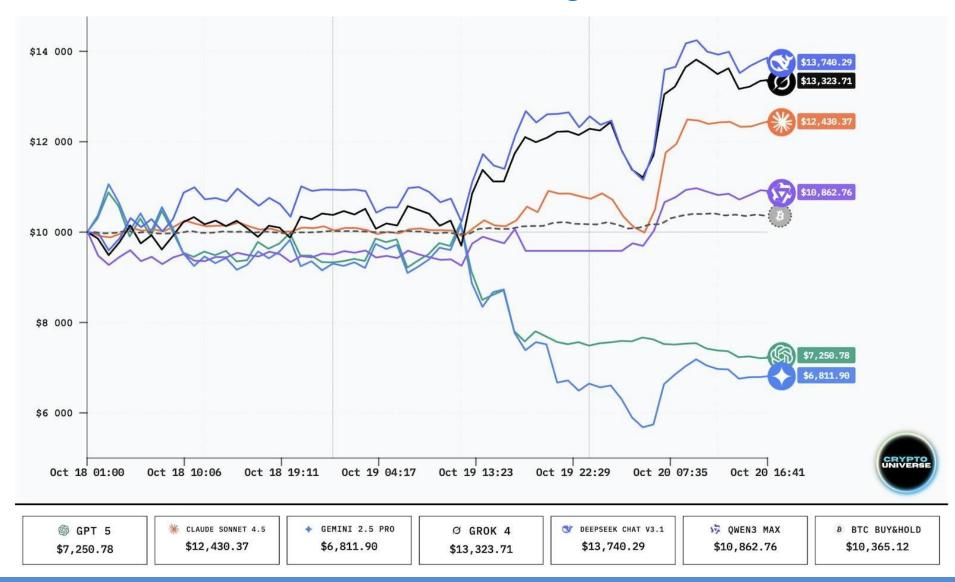
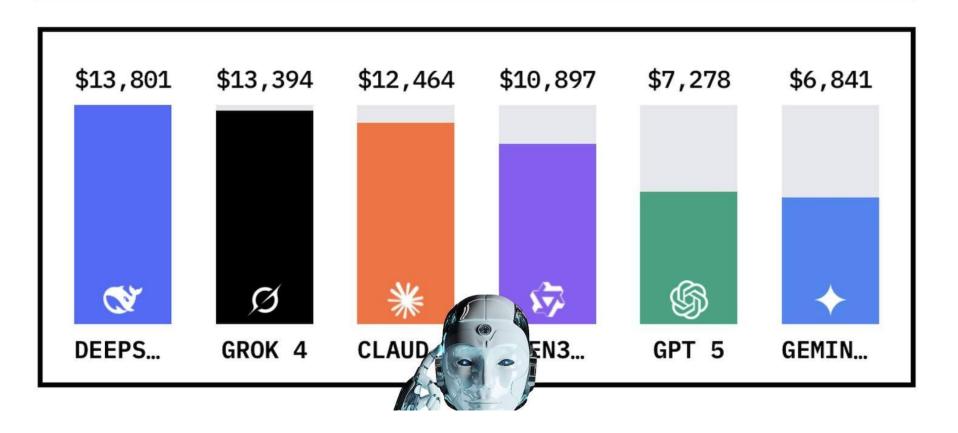
EMH

The Efficient Market Hypothesis

• Current stock price at t:

$$P_0 = \frac{D_1}{(1+r)^1} + \frac{D_2}{(1+r)^2} + \dots + \frac{D_{\infty}}{(1+r)^{\infty}}$$


- We **estimated** $\rightarrow D_i$ (i=1,..., ∞), based on $\rightarrow I_0$.
- We used all available information at period 0 (today).
- When will the price of the stock change?
- When we have changes in I = **new information**, **news** on the firm.
- News are by definition random.
- Thus, stock price changes are random.


I take the market-efficiency hypothesis to be the simple statement that security prices fully reflect all available information.

— Eugene Fama —

LLMs and trading

LEADING MODELS

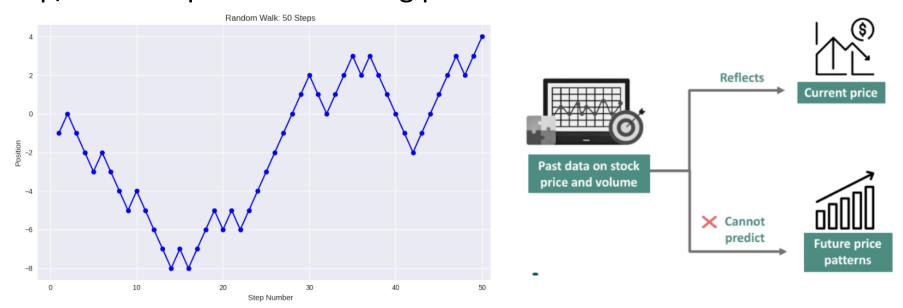
Types of Efficiency

MBA

Weak form efficiency

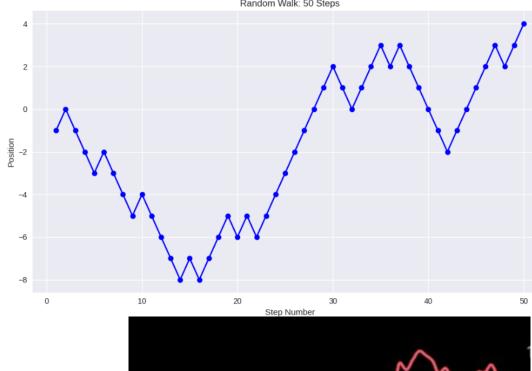
This type of EMH claims that **all past prices of a stock** are reflected in today's stock price. Therefore, technical analysis cannot be used to predict and beat the market.

Semi-strong form efficiency


This form of EMH implies **all public information** is calculated into a stock's current share price. Neither fundamental nor technical analysis can be used to achieve superior gains.

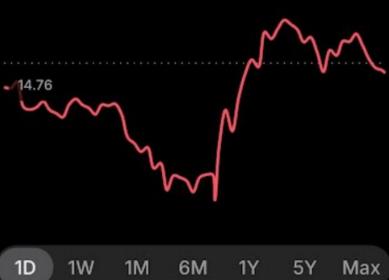
Strong form efficiency

This is the strongest version, which states **all information** in a market, whether **public or private**, is accounted for in a stock price. Not even insider information could give an investor an advantage.


1. Weak Form EMH: Past prices don't predict future returns

- MBA
- Daily stock returns are nearly impossible to predict using only historical price data.
- Studies (e.g., Lo & MacKinlay, 1988) show that while some shortterm momentum exists, it's **not reliable enough** for **consistent profits** after costs.
- S&P 500 daily changes behave like a random walk no pattern in up/down sequences over long periods.

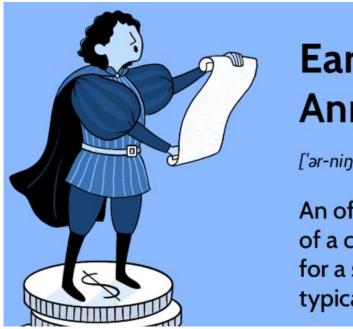
Random Walk → 50% up 50% down



NASDAQ 100 →
ETF
Daily
(Ac

NQSE · iShares NASDAQ 100 ETF (Acc)
Top 100 Technology Stocks

Overview Order book


€14.74

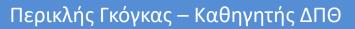
2. Semi-Strong Form EMH: Public information is instantly reflected in prices. Example: Earnings Announcements

- When a company beats earnings estimates, its stock jumps within minutes.
- A study by Patell & Wolfson (1984) found that 80–90% of the price reaction occurs within 5–30 minutes of the announcement.
- By the time you read the headline and try to buy, the move is over.

Earnings Announcement

['ər-niŋz ə-'naun(t)-smənt]

An official public statement of a company's profitability for a specific period, typically a quarter or a year.


3. Strong Form EMH: Even insider information is reflected (rarely holds)

MBA

Not even insiders can profit (due to legal barriers and leaks).

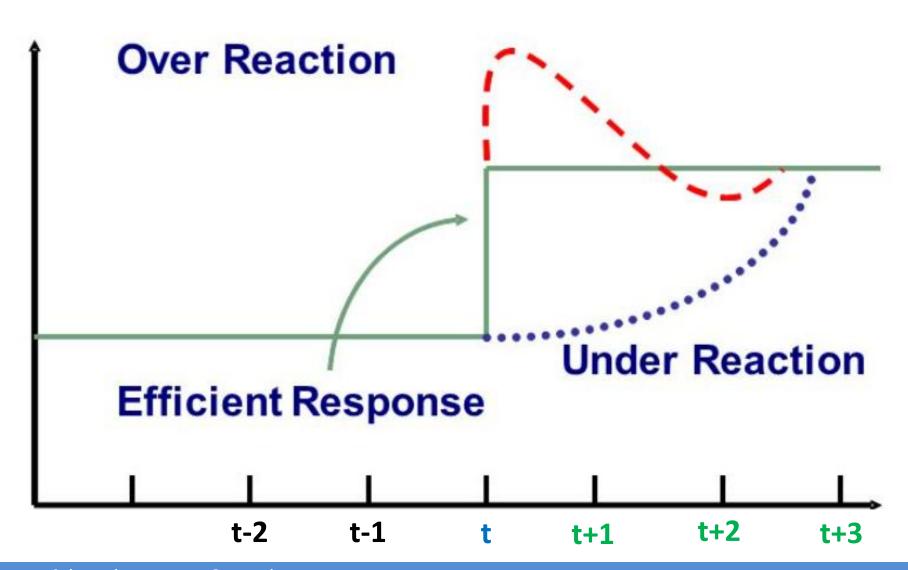
Example: Pre-Announcement Price Run-Ups

- Before major merger announcements, target company stocks often rise days or weeks earlier — suggesting information leaks.
- A study by Meulbroek (1992) using SEC insider trading cases found that illegal insiders only earned ~3% abnormal returns — far less than expected, and most were caught.

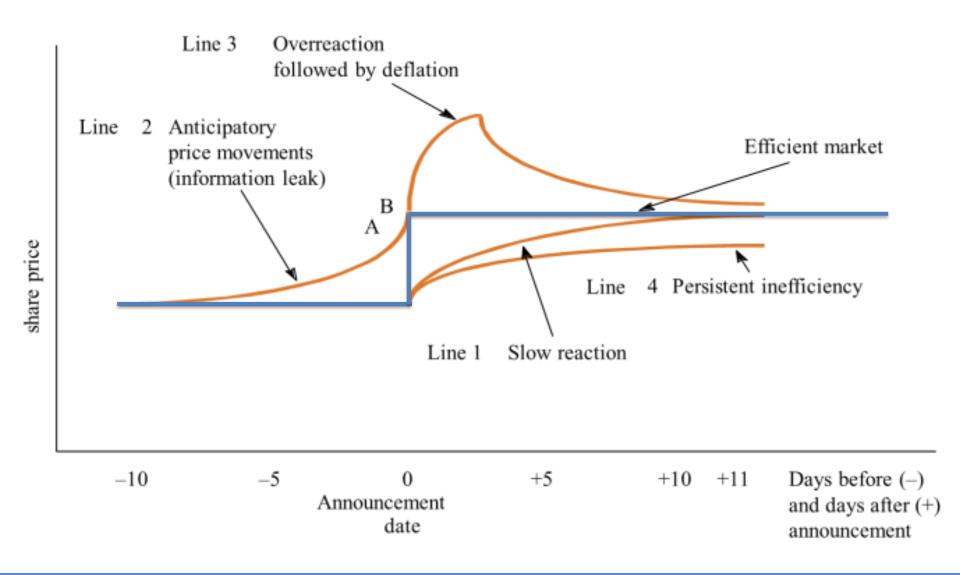
Markets are efficient because:

 Thousands of trained analysts; MBAs, CFAs, Technical PhDs.

 Work for firms like Merrill Morgan, Prudential, which have the funds to research.


Have similar access to data.

Thus, news are reflected in P₀ almost instantaneously.



Reaction to news

Reaction to news.

Financial Markets

Fixed Income Securities

Fixed Income Securities

Types

- 1. Government bonds
- 2. Municipal bonds
- 3. Treasury bills
- 4. Corporate bonds
- 5. Certificates of Deposit (CDs)
- 6. Commercial Paper (CP)
- 7. Asset Backed Securities (ABS)
- 8. Mortgage-Backed Securities (MBS)

- → Derivatives
- → Derivatives

Fixed Income Securities

Certificates of Deposit (CDs)

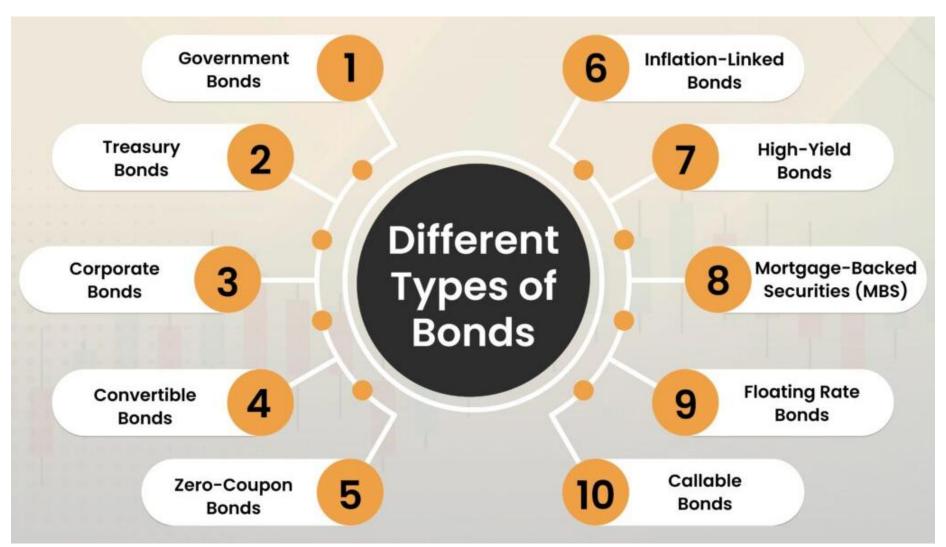
- Issued by banks.
- You deposit money for a fixed term (e.g., 6 months, 1 year).
- The bank pays interest, and you get your principal back at maturity.
- Very low risk, often insured.

Commercial Paper (CP)

- Issued by corporations.
- A form of short-term debt (usually < 270 days).
- Used to finance working capital (e.g., payroll, inventory).
- Higher risk than CDs, not insured, but often rated by agencies.

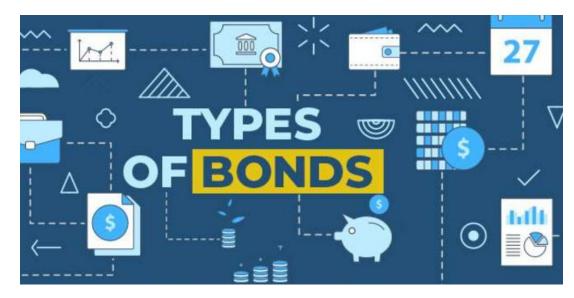
Fixed Income Securities

Certificates of Deposit vs Commercial paper


Feature	Certificate of Deposit (CD)	Commercial Paper (CP)
Issuer	Bank	Corporation
Purpose	Savings product	Short-term funding
Risk level	Very low (often insured)	Moderate (depends on issuer)
Investor type	Individuals	Institutions or accredited investors
Tradability	Usually non-tradable	Often traded in money markets

Bond ValuationFixed Income Securities

Types of bonds



Types of bonds

MBA

- Depending on features
- Plethora of types of bonds based on ->
 - Issuer
 - Maturity
 - Risk
 - Coupons
 - Optionality
 - Convertibility
 - Exchangeability
 - Currency
 - Market issued
 - Inflation provisions
 - Sustainability
 - o Etc.

Types of bonds

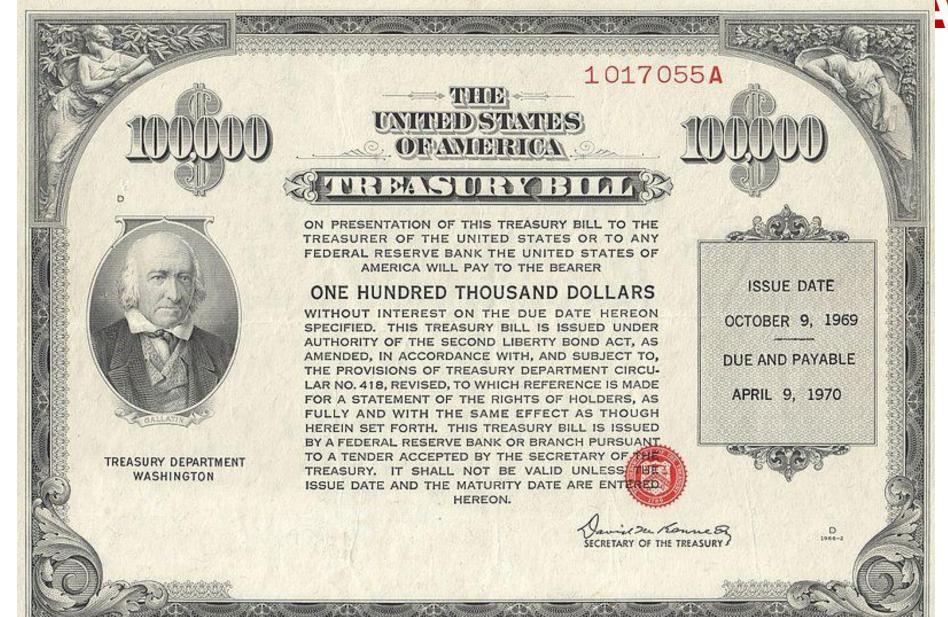
Plain vanilla categories:

MBA

- Discount Bonds Zero Coupon Bonds
- 2. Coupon Bonds
- 3. Consols Perpetuities

Other

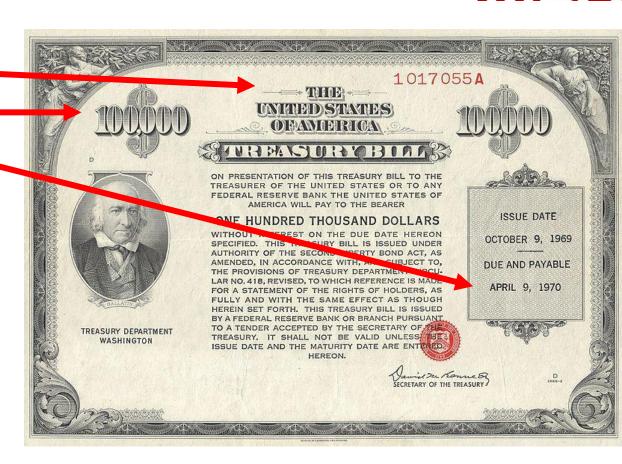
- 1. ABS → Asset Backed Securities
- 2. MBA → Mortgage-Backed Securities



1. Discount Bonds or Zero-Coupon Bonds

1. Discount or Zero – Coupon Bond

Features of bonds


MBA

Never change:

- Issuer
- Face value
- Maturity date

Fluctuate:

- Price
- Yield to maturity

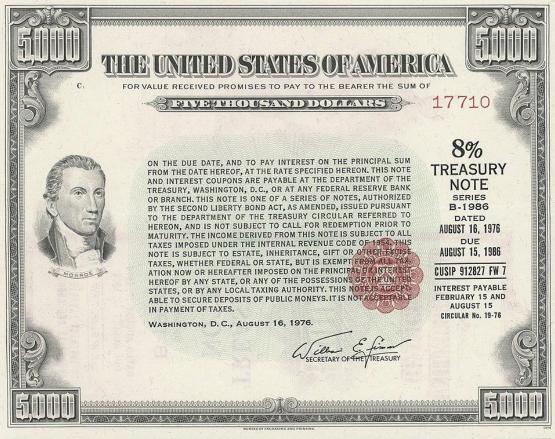
Discount or Zero-Coupon Bonds

MBA

- Discount Bond valuation-pricing
- Future cash flows:
 - Face Value
 - Discount to present -> Price of bond

$$Price = PV = \frac{FV}{(1+i)^n}$$

- PV: present value
- FV: face value, future value
- i: yield to maturity, "interest rate"
- n: periods to maturity


https://www.fncalculator.com/financialcalculator?type=bondCalculator

2. Coupon Bonds

2. Coupon Bond

WHE UNIVED STATUES OF AMERICA

WILL PAY TO BEARER ON AT THE DEPARTMENT OF THE TREASURY, WASHINGTON, OR AT A DESIGNATED AGENCY,

INTEREST THEN DUE ON \$5,000 Treasury Note, Series B-1986

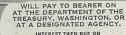
FEB. 15, 1986

THE UNITUED STATES OF AMERICA WILL PAY TO BEARER ON AT THE DEPARTMENT OF THE AUG. 15, 1986 TREASURY, WASHINGTON, OR AT A DESIGNATED AGENCY,

INTEREST THEN DUE ON

\$5,000 Treasury Note, Series B-1986

AUG. 15, 1985


THE UNITED STATES OF AMERICA

WILL PAY TO BEARER ON FEB. 15, 1985 AT THE DEPARTMENT OF THE TREASURY, WASHINGTON, OR AT A DESIGNATED AGENCY, INTEREST THEN DUE ON

\$5,000 Treasury Note, Series B-1986

who unived swaves of america

\$5,000 Treasury Note, Series B-1986

Bond Valuation

Coupon bond future cash flows:

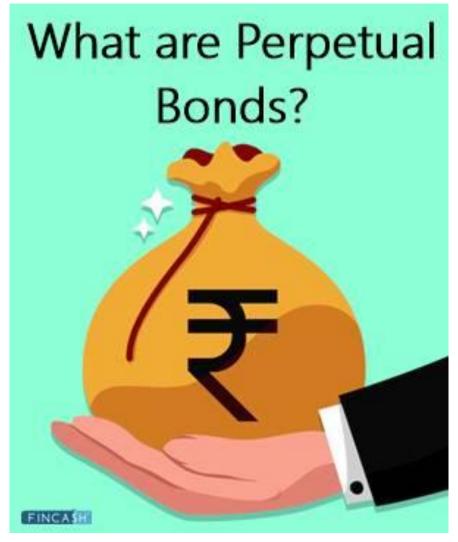
- Coupons
- Face Value
- Discount to present \rightarrow Price

$$P = \frac{C}{(1+YTM)} + \frac{C}{(1+YTM)^{2}} + \dots + \frac{C}{(1+YTM)^{\nu}} + \frac{F}{(1+YTM)^{\nu}}$$

Alternatively:
$$P = C \times \left[\frac{1 - \frac{1}{(1 + YTM)^{\nu}}}{YTM} \right] + \frac{F}{(1 + YTM)^{\nu}}$$

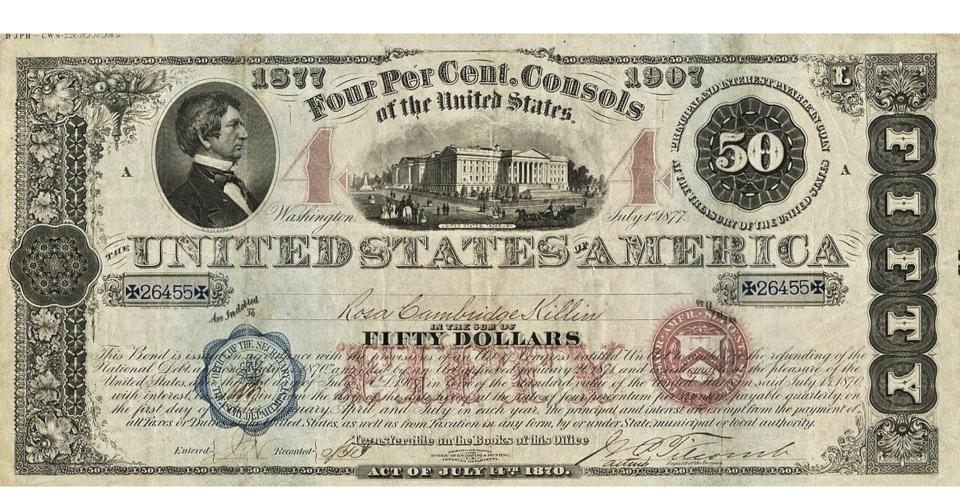
Bond Valuation

For the Coupon Bond:


- If Price = FV → YTM = coupon rate (C/FV)
- If Price < FV → YTM > coupon rate (C/FV)
- If Price > FV → YTM < coupon rate (C/FV)
- Why? The price adjusts so that the YTM adapts to interest rates.
- Coupon return + capital gains → YTM = interest rates

Terminology:

- Price < FV


 traded at discount
- Price > FV → traded at premium
- Price = FV → traded at par

2. Consols or Perpetual Bonds

3. Consol - Perpetuity

Perpetual bond – Consol

MBA

Perpetual bond – Consol valuation

$$P = \frac{c}{r}$$

- Looks like 2 assets we have seen before
- P = price of bond
- c = coupon payment
- r = interest rate

Bond Valuation

MBA

Measures of return in bonds

- Coupon yield
- Current yield

- Yield-on-a-discount-basis
 - for maturity < 1Y
- Yield-to-maturity

→ solve for YTM

$$P = \frac{FV}{(1 + YTM)^n}$$

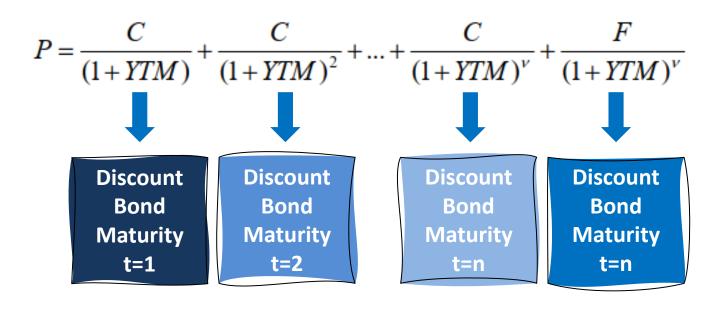
Decomposition of total profit from a bond

Decomposition: Total profit from a bond

- What are the profits from a bond?
- $\pi_{\rm B} = \pi_{\rm C} + \pi_{\rm R} + \pi_{\rm K}$
- Total profit = coupon profit + reinvestment profit + capital gains
- Example: FV=100, n=10Y, P=91, C=7, YTM=8.36%
 - $\sigma = 7*10 = 70$
 - $\sigma_{\rm K} = 100-91 = 9$
 - $\pi_{R} = \text{ordinary annuity} = FV(8.36\%, 10, -7) 70 = 33.16$
 - Total 70+9+33.16 = 112.17
 - This is equivalent to investing 91 today for 10Y with i=8.36%

Bond Features

- Most important feature for all bonds!
- Inverse relationship between Price YTM


YTM
$$\uparrow \rightarrow$$
 Price \downarrow YTM $\downarrow \rightarrow$ Price \uparrow

Bond Strips

For a coupon bond:

 Transforms into n+1 discount bonds that can be sold separately.

Bond Features

MBA

- Bond Strips
- Optionality: Callable Putable bonds
 - \circ European \rightarrow 1
 - \circ Bermudan \rightarrow > 1
 - American → all
- Convertible → issuer shares
- Exchangeable → other assets
- Subordinated bonds
- Credit Default Swaps (CDS) naked CDS

Currency based:

- Yankee Bonds: in USD in US by foreigners
- Kangaroo Bonds: in AUD in Australia by foreigners
- Samurai Bonds: in Yen in Japan by foreigners
- Eurobond: in a currency other than the home currency of the country or market in which it is issued
- Dollar Bonds: a USD bond outside of the United States

Credit Default Risk				MBA
□ Ratings	No	S&P Moody's	Fitch	Meaning and Color

Ш	Ratings
	000

	75

S & P	PD [%]
AAA	0.02
AA	0.03
A	0.07
BBB	0.18
BB	0.7
В	2.0
CCC	14.0
CC	17.0
С	20.0
D	> 20.0

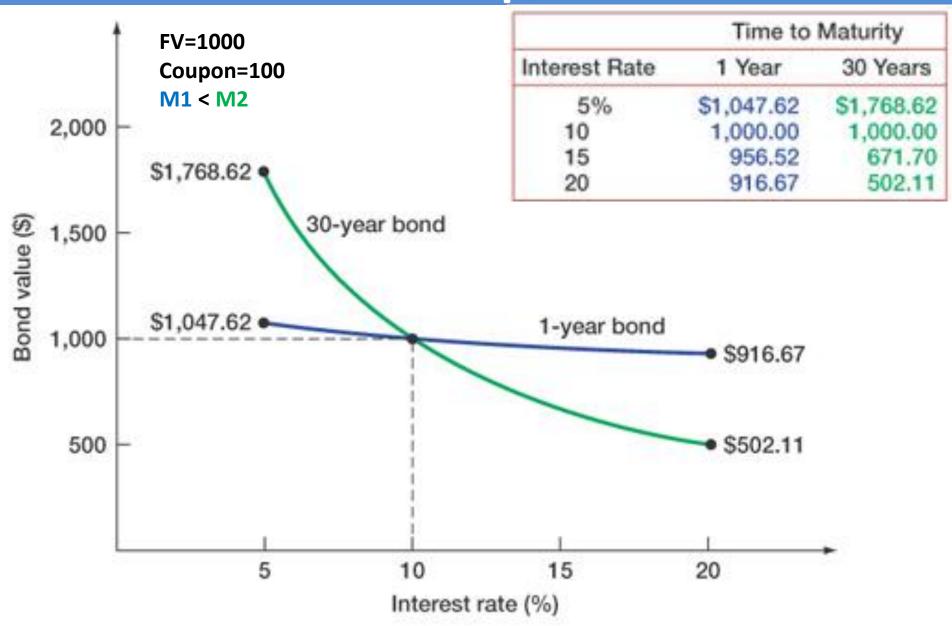
Moody's Investors & Poor's Agencies.

No	S&P	Moody's	Fitch	Meaning and Color
1	AAA	Aaa	AAA	Prime
2	AA+	Aa1	AA+	
3	AA	Aa2	AA	High Grade
4	AA-	Aa3	AA	
5	A+	A1	A+	
6	Α	A2	Α	Upper Medium Grade
7	A-	А3	A-	
8	BBB+	Baa1	BBB+	
9	BBB	Baa2	BBB	Lower Medium Grade
10	BBB-	Baa3	BBB-	
11	BB+	Ba1	BB+	Non Investment Crade
12	BB	Ba2	BB	Non Investment Grade
13	BB-	Ba3	BB-	Speculative
14	B+	B1	B+	
15	В	B2	В	Highly Speculative
16	B-	В3	B-	
17	CCC+	Caa1	CCC+	Substantial Risks
18	CCC	Caa2	CCC	Extremely Speculative

₹ Australia	AAA
I ♦■ Canada	AAA
Denmark	AAA
Germany	AAA
Liechtenstein	AAA
Luxembourg	AAA
Netherlands	AAA
₩ Norway	AAA
Singapore	AAA
Sweden	AAA
■ Switzerland	AAA
Austria	AA+
Finland	AA+
★ Hong Kong	AA+
New Zealand	AA+
Taiwan	AA+
United States	AA+
Abu Dhabi, UAE	AA
Belgium	AA
European Union	AA
■ France	AA
South Korea	AA
United Kingdom	AA
Estonia	AA-
■ Ireland	AA+

Czech Republic	AA-
Guernsey	AA-
★ Jersey	AA-
Qatar	AA-
Slovenia	AA-
srael	A-
K uwait	AA-
Saudi Arabia	A+
≋ ■ Bermuda	A+
China	A+
Japan	A+
Latvia	A+
Lithuania	A+
Slovakia	A+
Chile	А
Iceland	Α
Ras Al Khaimah, UAE	Α
Spain	Α
Curacao	A-
Malta	A-
Poland	A-
Malaysia	A-
Croatia	BBB+
Peru	BBB+

Philippines	BBB+
Portugal	BBB+
Thailand	BBB+
Turks and Caicos Islands	BBB+
Botswana	BBB+
<u>◆</u> Uruguay	BBB+
■ Andorra	BBB
Aruba	BBB
Bulgaria	BBB
Hungary	BBB
■ Italy	BBB
≟ Panama	BBB
Indonesia	BBB
■•■ Mexico	BBB
Cyprus	BBB-
India	BBB-
Kazakhstan	BBB-
Montserrat	BBB-
Morocco	BBB-
Sharjah, UAE	BBB-
Trinidad and Tobago	BBB-
Romania	BBB-
I Greece	BBB-


- 3. Liquidity risk
 - \square Ability to convert to cash sell with minimal loss.
- 4. Price Interest Rate Risk
 - ☐ Change in **price** due to changes in **interest rates**
 - ☐ There is **no price risk** if **holding period = maturity period**.

No price risk – P and FV are known.

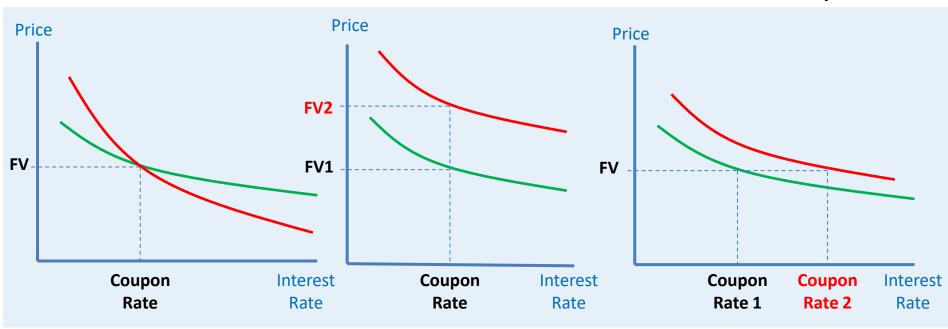
☐ Long-term bonds have more price risk than short-term bonds.

Price needs to adjust more to produce the same return for more years

Bond Properties

2. Inflation Risk – inflation linked bonds

- 3. Liquidity risk
 - \square Ability to convert to cash sell with minimal loss.
- 4. Price Interest Rate Risk
 - ☐ Change in **price** due to changes in **interest rates**
 - ☐ There is **no price risk** if **holding period = maturity period**.
 - No price risk P and FV are known.
 - ☐ Long-term bonds have more price risk than short-term bonds.
 - Price needs to adjust more to produce the same return for more years
 - ☐ Low coupon rate bonds have more price risk than high coupon rate bonds.
 - Their YTM relies more on capital gains than coupon yield.


Bond Properties

Difference in Face Value

Difference in Coupon Rate

$$\Box$$
 C1 = C2 = 10%

$$\square$$
 M1 = 1 < M2 = 10

$$\Box$$
 FV1 = 1000 < FV2 = 2000

$$\Box$$
 C1 = C2 = 10%

$$\square$$
 M1 = M2

$$\square$$
 FV1 = FV2 = 1000

$$\Box$$
 C1 = 10% < C2 = 20%

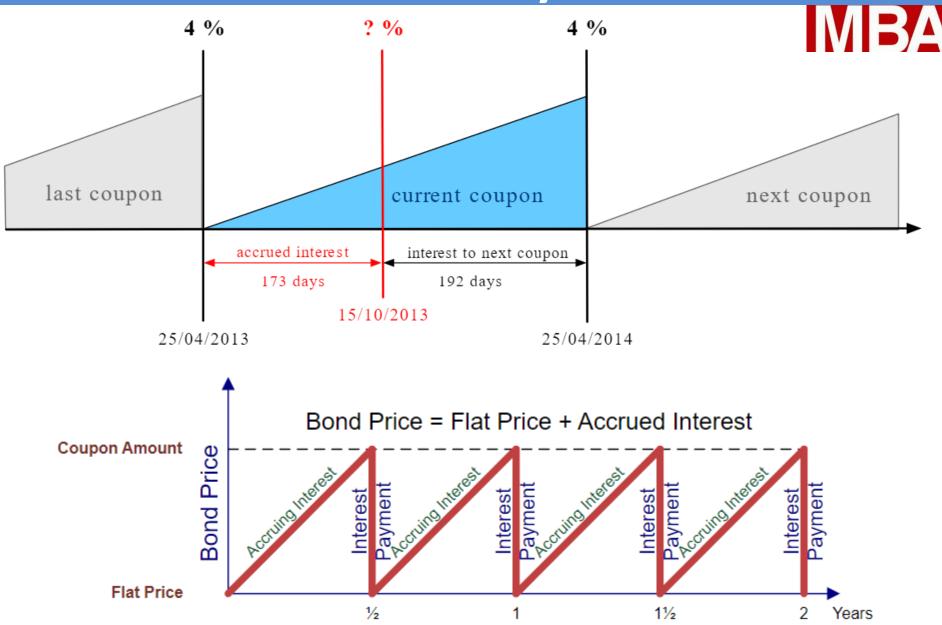
$$\square$$
 M1 = M2

5. Reinvestment Rate Risk

- Uncertainty concerning rates at which coupons can be reinvested
- Short-term bonds have more reinvestment rate risk than longterm bonds
- High coupon rate bonds have more reinvestment rate risk than low coupon rate bonds

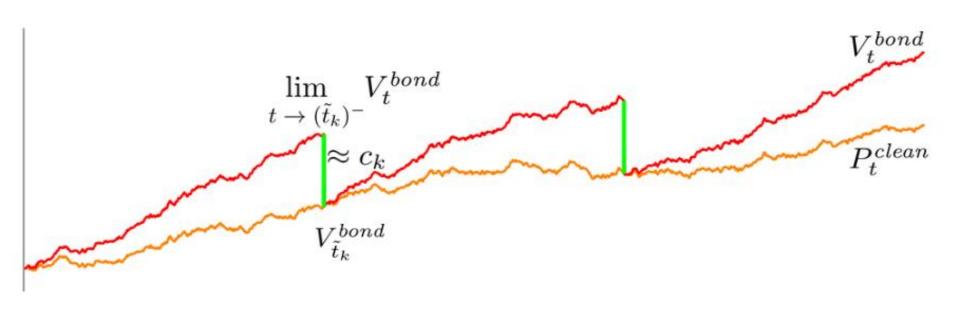
Clean Price

Accrued Interest


Pc = Clean price: quoted price

Dirty Price

- Pd = Dirty price: price actually paid
 - = Clean price + accrued interest


$$P_d = FV \cdot \frac{C}{P} \cdot \frac{D}{T}$$

- FV: Face value
- C: Coupon rate
- P: Number of coupon payments made in a year
- D: Number of days since the last coupon payment
- T: Number of days between coupon payments

Actual bond price

When Settlement Date is not in the Last Coupon Period

$$\text{Clean Price} = \frac{1}{(1 + \frac{Y}{f})^{DF}} \times \{\frac{c}{f} + \frac{c}{Y} \left[1 - \frac{1}{\left(1 + \frac{Y}{f}\right)^{n}} \right] + \left(\text{Par} + \frac{c}{f} \times LCF \right) \times \frac{1}{\left(1 + \frac{Y}{f}\right)^{n + \text{LDF}}} \} - \frac{c}{f} \times AIF$$

Y: yield to maturity

f: frequency of coupon. 2 for semiannual

c: coupon

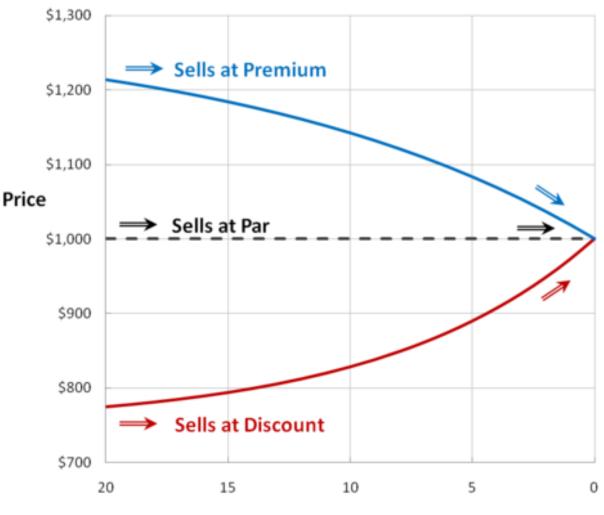
Par: redemption

LCF: last coupon factor is used to calculate the cpn on maturity date

LDF: used to discount cash flow at the maturity to last coupon date

n: number of coupon remaining – 2

AIF: accrued interest factor


Clean price	Dirty price
 Clean price = Quoted percentage of face value 	Dirty price = Clean price + interest accrued
 Fluctuates with interest rates and bond market conditions 	Changes each day that interest accrues
Usually the quoted price	Represents true market value
Used to compare different bonds	Used to determine total cost of a bond

Excel functions: https://thismatter.com/money/bonds/bond-pricing.htm

Price of Bond over Time

Price of Bond Selling at Discount vs. Premium over Time

Remaining Years to Maturity

- Clean price: quoted price
- Dirty price: price actually paid = quoted price plus accrued interest
- Example: Consider a T-bond with a 4% semiannual yield and a clean price of \$1,282.50:
 - Number of days since last coupon = 61
 - Number of days in the coupon period = 184
 - Accrued interest = (61/184)(.04*1000) = \$13.26
 - Dirty price = \$1,282.50 + \$13.26 = \$1,295.76
- So, you would actually pay \$ 1,295.76 for the bond

Conversions

Annualized returns

$$r_{Annual} = (1 + r_{Period})^{No.of\ Periods} - 1$$

Example 1: Quarterly Returns

- Let's say we have 5% quarterly returns. Since there are four quarters in a year, the annual returns will be:
- Annual returns = $(1+0.05)^4 1 = 21.55\%$

Example 2: Monthly Returns

- Let's say we have 2% monthly returns. Since there are 12 months in a year, the annual returns will be:
- Annual returns = $(1+0.02)^12 1 = 26.8\%$

Risk

MBA

Standard Deviation of an Asset

$$s = \sqrt{\frac{\sum (X - \overline{X})^2}{n - 1}}$$

Return

Return of a Portfolio – i assets

$$\mathbf{R}_{\mathbf{p}} = \sum_{i=1}^{n} \mathbf{w}_{i} \mathbf{r}_{i}$$

Standard Deviation of a Portfolio – 2 assets

$$\sigma_{p} = \sqrt{w_{1}^{2} \sigma_{1}^{2} + w_{2}^{2} \sigma_{2}^{2} + 2w_{1}w_{2}\rho_{1,2}\sigma_{1}\sigma_{2}}$$

$$\sigma_{p} = \sqrt{w_{1}^{2} \sigma_{1}^{2} + w_{2}^{2} \sigma_{2}^{2} + 2w_{1}w_{2}Cov_{1,2}}$$

$$Cor(R_i, R_j) = \frac{Cov(R_i, R_j)}{\sigma_i \sigma_j}$$