & A+b_{1} \log \left(G D P_{i} G D P_{j}\right) \\
& +b_{2} \log \left(\text { distance }_{i j}\right)+\varepsilon_{i j}
\end{aligned}
$$

where A, b_{1} and b_{2} are coefficients to be estimated. As trade increases with size and decreases with distance, b_{1} is predicted to be positive and b_{2} negative. The error term, $\varepsilon_{i j}$, captures any other chance events or shocks that may affect bilateral trade between the two nations. Equation (2) provides the core set of variables that are included for estimation purposes.

Researchers, however, have added other variables to the core model to control for differences in geographic factors, historical ties, exchange rate risk and trade policy. For example, Frankel (1997) talked of real GDP and distance constituting a "basic" gravity model, while the two core factors plus common border, common language, per capita GDP and membership in regional trading arrangements making up a "full" gravity model. Similarly, Rose (2000) spoke of an "augmented" gravity model, which consists of Frankel's variables plus colonial ties, exchange rate volatility, and common currency. However, the extensions to the core gravity model have been decided more upon the interests of the researcher and less from a systematic specification search. Nevertheless, for the purposes of this article, we define the "extended" gravity model as

$$
\begin{align*}
\log \left(\text { trade }_{i j}\right)= & A+b_{1} \log \left(G D P_{i} G D P_{j}\right) \tag{3}\\
& +b_{2} \log \left(\text { distance }_{i j}\right)+b_{3} X_{i j}+\varepsilon_{i j}
\end{align*}
$$

where $X_{i j}$ is a vector of other variables that help explain bilateral trade between the two countries. It is the intention of this paper
to find which of these other variables are robustly linked to bilateral trade.

III. A SENSITIVITY ANALYSIS OF THE GRAVITY MODEL

We follow the methodology of Levine and Renelt (1992) to conduct a sensitivity analysis of the gravity model. We begin with an equation of the general form:

$$
\begin{equation*}
T=\beta_{0}+\beta_{1} I+\beta_{M} M+\beta_{z} Z+\beta_{T} T I M E+\mu \tag{4}
\end{equation*}
$$

where T is the logarithm of bilateral trade, I is a set of core variables included in the regression, M is the variable of interest, Z is a subset of variables chosen from a pool of variables identified as potentially important explanatory variables in past studies, TIME is a set of time dummies and μ is a random disturbance term. ${ }^{4}$

Drawing upon past studies of the gravity model, we identify 50 variables for estimation of Equation (4). First, we use the sum of exports and imports for T. Second, we include the product of real GDP and bilateral distance in the set of core variables, I. Third, each of the 47 variables drawn from past studies is entered one-by-one as the M variable. Lastly, a subset of the remaining 46 variables is then used for the Z variables.

The set of Z variables are grouped into eight general categories: level of development, relative development, trade policy, linguistic and historical ties, geographic factors, exchange rate risk, relative factor endowments, and regional trading arrange-

[^5]ments. ${ }^{5}$ Appendix A describes the variables in each category. For the first three categories (level of development, relative development, and trade policy), we use one variable from each category. ${ }^{6}$ This gives us three Z variables: Z_{1}, Z_{2} and Z_{3}. For the remaining five categories (linguistic and historical ties, geographic factors, exchange rate risk, relative factor endowments, and regional trading arrangements), we include all the variables as a group. This gives us five vectors: Z_{4} (with 3 variables), Z_{5} (with 5 variables), Z_{6} (with 4 variables), Z_{7} (with 3 variables), and Z_{8} (with 24 variables). In total, we have three Z variables- Z_{1}, Z_{2} and Z_{3}-and five Z vectors- $Z_{4}, Z_{5}, Z_{6}, Z_{7}$, and Z_{8}.

In the sensitivity analysis, we first run a "base" regression for each M variable, which entails estimating Eq. (4) after imposing the constraint $\beta_{Z}=0$. We then regress T on $I, M, T I M E$ and all linear combinations of the Z variables taken two at a time. This gives us 21 regressions for each of the $47 M$ variables. ${ }^{7}$

[^6]The results from the 21 regressions for each M variable allow us to identify the highest and lowest values for the coefficient for M (given as β_{M}), thereby defining the upper and lower bounds of β_{M}. The highest value of β_{M} plus two standard deviations is the extreme upper bound, while the lowest value of β_{M} minus two standard deviations is the extreme lower bound. If β_{M} remains significant and of the same sign at each of the extreme bounds, the partial correlation between Y and M variable is labeled "robust." If β_{M} does not remain significant or if it changes signs at one of the extreme bounds, the partial correlation is labeled "fragile."

IV. DATA AND ECONOMETRIC ISSUES

The data set consists of six annual observations for 186 developing and developed countries. The sample is from Frankel and Rose (2002). The annual observations are for 1970, 1975, 1980, 1985, 1990, and 1995 and are representative of international trade. Appendix B lists the countries in our sample.

The data set contains 50 total variables divided into ten categories: dependent variable, core factors, level of development, relative development, trade policy, linguistic and historical ties, geographic factors, exchange rate risk, relative factor endowments, and regional trading arrangements. The dependent variable is the natural \log of real bilateral trade (exports plus imports). The core factors are the natural \log of the product of bilateral real GDP and the natural log of bilateral distance. ${ }^{8}$ The remaining 47 variables are the variables of interest M. To minimize the problems of sample selectivity, we use 14,522 observations which

[^7]have complete data in all but seven variables. ${ }^{9}$ The measurement and source of each variable are described in Appendix A, while the descriptive statistics of the data set are presented in Table I.

To make optimal use of the available data, the estimation strategy must account for the cross-sectional and time-series information in the data. One strategy is to treat all the observations as equal and estimate a pooled model using least squares. This strategy requires that the coefficients are constant across time. An alternative approach is to allow for country-pair heterogeneity in the regression. Cheng and Wall (2002) showed that heterogeneity can be incorporating either through bilateral country-specific effects or individual country-specific effects. However, the inclusion of country-specific effects will ignore potentially useful information contained in cross-sectional variation. As a result, many time-invariant variables-like distance, common border, common language and membership in regional trading arrangements - would have to be dropped to prevent perfect multicollinearity. ${ }^{10}$ Since the objective of this article is to test the robustness of commonly-used variables, including those that are time-invariant, we choose the first estimation strategy.

However, we still need to check for stability of the coefficients across time. To do so, we run a modified Chow test on the core gravity Eq. (2). ${ }^{11}$ The observed F-statistic for constant coefficients through time is 1256.66 , which is distributed as $F(15,14502)$; while the observed F-statistic for constant slope coefficients through time is 2.32 , which is distributed as $F(10,14508)$. The test results reject the poolability of all coefficients, but fail to reject the

[^8]Table I
Summary Stati

[^9]poolability of the slope coefficients at the 1% level. ${ }^{12}$ Therefore, we conclude that the majority of structural change occurs through the intercept, and not the slope, coefficients.

We use the pooled least squares model in our estimation. We include fixed time dummies so that the intercept term varies through time. We also compute robust standard errors to allow for arbitrary patterns of heteroscedasticity and serial correlation. ${ }^{13}$

V. RESULTS AND INTERPRETATION

The regression results for the core model (including time dummies) are

$$
\begin{align*}
\log \left[\operatorname{trade}_{i j}\right]= & -15.204+\underset{(52.43)}{1.062 \log \left[G D P_{i} G D P_{j}\right]} \tag{5}\\
& -1.388 \log \left[\text { distance }_{i j}\right] \tag{52.43}
\end{align*}
$$

$\left(\mathrm{R}^{2}=0.63\right.$; number of observations $=14,522$; robust t -statistics in parenthesis). The core variables of the gravity model explain just under two-thirds of the variation in bilateral trade flows. Each variable enters in with its predicted sign and is significant at the 1% level. The coefficients imply an elasticity with respect to real GDP of one and an elasticity with respect to distance of one and a third.

[^10]Table II presents the results of the sensitivity analysis for the 47 variables of interest. For each variable, three regression results are reported: the base model (which includes the two core variables and the variable of interest), the extreme upper bound, and the extreme lower bound. The regression results contain the estimated coefficient, $\hat{\beta}_{M}$; the robust t-statistic; the R-squared; and the control variables, Z, included in each regression. Lastly, the EBA result-fragile or robust-is shown in the rightmost column. We discuss the results of each category in the order presented in Table II.

Level of Development

In the core gravity model, bilateral trade depends positively upon the size of the two economies measured as the product of real GDP. Frankel (1997), however, cited a multitude of reasons for why trade may also depend positively upon the level of development. For example, exotic foreign varieties of goods may be superior goods in consumption. Moreover, more developed economies have better transportation infrastructure and thus lower transportation costs.

We consider three measures for the level of development. The first, $\log \left(G D P P C_{i} G D P P C_{j}\right)$, is the log product of real GDP per capita. Used by Frankel (1997) and others, it is the most commonly used measure. We also consider the sum of the value added in manufacturing as a percent of GDP, ($\mathrm{man} / G D P_{i}+$ man $/ G D P_{j}$), and the sum of manufactures exports as a percent of merchandise exports, ($\operatorname{man} / \exp _{i}+\operatorname{man} / \exp _{j}$). In the base model, we find that each measure of the level of development is positive and significant. For the first measure, the point estimates on $\log \left(G D P_{i} G D P_{j}\right)$ and $\log \left(G D P P C_{i} G D P P C_{j}\right)$ imply that by holding population constant a one percent increase in real GDP will increase bilateral trade by 1.6 percent. More importantly,
98

Variable of Interest		Coefficient	t-Statistic	R^{2}	Control Variable Categories*	Result	
Group I: Level of development							
$\log \left(G D P P C_{i} G D P P C_{j}\right)$	High:	0.7869	57.01	0.7154	Relative Development and History		
	Base:	0.7340	54.80	0.6975		Robust	
	Low:	0.6054	36.21	0.7092	Relative Development and Trade Policy		
$\left(\operatorname{man} / G D P_{i}+\operatorname{man} / G D P_{j}\right)$	High:	6.4402	22.76	0.6910	Relative Development and RTAs		
	Base:	5.0714	19.36	0.6370		Robust	
	Low:	2.9673	11.47	0.6807	History and Geography		
$\left(\right.$ man $/ \exp _{i}+$ man/exp $\left.{ }_{j}\right)$	High:	2.3596	17.31	0.7188	Relative Development and Geography		
	Base:	1.6987	12.11	0.6674		Robust	
	Low:	0.9088	6.03	0.7325	Factor Endowments and RTAs		
Group II: Relative Development $\operatorname{abs}\left(G D P P C_{i}-G D P P C_{j}\right)$	High:	0.3464	19.89	0.7124	Level of development and Geography		
	Base:	0.1253	6.80	0.6315		Fragile	
	Low:	-0.0491	-2.63	0.6935	History and RTAs		
$\operatorname{abs}\left(\operatorname{man} / G D P_{i}-\operatorname{man} / G D P_{j}\right)$	High:	2.6392	8.18	0.7039	Level of development and Geography		
	Base:	0.1213	0.35	0.6226		Fragile	
	Low:	-0.1644	-0.48	0.6570	History and Factor Endowments		
$\mathrm{abs}\left(\operatorname{man} / \exp _{i}-\operatorname{man} / \exp _{j}\right)$	High:	0.6199	2.55	0.7221	Exchange Risk and RTAs		
	Base:	-1.0123	-4.47	0.6620		Fragile	
	Group III: Trade Policy						
$O P E N_{i}+$ OPEN $_{j}$	High:	1.1667	46.64	0.6910	Relative Development and History		
	Base:	1.1206	44.54	0.6767		Robust	
	Low:	0.3396	10.62	0.7256	Level of development and RTAs		
tariff $_{i}+$ tariff $_{j}$	High:	-1.0652	-3.80	0.7814	Level of development and RTAs		
	Base:	-6.3455	-31.53	0.7292		Robust	
	Low:	-6.8028	-32.93	0.7436	Relative Development and History		
Group IV: Linguistic and Historical Ties							
COMLANG ${ }_{\text {ij }}$	High:	0.7635	15.03	0.7141	Geography and RTAs		
	Base:	0.5664	11.83	0.6411		Robust	
	Low:	0.4254	8.41	0.7157	Level of development and Exchange Risk		
COMCOL ${ }_{i j}$	High:	1.0160	12.56	0.7154	Level of development and Relative Development		
	Base:	0.3530	4.15	0.6411		Fragile	
	Low:	-0.0459	-0.46	0.6781	Geography and Exchange Risk		
COLONY ${ }_{i j}$	High:	2.0106	20.58	0.7157	Level of development and Exchange Risk		
	Base:	1.9470	20.82	0.6411		Robust	
	Low:	1.1200	10.45	0.6986	Exchange Risk and RTAs		

[^11] 101
we find that all three variables are robustly linked to bilateral trade. Therefore, the results indicate that more developed economies trade more.

Relative Development

There are two competing theories on the effects of the relative level of development on international trade. Based upon the theory of comparative advantage, the first argues that the more countries differ the more they will trade with each other. The second is the Linder (1961) hypothesis that contends that countries with similar levels of development will have similar preferences. Therefore, the more alike countries are the more trade will occur. ${ }^{14}$

Previous research has found evidence for each hypothesis. Using different measures of development, Thursby and Thursby (1987) and Egger (2000) found that countries with similar industrial structures and per capita GDP trade more with each other. However, Montenegro and Soto (1996) included the absolute difference in per capita GDP and find that countries trade more if their economies differ.

We include three measures of the relative development between two countries. The first, abs $\left(G D P P C_{i}-G D P P C_{j}\right)$, follows Thursby and Thursby (1987) and is the absolute log difference of real GDP per capita. The second, abs $\left(\operatorname{man} / G D P_{i}-\right.$ $\left.m a n / G D P_{j}\right)$, is the absolute difference of the value added in manufacturing as a percent of GDP while the third measure,

[^12]$\operatorname{abs}\left(\operatorname{man} / \exp _{i}-\operatorname{man} / \exp _{j}\right)$, is the absolute difference of manufactures exports as a percent of merchandise exports. In the base model, we find support for both theories in that the coefficient on $\operatorname{abs}\left(G D P P C_{i}-G D P P C_{j}\right)$ is positive and the coefficient on $\operatorname{abs}\left(\operatorname{man} / \exp _{i}-\operatorname{man} / \exp _{j}\right)$ is negative. However, all three variables are fragile. Consequently, we find no conclusive evidence of whether trade is driven more by the theory of comparative advantage or by the Linder hypothesis.

Trade Policy

Another barrier to trade is the imposition of tariffs, quotas and other trade restrictions. Linneman and Verbruggen (1991) and Tamirisa (1999) included the mean tariff rate for the importing country and find that higher tariff rates lower exports. Similarly, Coe and Hoffmaister (1999) used the Sachs-Warner index of trade policy for both nations and show that lower trade barriers raises the volume of bilateral trade.

We evaluate two measures of trade policy: OPEN $_{i}+$ OPEN $_{j}$ and tariff $_{i}+$ tariff $_{j}$. The variable tariff $_{i}+$ tariff $_{j}$ is the sum of the mean tariff rates of the trading partners. As in Frankel and Rose (2002), we measure the mean tariff rate as the ratio of import duties to imports. Although this ex post tariff rate measure is crude, it does afford the benefit of capturing 5,623 observations. The polychotomous variable $O P E N_{i}+O P E N_{j}$ is the sum of the Sachs-Warner index of the two trading partners. ${ }^{15}$ In the base regressions, each variable has the correct sign and is significant, indicating that higher trade restrictions decrease

[^13]trade. More importantly, though, the sensitivity analysis shows that both variables are robust. Using the formula $\exp \left(x_{i j}\right)-1$, the point estimates for the Sachs-Warner index imply that the unilateral lowering of trade barriers will increase the flow of trade by 40 to 221 percent. ${ }^{16}$

Linguistic and Historical Ties

Some researchers have included measures of linguistic and historical ties to capture path dependence in trade flows. For example, Frankel and Wei $(1995,1996)$ and Frankel (1997) found that if two countries share the same language then trade is more likely to occur. A common language is seen to directly lower translation costs and, thereby, transaction costs. Moreover, Brocker and Rohweder (1990) and Frankel, Stein, and Wei (1995) showed that if one country was a former colony of the other then the volume of trade is increased. Eichengreen and Irwin (1998) cited two reasons for the positive relationship between past colonial ties and trade. First, colonial ties enhance both trading partners' understanding of each other's culture and legal system. Second, historical connections that have already resulted in sunk costs, like distribution and service networks, are associated with persistent increases in trade.

We consider three measures of linguistic and historic ties: COMLANG ${ }_{i j}$, COMCOL $_{i j}$, and COLONY ${ }_{i j}$. The variable COM$L A N G_{i j}$ is a dummy variable that is unity if both countries share a common language. Likewise, the variable $C O M C O L_{i j}$ is a dummy variable that is unity if both countries share a common colonizer and COLONY ${ }_{i j}$ is a dummy variable that is unity if one country was a former colony of the other. All three dummy variables have the correct positive signs in the base regressions.

[^14]However, the sensitivity analysis identifies $C O M L A N G_{i j}$ and $C O L O N Y_{i j}$ as robust and $C O M C O L_{i j}$ as fragile. The results therefore advocate the inclusion of both $\operatorname{COMLANG}{ }_{i j}$ and $C O L O N Y_{i j}$ in the gravity model equation.

Geographic Factors

In the gravity model Eq. (5), the bilateral distance between the capital cities of the two countries is used to measure transportation costs. However, there are several other geographic factors that can affect transportation costs and thus the volume of trade. For instance, the cost of moving goods between two adjacent locations is lower than the cost of moving those goods through a third country. Similarly, the cost of shipping goods across water is lower than over land. Moreover, not all international trade terminates in the capital cities where the bilateral distance is measured. As a result, those countries with larger surface areas should have higher transportation costs ceteris paribus than those with smaller surface areas.

Moreover, recent papers by Rose (2000), Feenstra, Markusen and Rose (2001), and Soloaga and Winters (2001) included a remoteness variable to capture the impact of an additional geographic factor on bilateral trade. Remoteness measures how far an exporting country is from all other countries. The intuition behind this variable is that bilateral distance expressed relative to the distance of each of the pairs from their other partners matters with there being a positive relationship between the remoteness of the exporting country and bilateral trade.

We consider a vector of five variables to measure geographic factors. The first, $B O R D E R_{i j}$, is a dummy variable that is unity if the two countries share a common land border. The second variable, $1 /$ remote $_{i}$ remote $\left._{j}\right)$, is the inverse of the product of the average distance of country i from all other trading
partners besides the trading partner, country j. The third, $L A N D L O C K_{i j}$, is a polychotomous variable that is 0 if both the importing and exporting nations border a navigable sea or ocean, 1 if one nation borders water and the other is landlocked and 2 if both are landlocked. Similarly, the fourth, $\operatorname{ISLAND}{ }_{i j}$, is also a polychotomous variable for the number of island countries in the bilateral pair. The fifth variable, $\log \left(\right.$ area $_{i}$ area $\left._{j}\right)$, is the \log product of the surface areas of both countries.

The signs of all these variables are in agreement with the premise that transportation costs do matter in determining the volume of trade flows between countries. In the base model, we find that a common border, being an island and remoteness are positively related to trade, while greater surface area and being landlocked are negatively related to trade. However, the sensitivity analysis identifies $I S L A N D_{i j}$ as fragile and the remaining variables as robust. As such, the results suggest that four measures of geographic factors-BORDER $i_{i j}, 1 /\left(\right.$ remote $_{i}$ remote $\left._{j}\right)$, $L A N D L O C K_{i j}$, and $\log \left(\right.$ area $_{i}$ area $\left._{j}\right)$-should be included in the gravity model equation.

Exchange Rate Risk

The variability of real bilateral exchange rates can also affect trade flows. The profit function of a firm depends upon the variability of the real exchange rate. In some instances, the convexity in the profit function will make exports an increasing function of real exchange rate variability. However, if a firm is sufficiently risk-averse, then greater volatility in the real exchange rate will lower the flow of exports. Brada and Méndez (1988) showed that greater exchange rate risk lowers the volume of trade. Frankel and Wei (1993), on the other hand, found mixed evidence on the impact of exchange rate variability on trade. In recent papers, Rose (2000) and Frankel and Rose (2002) found
that countries sharing a common currency raises the volume of trade.

We consider four measures of real exchange rate risk. First, as in De Grauwe (1988) and Rose (2000), we include the standard deviation of the first difference in the monthly bilateral real exchange rate during the previous five years, volatility ${ }_{i j}$. Second, we consider a dummy variable, CURRENCY ${ }_{i j}$, which takes a value of one if both countries share a common currency and zero otherwise. Third, we follow Brada and Méndez (1988) and include a dummy variable, $F L O A T_{i j}$, which records whether a country follows a flexible exchange rate regime or a fixed regime. Fourth, as in Larue and Muntunga (1993), we also include the sum of the black market premiums of the two trading partners, bmprem $_{i}+$ bmprem $_{j}$, to measure the gap between the market exchange rate and the official exchange rate.

At the baseline, the coefficients for volatility $i_{i j}, F L O A T_{i j}$ and bmprem $_{i}+$ bmprem $_{j}$ are negative and $C U R R E N C Y_{i j}$ is positive. The baseline results suggest that increases in exchange rate risk lower trade. However, the coefficients for all the variables except a common currency change sign at either the lower or upper bound are thus fragile. The baseline result implies that a common currency increases trade by 240 percent relative to a random pair of countries. The point estimate obtained here is very close to the estimate found in Rose (2000). The sensitivity analysis, however, shows that the trade creation effect of a common currency ranges from a low of 128 percent to a high of 832 percent.

Relative Factor Endowments

The absolute factor endowments are an important determinant of intra-industry trade. Using models of increasing returns to scale and imperfect competition, Helpman and Krugman (1985) showed that economies with larger factor endowments
generate more trade within an industry. The core variable, GDP, measures absolute factor endowment. In contrast, relative factor endowments are an important source of inter-industry trade. In the Heckscher-Ohlin model, greater difference in factor endowments between the two countries increases specialization and thus raises the volume of trade across industries. Frankel, Stein, and Wei (1995) measured relative factor endowments as differences in the two countries' capital/labor ratios, educational attainments levels, and land/labor ratios. They find slight support that relative factor endowments are significantly related to bilateral trade.

We include three measures of relative factor endowments: $\operatorname{abs}\left(\right.$ school $_{i}-$ school $\left._{j}\right)$, abs $\left(\right.$ density $_{i}-$ density $\left._{j}\right)$ and $\operatorname{abs}\left(K / L_{i}-\right.$ $\left.K / L_{j}\right)$. The variable $\operatorname{abs}\left(\right.$ school $_{i}-$ school $\left._{j}\right)$ is the absolute difference of average years of secondary schooling in the 25+ population and measures relative human capital endowments. The variable abs $\left(\right.$ density $_{i}-$ density $\left._{j}\right)$ is the absolute log difference of the population density and reflects the relative endowment of land between the two countries. The variable abs $\left(K / L_{i}-K / L_{j}\right)$ is the absolute log difference in the capital-to-labor ratio and captures the relative endowment of physical capital. We find that for the relative endowments of physical and human capital the coefficients change signs at the extreme bounds and are thus fragile. However, relative land endowment retains its positive coefficient and is significant at both bounds. Therefore, $\operatorname{abs}\left(\right.$ density $_{i}-$ density $\left._{j}\right)$ is robust suggesting that differences in land endowment increases the volume of trade.

Regional Trading Arrangements

There has been much debate on whether regional trading arrangements or blocs are trade creating or trade diverting. Viner (1950) and Meade (1955) showed that the answer must be found
on a case-by-case basis. In a trade model with preference for variety and increasing returns to scale, Krugman (1991a, 1991b) showed that the welfare effects of continental trading blocs depends upon transportation costs. If those costs fall below some critical value, then regional trading blocs are welfare-reducingwhat Krugman called "super-natural." However, if those costs are high, then regional trading blocs are welfare-enhancingwhat Krugman called "natural."

We consider twelve regional trading arrangements: European Community (EC), European Free Trade Arrangement (EFTA), European Economic Area (EEA), Latin America Integration Agreement (LAIA), Central American Common Market (CACM), Andean Pact (Andean), Caribbean Community (Caricom), North America Free Trade Arrangement (NAFTA), Mercado Común del Sur (Mercosur), Association of South-East Asian Nations (ASEAN), Australia-New Zealand Closer Economic Relations Trade Agreement (ANZCERTA), and Asian Pacific Economic Cooperation (APEC). ${ }^{17}$ Appendix C lists the member countries of each RTA. The RTAs considered range in size from the biggest-APEC-whose members produce around half of the world's GDP to the smallest-Caricom-whose membership produces less than one percent of the world's output. ${ }^{18}$

We include a pair of dummy variables for each regional trading arrangement. The first dummy variable, $R T A_{i j}$, takes a value of one when both countries are current members of the bloc. The coefficient on $R T A_{i j}$ is interpreted as the added volume of trade between two nations in the regional trading arrangement

[^15]relative to their trade with countries outside the bloc and thus a positive coefficient indicates trade creation. The second dummy variable, $R T A_{i}$, takes a value of unity if only one of the two countries is a current member of the bloc. The coefficient on $R T A_{i}$ is interpreted as the extent of abnormal trade between nations in the trading bloc and a country outside the bloc relative to a random pair of countries. A positive coefficient indicates an open bloc, while a negative coefficient suggests trade diversion.

Using this dummy variable approach, previous researchers have found trade creation in almost all of the regional trading arrangements considered. The earliest papers by Aitken (1973), Bergstrand (1985), Thursby and Thursby (1987), Brada and Méndez (1988), and De Grauwe (1988) found strong evidence of trade creation in both the EC and EFTA during the 1960s and in the EFTA during the 1970s. Later work by Frankel and Wei $(1995,1996)$ and Frankel (1997) found trade creation in the EC, EFTA, APEC, ASEAN, and NAFTA. Aitken and Lowry (1973), Frankel, Stein, and Wei (1985), Garman, Peterson, and Gilliard (1998), and Soloaga and Winters (2001) looked at regional trading arrangements in Latin America and show that the CACM, LAIA, Andean, and Mercosur create trade within each bloc.

The results of the sensitivity analysis indicate far less evidence of trade creation than found by most in the RTA literature. In the base regression, all 12 regional trading blocs have a positive sign for $R T A_{i j}$ and thus create additional trade within the bloc. The point estimates imply that each RTA increases trade from a low of 52 percent (in LAIA) to a high of 13,506 percent (in Caricom). However, only five RTAs-CACM, Caricom, Mercosur, ANZCERTA and APEC-are robust. The other seven trading blocs-EU, EFTA, EEA, NAFTA, LAIA, Andean, and ASEAN-have a negative coefficient for the lower bound and are thus fragile. Therefore, as with the Bayesian extreme-bounds analysis of Ghosh and Yamarik (2004), we find that the trade
creation result in most regional trading arrangements are not robust to changes in the conditioning set of variables.

Similarly, the results find little evidence of trade diversion. In the base regression, two trading blocs (CACM and LAIA) have a negative sign for $R T A_{i j}$ and are trade diverting. Eight RTAs (EU, EFTA, EEA, Caricom, Mercosur, ASEAN, ANZCERTA, and APEC) are open blocs and the remaining two (NAFTA and Andean) are neither. In the sensitivity analysis, no RTA is found to be trade diverting and only two- EU and APEC-can be considered open blocs.

VI. A PREFERRED GRAVITY MODEL SPECIFICATION

The sensitivity analysis of Table II found that of the 47 variables of interest 20 are robustly linked to the volume of bilateral trade. Each measure of the level of development- $\log \left(G D P P P C_{i}\right.$ $\left.G D P P P C_{j}\right),\left(\quad \operatorname{man} / G D P_{i}+\operatorname{man} / G D P_{j}\right), \quad\left(\operatorname{man} / \exp _{i}+\right.$ man $/ e x p_{j}$) - and trade policy-OPEN ${ }_{i}+O P E N_{j}$ and tariff ${ }_{i}+$ tariff $_{j}$-is robust. For linguistic and historical ties, two of the three variables-COMLANG ${ }_{i j}$ and $C O L O N Y_{i j}$-are robust. All the variables except $I S L A N D_{i j}$ are robust for geographic factors. For exchange rate risk and relative factor endowments, only one variable in each category-CURRENCY ${ }_{i j}$ and abs(density ${ }_{i}$ density $)_{j}$-is robust. Lastly, CACM $_{i j}$, Caricom ${ }_{i j}$, Mercosur ${ }_{i j}$, $A^{\prime N Z C E R T A} A_{i j}$, and $A P E C_{i j}$ are robust for tests of trade creation, while $E U_{i}$ and $A P E C_{i}$ are robust for tests of open blocs.

Next, we develop a preferred specification which can be used for future research. Besides the results in Table II, we consider two other factors:
(1) multicollinearity and
(2) data availability.

Table III
Results of the Preferred Gravity Model Specification $($ Dependent variable $=$ natural \log of bilateral trade $)$

	Original Dataset		Expanded Dataset	
	Coefficient	t-Statistic	Coefficient	t-Statistic
Variable				
$\log \left(G D P_{i} G D P_{j}\right)$	0.9119	94.28	0.9077	105.58
\log distance $\left._{i j}\right)$	-1.2690	-58.47	-1.2267	-65.90
$\log \left(G D P P C_{i} G D P P C_{j}\right)$	0.4362	26.33	0.3674	25.89
$O P E N_{i}+$ OPEN $_{j}$	0.4353	15.16	0.5267	21.31
COMLANG ${ }_{i j}$	0.5208	12.05	0.5757	14.78
COLONY ${ }_{i j}$	1.5279	20.88	1.5334	20.83
BORDER ${ }_{\text {ij }}$	0.4827	5.03	0.7082	8.13
1/(remote $_{\text {i }}$ remote $_{j}$)	385.1005	10.12	269.0333	8.44
LANDLOCK ${ }_{i j}$	-0.2500	-6.94	-0.2763	-9.30
$\log \left(\right.$ area $_{i}$ area $\left._{j}\right)$	-0.0548	-7.53	-0.0703	-11.56
CURRENCY ${ }_{\text {ij }}$	1.8285	6.00	1.9627	9.80
abs(density ${ }_{\text {i }}$ density $\left.{ }_{j}\right)$	0.2227	19.18	0.2488	25.97
$C A C M_{i j}$	1.9460	14.47	1.7787	12.47
Caricom $_{\text {ij }}$	2.6180	5.30	2.9283	10.20
Mercosur $_{\text {ij }}$	1.8675	6.27	1.7472	5.91
A^{\prime} UEERTA $_{i j}$	1.0952	4.42	1.4225	5.53
$A P E C^{i j}$	1.2200	14.92	1.2549	16.11
$E U_{i}$	0.6027	20.88	0.6060	23.39
$A P E C_{i}$	0.4438	9.15	0.4617	10.38
Summary Statistics				
Observations	14,522		21,061	
R-squared	0.7360		0.7031	
Root MSE	1.6904		1.7774	
F-test	1906.41		2438.87	

Notes: Estimation is by ordinary least squares. t-statistics have been corrected for heteroscedasticity and serial correlation using the method of Arellano (1987). The coefficients for the intercept term and the time dummies are not shown. The original dataset contains the 14,522 observations used in the extreme bounds sensitivity analysis, while the expanded dataset contains the maximum 21,061 observations.

Each of the 15 robust variables for linguistic and historical ties, exchange rate risk, relative factor endowments, and regional trading categories measure something different and thus have little correlation between them. ${ }^{19}$ Also, these variables contain data across a broad sample of countries for each year. However, the variables $\log \left(G D P P P C_{i} G D P P P C_{j}\right),\left(\operatorname{man} / G D P_{i}+\operatorname{man} / G D P_{j}\right)$, and ($\mathrm{man} / \exp _{i}+\operatorname{man} / \exp _{j}$) in the level of development category and the two trade policy variables, OPEN $_{i}+O P E N_{j}$ and tariff $_{i}+$ tariff $_{j}$, are highly correlated. ${ }^{20}$ Of these five variables, only $\log \left(G D P P P C_{i} G D P P P C_{j}\right)$ and $O P E N_{i}+O P E N_{j}$ have broad coverage in our data set.

Therefore, we propose an "extended" gravity model which contains the two core factors, $\log \left(G D P P P C_{i} G D P P P C_{j}\right)$ and $O P E N_{i}+O P E N_{j}$, and the other 15 robust variables. This preferred specification not only includes those variables that are robustly linked to trade, but it also contains 21,061 observations across 185 countries. In Table III, we report the estimation results of the preferred gravity model specification. The first column presents the results for our original data set of 14,522 observations, while the second column reports the results for an expanded data set of 21,061 observations. We find that all variables are significant at the 1 percent level. Moreover, all variables retain the same sign and magnitude they achieved in the sensitivity analysis of Table II.

VII. CONCLUSION

For the past 40 years, the gravity model has been widely used to estimate the empirical determinants of bilateral trade.

[^16]However, beyond the core variables of GDP and distance, there is little consensus on which variables to include and which to omit. In this article, we conducted a sensitivity analysis to assess the robustness of 47 commonly used control variables. We found that many of these variables-including those measuring relative development, exchange rate risk, relative factor endowments, and most regional trading arrangements-are fragile to changes in the specification of the gravity equation. Moreover, we found that the magnitude of many of the coefficients depends critically upon which variables are included and which are left out.

Nevertheless, we did identify 20 variables as robust. These variables measure level of development, trade policy, linguistic and colonial ties, geographic factors, relative population density, common currency, and membership in five regional trading arrangements-CACM, Caricom, Mercosur, ANZCERTA, and APEC. After considering multicollinearity and data availability, we then developed a preferred specification that can be used for future research.

The results of this study found that a common language, common currency, common border, colonial ties, an open trade policy, remoteness, and greater differences in population density are positively linked to trade, while higher tariffs, greater surface area, and being landlocked are negatively related to trade. Furthermore, we found little evidence of trade creation, with membership in five of the twelve regional trading arrangements leading to greater trade within the trade bloc. However, issues such as causality, coefficient size, and potential multicollinearity prevent us from completely answering the question of what determines bilateral trade. Nonetheless, the set of robust variables identified in this study do provide researchers with a suitable starting point in which to examine new potential determinants of international trade flows.

VIII. ACKNOWLEDGMENTS

We would like to thank Jeffrey Bergstrand, Drusilla Brown, Michael Klein, Raymond Reizman, Mike Ryan, and seminar participants at the 2001 Midwest Economic Association Meetings in Cleveland and 2002 Midwest International Economics Group Meetings at Northwestern University for their comments and suggestions. We would also like to thank Andrew Rose for use of his data. All remaining errors are, of course, our own.

REFERENCES

Aitken, N. D. 1973. The Effect of the EEC and EFTA on European Trade: A Temporal Cross-Section Analysis. American Economic Review 63:881-892.
Aitken, N. D., and Lowry, W. R. 1973. A Cross-Sectional Study of the Effects of LASEAN and CACM on Latin American Trade. Journal of Common Market Studies 11:326-336.
Anderson, J. E. 1979. A Theoretical Foundation for the Gravity Equation. American Economic Review 69:106-116.
Arellano, M. 1987. Computing Robust Standard Errors for Within-Groups Estimators. Oxford Bulletin of Economics and Statistics 49:431-434.
Balassa, B. 1974. Trade Creation and Trade Diversion in the European Common Market: An Appraisal of the Evidence. Manchester School of Economic and Social Studies 42:93-135.
Baltagi, B. H. 1995. Econometric Analysis of Panel Data, 2nd edition. New York: John Wiley and Sons Ltd.
Barro, R. J., and Lee, J.-W. 2001. International Data on Educational Attainment: Updates and Implications. Oxford Economic Papers 53:541-563.
Bergstrand, J. H. 1985. The Gravity Equation in International Trade: Some Microeconomic Foundations and Empirical Evidence. Review of Economics and Statistics 67:471-481.

Bergstrand, J. H. 1989. The Generalized Gravity Equation, Monopolistic Competition, and the Factor-Proportions Theory in International Trade. Review of Economics and Statistics 71:143-153.
Bergstrand, J. H. 1990. The Heckscher-Ohlin-Samuelson Model, the Linder Hypothesis, and the Determinants of Bilateral Intra-Industry Trade. Economic Journal 100:1216-1229.
Bougheas, S., Demetriades, P. O., and Morgenroth, E. L. W. 1999. Infrastructure, Transport Costs and Trade. Journal of International Economics 47:169-189.
Brada, J. C., and Méndez, J. A. 1988. Exchange Rate Risk, Exchange Rate Regime and the Volume of International Trade. Kyklos 41:263-280.
Brocker, J., and Rohweder, H. C. 1990. Barriers to International Trade: Methods of Measurement and Empirical Evidence. Annals of Regional Science 24:289-305.
Cheng, I-H., and Wall, H. J. 2002. Controlling for Heterogeneity in Gravity Models of Trade and Integration, revision of Federal Reserve Bank of St. Louis Working Paper 1999-010C.
Coe, D. T., and Hoffmaister, A. W. 1999. North-South Trade: Is Africa Unusual. Journal of African Economies 8:228256.

Crain, M. W., and Lee, K. J. 1999. Economic Growth Regressions for the American States: A Sensitivity Analysis. Economic Inquiry 37:242-257.
Deardorff, A. V. 1998. Determinants of Bilateral Trade: Does Gravity Work in a Classical World? In Jeffrey A. Frankel, ed., The Regionalization of the World Economy. Chicago: University of Chicago Press.
De Grauwe, P. 1988. Exchange Rate Variability and the Slowdown in Growth of International Trade. IMF Staff Papers 35:63-84.
Eaton, J., and Tamura, A. 1994. Bilateralism and Regionalism in Japanese and U.S. Trade and Direct Foreign Investment

Patterns. Journal of Japanese and International Economics 8:478-510.
Egger, P. 2000. A Note on the Proper Econometric Specification of the Gravity Equation. Economic Letters 66:25-31.
Eichengreen, B., and Irwin, D. A. 1998. The Role of History in Bilateral Trade Flows. In Jeffrey A. Frankel, ed., The Regionalization of the World Economy. Chicago: University of Chicago Press.
Feenstra, R. C., Markusen, J. R., and Rose, A. K. 2001. Using the Gravity Model Equation to Differentiate Among Alternative Theories of Trade. Canadian Journal of Economics 34:430447.

Frankel, J. A. 1997. Regional Trading Blocs in the World Trading System. Washington D.C.: Institute for International Economics.
Frankel, J. A., and Rose, A. K. 2002. An Estimate of the Effect of Common Currencies on Trade and Income. The Quarterly Journal of Economics 117:437-466.
Frankel, J. A., and Wei, S. J. 1993. Trading Blocs and Currency Blocs. NBER Working Paper No. 4335. Cambridge, MA: National Bureau of Economic Research.
Frankel, J. A., and Wei, S. J. 1995. Is a Yen Bloc Emerging? NBER Reprint No. 1986. Cambridge, MA: National Bureau of Economic Research.
Frankel, J. A., and Wei, S. J. 1996. ASEAN in a Regional Perspective. Pacific Basin Working Paper No. PB96-02. San Francisco: Center for Pacific Basin Monetary and Economic Studies.
Frankel, J. A., Stein, E., and Wei, S. J. 1995. Trading Blocs and the Americas: The Natural, the Unnatural and the SuperNatural? Journal of Development Economics 47:61-95.
Garman, G., Peterson, J., and Gilliard, D. 1998. Economic Integration in the Americas: 1975-1992. The Journal of Applied Business Research 14:1-12.

Ghosh, S., and Yamarik, S. 2004. Are Regional Trading Arrangements Trade Creating? An Application of Extreme Bounds Analysis. Journal of International Economics 63:369-395.
Greene, W. H. 2003. Econometric Analysis, 5th edition. Upper Saddle River, NJ: Prentice Hall.
Halvorsen, R., and Palmquist, R. 1980. The Interpretation of Dummy Variables in Semilogarithmic Equations. American Economic Review 70:474-475.
Helpman, E., and Krugman, P. 1985. Market Structure and Foreign Trade. Cambridge, MA: MIT Press.
Hussain, M., and Brookins, O. T. 2001. On the Determinants of National Saving: An Extreme-Bounds Analysis. Weltwirtschaftliches Archiv 137:150-174.
International Financial Statistics, Washington, D.C.: International Monetary Fund.
Krugman, P. 1991a. Is Bilateralism Bad? In Helpman, E. and Razin, A. eds. International Trade and Trade Policy. Cambridge, MA: MIT Press.
Krugman, P. 1991b. The Move Towards Free Trade Zones. In Policy Implications of Trade and Currency Zones, proceedings of a symposium sponsored by the Federal Reserve Bank of Kansas City, Jackson Hole, Wyoming.
Larue, B., and Mutunga, J. 1993. The Gravity Equation, Level of Development, and Black Market Exchange Rates. International Economic Journal 7:61-75.
Leamer, E. E. 1983. Let's Take the Con out of Econometrics. American Economic Review 73:31-43.
Leamer, E. E. 1985. Sensitivity Analysis Would Help. American Economic Review 75:308-313.
Levine, R., and Renelt, D. 1992. A Sensitivity Analysis of CrossCountry Growth Regressions. American Economic Review 82:942-963.
Linder, S. B. 1961. An Essay on Trade and Transformation. New York: John Wiley and Sons.

Linneman, H. 1966. An Econometric Study of International Trade Flows. Amsterdam: North-Holland.
Linneman, H., and Verbruggen, H. 1991. GSTP Tariff Reduction and its Effects on South-South Trade in Manufactures. World Development 19:539-551.
Mattli, W. 1999. The Logic of Regional Integration. Cambridge: Cambridge University Press.
Mátyás, L. 1997. Proper Econometric Specification of the Gravity Model. The World Economy 20:363-368.
Meade, J. 1955. The Theory of Customs Union. Amsterdam: North Holland.
Montenegro, C. E., and Soto, R. 1996. How Distorted Is Cuba's Trade? Evidence and Predictions from a Gravity Model. Journal of International Trade and Economic Development 5:45-70.
Pöyhönen, P. 1963. A Tentative Model for the Volume of Trade Between Countries. Weltwirtschaftliches Archiv 90: 93-99.
Resnick, S. A., and Truman, E. M. 1973. An Empirical Examination of Bilateral Trade in Western Europe. Journal of International Economics 3:305-335.
Rose, A. 2000. One Money, One Market: Estimating the Effect of Currency Unions on Trade. Economic Policy 15:7-46.
Sachs, J. D., and Warner, A. M. 1995. Economic Reform and the Process of Global Integration. Brookings Papers on Economic Activity 1:1-118.
Soloaga, I., and Winters, L. A. 2001. Regionalism in the Nineties: What Effect on Trade? North American Journal of Economics and Finance 12:1-29.
Tamirisa, N. 1999. Exchange Rates and Capital Controls as Barriers to Trade. IMF Staff Papers 46:69-88.
Thursby, J. G., and Thursby, M. C. 1987. Bilateral Trade Flows, the Linder Hypothesis, and Exchange Risk. The Review of Economics and Statistics 69:488-495.

Tinbergen, J. 1962. An Analysis of World Trade Flows. In Tinbergen, J. ed. Shaping the World Economy. New York: The Twentieth Century Fund.
Torstensson, J. 1996. Determinants of Intra-Industry Trade: A Sensitivity Analysis. Oxford Bulletin of Economics and Statistics 58:507-524.
Viner, J. 1950. The Customs Union Issue. New York: Carnegie Endowment for International Peace.
Watt, P. A. 1979. Tests of Equality Between Sets of Coefficients in Two Linear Regressions When Disturbance Variances are Unequal: Some Small Sample Properties. The Manchester School 47:391-396.
White, H. 1980. A Heteroscedasticity Consistent Covariance Matrix and a Direct Test for Heteroscedasticity. Econometrica 48:817-838.
Winters, L. A. 1984. Separability and the Specification of Foreign Trade Functions. Journal of International Economics 17:239263.

Winters, L. A. 1985. Separability and the Modeling of International Integration: U.K. Exports to Five Industrial Countries. European Economic Review 27:335-353.
World Development Indicators. 2004. Washington, DC: The World Bank.
APPENDIX A
Description and Sources of Data

Variable	Description	Source
Dependent Variable		
\log trade $_{\text {ij }}$)	Natural log of real bilateral trade (international prices)	Frankel and Rose (2002)
Core Factors		
$\log \left(G D P_{i} G D P_{j}\right)$	Natural log of the product of real GDP (international prices)	Frankel and Rose (2002)
\log distance $_{\text {ij }}$)	Natural log of the bilateral distance between the two capital cities	Frankel and Rose (2002)
Level of Development		
$\log \left(G D P P C_{i} G D P P C_{j}\right)$	Natural log of the product of real GDP per capita	Frankel and Rose (2002)
$\left(\operatorname{man} / G D P_{i}+\operatorname{man} / G D P_{j}\right)$	The sum of value added in manufacturing (\% of GDP)	WDI (2004)
$\left(\right.$ man $\left./ \exp _{i}+\operatorname{man} / \exp _{j}\right)$	The sum of manufactures exports (\% of merchandise exports)	WDI (2004)
Relative Development		
$\operatorname{abs}\left(G D P P C_{i}-G D P P C_{j}\right)$	The absolute log difference of real GDP per capita	WDI (2004)
$\operatorname{abs}\left(\operatorname{man} / G D P_{i}-\operatorname{man} / G D P_{j}\right)$	The absolute difference of value added in manufacturing (\% of GDP)	WDI (2004)
abs (man/exp $\left.{ }_{i}-\operatorname{man} / e x p_{j}\right)$	The absolute difference of manufactures exports (\% of merchandise exports)	WDI (2004)
Trade Policy		
$O P E N_{i}+O P E N_{j}$	The sum of the Sachs-Warner index of an open trade policy ($0,1,2$)	Sachs and Warner (1995)
Linguistic and Historical Ties	The sum of the mean tariff rates (imports duties/imports)	WDI (2004)
$\mathrm{COMLANG}_{i j}$	Dummy (1 if the two countries share a common language and 0 otherwise)	Frankel and Rose (2002)
COMCOL ${ }_{\text {ij }}$	Dummy (1 if the two countries share a common colonizer and 0 otherwise)	Frankel and Rose (2002)
Geographic Factors		
BORDER ${ }_{\text {ij }}$	Dummy (1 if the two countries share a common land border and 0 otherwise)	Frankel and Rose (2002)
1/(remote $_{\text {i }}$ remote $\left._{j}\right)$	The inverse of the product of the average distance of each country i from all trading partners other than country j	Frankel and Rose (2002)
	Number of landlocked countries ($0,1,2$)	Frankel and Rose (2002)
$I_{\text {ILLAND }}^{\text {ij }}$	Number of island countries ($0,1,2$)	Frankel and Rose (2002)
$\log \left(\right.$ area $_{i}$ area $\left._{j}\right)$	Natural log of the product of the surface area of the two countries	Frankel and Rose (2002)

(continued)
APPENDIX A
$($ Continued $)$

Variable	Description	Source
Exchange Rate Risk		
volatility ${ }_{\text {ij }}$	The standard deviation of the first difference in the monthly bilateral exchange rate during the previous five periods	IMF
CURRENCY ${ }_{i j}$	Dummy (1 if the two countries share a common currency)	Frankel and Rose
$F_{\text {LOAT }}{ }_{\text {ij }}$	Number of countries with a floating exchange rate ($0,1,2$)	IMF
bmprem $_{i}+$ bmprem $_{j}$	The sum of the black market premium (\%, 0 means zero)	WDI
Relative Factor Endowments $\operatorname{abs}\left(\right.$ school $_{i}-$ school $\left._{j}\right)$	The absolute log difference in the average years of secondary schooling in the $25+$ population	Barro and Lee
abs(density - density $\left._{j}\right)$	The absolute log difference in population density	WDI
$\operatorname{abs}\left(K / L_{i}-K / L_{j}\right)$	The absolute log difference in the capital-to-labor ratio	Penn World Tables
Regional Trading Arrangements		
$R T A_{i j}$	Dummy (1 if both countries are members of the RTA in question and 0 otherwise)	Frankel (1997), Mattli (1999), Soloaga and Winters (2001)
$R T A_{i}$	Dummy (1 if one and only one country is a member of the RTA in question and 0 otherwise)	Frankel (1997), Mattli (1999) Soloaga and Winters (2001)

[^17]
APPENDIX B

Sample Countries

Afghanistan	Djibouti
Albania	Dominica
Algeria	Dominican Republic
American Samoa	Ecuador
Angola	Egypt
Anguilla	El Salvador
Antigua and Barbuda	Equatorial Guinea
Argentina	Ethiopia
Aruba	Falkland Islands
Australia	Fiji
Austria	Finland
Bahamas, The	French Guiana
Bahrain	France
Bangladesh	Gabon
Barbados	Gambia, The
Belgium	German, Former East
Belize	Germany, West
Benin	Ghana
Bermuda	Gibraltar
Bhutan	Greece
Bolivia	Greenland
Brazil	Grenada
Brit. Indian Ocean Territory	Guadeloupe
British Virgin Islands	Guam
Brunei	Guatemala
Bulgaria	Guinea
Burkina Faso	Guinea-Bissau
Burundi	Japan
Cambodia	Genya
Cameroon	Hayana
Canada	Haiti
Cayman Islands	Honduras
Central African Republic	Hong Kong
Chad	Hungary
Chile	Ineland
China	India
Colombia	Iraq
Comoraia	
Congo, Republic	Itand
Cook Islands	Costa Rica
Cuba	Cyprus
Czechoslovakia, Former	Denmark

Kiribati	South Yemen, Former
Korea, South	Saudi Arabia
Kuwait	Senegal
Laos	Seychelles
Lebanon	Sierra Leone
Liberia	Singapore
Libya	Solomon Islands
Madagascar	Somalia
Malawi	South Africa
Malaysia	St. Pierre and Miquelon
Maldives	Spain
Mali	Sir Lanka
Malta	St. Helena
Martinique	St. Kitts and Nevis
Mauritania	St. Lucia
Mauritius	St. Vincent and the Grenadines
Mexico	Sudan
Mongolia	Suriname
Montserrat	Sweden
Morocco	Switzerland
Mozambique	Syrian Arab Republic
Myanmar	Taiwan, China
North Korea	Tanzania
Nauru	Thailand
Nepal	Togo
Netherlands	Tonga
Netherlands Antilles	Trinidad and Tobago
New Caledonia	Tunisia
New Zealand	Turkey
Nicaragua	Turks and Caicos Islands
Niger	Tuvalu
Nigeria	United Kingdom
Niue	United States
Norway	U.S.S.R., Former
Oman	Uganda
Pacific Islands Trust	United Arab Emirates
Pakistan	Uruguay
Panama	U.S. Virgin Islands
Papua New Guinea	Venezuela
Paraguay	Vietnam
Peru	Western Samoa
Philippines	Western Sahara
Poland	Yemen, Former North
Portugal	Yemen
Qatar	Yugoslavia, Former
Reunion	Zaire
Romania	Zambia
Rwanda	Zimbabwe

Name of RTA	Abbreviation	Start	Member Countries
European Community	EC	1957	Austria (1995), Belgium, Denmark (1973), Finland (1995), France, Germany, Greece (1981), Luxembourg, Ireland (1973), Italy, Netherlands, Portugal (1986), Spain (1986), Sweden (1995), United Kingdom (1973)
European Free Trade Arrangement	EFTA	1960	Iceland (1970), Liechtenstein (1991), Norway, Switzerland Former: Denmark (1960-72), United Kingdom (1960-1972), Portugal (1960-85), Austria (1960-94), Sweden (1960-94), Finland (1986-94)
European Economic Area	EEA	1994	Austria, Belgium, Denmark, Finland, France, Germany, Greece, Luxembourg, Iceland, Italy, Ireland, Liechtenstein, Netherlands, Norway, Portugal, Spain, Sweden, United Kingdom
Central American Common Market	CACM	1960	Costa Rica (1963), El Salvador, Guatemala, Honduras, Nicaragua
Caribbean Community/Carifta	Caricom	1973	Antigua and Barbuda, Bahamas (1983), Barbados, Belize (1995), Dominica (1974), Guyana (1995), Grenada (1974), Jamaica, Montserrat (1974), Saint Kitts and Nevis, Saint Lucia (1974), Saint Vincent and the Grenadines, Suriname (1995), Trinidad and Tobago
Canada-US Free Trade Arrangement/North American Free Trade Agreement	NAFTA	1988	Canada, United States, Mexico (1994)

(continued)
APPENDIX C
(Continued)

Name of RTA	Abbreviation	Start	Member Countries
Latin America Free Trade Association/Latin America Integration Agreement	LAIA	1960	Argentina, Bolivia (1967), Brazil, Chile, Colombia (1961), Ecuador (1961), Mexico, Paraguay, Peru, Uruguay, Venezuela (1966)
Andean Pact/Andean Community	Andean	1969	Bolivia, Colombia, Ecuador, Peru, Venezuela (1973) Former: Chile (1969-76)
Mercado Comùn del Sur	Mercosur	1991	Argentina, Brazil, Paraguay, Uruguay
Association of South East Asian Nations/ASEAN FTA	ASEAN	1967	Brunei (1984), Cambodia (1998), Indonesia, Laos (1997), Malaysia, Myanmar (1997), the Philippines, Singapore, Thailand, Vietnam (1995)
Australia-New Zealand Closer Economic Relations Trade Agreement	ANZCERTA	1983	Australia, New Zealand
Asia Pacific Economic Community	APEC	1989	Australia, Brunei, Canada, China (1991), Chile (1994), Taiwan (1991), Hong Kong (1991), Indonesia, Japan, South Korea, Malaysia, Mexico (1993), New Zealand, Papua New Guinea (1993), Peru (1998), Philippines, Singapore, Thailand, United States, Vietnam (1998)

Sources: Frankel (1997), Mattli (1999), and Soloaga and Winters (2001).

[^0]: Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
 This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

 The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

[^1]: Steven Yamarik is Visiting Assistant Professor in the Department of Economics, in Tufts University, Medford, Massachusetts.

 Sucharita Ghosh is Associate Professor in the Department of Economics at the University of Akron, Akron, Ohio.

[^2]: ${ }^{1}$ Exceptions include Balassa (1974) who estimated income elasticities of demand for imports and Resnick and Truman (1973) and Winters (1984, 1985) who estimated systems of import demand equations.

[^3]: ${ }^{2}$ Greene (2003), chapter 8 showed that the inclusion of an irrelevant variable leaves the estimator unbiased but lowers the precision, while the omission of a relevant variable biases the estimates.

[^4]: ${ }^{3}$ Traditional econometric theory's approach to the specification problem typically begins with an initial specification that is more general than expected. Using criteria such as coefficient signs, t-statistics, R-squares, and Durbin-Watson statistics, the researcher removes variables to find the true specification. This is called "testing down." Alternatively, under the traditional approach, the researcher can begin with an initial specification that is more specific than expected and then add variables that are deemed significant. This is called "testing up." However, traditional econometric theory provides very little guidance on which specification to begin with and no systematic way to either "test down" or "test up" to find the true model.

[^5]: ${ }^{4}$ Torstensson (1996), Crain and Lee (1999), and Hussain and Brookins (2001) used the methodology of Levine and Renelt (1992) to identify robust variables of intra-industry trade, regional growth and national saving, respectively.

[^6]: ${ }^{5}$ Previous authors have included infrastructure and foreign direct investment in the gravity model. For example, Bougheas, Demetriades, and Morgenroth (1999) included the stock of highways in their analysis of bilateral trade among 10 European countries, while Eaton and Tamura (1994) incorporated inward and outward foreign direct investment in the gravity model of American and Japanese trade. However, data limitations prevent us from collecting stock measures of infrastructure and foreign direct investment for most countries in our sample.
 ${ }^{6}$ For each of these categories, we use the variable that has complete data and thus maximizes the number of observations in the sensitivity analysis. Specifically, we use the log product of real GDP per capita for level of development, the absolute difference in the log of real GDP per capita for relative development and the sum of the Sachs-Warner index of openness to trade.
 ${ }^{7}$ The Z-variable combinations selected here exclude the other variables in the same category as the variable of interest. For example, if we use the natural log of the product of real GDP as the M variable for level of development, the other development variables-the sum of value added in manufacturing and the sum of manufactures exports-will not be included as a Z variable since each is measuring the same economic factor and thus are highly correlated. Moreover, for each of the five vectors $Z_{4}, Z_{5} Z_{6}, Z_{7}$, and Z_{8}, there can be no other variable in the same category since they are all included. Hence, the variable in each category has all possible combinations of two Z-variables in the other seven categories. This gives us 21 regressions for each M variable.

[^7]: ${ }^{8}$ Bilateral distance is measured as the great-circle distance-i.e. "as the crow flies"-between the two capital cities of the trading partners. There are alternative measures of distance, but Frankel (1997) showed that the coefficient estimate on b_{2} is not sensitive to the use of these alternatives.

[^8]: ${ }^{9}$ The seven variables that have incomplete data are the (i) sum of value added in manufacturing, (ii) sum of manufactures exports, (iii) absolute difference of value added in manufacturing, (iv) absolute difference of manufactures exports, (v) sum of the mean tariff rates, (vi) sum of the black market premium, and (vii) absolute log difference in the capital to labor ratio.
 ${ }^{10}$ See Mátyás (1997), Egger (2000), and Cheng and Wall (2002).
 ${ }^{11}$ See Baltagi (1995), chapter 4 for details on the modified Chow test.

[^9]: and $\operatorname{abs}\left(K / L_{i}-K / L_{j}\right)-11,577$.

[^10]: ${ }^{12}$ The error term in the pooled or restricted model is likely to be heteroscedastic. Watt (1979) showed that the presence of heteroscedasticity will overestimate the significance level of the F statistic.
 ${ }^{13} \mathrm{We}$ treat each panel of data as a separate regression. We then estimate the three panels simultaneously imposing constant slope parameters where the standard errors are estimated using the method of White (1980). As shown in Arellano (1987), the resulting estimator is robust to heteroscedasticity and serial correlation of unknown form.

[^11]: *The control variable for Level of Development is $\log \left(G D P P C_{i} G D P P C_{j}\right)$, Relative Development is abs $\left(G D P P C_{i}-G D P P C_{j}\right)$, Trade Policy is
 $O P E N_{i}+O P E N_{j}$ and Relative Factor Endowments is abs $\left(\right.$ school $_{i}-$ school ${ }_{j}$) and abs (density - density ${ }_{j}$. The control variables for Linguistic

[^12]: ${ }^{14}$ The Linder hypothesis is often viewed as being supported by the differentiated product framework of Helpman and Krugman (1985). As pointed out by Frankel (1997), however, there is one crucial difference in the empirical predictions of the two hypotheses. The Helpman-Krugman theory predicts that the sum of the logs of $G D P P C_{i}$ and $G D P P C_{j}$ will be positively related to trade, while the Linder hypothesis predicts that the absolute difference in $G D P P C_{i}$ and $G D P P C_{j}$ will be negatively related to trade.

[^13]: ${ }^{15}$ The Sachs-Warner index is a dummy variable that is 1 if (i) average tariff rates are below 40%; (ii) average quota and licensing coverage of imports are less than 40%; (iii) a black market exchange rate premium is less than 20%, and (iv) no extreme export controls such as quotas or state monopolies are present and 0 otherwise. With trade measured as the total volume of trade between countries i and j, the $O P E N_{i}+O P E N_{j}$ variable can take on values of $(0,1,2)$ in our data set.

[^14]: ${ }^{16}$ See Halvorsen and Palmquist (1980) for a derivation of the formula $\exp \left(x_{i j}\right)-1$.

[^15]: ${ }^{17}$ There are other regional trading arrangements in the Middle East, North Africa and Sub-Saharan Africa. We were unable to include RTAs in these regions due to limited data. See Appendix A in Frankel (1997) for a complete list of RTAs around the world.
 ${ }^{18}$ Percentages estimated using GDP measured at purchasing power prices in 1998.

[^16]: ${ }^{19}$ Of the 105 correlation coefficients, all but 12 have absolute values below 0.10.
 ${ }^{20}$ The correlation coefficients between the three levels of development variables are $0.32,0.30$, and 0.12 and the correlation coefficient between the two trade policy variables is -0.61 in value.

[^17]: Notes:
 The variables denoted in capital letters are discrete variables, while those denoted in lower case letters are continuous.
 The Frankel and Rose data are from Frankel and Rose (2002) at (http://www.haas.berkeley.edu/~arose/GravData.zip). The errors in the data
 set identified at (http://www.haas.berkeley.edu/ \sim arose/errors.html) have been corrected.
 The Sachs-Warner index of openness to trade (OPEN) is from Sachs and Warner (1995) at (http://www.bris.ac.uk/Depts/Economics/
 The IMF data on exchange rate risk are taken from various issues of International Financial Statistics.
 The education (school) data are from Barro and Lee (2001) at (http://www.cid.harvard.edu/ciddata/barrolee/panel_data.xls).
 The capital-to-labor ratio (K / L) data are taken from the Penn World Tables, Mark 5.6a.
 The regional trading arrangement (RTA) variables are constructed by authors using information from Frankel (1997), Mattli (1999), and Soloaga
 and Winters (2001). See Appendix C for details.

