

The Time Value of Money

Assume that

- You will be paid €10,000 for a job.
- When do you prefer to get the money?
 - Now
 - 1 year from now
- The value of money is different over time
- Why?
- Growth potential of money
- Inflation considerations

$$i = \pi + r$$

Future Value

Present Value > Future Value

- Deposit an amount PV = present value
- 2 cases:
- No compounding
- Interest is not re-invested

$$FV = PV(1 + i * t)$$

- With compounding
- Interest is re-invested at interest rate i

$$FV = PV(1+i)^t$$

Future Value Comparison

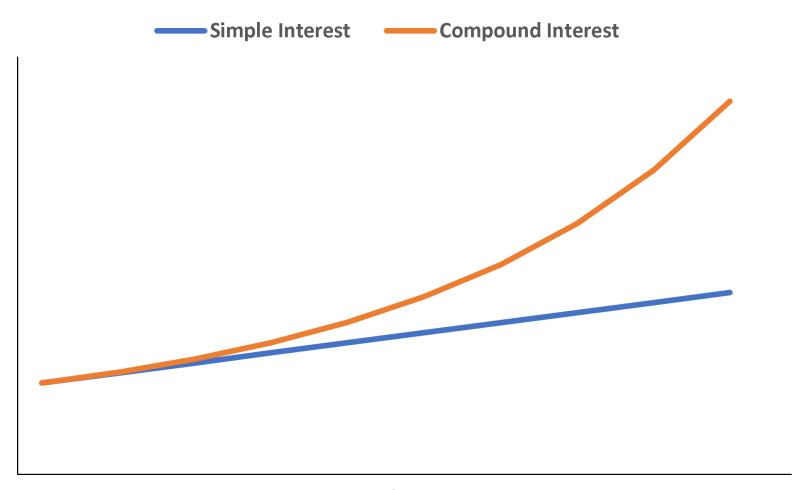
	No con	npound	ing		Comp	oundin	g						NI	
Year	Deposit	Interest	No Comp	Year	Deposit	Interest	Comp					•		_
1	100	5	105	1	100	5	105							
2	100	5	110	2	105	5.25	110.25		Deposit			€10	00	
3	100	5	115	3	110.25	5.51	115.76		Years			10		
4	100	5	120	4	115.76	5.79	121.55		Interest	rate		5 %)	
5	100	5	125	5	121.55	6.08	127.63							
6	100	5	130	6	127.63	6.38	134.01							
7	100	5	135	7	134.01	6.70	140.71							
8	100	5	140	8	140.71	7.04	147.75							
9	100	5	145	9	147.75	7.39	155.13							
10	100	5	150	10	155.13	7.76	162.89							
Final	100	50	150	Final	155.13	62.89	162.89							
					-	130 –								
					_	120 –								
						110 —				- No (Comp)	- Cor	np
					-	100 –								
							1 2	3	4 5	6	7	8	9	10

Principal + Interest

The power of compounding Exponential growth

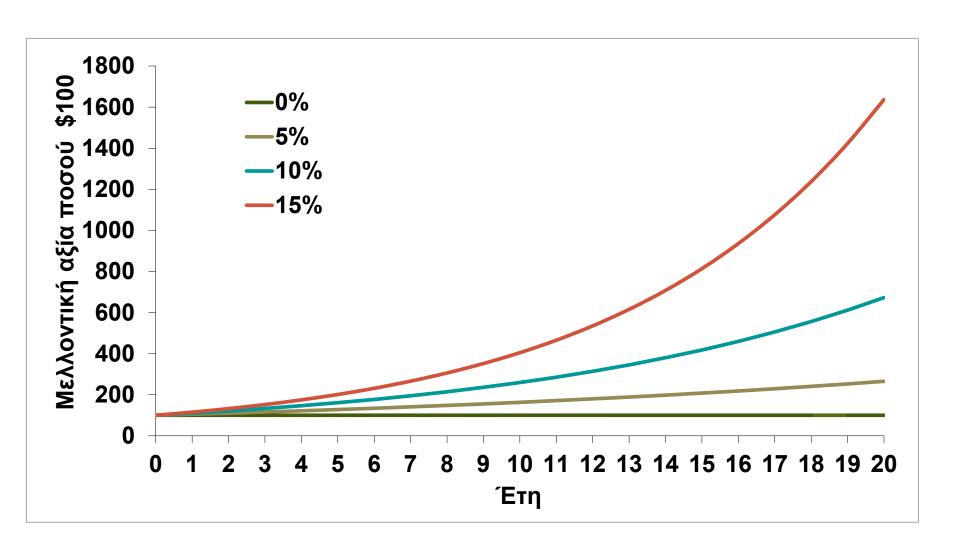
ECONOMICS MBA

Simple vs. Compound Interest

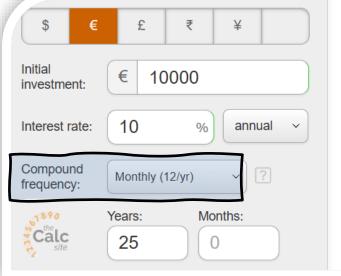


Time

The power of the interest rate



Power of Compounding Frequency



B

Activity

Future Value Present Value

Ένας πλούσιος θείος/α σας σας κάνει δώρο ένα από τα παρακάτω:

- 1. Σήμερα €10,000
- 2. Σε 5 χρόνια €15,000

Τι θα επιλέγατε αν τα επιτόκια είναι 8%;

Present Value

Future Value > Present Value

Παρούσα αξία μίας μελλοντικής πληρωμής

$$PV = \frac{FV}{(1+i)^t}$$

- Where:
 - FV = future cash flow
 - \circ *i* = interest rate
 - \circ t = number of periods ahead

Present Value

Present Value

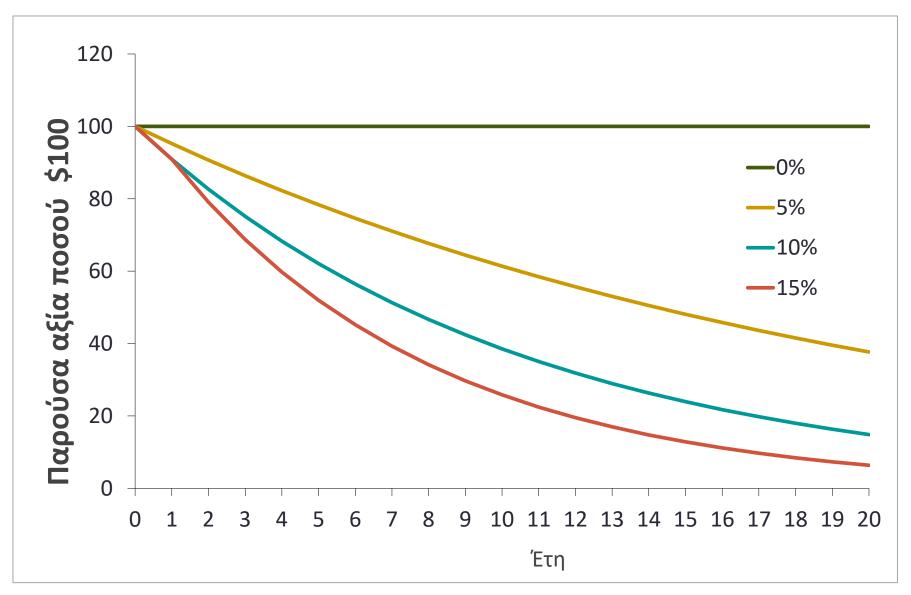
Παρούσα αξία πολλών μελλοντικών πληρωμών

$$PV = \frac{C_1}{(1+i)^1} + \frac{C_2}{(1+i)^2} + \frac{C_3}{(1+i)^3} + \dots + \frac{C_n}{(1+i)^n}$$

$$PV = \sum_{t=1}^{n} \frac{C_t}{(1+i)^t}$$

ECONOMICS MBA

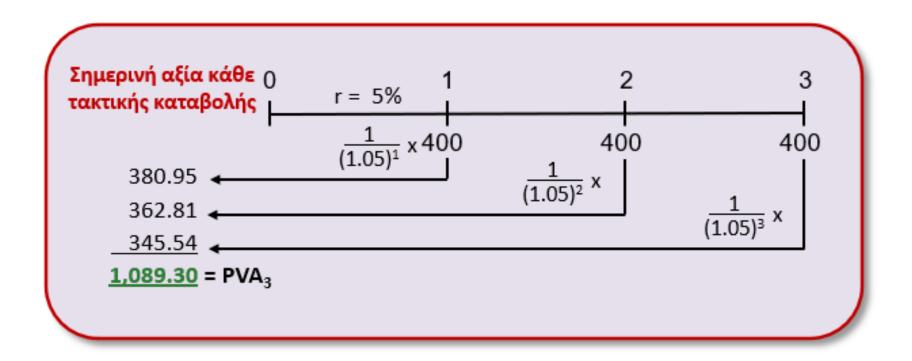
Ρόλος επιτοκίου – Παρούσα Αξία ΜΒ



More than 1 payments → Periodic Payments

ECONOMICS MBA

What is the **PV** of a **3-year** schedule of constant payments of \$400 for r = 5%?



Annuities

What is an Annuity?

- **Fixed** periodic payment
- For a given number of periods
- A given interest rate
- Compounded

What is the value of an annuity?

- At the start Present Value
- At the end Future Value

Examples of uses:

- Future Value of annuity
 Kid: \$500, for 18 years, at 8%, compound future value?
- Present Value of annuity
 Lottery: nominal win \$1.8 billion over 30 years, \$60 million per year, 5% present value?

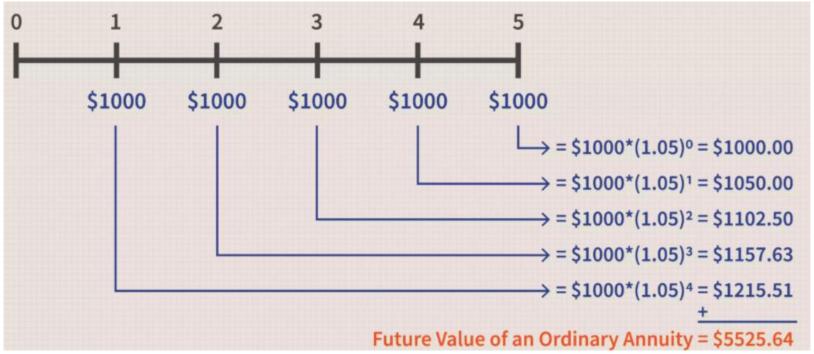
Annuities

1. Ordinary Annuity

Ordinary Annuity – Future Value

Ordinary Annuity

- Amount is deposited at the end of each period with i=5%
- In Excel =FV(Rate,Periods,Amount,0,0), 0 is for end of period and is the default value.

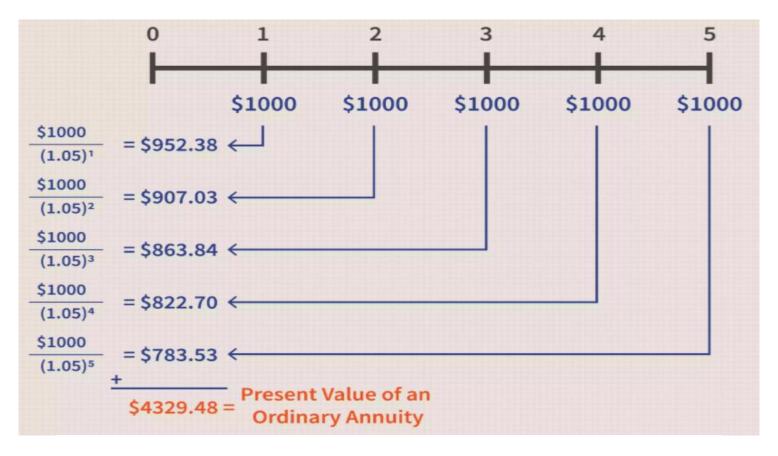


$$\text{FV}_{\text{Ordinary Annuity}} = \text{C} \times \left[\frac{(1+i)^n - 1}{i} \right]$$

Ordinary Annuity - Present Value

Excel: PV(rate, nper, pmt, [fv], [type])

type = 0



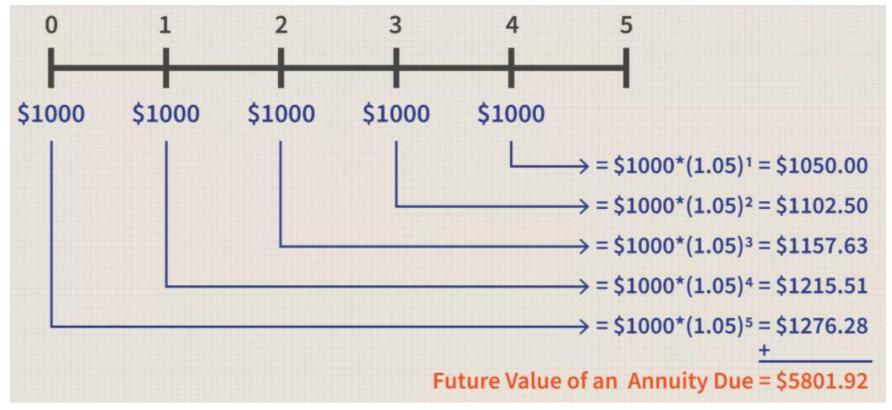
$$PV_{\text{Ordinary Annuity}} = C \times \left[\frac{1 - (1+i)^{-n}}{i} \right]$$

Annuities

2. Annuity Due

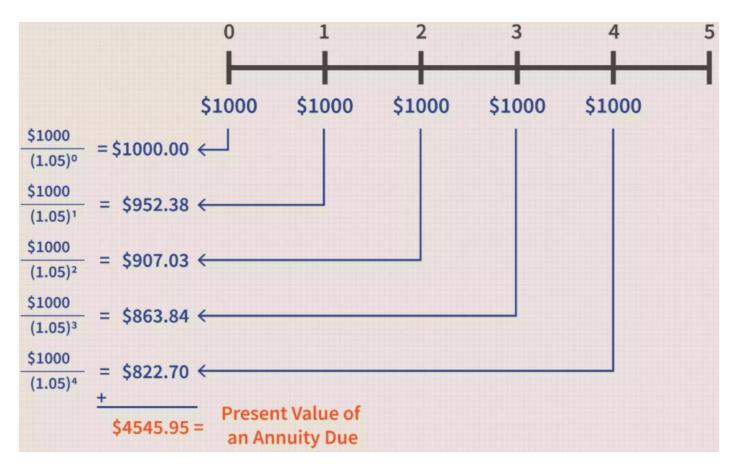
Annuity Due – Future Value

- Amount is deposited at the start of each period
- In Excel = FV(Rate, Periods, Amount, 0, 1), 1 is for start of period.



$$ext{FV}_{ ext{Annuity Due}} = ext{C} imes \left[rac{(1+i)^n - 1}{i}
ight] imes (1+i)^n$$

Excel: PV(rate, nper, pmt, [fv], [type]) -> type = 1



$$ext{PV}_{ ext{Annuity Due}} = ext{C} imes \left[rac{1 - (1+i)^{-n}}{i}
ight] imes (1+i)$$

Examples using the templates

	Examples
	Future Value
	Kid
Amount	1,000
Periods	18
Interest Rate	8%
Ordinary	37,450.24
Due	40,446.26

Examples using the templates

	Examples			
	Future Value	Present Value		
	Kid	Lottery		
Amount	1,000	60,000,000		
Periods	18	30		
Interest Rate	8%	5%		
Ordinary	37,450.24	922,347,061.61		
Due	40,446.26	968,464,414.69		

Annuities

3. Perpetual Annuity

Perpetual Annuity

$$PV = \frac{C}{(1+r)^1} + \frac{C}{(1+r)^2} + \frac{C}{(1+r)^3} + \cdots = \frac{C}{r}$$

where:

PV = present value

 $C = \cosh flow$

r = discount rate

- Sequence ακολουθία
- What is the Future Value?
- Grant, scholarship of €5,000 per year? How much do I pay?
- PV = 5,000/0,07 = 71,428.57

Examples using the templates

	Examples			
	Future Value	Present Value	Perpetual	
	Kid	Lottery	Scholarship	
Amount	1,000	60,000,000	5,000	
Periods	18	30	100	
Interest Rate	8%	5%	7%	
Ordinary	37,450.24	922,347,061.61	71,346.25	A: Annuity
			71,428.57	B: formula
Due	40,446.26	968,464,414.69		

Financial Markets

Stock Valuation

Stock Valuation

Valuation of assets → pricing – how are assets priced?

- What is the value of a company stock?
- What are the cash inflows we expect from holding a stock?

$$P_0 = \frac{D_1}{(1+r)^1} + \frac{D_2}{(1+r)^2} + \dots + \frac{D_\infty}{(1+r)^\infty}$$
 (1)

- But what if you want to sell at period 1 is this still relevant?
- Your value is: PV of dividends + PV of selling price

$$P_0 = \frac{D_1}{(1+r)^1} + \frac{P_1}{(1+r)^1} =$$
 (2)

$$\frac{P_1}{(1+r)^1} = \frac{\frac{D_2}{(1+r)^1}}{(1+r)^1} + \frac{\frac{D_3}{(1+r)^2}}{(1+r)^1} + \dots + \frac{\frac{D_{\infty}}{(1+r)^{\infty}}}{(1+r)^1}$$

$$\frac{P_1}{(1+r)^1} = \frac{D_2}{(1+r)^2} + \frac{D_3}{(1+r)^3} + \dots + \frac{D_{\infty}}{(1+r)^{\infty}}$$
(3)

Stock Valuation

Thus, stock value

Thus, stock value from (2) and (3) is:
$$P_0 = \frac{D_1}{(1+r)^1} + \frac{D_2}{(1+r)^2} + ... + \frac{D_{\infty}}{(1+r)^{\infty}}$$

If constant dividend, $D_1 = D_2 = ...$, then

$$P_0 = D_1 \times \sum_{t=1}^{\infty} \frac{1}{(1+r)^t} = D_1 \times \frac{1}{r} = \frac{D_1}{r} \qquad \Rightarrow \qquad P_0 = \frac{D_1}{r} \qquad \text{Something?}$$

If we have constant dividend growth g:

$$P_0 = \frac{D_0 \times (1+g)^1}{(1+r)^1} + \frac{D_0 \times (1+g)^2}{(1+r)^2} + \dots + \frac{D_0 \times (1+g)^\infty}{(1+r)^\infty}$$

$$P_0 = D_0 \cdot \sum_{i=1}^{\infty} \left(\frac{1+g}{1+r} \right)^i = D_0 \cdot \frac{1+g}{r-g} \quad \text{but } D_0(1+g) = D_1 \qquad P_0 = \frac{D_1}{r-g}$$

Stock Valuation

Variability of dividends →

Discounted Cash Flow Model – DCF

(the first one that we saw \rightarrow more general

$$DCF = \frac{CF_1}{(1+r)^1} + \frac{CF_2}{(1+r)^2} + \frac{CF_3}{(1+r)^3} + \cdots + \frac{CF_n}{(1+r)^n}$$

where:

$$CF_n = Cash flows in period n$$

Common Stock Valuation

- Cliff Inc., a drone company, paid the following per share dividends:
- What is the valuation of its stock?
- 2022 → Interest: 8%, Growth? 5%

$$P_0 = \frac{D_1}{r - g}$$

- 1.41 / (0.08-0.05) = **\$47**
- Approximate with variable returns →
- Calculate average growth

Dividen						
Year	d	Growth				
2016	\$1.00					
2017	\$1.05	0.05				
2018	\$1.10	0.05				
2019	\$1.16	0.05				
2020	\$1.22	0.05				
2021	\$1.28	0.05				
2022	\$1.34	0.05				
2023	\$1.41					

Year	Dividend	Growth
2016	\$1.00	
2017	\$1.07	7.00%
2018	\$1.12	4.67%
2019	\$1.16	3.57%
2020	\$1.22	5.17%
2021	\$1.28	4.92%
2022	\$1.34	4.69%
2023	\$1.41	5.00%

EMH

The Efficient Market Hypothesis

Efficient Market Hypothesis

Current stock price at t:

$$P_0 = \frac{D_1}{(1+r)^1} + \frac{D_2}{(1+r)^2} + \dots + \frac{D_\infty}{(1+r)^\infty}$$

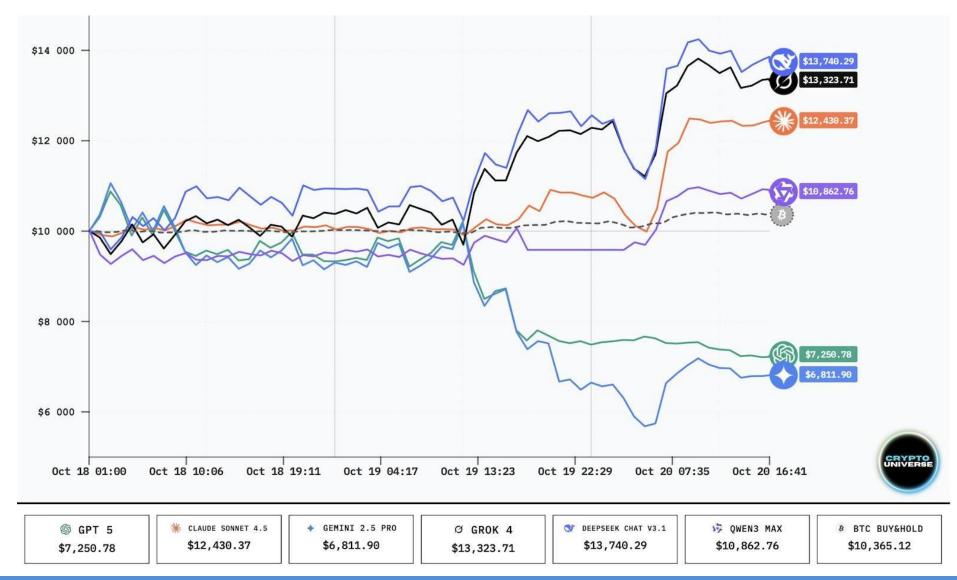
- We estimated D_i based on I_t.
- We used all available information at t.
- When will the price of the stock change?
- When we have changes in I_{+} = **new information**, **news** on the firm.
- News are by definition random.
- Thus, stock price changes are random.

I take the market-efficiency hypothesis to be the simple statement that security prices fully reflect all available information.

— Eugene Fama —

Efficient Market Hypothesis

LLMs and trading



Efficient Market Hypothesis

LEADING MODELS

