

Future Value

Future Value

- The value of money is different over time
- Why?
- No compounding

$$FV = PV(1+rt)$$

With compounding

$$FV = PV(1+i)^{t|}$$

Ρόλος επιτοκίου - ανατοκισμός

Present Value

Present Value

Παρούσα αξία μελλοντικών πληρωμών

Present Value =
$$\frac{\text{FV}}{(1+r)^n}$$

where:

FV = Future Value

r = Rate of return

n = Number of periods

ECONOMICS MBA

Ρόλος επιτοκίου – Παρούσα Αξία ΜΒΔ

Ποια είναι η παρούσα αξία ενός 3ετούς προγράμματος σταθερών καταβολών \$400 για r = 5%?

Annuities

What is an Annuity?

- Fixed periodic payment
- For a given number of periods
- A given interest rate
- Compounded

What is the value of an annuity?

- Two relevant values:
 - At the start Present Value
 - At the end Future Value

Examples:

- Kid: \$500, for 18 years, at 4%, compound future value
- Lottery: \$1.8 billion, 30 years, \$60 million per year, 5% present value

Ordinary Annuity – Future Value

- Amount is deposited at the end of each period with i=5%
- In Excel =FV(rate, nper, pmt, [pv], [type]), type = 0 is for end of period and is the default value.

$$\mathrm{FV}_{\mathrm{Ordinary\ Annuity}} = \mathrm{C} imes \left[rac{(1+i)^n - 1}{i}
ight]$$

Ordinary Annuity – Present Value

Excel: PV(rate, nper, pmt, [fv], [type]) - type = 0

$$PV_{\text{Ordinary Annuity}} = C \times \left[\frac{1 - (1+i)^{-n}}{i} \right]$$

Annuity Due – Future Value

- Amount is deposited at the start of each period
- In Excel: FV(rate, nper, pmt, [pv], [type]), type=1 is for end of period and is the default value.

$$ext{FV}_{ ext{Annuity Due}} = ext{C} imes \left[rac{(1+i)^n - 1}{i}
ight] imes (1+i)^n$$

Annuity Due – Present Value

Excel: PV(rate, nper, pmt, [fv], [type]) – type = 1

$$ext{PV}_{ ext{Annuity Due}} = ext{C} imes \left[rac{1 - (1+i)^{-n}}{i}
ight] imes (1+i)$$

Perpetual Annuity

$$PV = \frac{C}{(1+r)^1} + \frac{C}{(1+r)^2} + \frac{C}{(1+r)^3} + \cdots = \frac{C}{r}$$

where:

PV = present value

 $C = \cosh flow$

r = discount rate

• What is the Future Value?

Stock Valuation

Variable dividend
 Current stock value is the present value of all future cash flows - dividends:

$$P_0 = \frac{D_1}{(1+r)^1} + \frac{D_2}{(1+r)^2} + \dots + \frac{D_\infty}{(1+r)^\infty}$$

• Constant dividend If $D_1 = D_2 = ...$, then

$$P_0 = D_1 \times \sum_{t=1}^{\infty} \frac{1}{(1+r)^t} = D_1 \times \frac{1}{r} = \frac{D_1}{r}$$

Stock Valuation

If we have constant dividend growth g:

$$P_0 = \frac{D_0 \times (1+g)^1}{(1+r)^1} + \frac{D_0 \times (1+g)^2}{(1+r)^2} + \dots + \frac{D_0 \times (1+g)^\infty}{(1+r)^\infty}$$

$$P_0 = D_0 \cdot \sum_{i=1}^{\infty} \left(\frac{1+g}{1+r} \right)^i = D_0 \cdot \frac{1+g}{r-g}$$

but
$$D_0 (1+g) = D_1$$

$$P_0 = \frac{D_1}{r - g}$$

0

Efficient Market Hypothesis

Current stock price at t:

$$P_0 = \frac{D_1}{(1+r)^1} + \frac{D_2}{(1+r)^2} + \dots + \frac{D_{\infty}}{(1+r)^{\infty}}$$

- We estimated D_i based on I_t.
- We used all available information at t.
- When will the price of the stock change?
- When we have changes in I_{+} = **new information**, **news** on the firm.
- News are by definition random.
- Thus, stock price changes are random.

I take the market-efficiency hypothesis to be the simple statement that security prices fully reflect all available information.

— Eugene Fama —

Efficient Market Hypothesis

Types of Efficiency

MBA

Weak form efficiency

This type of EMH claims that **all past prices of a stock** are reflected in today's stock price. Therefore, technical analysis cannot be used to predict and beat the market.

Semi-strong form efficiency

This form of EMH implies **all public information** is calculated into a stock's current share price. Neither fundamental nor technical analysis can be used to achieve superior gains.

Strong form efficiency

This is the strongest version, which states **all information** in a market, whether **public or private**, is accounted for in a stock price. Not even insider information could give an investor an advantage.

Markets are efficient because:

- 1. 15,000 or so trained analysts; MBAs, CFAs, Technical PhDs.
- 2. Work for firms like Merrill, Morgan, Prudential, which have the funds to research.
- 3. Have similar access to data.
- 4. Thus, news are reflected in P₀ almost instantaneously.

Efficient Market Hypothesis

Reaction to news.

Efficient Market Hypothesis

Reaction to news.

Discount Bond

Features of bonds

MBA

Never change:

- Issuer
- Face value
- Maturity date

Fluctuate:

- Price
- Yield to maturity

Bond Valuation

Discount or Zero-Coupon Bonds

Discount Bond value:

$$Price = PV = \frac{FV}{(1+r)^n}$$

- PV: present value
- FV: face value, future value
- r: rate to maturity, yield, interest rate
- n: periods to maturity

In Excel =RATE(10,90,-882.22,1000)

THE UNITED STATES OF AMERICA

WILL PAY TO BEARER ON AT THE DEPARTMENT OF THE TREASURY, WASHINGTON, OR AT A DESIGNATED AGENCY, INTEREST THEN DUE ON \$200.00

\$5,000 Treasury Note, Series B-1986

17710

Win & f 19

A A

JUHIE UNIQUED STAVUES OF AMERICA

WILL PAY TO BEARER ON AT THE DEPARTMENT OF THE TREASURY, WASHINGTON, OR AT A DESIGNATED AGENCY.

\$5,000 Treasury Note, Series B-1986

17710

William Effer 20

AUG. 15, 1985

THE UNIVER STATUS OF AMERICA

WILL PAY TO BEARER ON AT THE DEPARTMENT OF THE TREASURY, WASHINGTON, OR AT A DESIGNATED AGENCY, INTEREST THEN DUE ON \$200.00

\$5,000 Treasury Note, Series B-1986

17710

Wille Effect 17

THE UNITED STATES OF AMERICA

WILL PAY TO BEARER ON
AT THE DEPARTMENT OF THE
TREASURY, WASHINGTON, OR
AT A DESIGNATED AGENCY,
INTEREST THEN DUE ON

\$200.0

\$5,000 Treasury Note, Series B-1986

1//10

Wille E fin 18

Bond Valuation

Coupon bond:

$$P = \frac{C}{(1+YTM)} + \frac{C}{(1+YTM)^2} + \dots + \frac{C}{(1+YTM)^{\nu}} + \frac{F}{(1+YTM)^{\nu}}$$

Alternatively:

$$P = C \times \left[\frac{1 - \frac{1}{(1 + YTM)^{\nu}}}{YTM} \right] + \frac{F}{(1 + YTM)^{\nu}}$$

Bond Valuation

For the Coupon Bond:

- If Price = FV → YTM = coupon rate
- If **Price** < **FV** → YTM > coupon rate
- If Price > FV → YTM < coupon rate
- Why? The price adjusts so that the YTM adapts to interest rates.
- Coupon return + capital gains → YTM = interest rates

Bond:

- Price < FV → at discount
- Price > FV → at premium
- Price = FV → at par

Consol - Perpetuity

Bond Valuation

Perpetual bond - Consol

$$P = rac{c}{r}$$

- P = price of bond
- c = coupon payment
- r = interest rate

Bond Features

MBA

- Bond Strips
- Optionality: Callable Putable bonds
 - o European → 1
 - \circ Bermudan \rightarrow > 1
 - American → all
- Convertible → issuer shares
- Exchangeable → other assets
- Credit Default Swaps (CDS) naked CDS

Currency based:

- Yankee Bonds: in USD in US by foreigners
- Kangaroo Bonds: in AUD in Australia by foreigners
- Samurai Bonds: in Yen in Japan by foreigners
- Eurobond: in a currency other than the home currency of the country or market in which it is issued
- Dollar Bonds: a USD bond outside of the United States

Bond Risk

1. Credit Default Risk

	Rati	ings
--	------	------

S & P	<i>PD</i> [%]
AAA	0.02
AA	0.03
A	0.07
BBB	0.18
BB	0.7
В	2.0
CCC	14.0
CC	17.0
С	20.0
D	> 20.0

Moody's Investors & Poor's Agencies.

			IV	IBA
S&P	Moody's	Fitch	Meaning an	d Color

No	S&P	Moody's	Fitch	Meaning and Color	
1	AAA	Aaa	AAA	Prime	
2	AA+	Aa1	AA+		
3	AA	Aa2	AA	High Grade	
4	AA-	Aa3	AA		
5	A+	A1	A+		
6	Α	A2	Α	Upper Medium Grade	
7	A-	А3	A-		
8	BBB+	Baa1	BBB+		
9	BBB	Baa2	BBB	Lower Medium Grade	
10	BBB-	Baa3	BBB-		
11	BB+	Ba1	BB+	Non Investment Crade	
12	ВВ	Ba2	BB	Non Investment Grade	
13	BB-	Ba3	BB-	Speculative	
14	B+	B1	B+		
15	В	B2	В	Highly Speculative	
16	B-	В3	B-		
17	CCC+	Caa1	CCC+	Substantial Risks	
18	ccc	Caa2	CCC	Extremely Speculative	

Bond Risk

2. Inflation Risk – inflation linked bonds

- 3. Liquidity risk
 - \square Ability to convert to cash sell with minimal loss.
- 4. Price Interest Rate Risk
 - ☐ Change in **price** due to changes in **interest rates**
 - ☐ There is **no price risk** if **holding period = maturity period**.
 - No price risk P and FV are known.
 - ☐ Long-term bonds have more price risk than short-term bonds.

Price needs to adjust more to produce the same return for more years

Bond Properties

Bond Risk

- 3. Liquidity risk
 - \square Ability to convert to cash sell with minimal loss.
- 4. Price Interest Rate Risk
 - ☐ Change in **price** due to changes in **interest rates**
 - ☐ There is **no price risk** if **holding period = maturity period**.
 - No price risk P and FV are known.
 - ☐ Long-term bonds have more price risk than short-term bonds.
 - Price needs to adjust more to produce the same return for more years
 - ☐ Low coupon rate bonds have more price risk than high coupon rate bonds.
 - Their YTM relies more on capital gains than coupon yield.

Bond Properties

Difference in Face Value

Difference in Coupon Rate

- \Box FV1 = FV2 = 1000
- \Box C1 = C2 = 10%
- \square M1 = 1 < M2 = 10

- ☐ FV1 = 1000 < FV2 = 2000
- \Box C1 = C2 = 10%
- \square M1 = M2

- ☐ FV1 = FV2 = 1000
- \Box C1 = 10% < C2 = 20%
- \square M1 = M2

Bond Risk

5. Reinvestment Rate Risk

- Uncertainty concerning rates at which cash flows can be reinvested
- Short-term bonds have more reinvestment rate risk than longterm bonds
- High coupon rate bonds have more reinvestment rate risk than low coupon rate bonds

Dirty Price

Clean Price

Accrued Interest

- Pc = Clean price: quoted price
- Pd = Dirty price: price actually paid
 - = Clean price + accrued interest

$$P_d = FV \cdot \frac{C}{P} \cdot \frac{D}{T}$$

- o FV: Face value
- C: Coupon rate
- P: Number of coupon payments made in a year
- D: Number of days since the last coupon payment
- T: Number of days between coupon payments

Actual bond price

Clean price	Dirty price
 Clean price = Quoted percentage of face value 	• Dirty price = Clean price + interest accrued
 Fluctuates with interest rates and bond market conditions 	Changes each day that interest accrues
Usually the quoted price	Represents true market value
Used to compare different bonds	Used to determine total cost of a bond

Excel functions: https://thismatter.com/money/bonds/bond-pricing.htm

Price of Bond over Time

Price of Bond Selling at Discount vs. Premium over Time

Remaining Years to Maturity

- Clean price: quoted price
- Dirty price: price actually paid = quoted price plus accrued interest
- Example: Consider a T-bond with a 4% semiannual yield and a clean price of \$1,282.50:
 - Number of days since last coupon = 61
 - Number of days in the coupon period = 184
 - Accrued interest = (61/184)(.04*1000) = \$13.26
 - Dirty price = \$1,282.50 + \$13.26 = \$1,295.76
- So, you would actually pay \$ 1,295.76 for the bond

Conversions

Annualized returns

$$r_{Annual} = (1 + r_{Period})^{No.of\ Periods} - 1$$

Example 1: Quarterly Returns

- Let's say we have 5% quarterly returns. Since there are four quarters in a year, the annual returns will be:
- Annual returns = $(1+0.05)^4 1 = 21.55\%$

Example 2: Monthly Returns

- Let's say we have 2% monthly returns. Since there are 12 months in a year, the annual returns will be:
- Annual returns = $(1+0.02)^12 1 = 26.8\%$

Risk

MBA

Standard Deviation of an Asset

$$s = \sqrt{\frac{\sum (X - \overline{X})^2}{n - 1}}$$

Sample Standard =
$$\sqrt{\frac{\sum (X_i - X_m)^2}{(n-1)}}$$

Return

Return of a Portfolio – i assets

$$\mathbf{R}_{\mathbf{p}} = \sum_{i=1}^{n} \mathbf{w}_{i} \mathbf{r}_{i}$$

Standard Deviation of a Portfolio – 2 assets

$$\sigma_{p} = \sqrt{w_{1}^{2} \sigma_{1}^{2} + w_{2}^{2} \sigma_{2}^{2} + 2w_{1}w_{2}\rho_{1,2}\sigma_{1}\sigma_{2}}$$

$$\sigma_{p} = \sqrt{w_{1}^{2} \sigma_{1}^{2} + w_{2}^{2} \sigma_{2}^{2} + 2w_{1}w_{2}Cov_{1,2}}$$

$$Cor(R_i, R_j) = \frac{Cov(R_i, R_j)}{\sigma_i \sigma_j}$$