

Αναζήτηση βιβλιογραφίας - συγγραφή επιστημονικού κειμένου

Βουλγαρίδου Γεωργία-Περσεφόνη, MSc, PhD
Επίκουρη Καθηγήτρια Φυσιολογίας, Τμήμα Ιατρικής, ΔΠΘ

Δημοκρίτειο Πανεπιστήμιο Θράκης – Σχολή Επιστημών Υγείας

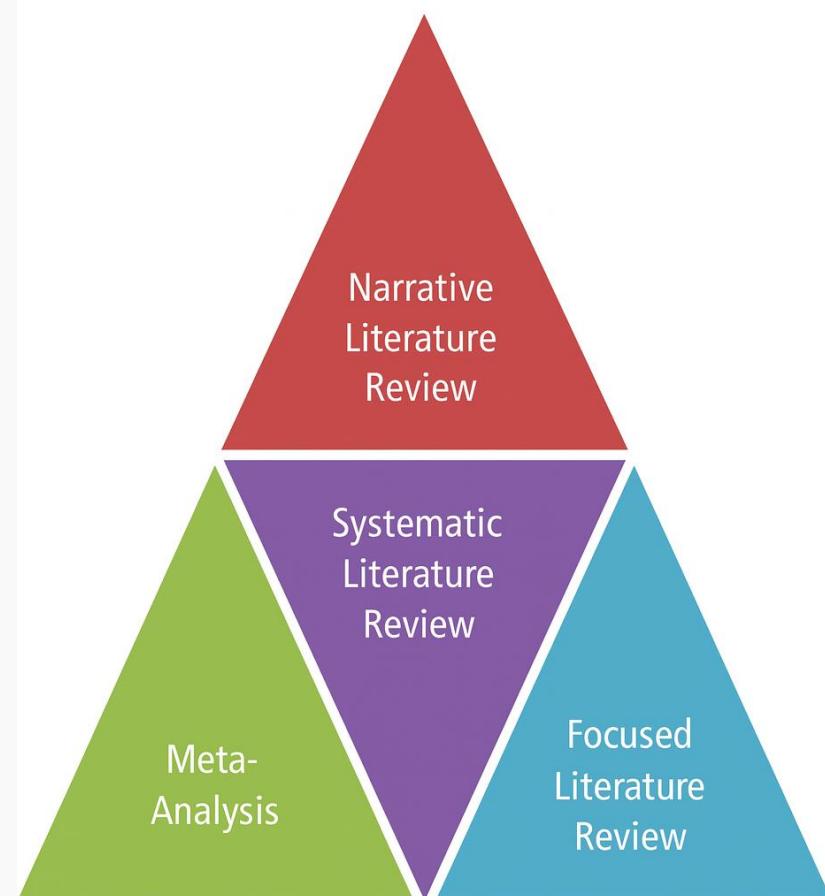
**Τμήμα Μοριακής Βιολογίας και Γενετικής
«Διδακτική των Βιοεπιστημών»**

Αναζήτηση βιβλιογραφίας

Ενότητα

1

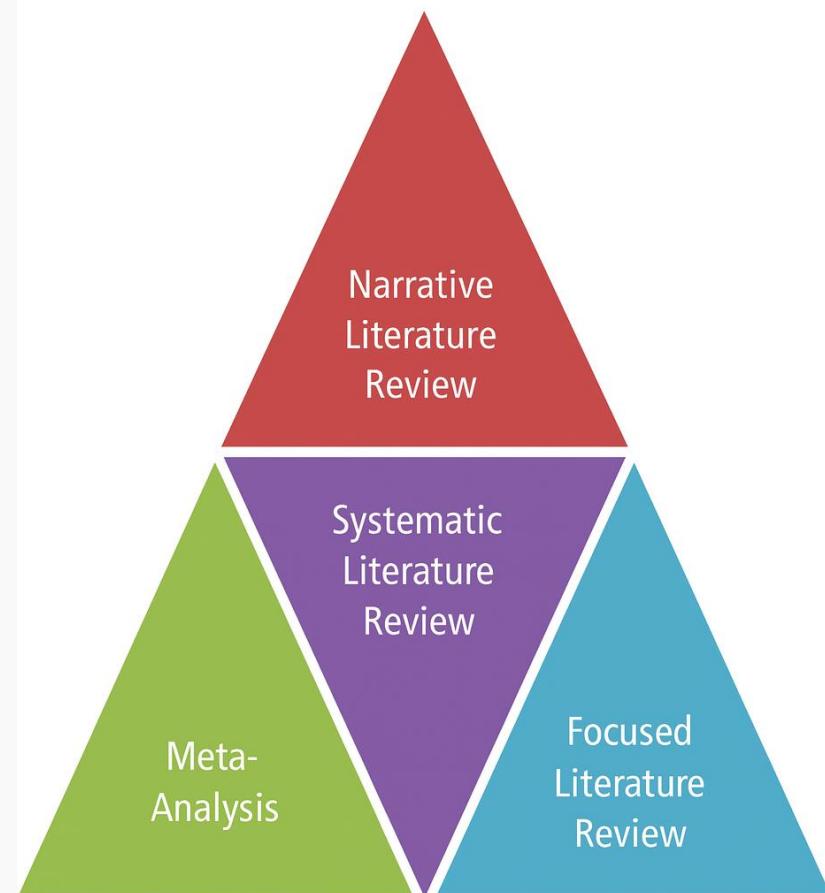
Γιατί είναι σημαντική;


- Κατανοούμε:

1. Ποια είναι η υπάρχουσα γνώση
2. Ποια είναι τα νεότερα και πιο αξιόπιστα δεδομένα για ένα αντικείμενο
3. Ποια είναι τα κενά → Τι δεν γνωρίζουμε

Γενική αναζήτηση vs. Συστηματική αναζήτηση βιβλιογραφίας

Γενική αναζήτηση: Ευρεία, διερευνητική, σημαντική για να αποκτήσουμε μια γενική και συνολική κατανόηση ενός θέματος

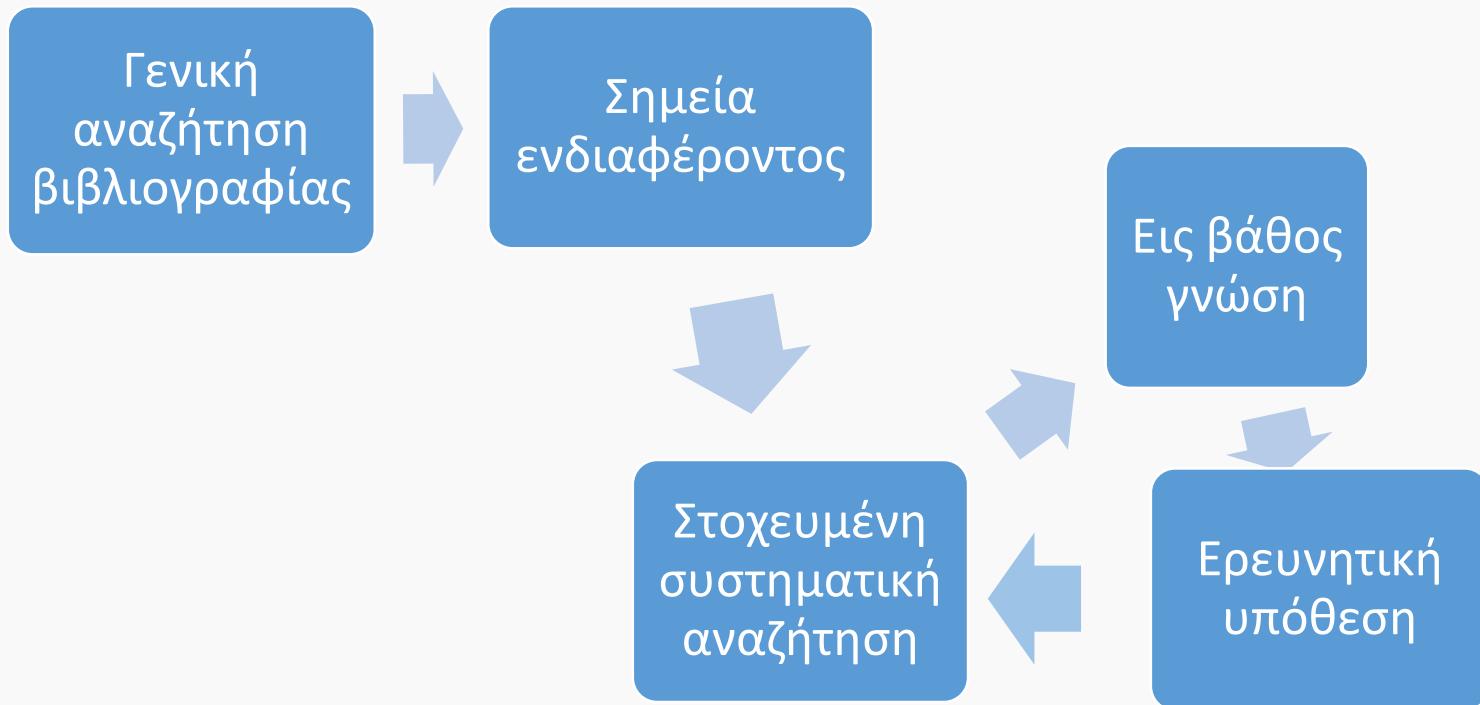


1

Γενική αναζήτηση vs. Συστηματική αναζήτηση βιβλιογραφίας

Συστηματικής αναζήτησης

βιβλιογραφίας: Εστιασμένη,
αναπαραγώγιμη διαδικασία για
την εύρεση όλων των σχετικών
μελετών που απαντούν σε ένα
ερώτημα με καθορισμένα
κριτήρια και βάσεις δεδομένων
(ερευνητική διαδικασία)


1

Γιατί είναι σημαντική;

- Μια καλή αναζήτηση στην βιβλιογραφία:
 - ✓ Αποτρέπει την δημιουργία μη-πρωτότυπης δουλειάς/έρευνας
 - ✓ Είναι καίρια για την διαμόρφωση μιας νέας και ξεκάθαρης υπόθεσης
 - ✓ Καθορίζει την κατάλληλη μεθοδολογία για να διερευνηθεί μια υπόθεση
 - ✓ Διασφαλίζει επιστημονική εγκυρότητα

1

Γιατί είναι σημαντική;

2 Τι θέλω να ψάξω;

- Έχοντας πλέον μια γενική εικόνα της βιβλιογραφίας:
 - ✓ Λέξεις κλειδιά
 - ✓ Φράσεις

Οι λέξεις κλειδιά και οι φράσεις που χρησιμοποιώ θα πρέπει να αναδιαμορφώνονται συνεχώς βάση των ευρημάτων μου ώστε να βελτιστοποιούνται

2 Τι θέλω να ψάξω;

- Πως θα βρω τις λέξεις κλειδιά:
 - ✓ Γράφω το θέμα μου
 - ✓ Σημειώνω τις βασικές ιδέες
 - ✓ Ψάχνω συνώνυμα ή έννοιες που μπορεί να σχετίζονται

Use AND when you want your results to include all terms and the terms may be far apart.

[Search tips](#)

Operators

AND

OR

AND NOT

PRE/

W/

Use OR when your results must include one or more of the terms (such as synonyms, alternate spellings, or abbreviations). Documents that contain any of the words will be found.

[Search tips](#)

Operators

AND

OR

AND NOT

PRE/

W/

Use AND NOT to exclude specific terms.

[Search tips](#)

AND

OR

AND NOT

PRE/

W/

PRE/n "precedes by". Where the first term in the query must precede the second by a specified number of terms (n). "n" can be a number from 0 to 255.

[Search tips](#)

AND

OR

AND NOT

PRE/

W/

W/n "within". Where the terms in the query must be within a specified number of terms (n). "n" can be a number from 0 to 255.

[Search tips](#)

AND

OR

AND NOT

PRE/

W/

[Field codes](#)

Χρήση εισαγωγικών για αναζήτηση φράσεων "" (αναζήτηση της ακριβούς φράσης)

3

Μηχανές αναζήτησης

Μπορεί να μας βρει πηγές αλλά θα πρέπει να προσέξουμε για την ποιότητα τους – γενικό εργαλείο

Ειδικό εργαλείο για την εύρεση επιστημονικών δημοσιεύσεων

3

Μηχανές αναζήτησης

Εξειδικευμένες για επιστημονικές δημοσιεύσεις

Επιστήμες υγείας

4

Βελτίωση αποτελεσμάτων

Πολύ λίγα αποτελέσματα → Πιο ευρείς όρους

Πολλά αποτελέσματα → Πιο αυστηρά κριτήρια

- Φίλτρα:
- ✓ Εύρος ημερομηνιών (θέλουμε να δούμε όλες τις δημοσιεύσεις ή τις πιο πρόσφατες;)
- ✓ Τύπος δημοσίευσης (review, research article, meta-analysis)

Σημειώνουμε τον αριθμό των ευρημάτων σε κάθε αναζήτηση για να ελέγχουμε την ευαισθησία προς την ειδικότητα

5 Αξιοπιστία βιβλιογραφικών πηγών

- Ποιες πηγές είναι «κατάλληλες» για ένα επιστημονικό κείμενο;
- ✓ Peer-reviewed articles (golden-standard)
 - Το περιοδικό να έχει impact factor
 - Τα άρθρα να εμφανίζονται στις επίσημες επιστημονικές βάσεις αναζήτησης πχ pubmed
 - Ημερομηνία δημοσίευσης

5 Αξιοπιστία βιβλιογραφικών πηγών

- Ποιες πηγές είναι «κατάλληλες» για ένα επιστημονικό κείμενο;
- ✓ **Επιστημονικά συγγράμματα**
 - Ο συγγραφές να έχει τα κατάλληλα προσόντα (επιστημονική ιδιότητα, εξειδίκευση)
 - Έκδοση (είναι από επιστημονική έκδοση;)
 - Παρέχει αξιόπιστες βιβλιογραφικές αναφορές;
 - Η γνώση να είναι updated (πρόσφατη έκδοση)

5 Αξιοπιστία βιβλιογραφικών πηγών

- Ποιες πηγές είναι «κατάλληλες» για ένα επιστημονικό κείμενο;
- ✓ Διδακτορικές διατριβές
- ✓ Πτυχιακές εργασίες?

Προσοχή στις πληροφορίες που θα αντλήσουμε...

5 Αξιοπιστία βιβλιογραφικών πηγών

Προσοχή στο πως θα ενσωματώσουμε τις πηγές στην

βιβλιογραφία

Βάζουμε την πρώτη αναφορά πάντα;

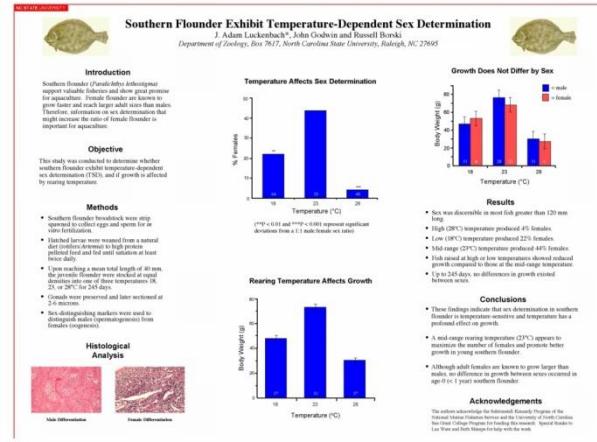
Figure 1. The process of malignant transformation. Cancer is a multi-staged procedure in which cells gradually acquire malignant characteristics. Initiation includes certain genetic/epigenetic changes resulting in the deregulated control of processes, such as cell-cycle progression, apoptosis, and proliferation. The clonal expansion of the initiated cell, which exhibits defective apoptosis, abnormal cell-cycle arrest, and excessive proliferation, leads to the formation of a preneoplastic lesion of closely attached cells. During progression, the genetically unstable preneoplastic cells progressively accumulate novel, malignant-related properties, such as the ability to escape from immune surveillance, migrate and invade new tissues, and form new tumors.

Initiation is an irreversible process that involves the deregulation of one or more genes associated with crucial regulatory pathways, either by chromosomal genetic or epigenetic alterations. These genes are considered to be either oncogenes, the activation of which results in increased cellular proliferation, or tumor-suppressing genes, the inhibition of which induces the inactivation of cell-cycle arrest and/or apoptosis [7,8]. A malfunction of these genes leads to the transformation of a healthy cell into a preneoplastic cell [9,10]. An important aspect of cancer research is identifying preneoplastic properties and the molecular context that supports cancer. *Crit. Rev. Oncol. Hematol.* **2018**, *123*, 95–113. [Google Scholar] [CrossRef]

Promotion refers to the selective clonal growth of the preneoplastic, initiated cell and its progeny as a result of their ability to evade apoptosis and/or their enhanced cell proliferation. At the promotion phase, the expanded clone of the preneoplastic cells forms a benign tumor in which the cells remain in close contact with each other; thus, they cannot detach from one another [9,16].

6

Χρήση βιβλιογραφικών πηγών


- Προσοχή στις οδηγίες για την μορφή που θα πρέπει να έχει η βιβλιογραφία (από το περιοδικό ή την επιτροπή του συνεδρίου ή την επιτροπή ενός μεταπτυχιακού)
- Πολύ βοηθητική η χρήση προγραμμάτων/εργαλείων για την συλλογή και ενσωμάτωση της βιβλιογραφίας σε ένα κείμενο (δυνατότητα αυτόματης μορφοποίησης) (π.χ. Mendeley, EndNote κα)

Σχεδιασμός και παρουσίαση poster

3
Ενότητα

1 Σχεδιασμός και παρουσίαση poster

Γιατί κάνουμε poster;

Vs.

- Δεν είμαστε πάντα καλοί στις ομιλίες
- Αναφορά σε περισσότερες λεπτομέρειες
- Δυνατότητα άμεσης ανταλλαγή πληροφοριών
- Έκθεση της δουλείας μας για περισσότερη ώρα

- Ο πιο κοινός τρόπος παρουσίασης της έρευνας μας σε επιστημονικά συνέδρια
- Θα πρέπει να προσελκύει το κοινό
- Να έχει έναν εμφανή και χαρακτηριστικό τίτλο
- Να έχει αρκετές και καλά σχεδιασμένες φιγούρες

- Να έχει οργανωμένη και ξεκάθαρη διαμόρφωση
- Να έχει ακριβείς τίτλους στα επιμέρους κομμάτια
- Να κατευθύνει την προσοχή του αναγνώστη στα σημαντικά σημεία

Τα poster πρέπει να έχουν περισσότερη πληροφορία και λεπτομέρειες από μια επιστημονική παρουσίαση και λιγότερη από μια επιστημονική δημοσίευση

Λειτουργικά οργανωμένο poster

Necrotising fasciitis due to *Mycobacterium kansasii* in a patient with rheumatoid arthritis on infliximab

Roger P. Clark, DO¹; Eric T. Tolo, MD²; Gerald S. Harris, MD²; Sarah K. Zimmerman, MEd²; Daniel P. McQuillen, MD²

¹Tufts University School of Medicine, Boston, MA; ²Lahey Clinic, Burlington, MA

Abstract

A 49-year-old man with rheumatoid arthritis (RA) and gout treated for 4 years with infliximab, methotrexate and prednisone (5 mg daily) presented with a painful, swollen left arm. He had a subacute, non-healing right index finger (IP) joint for 3 weeks prior. The other extensor and flexor digits healed despite antibiotics and intralosomal steroids, however, were still non-healing. Three weeks prior to presentation non-purulent edema with two large distinct, deeply erythematous plaques developed on the left forearm and right elbow. Right elbow biopsy three weeks earlier showed numerous elongated, beaded mycobacteria. Left arm tenderness existed. On presentation there was fever to 39.5°, subdeltoid left extensor forearm edema with a large, non-healing, necrotic ulcer. No cellulitis, edema or purulence were present. No history of travel, swimming or aquatics exposure. WBC was 6000/mm³ and ESR 13. Left forearm aspirate yielded 57,000 WBC, with 90 PMNs and 4+ AFB on smear. Disk-like neutrophils were present. Right index finger (IP) joint was swollen, tender, warm and of left extensor and flexor forearm tendons and nonhealable muscle. All intraoperative specimens grew *Mycobacterium kansasii* with minimum MIC (0.12 µg/ml) bacterial and fungal cultures were negative. Right index finger (IP) joint was debrided and closed primarily. The extensor forearm and right elbow also grew *M. kansasii*. Treatment with itraconazole, ethambutol, and isoniazid and VAC dressing was done by skin grafts resolved the infection. Methotrexate 7.5 mg was discontinued and infliximab 5 mg was added to the patient's regimen 2 weeks after the presentation. Approximately 40 cases of mycetoskeletal infection with *M. kansasii*, mostly among arthritis in immunocompetent hosts or rheumatologic disease, have been described. This is the first report of necrotizing fasciitis due to *M. kansasii* and is notable for its association presentation and nonresponse with infliximab therapy.

Introduction

Mycobacterium kansasii is classified as a slow growing mycobacterium that most often causes pulmonary disease that clinically resembles tuberculosis. It is generally considered nonpathogenic, although it can cause disease in immunocompetent hosts. *M. kansasii* is absent in the environment. In the United States *M. kansasii* disease occurs most commonly in the Midwestern and Gulf Coast states yielding rare case reports of extrapulmonary disease. The most common extrapulmonary disease is septic arthritis, generally affecting the upper extremities. *M. kansasii* musculoskeletal disease appears to be associated with intralosomal steroids as well as conditions and medications that may lead to an immunocompromised state.

Clinical Course

This case involves a 49-year-old man with rheumatoid arthritis, systematically treated for 4 years with infliximab (injections every 3 weeks), methotrexate (7.5 mg weekly), and prednisone (5 mg daily) who developed a relatively non-healing right index finger (IP) joint. This preceded one year earlier by a traumatic staphylococcal right elbow ulcer approximately that healed but later became chronic despite antibiotics and intralosomal steroids. Biopsy was negative for sarcoid. Three weeks prior to presentation non-purulent edema with two large distinct, deeply erythematous plaques developed on the left forearm and right elbow/satellite papule. Right elbow biopsy taken three weeks earlier showed numerous elongated, beaded mycobacteria. Left arm tenderness existed.

On presentation there was a fever to 39.5°, subdeltoid left extensor forearm fluctuance, and a swollen, tender right index finger (IP) joint. No cellulitis or edema was present. No history of travel, swimming or aquatics exposure. WBC was 6000/mm³ and ESR 13. Left forearm aspirate yielded 57,000 WBC with 80 PMNs and 4+ AFB on smear. Due to the severity of the appearance and the progressive nature of the process, he was taken to the operating room. Extensive purulence and necrotizing fasciitis were found at surgery. The right index finger (IP) joint was debrided and closed primarily. The extensor forearm and right elbow also grew *M. kansasii*. Treatment with itraconazole, ethambutol, and isoniazid and VAC dressing was done by skin grafts resolved the infection. Reasonable control of his arthritis was achieved with low dose prednisone and methotrexate resumed 6 months after surgery. Infliximab has not been restarted. This is the first reported case of necrotizing fasciitis due to *M. kansasii* and is notable for its subacute presentation and association with infliximab therapy.

The image shows a series of five photographs illustrating the surgical process. The first two are labeled 'Pre-operative' and show the left forearm and right elbow with large, non-healing, necrotic ulcers. The next three are labeled 'Debridement' and 'Post-debridement' and show the surgical site with extensive tissue removal and wound preparation. The final two are labeled 'Index Finger Pre' and 'Post' and show the right index finger before and after debridement, with significant tissue loss and granulation tissue visible.

Microbiology Methods and Results

The image shows two panels of a Kinyoun stain. The 'Tissue' panel shows blue-stained elongated, beaded mycobacteria. The 'Culture' panel shows a pinkish, granular growth with arrows pointing to specific colonies. Below these are two photographs labeled 'Photochromogen: light exposure → yellow pigment' showing a petri dish with a yellow pigment after light exposure.

The image shows four photographs of petri dishes with a yellow pigment. The top row is labeled 'No Light' and the bottom row is labeled 'Light'. The 'Light' row shows a more intense yellow color compared to the 'No Light' row. Below these are two photographs of yellow, granular colonies of *M. kansasii* under a microscope.

Microbiology Timeline

Day 1: Tissue received. 4+ AFB were seen on direct Kinyoun Stain (Becton, Dickinson and Co, Sparks, MD). Plated directly to liquid and solid mycobacteriological media at room temperature and 37°C.

Day 4: Liquid Mycobacteria Growth Indicator Tube (MGIT) (Becton, Dickinson) at 37°C was positive for acid-fast bacilli. MGIT subbed to selective mycobacteriological media, Middlebrook 7H11 agar (Becton Dickinson).

Day 11: Original solid media positive for a buff colony, Kinyoun stain positive. Culture yielded an atypical mycobacterium whose microscopic characteristics at 1000x were large-sized acid-fast rods with a cross-banding appearance (arrows). Identification as *M. kansasii* made by microscopic and macroscopic morphologic, growth rate, pigment production and DNA sequencing. The isolate was rifampin sensitive (MIC 0.12 µg/ml; ARUP, Salt Lake City, UT).

Summary

Mycobacterium kansasii is an acid fast organism that generally causes pulmonary disease and is antigenically similar to *M. tuberculosis*. While an uncommon cause of extrapulmonary infections in humans, the most common manifestations of *M. kansasii* are arthritis and tenosynovitis. There are several risk factors associated with *M. kansasii* infection including immunosuppressive medications, rheumatologic conditions such as systemic lupus erythematosus (SLE) or rheumatoid arthritis (RA), pneumonia, AIDS, diabetes mellitus and intrarticular corticosteroids (1,2).

M. kansasii is environmentally contracted, with the most likely source being tap water, where it has been found to survive for up to a year (3). This organism is one of the so-called slow growing mycobacteria, and is characterized by being a photochromogen - that is it acquires a yellow pigmentation upon exposure to light. In fact, this bacterium was originally known as the "yellow bacillus" due to this phenomenon.

M. kansasii musculoskeletal infection generally follows a very indolent course, with a mean time to diagnosis 14 - 17 months. Laboratory studies and imaging studies are often non-specific and PPD is often negative (1,2). While rare, septic arthritis and tenosynovitis are the most common extrapulmonary infections caused by this organism. A literature search did not reveal any cases of necrotizing fasciitis caused by *M. kansasii*. Other atypical mycobacteria have been reported to cause necrotizing soft tissue infections including *M. ulcerans* (1,3) and *M. marinum* (4). *M. marinum* (Buruli ulcer) is the most commonly reported, with rapid growth of cases in Africa, Australia, India, South America and other tropical regions. *Buruli ulcer* is characterized by large, well circumscribed necrotic areas of the deep dermis and panniculus.

This patient had multiple predisposing risk factors for mycobacterial infection including RA, gout, intralosomal steroid injections, methotrexate, low dose prednisone and infliximab, a systemic tumor necrosis factor inhibitor. After surgical debridement, VAC dressing, closure secondary to skin grafts and antibiotic treatment with isoniazid, ethambutol and rifampin his wounds are well healed with no signs of recurrent infection. Reasonable control of his arthritis was achieved with low dose prednisone and methotrexate resumed 6 months after surgery. Infliximab has not been restarted. This is the first reported case of necrotizing fasciitis due to *M. kansasii* and is notable for its subacute presentation and association with infliximab therapy.

Medial forearm after treatment

A photograph of a patient's medial forearm showing significant improvement after treatment. The previously large, necrotic, and non-healing ulcer has been removed, and the underlying tissue appears more granulating and less edematous.

Literature Cited

- Bernard L, Vleutel V, Lortholary O et al. Mycobacterium avium septic arthritis: French retrospective study of 5 years and review. *Clin Infect Dis* 1999;29:105-60.
- Nakamura T, Yamamura Y, Tsuruta T et al. *Mycobacterium kansasii* arthritis of the foot in a patient with systemic lupus erythematosus. *Infect Dis* 2002;43:539-42.
- Jayaram, G. *Water: the natural habitat of Mycobacterium kansasii*. *Arch Dis Child* 1976;60:277-81.

Παράδειγμα 1

Poster με οργάνωση που μπορεί να μπερδέψει

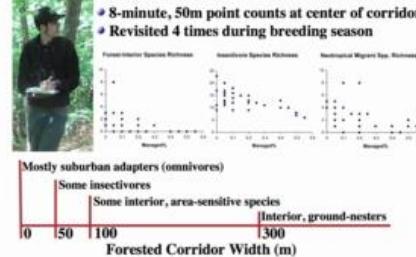
Can Suburban Greenways Provide High Quality Bird Habitat?

George R. Hess :: NC State University :: Department of Forestry & Environmental Resources :: Raleigh NC 27695-8002 USA :: george_hess@ncsu.edu
 Christopher E. Moorman, Jamie H. Mason, Kristen E. Sinclair, Salina K. Kohut :: NC State University :: Department of Forestry & Environmental Resources
www4.ncsu.edu/~grhess/GreenwaysForWildlife

Birds of Conservation Concern in Decline

- Many bird species of conservation concern – including neotropical migrants, insectivores, and forest-interior specialists – decline with increasing human development
- Greenways might mitigate this effect
- Habitat patch size, vegetation composition & structure, and landscape context are key factors
- Standards are lacking for designing and managing suburban greenways as high quality habitat

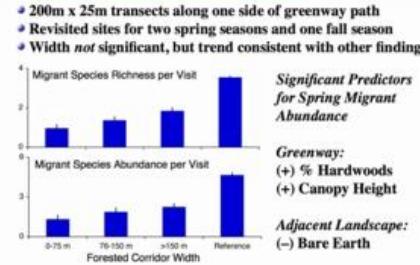
Objective: Greenways for the Birds


- Determine how development-sensitive forest birds are affected by
 - forested corridor width
 - adjacent development intensity
 - vegetation composition & structure
- Develop recommendations for greenway designers and planners

Study Design & Independent Variables

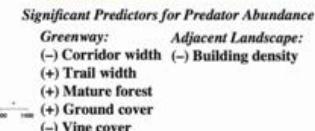
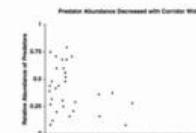
- Sampled 34 - 300m corridors in Raleigh & Cary, NC, USA
- Sampled range of
 - Forested corridor widths (20 – 1,200m)
 - Adjacent density (low density residential – office/commercial)
- Additional measures
 - Vegetation composition & structure in corridor
 - Land cover in 300m x 300m adjacent to corridor (context)
- Measured richness & abundance of
 - Breeding birds
 - Neotropical migrant birds during stopovers
 - Mammal nest predators

Breeding Birds of Concern More Common in Wider Greenways with Less Managed Area Surrounded by More Forest Canopy



Significant Predictors for Breeder Abundance

Greenway:
 (-) Managed Area
 (+) Shrub Cover
 (+) Bare Earth



Adjacent Landscape:
 (-) Building density
 (+) Trail width
 (+) Mature forest
 (+) Ground cover
 (-) Vine cover

Spring Neotropical Migrant Stopovers More Common in Wider Greenways with More, Taller Hardwood Trees

Nest Predators Less Common in Wider Greenways with Narrower Paths

- Five baited scent stations along each greenway segment
- Observed for 5 nights each

Significant Predictors for Predator Abundance

Greenway:
 (-) Corridor width
 (+) Trail width
 (+) Mature forest
 (+) Ground cover
 (-) Vine cover

Adjacent Landscape:
 (-) Building density
 (+) Canopy Cover
 (-) Shrub Cover
 (-) Bare Earth

Greenways for Development-Sensitive Forest Birds Might Conflict with Intense Recreational Use

People & Managers Prefer ...

Forest Birds Prefer ...

- Good for walking, running, cycling, strollers, wheelchairs
- Easier to maintain, especially with higher intensity use

- Narrow path avoids splitting forested corridor
- Discourages heavy human use
- Fewer nest predators

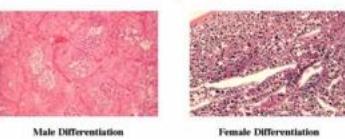
Potential Solution: Wide Corridor, Trail Near Edge

- Make corridors at least 50m wide; wider is better
- Don't split forested corridor
 - Keep trails as narrow as possible
 - Avoid wide grassy areas along trails within forested corridor
 - Locate trails near the edge of forested corridors

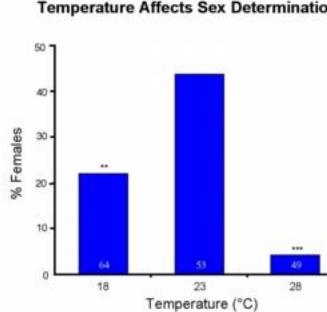
Poster με λίγη πληροφορία

NC STATE UNIVERSITY

Southern Flounder Exhibit Temperature-Dependent Sex Determination
J. Adam Luckenbach*, John Godwin and Russell Borski
Department of Zoology, Box 7617, North Carolina State University, Raleigh, NC 27695

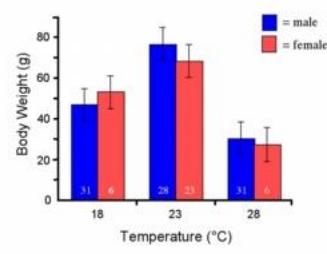

Introduction
Southern flounder (*Paralichthys lethostigma*) support valuable fisheries and show great promise for aquaculture. Female flounder are known to grow faster and reach larger adult sizes than males. Therefore, information on sex determination that might increase the ratio of female flounder is important for aquaculture.

Objective
This study was conducted to determine whether southern flounder exhibit temperature-dependent sex determination (TSD), and if growth is affected by rearing temperature.


Methods

- Southern flounder broodstock were strip spawned to collect eggs and sperm for *in vitro* fertilization.
- Hatched larvae were weaned from a natural diet (rotifers/*Artemia*) to high protein pelleted feed and fed until satiation at least twice daily.
- Upon reaching a mean total length of 40 mm, the juvenile flounder were stocked at equal densities into one of three temperatures 18, 23, or 28°C for 245 days.
- Gonads were preserved and later sectioned at 2-6 microns.
- Sex-distinguishing markers were used to distinguish males (spermatogenesis) from females (oogenesis).

Histological Analysis


Temperature Affects Sex Determination

Temperature (°C)	% Females
18	22 (64)
23	44 (53)
28	5 (49)

(**P < 0.01 and ***P < 0.001 represent significant deviations from a 1:1 male:female sex ratio)

Growth Does Not Differ by Sex

Temperature (°C)	male (g)	female (g)
18	45 (31)	55 (6)
23	70 (28)	65 (23)
28	28 (31)	25 (6)

Results

- Sex was discernible in most fish greater than 120 mm long.
- High (28°C) temperature produced 4% females.
- Low (18°C) temperature produced 22% females.
- Mid-range (23°C) temperature produced 44% females.
- Fish raised at high or low temperatures showed reduced growth compared to those at the mid-range temperature.
- Up to 245 days, no differences in growth existed between sexes.

Conclusions

- These findings indicate that sex determination in southern flounder is temperature-sensitive and temperature has a profound effect on growth.
- A mid-range rearing temperature (23°C) appears to maximize the number of females and promote better growth in young southern flounder.
- Although adult females are known to grow larger than males, no difference in growth between sexes occurred in age-0 (< 1 year) southern flounder.

Acknowledgements

The authors acknowledge the Saltonstall-Kennedy Program of the National Marine Fisheries Service and the University of North Carolina Sea Grant College Program for funding this research. Special thanks to Lea Ware and Beth Shimp for help with the work.

Poster με πολύ πληροφορία

The Effects of Cumulative Life Stress on Cardiovascular Stress Reactivity

Alissa Der Sarkissian, Ji Min Jun, Holly Pham, Anthony Portolesi, Alexandra Dupont, M.A.

Department of Psychology, UCLA

Background
<ul style="list-style-type: none"> The theory of psychophysiological toughness suggests that experiencing a moderate amount of stressors in the past will improve the person's ability to cope with stressors in the present (Dienstbier, 1989) The greater cumulative life stress an individual experienced, the greater dysregulation of cardiovascular reactivity to current acute stressors. (Evans, 2007) Chronic negative life stress has been found to be associated with greater diastolic blood pressure and increased heart rate reactivity (Low, Salomon, & Matthews, 2009)

Purpose
The purpose of this study is to examine how experiencing various amounts of cumulative life stress is associated with physiological stress responses to acute stress in young adulthood.

Hypothesis
We hypothesized that cardiovascular reactivity to a social stress task would reflect the amount of cumulative life stress experienced by an individual. Specifically, we hypothesized a U-shaped relationship, such that a moderate amount of stressful life events would be associated with responses of lower change in heart rate and blood pressure, while experiencing no stressors or many stressors would be associated with a greater increase in heart rate and blood pressure.

Methods
Male and female (m=27%, f=73%) undergraduate students (n=45) participated in the Noisy Neighbor task (Luecken, 2009), in which the participant attempted to resolve a social conflict with an uncompromising confederate. Before, during, and after this interaction, autonomic nervous system (ANS) data was collected via blood pressure cuff, ECG, and cardio-impedance. Participants also completed the Life Events Checklist, a measure that assesses cumulative life stress. Responses to the Life Events Checklist showed a mean response of 4.4 life events, a standard deviation of 3.6 and a range from 0 to 21.

Acknowledgement
We would like to thank our advisors, Alexandra Dupont, Julianne Bower, and Larissa Dooley, for all of their help and support.

Measures
Predictor Variables
• Life Events Checklist: A questionnaire measuring exposure to cumulative life stress. Participants indicate whether they actually experienced, witnessed, or learned about each event at any point throughout their lifetime. ○ E.g., Natural disaster, fire or explosion, serious injury
○ To form a total score, we added the total number of times each participant experienced or witnessed an event.
Outcomes
• Blood pressure (BP) = pressure exerted by circulating blood upon the walls of blood vessels
• Heart rate (HR) = the number of heartbeats per unit of time
As an individual feels stressed from a threatening situation, they will exhibit both a higher blood pressure and heart rate.

Results
• Paired t-tests revealed a significant difference between the baseline and stress task in heart rate ($M=19.70$, $SD=11.49$, $t = -13.32$, $p < .01$), systolic blood pressure ($M=25.19$, $SD=13.04$, $t = -15.01$, $p < .01$), and diastolic blood pressure ($M=16.03$, $SD=7.77$, $t = -15.89$, $p < 0.01$).
• With the help of our graduate student advisor, we ran mixed models and found that the continuous variable of cumulative life stress significantly predicted change in heart rate (but not blood pressure) from baseline to the stress task.
• For visual interpretation, we modeled the heart rate reactivity patterns of individuals with no life stress (LEC = 0), moderate life stress (LEC = 4.4, mean), and high life stress (LEC = 8, mean + 1SD).
• Individuals who experienced no cumulative life stress had the greatest increase in heart rate from baseline to the stress task. Cumulative life stress was not associated with heart rate recovery or blood pressure reactivity/recovery.

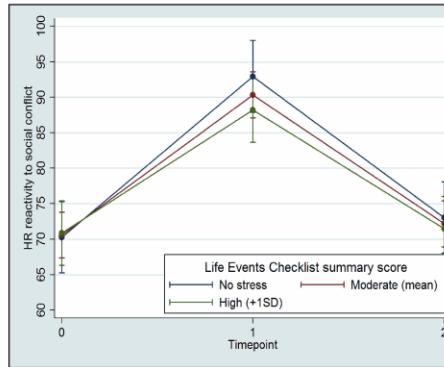
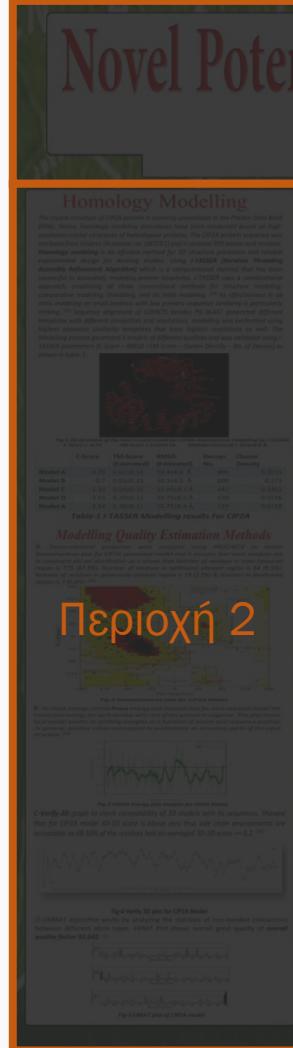


Figure 1: Patterns of heart rate reactivity during stress task based on level of cumulative life stress

Conclusions and Implications
• Through our study we found that cumulative life stress is indeed associated with hemodynamic responses to stress in adults. However, this response is represented by a negative linear correlation with cumulative life stress, such that increasing amounts of cumulative life stress resulted in a decrease in heart rate reactivity, rather than a quadratic relationship.
• A possibility as to why we did not find a U-shape relationship between cumulative life stress and current cardiovascular responses could be due to the categorization of our high cumulative stress group as starting at only 4 life events. Future research with inclusion of participants who have experienced higher levels of cumulative life stress would provide the statistical power necessary to properly examine the current hypothesis.
• This linear relationship may suggest that stressful experiences may dampen future stress reactivity.
• The association that we found between cumulative life stress and cardiovascular reactivity could help to illuminate how past stress exposure may modulate an individual's ability to handle current stressors. The variability in stress reactivity between individuals could potentially lead to differences in future physical health outcomes.



Περιοχή 2

Περιοχή 3

Περιοχή 4

+

Σωστή γενική οργάνωση με διακριτές περιοχές

Παρόδειγμα 5

Πολύ και δυσανάγνωστο
κείμενο

Μικρά διαγράμματα

Παραμορφωμένες εικόνες

Κακή επιλογή φόντου

Σχεδιασμός και παρουσίαση poster

Microsoft Powerpoint

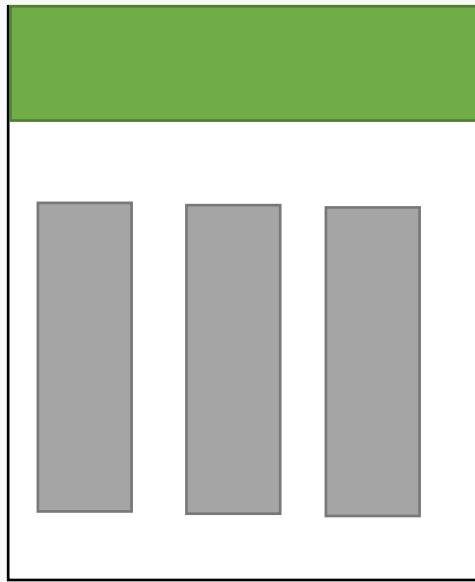
Ευκολία στη χρήση
Πολύ διαδεδομένο

Έλλειψη ορισμένων εντολών
Διαφορά στο χρώμα κατα την εκτύπωση
Το πρόγραμμα είναι σχεδιασμένο για
άλλο σκοπό (παρουσιάσεις σε projector)

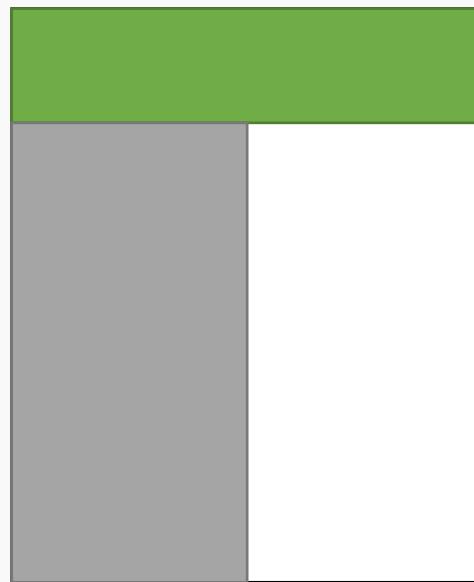
Adobe Illustrator

Πλήθος εντολών
Διανυσματικά γραφικά
(άπειρη λεπτομέρεια)
Δημιουργία προφίλ χρωμάτων
για εκτύπωση

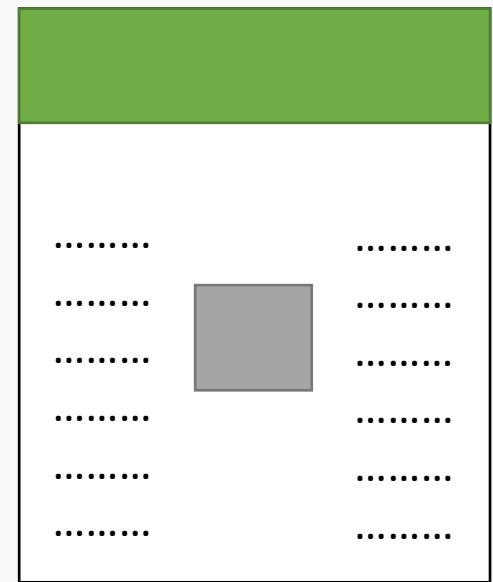
Μεγάλο κόστος απόκτησης
Σχετικά δύσκολη εκμάθηση



Inkscape

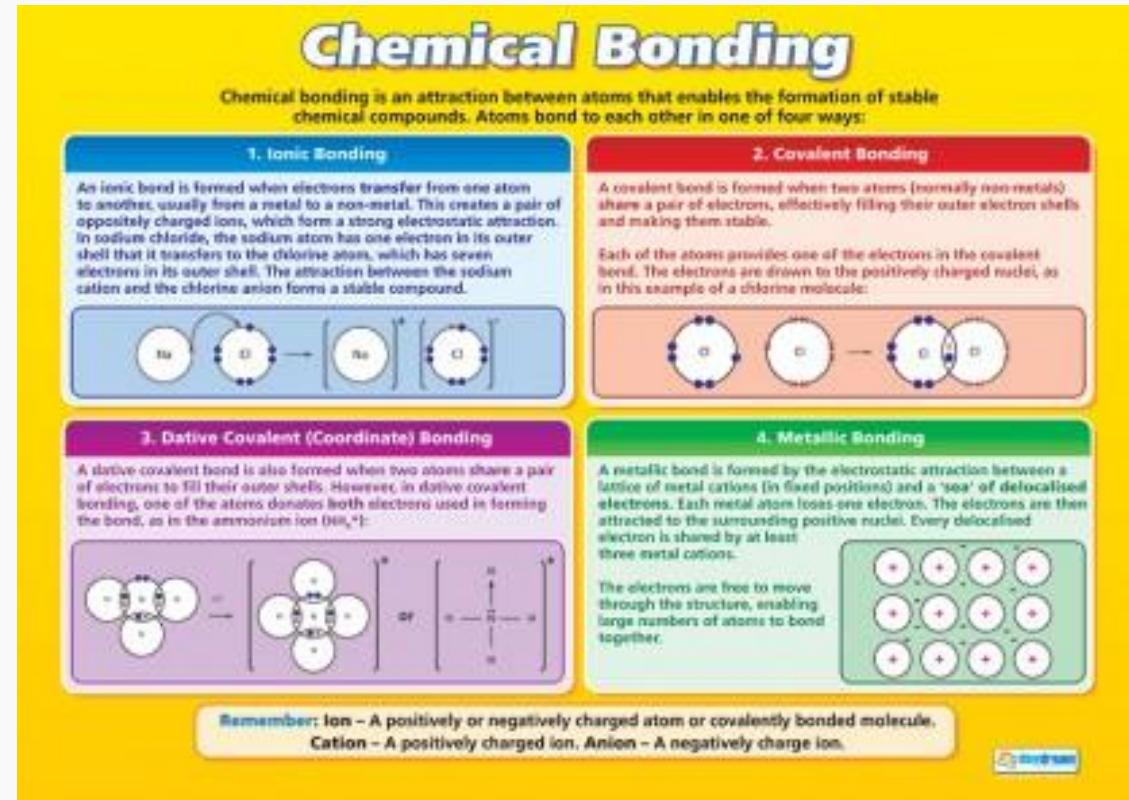

Freeware πρόγραμμα, παρόμοιες λειτουργείς με το Adobe Illustrator

- Εισαγωγή
- Μέθοδοι
- Αποτελέσματα
- Συμπεράσματα
- Ευχαριστίες
- Βιβλιογραφία


Γενικό πλάνο

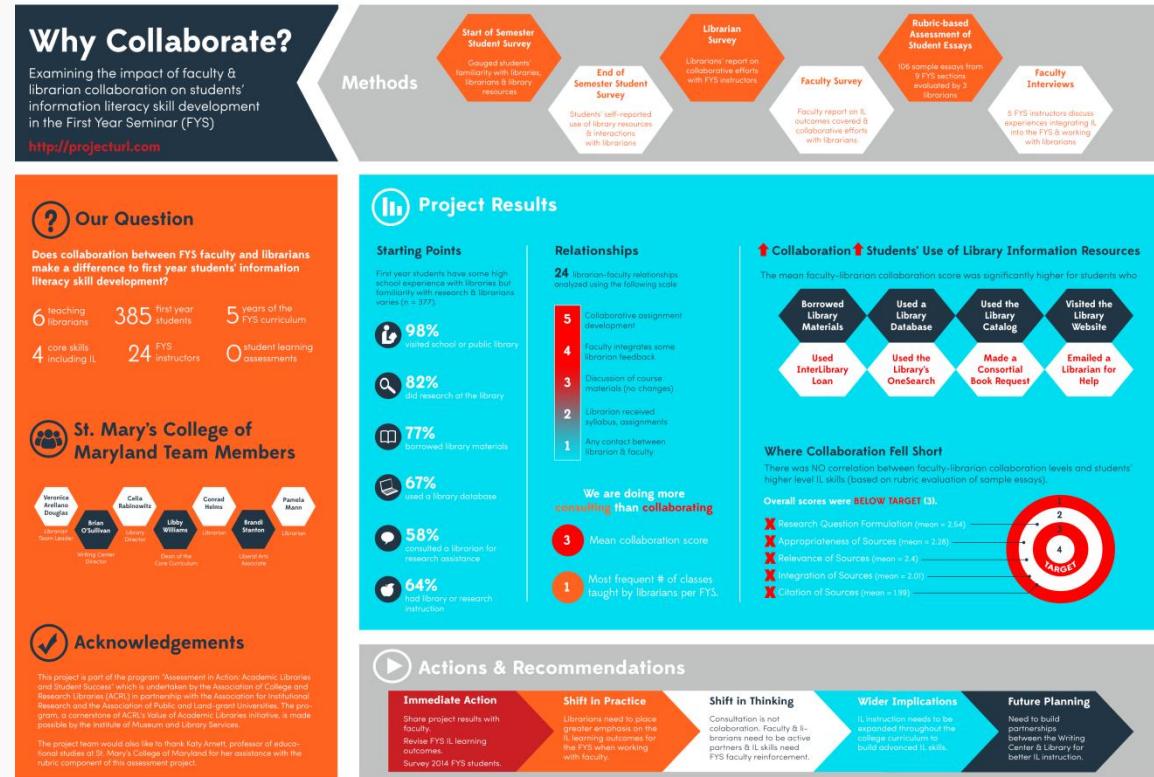
Κάθετες
στήλες

Αντίθετα
πεδία

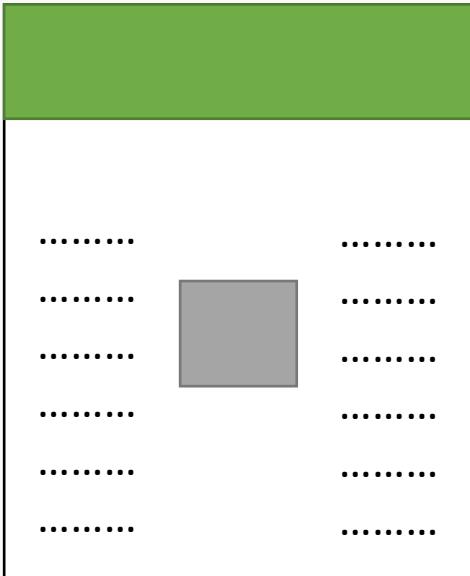

Κεντρική
εικόνα

The image consists of a solid green horizontal bar at the top. Below it are three identical gray rectangular blocks arranged horizontally. Each gray rectangle has a thin black border. The entire image is set against a white background.

- Πιο διαδεδομένη δομή
- Πιο εύκολος διαχωρισμός
- Πιο εύκολη οργάνωση


Αντίθετα πεδία

Γενικό πλάνο


- Πιο δύσκολο στην οργάνωση από τις κάθετες στήλες
- Χρησιμοποιείται πολύ σπάνια

Αντίθετα πεδία

- Πιο δύσκολο στην οργάνωση από τις κάθετες στήλες
- Χρησιμοποιείται πολύ σπάνια

Κεντρική εικόνα

- Δύσκολο στην οργάνωση
- Χρησιμοποιείται σπάνια

Developing and characterising a novel combined nanoelectrode system

L. P. Robinson, A. Mount

Electrochemistry at nanoelectrodes

Nanoelectrodes have several advantages for electrochemical sensing.

Linear diffusion profile: Transport to microelectrodes proceeds through a relatively inefficient linear diffusion profile. They are also highly affected by convection and IR drop.

Hemispherical diffusion profile: In contrast, the diffusion pattern for nanoelectrodes quickly becomes hemispherical. The profile is much more efficient, and they are not so affected by convection or IR drop. They can reliably detect very low (attomole) concentrations of analyte.

A Pt microsquare nanoband edge electrode (MNEE) array system in which the Pt nanoband acts as the working electrode has been developed. The project now aims to create a nanoelectrode device based on this system which has all three electrodes necessary for analysis on one chip.

Ag/AgCl as a combined electrode

The combined reference/counter electrode is created by electropolymerising a thin film of Ag onto the Pt microsquare. Potentiostatic plating causes Ag to grow preferentially at the corners, creating dendrites. A galvanostatic plating protocol is being developed to provide the required smooth, shiny Ag deposit.

To convert the newly plated Ag surface to AgCl, it must be functionalised. Chemical functionalisation by immersion in FeCl_3 has been shown to produce uniform deposits of AgCl.

Combined nanoelectrode system

This design consists of a microsquare at the bottom of each cavity in the array, with the nanoband around the cavity edge.

The Ag/AgCl microsquare is a combined reference and counter electrode. As the area is so much larger than the Pt nanoband, the current passing through the square is not large enough to affect its use as the reference electrode.

This could create an on-chip device for sensitive analytical detection.

Characterisation

Cyclic voltammetry and electrochemical impedance spectroscopy will be used to verify that the system is behaving as predicted. The nanoband should have a similar response to the current nanoelectrode array.

Example of a $\text{Fe}^{2+}/\text{Fe}^{3+}$ cycling in 100mM KCl solution. This cycle is used to determine the cleanliness of the electrode surface.

Fabrication

The design has been fabricated at the Scottish Microelectronics Centre using photolithography. In this technique layers of metal and insulator are deposited and patterned to produce the desired arrangement.

1. Si wafer with oxide surface
2. Metal is then deposited and coated in a nitride passivation layer
3. Photoresist layer is deposited and exposed to UV light through a patterned mask
4. Nitride is removed and process repeated to pattern metal layer

Each layer is deposited and patterned sequentially. This approach reliably produces uniform electrodes cheaply and easily.

An application

By coating the surface of the working electrode in a probe nucleic acid, the corresponding DNA sequence can be detected using electrochemical impedance spectroscopy (EIS). Before the target molecule is hybridised, the resistance measured for the redox couple is small. When the correct target is hybridised the resistance, and therefore the EIS response, is much larger.

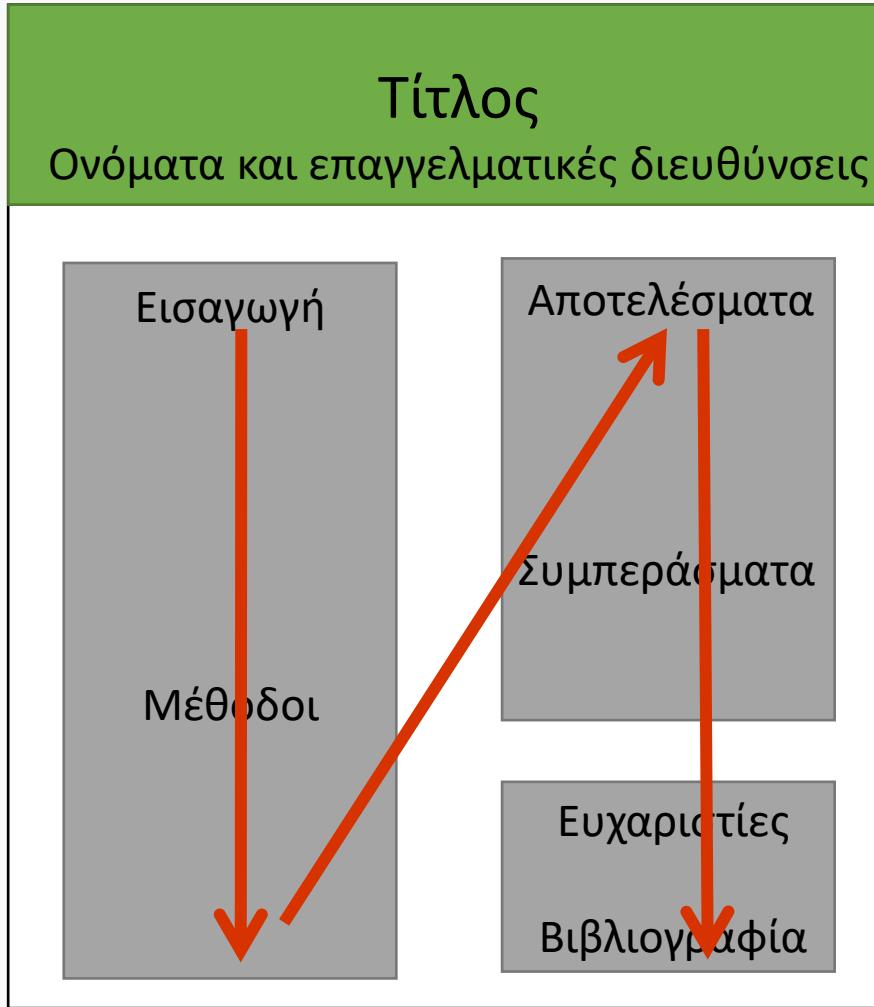
Pre hybridisation: the redox species has access to the electrode.
Post hybridisation: the access of the redox species is restricted, and so the resistance rises at the electrode.

Objectives


Having made the initial measurements, the next steps will include:

- complete fabrication of the combined system, including optimisation of nanoband and cavity dimensions
- further investigation of the sensitivity of nanoelectrodes for use in DNA sensing and the relationship between the response and concentration of the target
- optimisation of a galvanostatic silver plating protocol

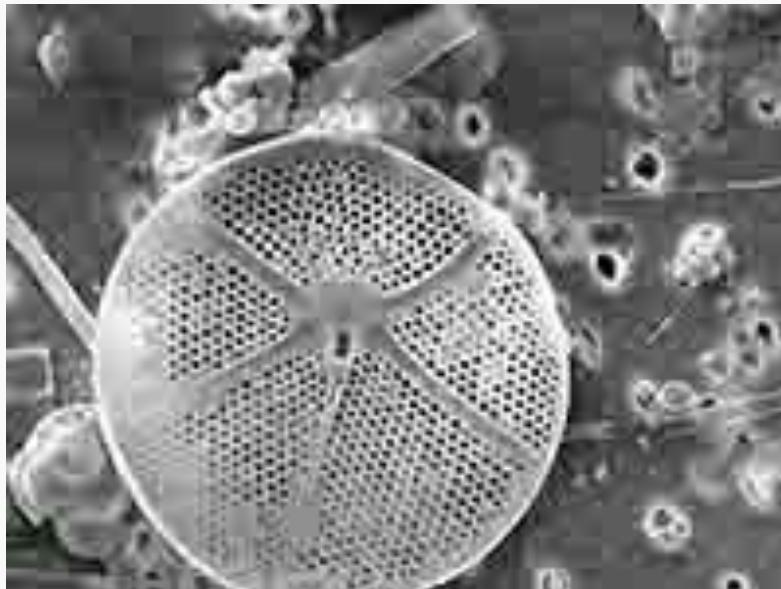
Many thanks to Dr Darren Corrigan, Ilka Schmuser, Professor Andy Mount, the Mount group and the SMC for their continuing support and expertise.


SMC
EPSRC
Promoting research and skills

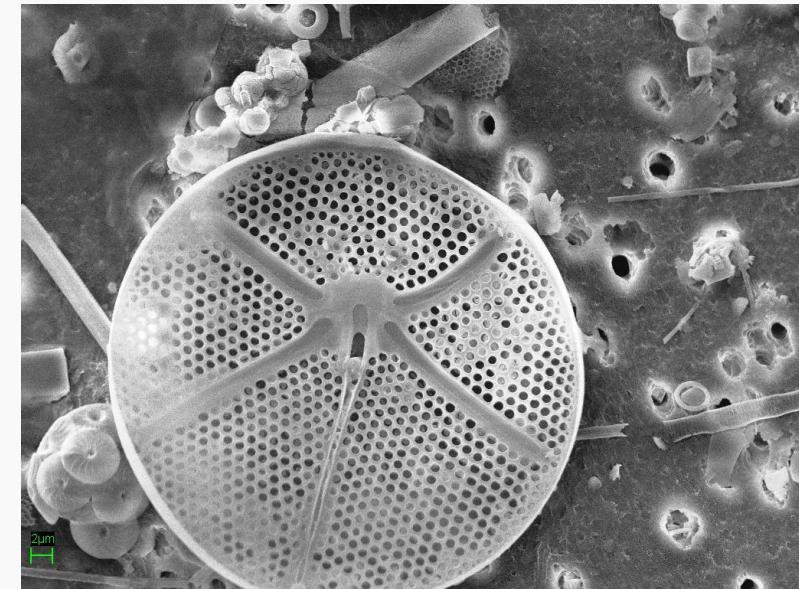
2 Βασική διαμόρφωση του poster

- Σχεδιάζουμε την βασική δομή
- Για κάθε πεδίο γράφουμε επιγραμματικά σε τι θα αναφερθούμε
- Επιλέγουμε τα αποτελέσματα που θα βάλουμε

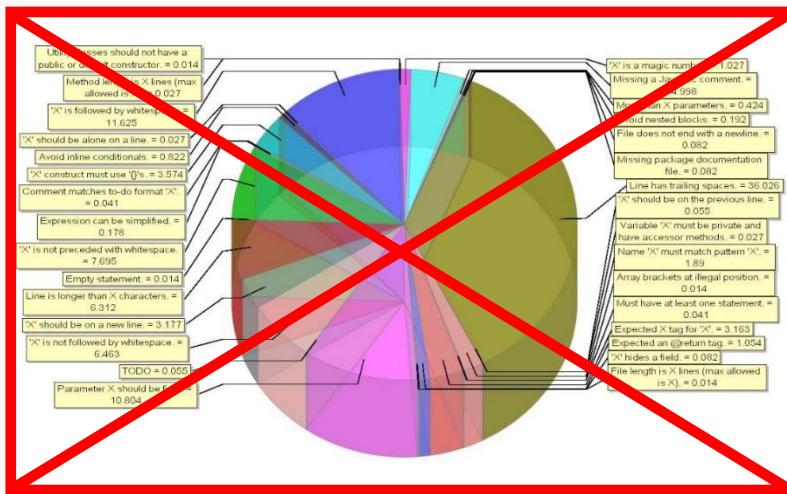
2 Βασική διαμόρφωση του poster


- Θα πρέπει να είναι σαφής η κατεύθυνση με την οποία διαβάζεται το poster
- Το poster είναι μια ιστορία
- Θα πρέπει να έχει ξεκάθαρη αρχή μέση και τέλος

2 Βασική διαμόρφωση του poster


- Χρησιμοποιούμε «ξεκούραστες» γραμματοσειρές
- Τα πιο σημαντικά σημεία τονίζονται με μεγαλύτερη γραμματοσειρά
- Το λιγότερο 36 pt γραμματοσειρά

- Χαμηλή ανάλυση εικόνων
- Επιρρεάζει αρνητικά το τελικό αποτέλεσμα



Low-res image

High-res image

- Ανάλυση 150 – 300 dpi (για αρχεία εικόνας)
- Αποθηκεύουμε σε τύπο αρχείου .tiff, .png
(μικρότερη συμπίεση = μεγαλύτερη λεπτομέρεια)

- Χρησιμοποιούμε όσο το δυνατόν απλούστερη μέθοδο απεικόνισης
- Δουλεύουμε σε υψηλή ανάλυση > 300 dpi
- Αποθηκεύουμε σε τύπο αρχείου .tiff, .png, .pdf (μικ. συμπίεση = μεγ. λεπτομέρεια)

- Χρησιμοποιούμε χρώμα για να κατευθύνουμε τον αναγνώστη
- Δεν το παρακάνουμε με το χρώμα
- Δεν χρησιμοποιούμε έντονα χρώματα που κουράζουν
- Δεν χρησιμοποιούμε μοτίβα
- Ο συνδυασμός των χρωμάτων θα πρέπει να επιλεχθεί με προσοχή

- Δεν χρησιμοποιούμε μοτίβα
- Ο συνδυασμός των χρωμάτων θα πρέπει να επιλεχθεί με προσοχή
- Αποφεύγουμε να βάζουμε εικόνες ή σχέδια για φόντο
 - Δημιουργούνται δυσανάγνωστα σημεία
 - Αποσπάται η προσοχή από το κείμενο

**INSERT YOUR POSTER TITLE
ON THESE LINES HERE**

Name of Author
Department Name and Institution Name can go here

BACKGROUND

• Insert your text here. You can change the font size to fit your text.
• You can also make this box shrink or grow with the amount of text. Simply double click this text box, go to the “Text Box” tab, and check the option “Resize AutoShape to fit text”.
• The background of this template may appear blue on your screen, but it does print black.
• Insert your text here. You can change the font size to fit your text.
• You can also make this box shrink or grow with the amount of text. Simply double click this text box, go to the “Text Box” tab, and check the option “Resize AutoShape to fit text”.
• Insert your text here. You can change the font size to fit your text.
• The background of this template may appear blue on your screen, but it does print black.
• Insert your text here. You can change the font size to fit your text.
• You can also make this box shrink or grow with the amount of text. Simply double click this text box, go to the “Text Box” tab, and check the option “Resize AutoShape to fit text”.

MATERIALS AND METHODS

Title One
Insert your text here. You can change the font size to fit your text. You can also make this box shrink or grow with the amount of text. Simply double click this text box, go to the “Text Box” tab, and check the option “Resize AutoShape to fit text”. The background of this template may appear blue on your screen, but it does print black.
Insert your text here. You can change the font size to fit your text. You can also make this box shrink or grow with the amount of text. Simply double click this text box, go to the “Text Box” tab, and check the option “Resize AutoShape to fit text”.
Insert your text here. You can change the font size to fit your text. You can also make this box shrink or grow with the amount of text. Simply double click this text box, go to the “Text Box” tab, and check the option “Resize AutoShape to fit text”.

Title Two
Insert your text here. You can change the font size to fit your text. You can also make this box shrink or grow with the amount of text. Simply double click this text box, go to the “Text Box” tab, and check the option “Resize AutoShape to fit text”.
• The background of this template may appear blue on your screen, but it does print black.
• Insert your text here. You can change the font size to fit your text.
• You can also make this box shrink or grow with the amount of text. Simply double click this text box, go to the “Text Box” tab, and check the option “Resize AutoShape to fit text”.

Title Three
Insert your text here. You can change the font size to fit your text. You can also make this box shrink or grow with the amount of text. Simply double click this text box, go to the “Text Box” tab, and check the option “Resize AutoShape to fit text”. The background of this template may appear blue on your screen, but it does print black.
Insert your text here. You can change the font size to fit your text. You can also make this box shrink or grow with the amount of text. Simply double click this text box, go to the “Text Box” tab, and check the option “Resize AutoShape to fit text”.

PURPOSE

Insert your text here. You can change the font size to fit your text.
You can also make this box shrink or grow with the amount of text. Simply double click this text box, go to the “Text Box” tab, and check the option “Resize AutoShape to fit text”.
The background of this template may appear blue on your screen, but it does print black.
You can also make this box shrink or grow with the amount of text. Simply double click this text box, go to the “Text Box” tab, and check the option “Resize AutoShape to fit text”.
• Insert your text here. You can change the font size to fit your text.
• You can also make this box shrink or grow with the amount of text. Simply double click this text box, go to the “Text Box” tab, and check the option “Resize AutoShape to fit text”.
• The background of this template may appear blue on your screen, but it does print black.

RESULTS

Title One
Insert your text here. You can change the font size to fit your text. You can also make this box shrink or grow with the amount of text. Simply double click this text box, go to the “Text Box” tab, and check the option “Resize AutoShape to fit text”.
The background of this template may appear blue on your screen, but it does print black.
Insert your text here. You can change the font size to fit your text. You can also make this box shrink or grow with the amount of text. Simply double click this text box, go to the “Text Box” tab, and check the option “Resize AutoShape to fit text”.
Insert your text here. You can change the font size to fit your text. You can also make this box shrink or grow with the amount of text. Simply double click this text box, go to the “Text Box” tab, and check the option “Resize AutoShape to fit text”.

ECG
Blue caption with picture

CONCLUSIONS

Simply double click this text box, go to the “Text Box” tab, and check the option “Resize AutoShape to fit text”. The background of this template may appear blue on your screen, but it does print black.
Insert your text here. You can change the font size to fit your text.

Figure One
Blue caption with picture

REFERENCES

1. Reference here
2. Second reference
3. Third reference

A Novel Method for Measuring Photokinetic Parameters Under Variable Natural and Artificial Light Regimes

Wei-Haas, M.¹ and Chin, Y.P.²
Ohio State University 125 S. Oval Mall Columbus, OH 43210 wei-haas.1@osu.edu

Introduction

Photolysis is an important process involved in both the transformation of anthropogenic contaminants as well as biogeochemical reactions such as the transformation and degradation of dissolved organic matter. While many environmental photolysis kinetics studies are conducted using simulated solar light where the irradiance is relatively constant, experiments conducted in natural sunlight pose many challenges due to it.

Traditionally, chemical actuators are used to determine the **quantum yield** of the reaction (i.e. moles of transformed compound normalized to total photons absorbed by the system), allowing the comparison between experiments conducted under varying light regimes. Yet this method is limited in its ability to evaluate the **intensity** of the light source and necessitates a simultaneous actinometer experiment with every degradation experiment conducted under natural sunlight.

We have developed a novel method using a PMA2100 data-logging radiometer (Solar Light Company, Glenside, PA), which allows us to **normalize** the **irradiance** to the accumulated UVA and UVB dose.

We believe that this simple and elegant method will serve as an important bridge between laboratory and field experimentation and supports wider applicability of experimental results to a variety of environments.

Experimental

Solutions of P-trinitrobenzene (PNA, 10^{-6} M) or PNA with pyridine (10^{-6} M and 5×10^{-6} M, respectively) were prepared in Milli-Q water.

Photodegradation experiments were conducted with solutions in quartz photolysis (1 cm diameter) using artificial sunlight in the Suntest (Atlas MTS) and natural light at OSU Campus Columbus, OH (83°W-40°N). Dark controls were run concurrently.

The PMA2100 data-logging radiometer (Solar Light Company) was used to monitor UVA and UVB exposure, logging **average irradiance** at 1-minute intervals.

6-9 time points were collected at time intervals determined by accumulated dose. Concentrations of PNA were analyzed using a Waters HPLC equipped with a UV detector ($\lambda = 316$ nm).

The radiometer's response to angle of light source changes was corrected using a cosine law function (Figure 1). Thus, to reduce radiometer measurement error, each irradiance measurement was corrected for **solar zenith angle** (Figure 2). Solar angles were calculated using the National Renewable Energy Laboratory (NREL) solar position algorithm (NREL online). Earth rotation and orbital calculations were obtained from the International Earth Rotation and Reference System Service (IERS online).

Irradiance was normalized to a "fitting term" (referred to as the **irradiance normalization factor**), which approximates average irradiance measured in the solar light simulator.

Solar angle corrections and irradiance normalization

Corrected irradiance: $(\text{mW cm}^{-2}) = \frac{\text{measured irradiance} (\text{mW cm}^{-2})}{\cos(\text{zenith angle})}$

Dose (mJ cm^{-2}) = corrected irradiance (mW cm^{-2}) \times logging interval (60 sec)

Accumulated dose = sum of doses (per min) since initial exposure

Calculated exposure time (sec) = $\frac{\text{accumulated dose} (\text{mJ cm}^{-2})}{\text{measured irradiance} (\text{mW cm}^{-2})} \times 60$

*Note: doses = dose \times seconds

irradiance normalization factor

"Irradiance intensity changes spatially and temporally"

"Clouds scatter light and reduce irradiance"

"Rock was leveled to ensure accurate sun angle corrections."

"Zenith Angle"

"Samples were exposed to natural light during a variety of weather conditions (Figure 3)."

Figure 1. Response curve for the PMA2100 to changes in the zenith angle of the light source.

Figure 2. Diagram of experimental set up.

Figure 3. A plot of irradiance measurements collected for a PNA degradation experiment (17 October 2013). Results for this experiment are displayed in Figure 4.

Results

The irradiance normalization method successfully accounted for changes in cloud cover and diurnal changes in irradiance intensity (Figure 4).

Irradiance normalization is robust against changes in cloud cover (i.e. partly cloudy skies). However, preliminary experiments suggest that this method may not fully account for the intense scattering of light resulting from dense (near 100%) cloud cover. Further testing is necessary to confirm this hypothesis.

Figure 4. Using the sun angle corrections and irradiance normalization, PNA degraded under natural light (17 October 2013) closely aligns with an experiment conducted under artificial light (17 Oct 13, overcast, 100% shading). Data pre-irradiance normalization is shown as light purple circles and post-irradiance normalization is shown as dark purple circles.

The normalization factors for the PNA + pyridine experiments remain accurate over a longer period of time (Figure 5a) than the PNA degradation (Figure 5b), which may be due to its relatively short half-life.

For the experiments conducted during winter under low sun angles, we suggest recalibration of the irradiance normalization factor every 2 weeks. The time interval between re-calibration experiments is expected to increase during the summer months, when the apex of the sun path is notably greater (smaller sun angle correction factors and lower measurement error).

Figure 5. A. Comparison of half-lives for the PNA + pyridine and PNA degradations under artificial vs. natural sunlight. All experiments conducted in natural sunlight were normalized using the same irradiance normalization factor. Error bars represent 95% CI for slope ($n = 14 - 20$). B. PNA only

Conclusions

We successfully used the irradiance normalization method to directly compare half-lives of the PNA and PNA + pyridine actinometers after exposure to natural and artificial sunlight.

Based on our results, re-calibration of the irradiance normalization factor should be repeated every 2 weeks. The **overall low sun angle** during winter is likely a large source of error and thus we expect greater diuation between re-calibration for experiments conducted during the summer. We plan to repeat these experiments in the spring and summer to further explore this hypothesis.

The irradiance normalization method eliminates the necessity to run simultaneous actinometers for every experiment conducted under natural sunlight. This method is particularly valuable for **remote fieldwork** in which instrumentation and resources are limited.

References and Acknowledgements

NREL solar position algorithm: <http://reposition.nrel.gov/outputs/calculations.html> (Accessed October 2013)

International Earth Rotation and Reference System Service (IERS): <http://www.iers.org> (Accessed October 2013)

This work was supported by the NSF Graduate Research Fellowship awarded to MW (DGE-0822115) and a NSF Graduate APR, 1205981.

Since feathered flight developed more than 150 million years ago, the central shaft of a bird feather has evolved under selection pressures to become light, stiff, and strong. As a result, the shaft has become a complex, fibre-reinforced biocomposite beam.

In quantifying the mechanical properties of feather shafts, previous researchers have reported values of flexural rigidity which vary over two orders of magnitude. Some of this variation can be explained by differences in geometry. However, the laminar layup of the shaft cortex and the micromechanics of these laminae have not yet been considered.

We have previously shown that the number of laminae varies between species of birds, and that these laminae are anisotropic (Laurent et al. 2013). This variation means that it is necessary to understand the micromechanics of feather shafts, but also their laminar layup and the micromechanics of those laminae before we can understand and predict the micromechanical behaviour of the feather shaft.

Here, we present data gathered at different locations on a feather shaft (rachis and calamix) using Synchrotron Radiation Computed Tomography (SR-CT). This gives us a detailed insight into the laminar layup and orientation of the internal fibres. This is the first step in understanding the micromechanical properties of feather shafts from inside.

Method

The Swiss Light Source (SLS), at the Paul Scherrer Institute (Switzerland), is a third-generation synchrotron light source. It provides a high-brightness photon beam which allows us to obtain resolution in the orders of magnitude higher than a typical hospital-based scanner, with scan times as short as six minutes. With these scans, we capture the three-dimensional orientation in rachis material. Using transmission electron microscopy, these voids were found to be aligned with the internal fibres.

Samples ($l = 5 \text{ mm}$) were removed from the leading flight feather of a Whooper Swan (*Cygnus cygnus*) at 10, 30, 50, 70, and 90% of the shaft length and scanned. Overlapping regions of interest were stitched together using a 'Feature shift' algorithm where possible, or with the 'Mosaic' tool in ImageJ.

Results & Conclusion

Our SR-CT scans reveal geometry of the shaft changing along the length of the feather. Looking more closely they show how the number, orientation, and thickness of the laminae change. Therefore, our results show that laminar layup varies around, and along, a bird feather shaft.

These variations in geometry and laminae influences the rachis mechanics. Next, to fully understand the implication for the feather mechanics, we will determine the modulus of individual laminae.

LAURENT, O., SCHNEIDER, P., DANE, G., BODDAM, B.P., PALMER, C.T., COOK, R.J. and KAY, B. Anisotropic and light mechanics of engineering bone-like structures, using three-dimensional scans. *Journal of the Royal Society, Interface*, 2013, 10(80), 20130367, 1–10. DOI: 10.1098/rsif.2013.0367, PMID: 24060006.

EPSRC
Engineering and Physical Sciences Research Council

National Oceanography Centre
NATIONAL ENVIRONMENT RESEARCH COUNCIL

NERC
SCIENCE OF THE ENVIRONMENT

The Leverhulme Trust

PAUL SCHERER INSTITUT
PSI

SPITFIRE

Μπορούμε
όμως να
είμαστε
δημιουργικοί

Ενότητα

Επιστημονική δημοσίευση

Γιατί δημοσιεύουμε;

- Σημαντική η διάδοση των αποτελεσμάτων
- Η δουλειά μας κρίνεται ή ενισχύεται από άλλες επιστημονικές ομάδες
- Ελέγχουμε την απήχηση της έρευνας μας
- Προάγουμε την γνώση
- Ενισχύουμε την επιστημονική σκέψη
- Συμβάλλουμε στην εφαρμογή της γνώσης

Γιατί δημοσιεύουμε;

- Σημαντικό για το βιογραφικό μας
- Βελτιώνονται οι πιθανότητες για εύρεση (καλύτερης) εργασίας
- Βελτιώνονται οι πιθανότητες χρηματοδότησης της έρευνας μας
- Προσδίδει κύρος στην ερευνητική ομάδα

Ξεκινώντας...

- Επιλέγουμε το επιστημονικό περιοδικό
- Ελέγχουμε τις οδηγίες του επιστημονικού περιοδικού
- Σχεδιάζουμε το άρθρο
- Γράφουμε το άρθρο με την σωστή διαμόρφωση

- Η εξειδίκευση του περιοδικού
- Impact factor και citation index
- Αξιοπιστία του περιοδικού
- Πιθανότητα αποδοχής της δουλειάς μας
- Χρόνος ανταπόκρισης του περιοδικού

- Κόστος δημοσίευσης
- Τύπος περιοδικού (free-access)
- Έχουμε ρεαλιστικές προσδοκίες
- Έχουμε επιμονή
- Είμαστε έτοιμοι για πειράματα εάν μας ζητηθούν

- Μικρός αλλά επεξηγηματικός
- Ελέγχουμε να είναι ακριβής
- Προσέχουμε να μην έχει ξαναχρησιμοποιηθεί

Efficient *E. coli* Expression Strategies for Production of Soluble Human Crystallin ALDH3A1

Georgia-Persephoni Voulgaridou¹, Theodora Mantso¹, Katerina Chlichlia¹, Mihalis I. Panayiotidis², Adilia Pappa^{1*}

1 Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus, Dragana, Alexandroupolis, Greece, **2** Laboratory of Pathological Anatomy, Medical School, University of Ioannina, University Campus, Ioannina, Greece

Abstract

Citations: Vougiardou G-P, Mantou T, Chichlakia K, Panayiotidis MI, Pappa A (2013) Efficient *E. coli* Expression Strategies for Production of Soluble Human Crystallin *β1* (DkR43). *PLoS ONE* 8(3): e66183. doi:10.1371/journal.pone.0066183

Editor: Shih-Hao Chang, National Center for Global Health and Medicine, Taiwan

Editor: Shekhar C. Mande, National Centre for Cell Science, India

Received September 6, 2012; Accepted January 14, 2013; Published February 22, 2013

Copyright: © 2013 Voulgaridou et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research has been co-financed by the European Union (European Social Fund-ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: Heracleitus II. Investing in knowledge society through the European Social Fund. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: apappa@mba.duth.gr

Introduction

Human crystallin ALDH3A1 is an NADP⁽⁺⁾-dependent enzyme existing as a dimer of 54 kDa subunits. The protein is contained in high amounts in the cornea of mammals ranging between 5–50% of the total water-soluble protein content (depending on species) but is almost absent in the cornea of other species [1–3]. Similar to other catalytically active enzymes recruited as taxon-specific corneal crystallins [4], ALDH3A1 is a metabolic enzyme catalyzing the oxidation of aldehydes to their corresponding acids demonstrating high substrate specificity for medium-chain saturated and unsaturated aldehydes [5]. Its metabolic activity appears to be related with the protein's protective role in corneal epithelium against oxidative damage caused by aldehyde by-products of lipid peroxidation under conditions of cellular stress, e.g. UV-induced oxidative stress [6,7]. However, constitutive expression of ALDH3A1 in the mammalian cornea exceeds, by far, the levels required for a pure metabolic function. Thus, other potential roles are being explored including: i) generation of the antioxidant NADPH [8], ii) direct absorption of UV-energy [9], iii) scavenging of reactive oxygen species (ROS) [10] and iv) possession of chaperone-like activity [3], suggesting that

ALDH3A1 may contribute to the optical properties of the cornea as well [1,3]. Furthermore, its absence has been linked with cataract phenotype and ocular oxidative damage in ALDH3A1-null mice [11], whereas recent studies implicate its involvement in cell homeostatic pathways, such as DNA damage response, proteasome degradation and DNA repair, cell cycle regulation, and apoptosis [6,7,11,12].

The purpose of the present study was to employ *E. coli* recombinant methods in order to produce substantial amounts of human ALDH3A1 with the aim to direct future studies towards elucidating the biological functions of ALDH3A1. To this end, *E. coli* is the preferred organism for heterologous protein expression due to its many advantages including: (i) the ability to grow quickly into high cell densities, (ii) the requirement of non-expensive carbon sources and (iii) its extensively studied physiology [13,14]. In addition, the wider range of commercial products available for all steps of expression and purification using *E. coli* makes this system even more operable. However, miss-folding and aggregation of recombinant proteins within inclusion bodies in bacteria hinders the successful production of many eukaryotic proteins [13,15–17]. Furthermore, on the occurrence of insolubility issues, both the type of fusion tag and the purification method to be used, constitute critical parameters. In addition, although known tags

Efficient *E. coli* Expression Strategies for Production of Soluble Human Crystallin ALDH3A1

- Τα ονόματα μπαίνουν με σειρά συμβολής
- Πρώτο το άτομο με την μεγαλύτερη συνεισφορά
- Τελευταίο το όνομα του correspondence author
- Στην σύλληψη και σχεδίαση της μελέτης
- Διεξαγωγή πειραμάτων

- Επινόηση της κεντρικής ιδέας
- Σχεδιασμός πειραμάτων
- Διεξαγωγή πειραμάτων
- Πρόσβαση σε εγκαταστάσεις
- Χειρισμός εξειδικευμένων μηχανημάτων

- Ανάλυση πειραμάτων
- Σχεδιασμός γραφημάτων και φιγούρων
- Συγγραφή
- Κριτική αναθεώρηση του άρθρου

Σχεδιασμός και μορφοποίηση άρθρου

OPEN ACCESS Freely available onlineEfficient *E. coli* Expression Strategies for Production of Soluble Human Crystallin ALDH3A1Georgia-Persephoni Voulgaridou¹, Theodora Mantso¹, Katerina Chlichlia¹, Mihalis I. Panayiotidis², Aглаia Pappa^{1*}¹ Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus, Dragana, Alexandroupolis, Greece, ² Laboratory of Pathological Anatomy, Medical School, University of Ioannina, University Campus, Ioannina, Greece**Abstract**

Aldehyde dehydrogenase 3A1 (ALDH3A1) is a recently characterized corneal crystallin with its exact functions still being unclear. Expressing recombinant human ALDH3A1 has been difficult in *Escherichia coli* (*E. coli*) because of low solubility, yield and insufficient purity issues. In this report, we compared different *E. coli* expression strategies (namely the maltose binding protein-MBP- and the 6-his-tagged expression systems) under conditions of auto-induction and co-expression with *E. coli*'s molecular chaperones where appropriate. Thus, we aimed to screen the efficiency of these expression strategies in order to improve solubility of recombinant ALDH3A1 when expressed in *E. coli*. We showed that the MBP-tagged expression in combination with lower-temperature culture conditions resulted in active soluble recombinant ALDH3A1. Expression of the fusion 6-his-tagged-ALDH3A1 produced soluble protein under auto-induction conditions or the auto-induction strategy improved when the 6-his-tagged-ALDH3A1 was facilitated through co-expression with GroEL and DnaK/DnaJ/GrpE. Convenient one step fused ALDH3A1 hybrids. Both fusion proteins retain the fusion tags. Taken together, our results provide a recombinant ALDH3A1 using the *E. coli* expression system, which may express biological role(s) of this interesting corneal crystallin.

Citation: Voulgaridou G-P, Mantso T, Chlichlia K, Panayiotidis MI, Pappa A (2013) Efficient *E. coli* Expression Strategies for Production of Soluble Human Crystallin ALDH3A1. PLOS ONE 8(2): e56582. doi:10.1371/journal.pone.0056582**Editor:** Shekhar C. Manne, National Centre for Cell Science, India**Received:** September 6, 2012; **Accepted:** January 14, 2013; **Published:** February 22, 2013**Copyright:** © 2013 Voulgaridou et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.**Funding:** This research has been co-financed by the European Union (European Social Fund-ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: Heracleitus II. Investing in knowledge society through the European Social Fund. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.**Competing Interests:** The authors have declared that no competing interests exist.

* E-mail: apappa@mbg.duth.gr

Introduction

Human crystallin ALDH3A1 is an NADP⁺-dependent enzyme existing as a dimer of 54 kDa subunits. The protein is contained in high amounts in the cornea of mammals ranging between 5–50% of the total water-soluble protein content (depending on species) but is almost absent in the cornea of other species [1–3]. Similar to other catalytically active enzymes recruited as taxon-specific corneal crystallins [4], ALDH3A1 is a metabolic enzyme catalyzing the oxidation of aldehydes to their corresponding acids demonstrating high substrate specificity for medium-chain saturated and un-saturated aldehydes [5]. Its metabolic activity appears to be related with the protein's protective role in corneal epithelium against oxidative damage caused by aldehyde by-products of lipid peroxidation under conditions of cellular stress, e.g. UV-induced oxidative stress [6,7]. However, constitutive expression of ALDH3A1 in the mammalian cornea exceeds, by far, the levels required for a pure metabolic function. Thus, other potential roles are being explored including: (i) generation of the antioxidant NADPH [8], (ii) direct absorption of UV-energy [9], (iii) scavenging of reactive oxygen species (ROS) [10] and (iv) possession of chaperone-like activity [3], suggesting that

ALDH3A1 may contribute to the optical properties of the cornea as well [1,3]. Furthermore, its absence has been linked with cataract phenotype and ocular oxidative damage in ALDH3A1-null mice [11], whereas recent studies implicate its involvement in cell homeostatic pathways, such as apoptosis, cell cycle regulation, proteasome degradation and DNA damage response [6,7,11,12].

The purpose of the present study was to employ *E. coli* recombinant methods in order to produce substantial amounts of human ALDH3A1 with the aim to direct future studies towards elucidating the biological functions of ALDH3A1. To this end, *E. coli* is the preferred organism for heterologous protein expression due to its many advantages including: (i) the ability to grow quickly into high cell densities, (ii) the requirement of non-expensive carbon sources and (iii) its extensively studied physiology [13,14]. In addition, the wider range of commercial products available for all steps of expression and purification using *E. coli* makes this system even more operable. However, miss-folding and aggregation of recombinant proteins within inclusion bodies in bacteria hinders the successful production of many eukaryotic proteins [13,15–17]. Furthermore, on the occurrence of insolubility issues, both the type of fusion tag and the purification method to be used, constitute critical parameters. In addition, although known tags

Σχεδιασμός και μορφοποίηση άρθρου

- Περιγράφω σύντομα (έως 250 λέξεις) την έρευνα
- Αναφέρω το πρόβλημα, τις μεθόδους, τα αποτελέσματα και τα συμπεράσματα
- Καλό είναι να γράφεται τελευταία
- Οι περισσότεροι αναγνώστες θα διαβάσουν μόνο την περίληψη

OPEN ACCESS Freely available online

PLOS ONE

Efficient *E. coli* Expression Strategies for Production of Soluble Human Crystallin ALDH3A1

Georgia-Persephoni Voulgaridou¹, Theodora Mantso¹, Katerina Chlichlia¹, Mihalis I. Panayiotidis², Aglaia Pappa^{1*}

¹ Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus, Dragana, Alexandroupolis, Greece, ² Laboratory of Pathological Anatomy, Medical School, University of Ioannina, University Campus, Ioannina, Greece

Abstract

Aldehyde dehydrogenase 3A1 (ALDH3A1) is a recently characterized corneal crystallin with its exact functions still being unclear. Expressing recombinant human ALDH3A1 has been difficult in *Escherichia coli* (*E. coli*) because of low solubility, yield and insufficient purity issues. In this report, we compared different *E. coli* expression strategies (namely the maltose binding protein; MBP- and the 6-his-tagged expression systems) under conditions of auto-induction and co-expression with *E. coli*'s molecular chaperones where appropriate. Thus, we aimed to screen the efficiency of these expression strategies in order to improve solubility of recombinant ALDH3A1 when expressed in *E. coli*. We showed that the MBP- tagged expression in combination with lower-temperature culture conditions resulted in active soluble recombinant ALDH3A1. Expression of the fused 6-his tagged-ALDH3A1 protein resulted in poor solubility and neither lowering temperature culture conditions nor the auto-induction strategy improved its solubility. Furthermore, higher yield of soluble, active native form of 6-his tagged-ALDH3A1 was facilitated through co-expression of the two groups of *E. coli*'s molecular chaperones, GroES/GroEL and DnaK/DnaJ/GrpE. Convenient one step immobilized affinity chromatography methods were utilized to purify the fused ALDH3A1 hybrids. Both fusion proteins retained their biological activity and could be used directly without removing the fusion tags. Taken together, our results provide a rational option for producing sufficient amounts of soluble and active recombinant ALDH3A1 using the *E. coli* expression system for conducting functional studies towards elucidating the biological role(s) of this interesting corneal crystallin.

Citation: Voulgaridou G-P, Mantso T, Chlichlia K, Panayiotidis MI, Pappa A (2013) Efficient *E. coli* Expression Strategies for Production of Soluble Human Crystallin ALDH3A1. PLOS ONE 8(2): e56582. doi:10.1371/journal.pone.0056582

Editor: Shekhar C. Mande, National Centre for Cell Science, India

Received: September 6, 2012; **Accepted:** January 14, 2013; **Published:**

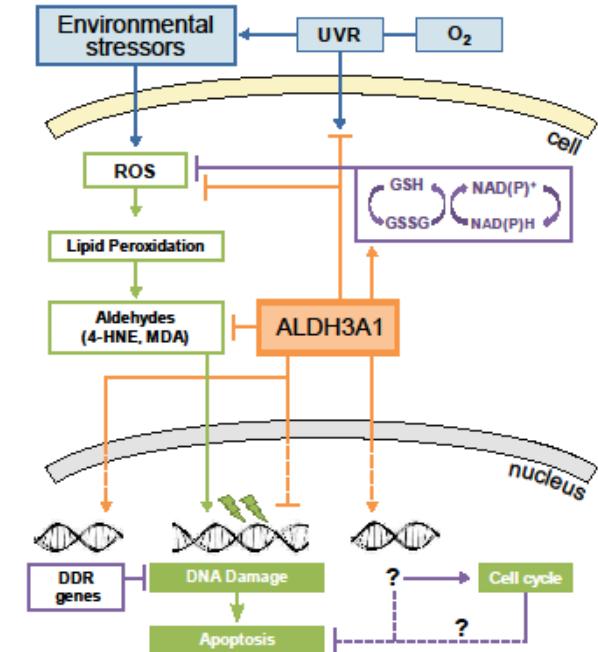
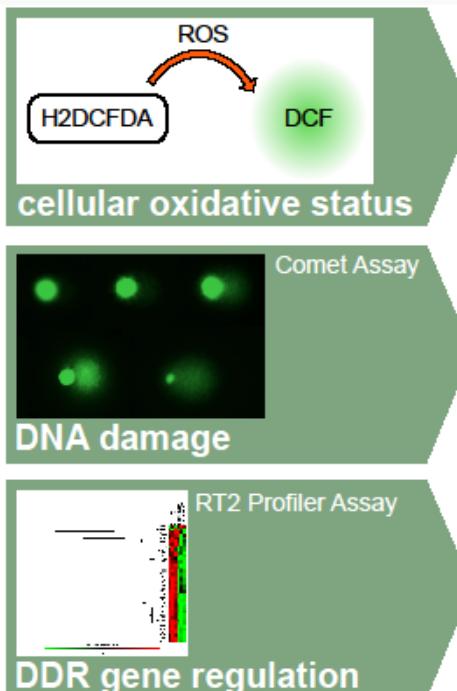
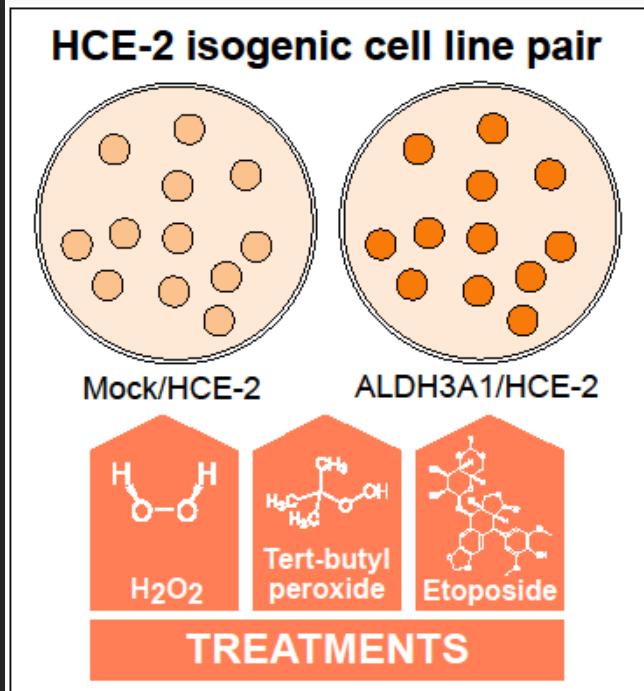
Copyright: © 2013 Voulgaridou et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research has been co-financed by the European Union "Education and Lifelong Learning" of the National Strategic Reference Framework through the European Social Fund. The funders had no role in manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: apappa@bg.duth.gr

Introduction




Human crystallin ALDH3A1 is an NADP⁺-dependent existing as a dimer of α -subunits. The protein is co-expressed in the cornea of mammals ranging between 0.5–1% of the total water-soluble protein content (depending on the species) [1–3]. Other catalytically active enzymes recruited as taxon-specific corneal crystallins [4]. ALDH3A1 is a metabolic catalyst in the oxidation of aldehydes to their corresponding carboxylic acids, demonstrating high substrate specificity for medium-chain saturated and unsaturated aldehydes [5]. Its metabolic activity appears to be related with the protein's protective role against oxidative damage caused by aldehydes produced by lipid peroxidation under conditions of cellular e.g. UV-induced oxidative stress [6,7]. However, expression of ALDH3A1 in the mammalian cornea is, to date, the levels required for a pure metabolic function. The potential roles are being explored including: (i) generation of antioxidant NADPH [8], (ii) direct absorption of UV [9], (iii) scavenging of reactive oxygen species (ROS) [10], (iv) possession of chaperone-like activity [3], suggesting that

Abstract

Aldehyde dehydrogenase 3A1 (ALDH3A1) is a recently characterized corneal crystallin with its exact functions still being unclear. Expressing recombinant human ALDH3A1 has been difficult in *Escherichia coli* (*E. coli*) because of low solubility, yield and insufficient purity issues. In this report, we compared different *E. coli* expression strategies (namely the maltose binding protein; MBP- and the 6-his-tagged expression systems) under conditions of auto-induction and co-expression with *E. coli*'s molecular chaperones where appropriate. Thus, we aimed to screen the efficiency of these expression strategies in order to improve solubility of recombinant ALDH3A1 when expressed in *E. coli*. We showed that the MBP- tagged expression in combination with lower-temperature culture conditions resulted in active soluble recombinant ALDH3A1. Expression of the fused 6-his tagged-ALDH3A1 protein resulted in poor solubility and neither lowering temperature culture conditions nor the auto-induction strategy improved its solubility. Furthermore, higher yield of soluble, active native form of 6-his tagged-ALDH3A1 was facilitated through co-expression of the two groups of *E. coli*'s molecular chaperones, GroES/GroEL and DnaK/DnaJ/GrpE. Convenient one step immobilized affinity chromatography methods were utilized to purify the fused ALDH3A1 hybrids. Both fusion proteins retained their biological activity and could be used directly without removing the fusion tags. Taken together, our results provide a rational option for producing sufficient amounts of soluble and active recombinant ALDH3A1 using the *E. coli* expression system for conducting functional studies towards elucidating the biological role(s) of this interesting corneal crystallin.

constitute critical parameters. In addition, although known tags

- Graphical Abstract

Σχεδιασμός και μορφοποίηση άρθρου

- Γιατί γίνεται η έρευνα
- Το θεωρητικό υπόβαθρο
- Τα κενά που θα καλύψει
- Οι στόχοι
- Περίπου 1 σελίδα

Σχεδιασμός και μορφοποίηση άρθρου

OPEN ACCESS Freely available online

Efficient *E. coli* Expression Strategies for Production of Soluble Human Crystallin ALDH3A1

Georgia-Persephoni Voulgaridou¹, Theodora Mantso¹, Katerina Chlichlia¹, Mihalis I. Panayiotidis², Aglaia Pappa^{1*}

¹ Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus, Dragana, Alexandroupolis, Greece, ² Laboratory of Pathological Anatomy, Medical School, University of Ioannina, University Campus, Ioannina, Greece

Abstract

Aldehyde dehydrogenase 3A1 (ALDH3A1) is a recently characterized corneal crystallin with its exact functions still being unclear. Expressing recombinant human ALDH3A1 has been difficult in *Escherichia coli* (*E. coli*) because of low solubility, yield and insufficient purity issues. In this report, we compared different *E. coli* expression strategies (namely the maltose binding protein-MBP- and the 6-his-tagged expression systems) under conditions of auto-induction and co-expression with *E. coli*'s molecular chaperones where appropriate. Thus, we aimed to screen the efficiency of these expression strategies in order to improve solubility of recombinant ALDH3A1 when expressed in *E. coli*. We showed that the MBP-tagged expression in combination with lower-temperature culture conditions resulted in active soluble recombinant ALDH3A1. Expression of the fused 6-his-tagged-ALDH3A1 protein resulted in poor solubility and neither lowering temperature culture conditions nor the auto-induction strategy improved its solubility. Furthermore, higher yield of soluble, active native form of 6-his-tagged-ALDH3A1 was facilitated through co-expression of the two groups of *E. coli*'s molecular chaperones, GroES/GroEL and DnaK/DnaJ/GrpE. Convenient one step immobilized affinity chromatography methods were utilized to purify the fused ALDH3A1 hybrids. Both fusion proteins retained their biological activity and could be used directly without removing the fusion tags. Taken together, our results provide a rational option for producing sufficient amounts of soluble and active recombinant ALDH3A1 using the *E. coli* expression system for conducting functional studies towards elucidating the biological role(s) of this interesting corneal crystallin.

Citation: Voulgaridou G-P, Mantso T, Chlichlia K, Panayiotidis MI, Pappa A (2013) Efficient *E. coli* Expression Strategies for Production of Soluble Human Crystallin ALDH3A1. PLOS ONE 8(2): e56582. doi:10.1371/journal.pone.0056582

Editor: Shekhar C. Manne, National Centre for Cell Science, India

Received September 6, 2012; Accepted January 14, 2013; Published February 22, 2013

Copyright: © 2013 Voulgaridou et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research has been co-financed by the European Union (European Social Fund-ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: Heracleitus II. Investing in knowledge society through the European Social Fund. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: apappa@mbg.duth.gr

Introduction

Human crystallin ALDH3A1 is an NADP⁺-dependent enzyme existing as a dimer of 54 kDa subunits. The protein is contained in high amounts in the cornea of mammals ranging between 5–50% of the total water-soluble protein content (depending on species) but is almost absent in the cornea of other species [1–3]. Similar to other catalytically active enzymes recruited as taxon-specific corneal crystallins [4], ALDH3A1 is a metabolic enzyme catalyzing the oxidation of aldehydes to their corresponding acids demonstrating high substrate specificity for medium-chain saturated and un-saturated aldehydes [5]. Its metabolic activity appears to be related with the protein's protective role in corneal epithelium against oxidative damage caused by aldehyde by-products of lipid peroxidation under conditions of cellular stress, e.g. UV-induced oxidative stress [6,7]. However, constitutive expression of ALDH3A1 in the mammalian cornea exceeds, by far, the levels required for a pure metabolic function. Thus, other potential roles are being explored including: (i) generation of the antioxidant NADPH [8], (ii) direct absorption of UV-energy [9], (iii) scavenging of reactive oxygen species (ROS) [10] and (iv) possession of chaperone-like activity [3], suggesting that

ALDH3A1 may contribute to the optical properties of the cornea as well [1,3]. Furthermore, its absence has been linked with cataract phenotype and ocular oxidative damage in ALDH3A1 mice [11], whereas recent studies implicate its involvement in cell homeostatic pathways, such as apoptosis, cell cycle regulation, proteasome degradation and DNA damage response [6,7,11,12].

The purpose of the present study was to employ *E. coli* recombinant methods in order to produce substantial amounts of human ALDH3A1 with the aim to direct future studies towards elucidating the biological functions of ALDH3A1. To this end, *E. coli* is the preferred organism for heterologous protein expression due to its many advantages including: (i) the ability to grow quickly into high cell densities, (ii) the requirement of non expensive carbon sources and (iii) its extensively studied physiology [13,14]. In addition, the wider range of commercial products available for all steps of expression and purification using *E. coli* makes this system even more operable. However, mis-folding and aggregation of recombinant proteins within inclusion bodies in bacteria hinders the successful production of many eukaryotic proteins [13,15–17]. Furthermore, on the occurrence of insolubility issues, both the type of fusion tag and the purification method to be used, constitute critical parameters. In addition, although known tags

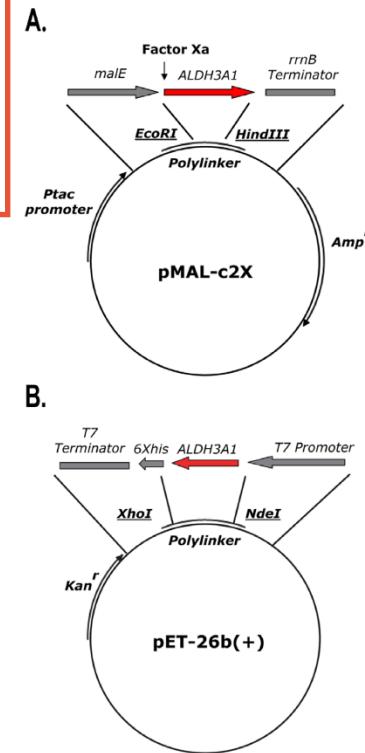
like maltose binding protein (MBP), can contribute to greater protein solubility [18,19], culture temperature conditions (during induction) also appear to be a detrimental factor in the production of native protein [20]. Furthermore, methods like auto-induction can be used for easier handling of cultures in combination with high protein yield [21] whereas co-expression of certain bacterial molecular chaperones can assist in the conformational process of the native protein [22].

In the present study, we report the expression of soluble MBP-fused and his-tagged recombinant human crystallin ALDH3A1 in substantial amounts, in *E. coli*, and their purification to homogeneity.

Materials and Methods

Materials

Vectors pMAL-c2X and pET-26b(+) were purchased by New England Biolabs (Beverly, MA, USA) and Novagen (EMD Millipore Corporation, Billerica, MA, USA) respectively. All primers were obtained by Invitrogen (Carlsbad, CA, USA) while the restriction enzymes and the chaperone plasmid set were from Takara (Shiga, Japan). *Pfu* polymerase and the DNA ligase kit were purchased from Fermentas (Burlington, ON, Canada). Amylose resin was purchased by New England Biolabs (Venlo, Netherlands), while Ni-NTA resin by Qiagen (Venlo, Netherlands). Medium for bacterial cultures along with antibiotics and inducers were purchased either from AppliChem (Darmstadt, Germany) or from Sigma-Aldrich Co. (Taufkirchen, Germany). Protease inhibitors as well as the chemicals for the ALDH3A1 enzymatic activity were obtained by Sigma-Aldrich Co. For western blotting, PVDF membranes were purchased from Millipore (Bedford, MA, USA), whereas the chemiluminescence reagents were from Thermo Scientific (Rockford, IL, USA) and the autoradiography films from Genesee Scientific (San Diego, CA, USA). Rabbit polyclonal antibody against human ALDH3A1 was obtained from Abgent (San Diego, CA, USA) and the goat anti-rabbit IgG horseradish peroxidase conjugated antibody was purchased by Millipore (Bedford, MA, USA).


pMAL/ALDH3A1 Vector Construction

To construct the pMAL/ALDH3A1 expression vector, the *Δ*CEP4Δ/ALDH3A1 plasmid (containing a full-length of human ALDH3A1 cDNA) was used as the template for the polymerase chain reaction [6,23]. The following two primers were synthesized in order to: (i) amplify the entire coding sequence and (ii) introduce an *Eco*RI restriction site at the 5' end and a *Hind*III site on the 3' end: forward primer: 5'-CT~~GAATT~~AGCAAGATCAGC-GAG-3' and, reverse primer: 5'-CT~~AAGCTT~~T-CAGTGTCTGGGTATC-3'. The PCR conditions for the amplification were: 94°C for 60 sec and further 94°C for 30 sec, 60°C for 60 sec, 72°C for 90 sec (for 30 cycles) and a final step at 72°C for 10 min. The *Eco*RI *Hind*III fragment of the PCR product was inserted into the *Eco*RI and *Hind*III sites of the pMAL expression vector. The resulting vector, pMAL/ALDH3A1 (Figure 1A) was verified by restriction digestion and sequencing from both ends of the inserted fragment.

ALDH3A1-MBP Tagged Expression

For the expression of ALDH3A1 protein tagged with MBP, BL21(+) *E. coli* cells were transformed with the pMAL/ALDH3A1 construct and incubated in LB broth (with 0.2% glucose and 100 µg/ml ampicillin for selection). The medium was inoculated with an overnight culture (1:100 dilution) and the culture was incubated under shaking at 37°C until an $OD_{600} = \sim 0.5$ was

E. coli Expression Strategies for Human ALDH3A1

Figure 1. Cloning of the coding sequence of ALDH3A1 into the expression vectors. (A) Construction of the pMAL/ALDH3A1 vector. The *Hind*III/*Eco*RI fragment of the PCR product containing the coding region of human ALDH3A1 was inserted into the *Hind*III and *Eco*RI sites of the pMAL vector. (B) Construction of the pET-26b (+)/ALDH3A1 vector. The *Nde*I/*Xhol* fragment of the PCR product containing the coding region of human ALDH3A1 was inserted into the *Nde*I and *Xhol* sites of the pET-26b(+) vector. doi:10.1371/journal.pone.0056582.g001

reached. Subsequently, 0.5 mM IPTG was added and the culture was further incubated at 37°C or 25°C for 6 hours.

pET-26b(+)/ALDH3A1 Vector Construction

The coding sequence of human ALDH3A1 was amplified once more from the *Δ*CEP4Δ/ALDH3A1 plasmid by PCR. The following two primers were designed so as to introduce an *Nde* restriction site at the 5' end and an *Xhol* restriction site at the 3' end of the ALDH3A1 coding sequence: forward primer: 5'-

Σχεδιασμός και μορφοποίηση άρθρου

- Πως διεξήχθη η έρευνα
- Θα πρέπει οι αναγνώστες να καταλαβαίνουν πλήρως τι έχουμε κάνει
- Θα πρέπει, εάν θελήσουν, να είναι σε θέση να αναπαράγουν τα πειράματα
- Αναφορά στην μέθοδο στατιστικής ανάλυσης
- 2-3 σελίδες

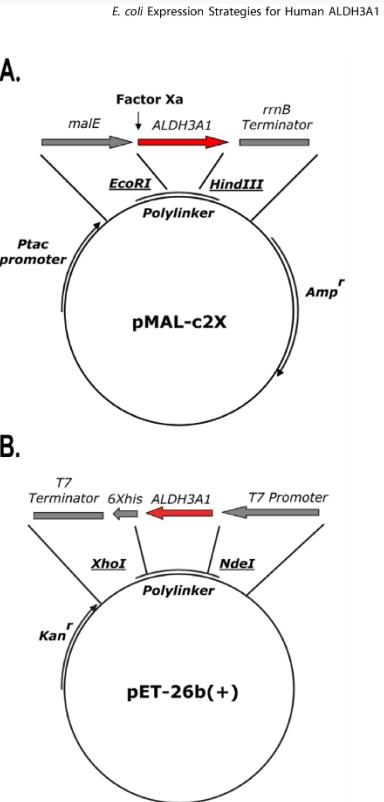
Σχεδιασμός και μορφοποίηση άρθρου

like maltose binding protein (MBP), can contribute to greater protein solubility [18,19], culture temperature conditions (during induction) also appear to be a detrimental factor in the production of native protein [20]. Furthermore, methods like auto-induction can be used for easier handling of cultures in combination with high protein yield [21] whereas co-expression of certain bacterial molecular chaperones can assist in the conformational process of the native protein [22].

In the present study, we report the expression of soluble MBP-fused and his-tagged recombinant human crystallin ALDH3A1 in substantial amounts, in *E. coli*, and their purification to homogeneity.

Materials and Methods

Materials


Vectors pMAL-c2X and pET-26b(+) were purchased by New England Biolabs (Beverly, MA, USA) and Novagen (EMD Millipore Corporation, Billerica, MA, USA) respectively. All primers were obtained by Invitrogen (Carlsbad, CA, USA) while the restriction enzymes and the chaperone plasmid set were from Takara (Shiga, Japan). *Pfu* polymerase and the DNA ligase kit were purchased from Fermentas (Burlington, ON, Canada). Amylose resin was purchased by New England Biolabs (Beverly, MA, USA), while Ni-NTA resin by Qiagen (Venlo, Netherlands). Medium for bacterial cultures along with antibiotics and inducers were purchased either from Applichem (Darmstadt, Germany) or from Sigma-Aldrich Co. (Taufkirchen, Germany). Protease inhibitors as well as the chemicals for the ALDH3A1 enzymatic activity were obtained by Sigma-Aldrich Co. For western blotting, PVDF membranes were purchased from Millipore (Bedford, MA, USA), whereas the chemiluminescence reagents were from Thermo Scientific (Rockford, IL, USA) and the autoradiography films from Genesee Scientific (San Diego, CA, USA). Rabbit polyclonal antibody against human ALDH3A1 was obtained from Abgent (San Diego, CA, USA) and the goat anti-rabbit IgG horseradish peroxidase conjugated antibody was purchased by Millipore (Bedford, MA, USA).

pMAL/ALDH3A1 Vector Construction

To construct the pMAL/ALDH3A1 expression vector, the ApCEP4Δ/ALDH3A1 plasmid (containing a full-length of human ALDH3A1 cDNA) was used as the template for the polymerase chain reaction [6,23]. The following two primers were synthesized in order to: (i) amplify the entire coding sequence and (ii) introduce an *Eco*RI restriction site at the 5' end and a *Hind*III site on the 3' end: 1st forward primer: 5'-CTGAATTCAGCAAGATCAGCGAG-3' and 2nd reverse primer: 5'-CTAAGCTT-1-CAGTGTCTGGGTCAT-3'. The PCR conditions for the amplification were: 94°C for 60 sec and further 94°C for 30 sec, 60°C for 60 sec, 72°C for 90 sec (for 30 cycles) and a final step at 72°C for 10 min. The *Eco*RI *Hind*III fragment of the PCR product was inserted into the *Eco*RI and *Eco*RI sites of the pMAL vector. The *Nde*I/*Xba*I fragment of the PCR product containing the coding region of human ALDH3A1 was inserted into the *Nde*I and *Xba*I sites of the pET-26b(+) vector. The resulting vector, pMAL/ALDH3A1 (Figure 1A) was verified by restriction digestion and sequencing from both ends of the inserted fragment.

ALDH3A1-MBP Tagged Expression

For the expression of ALDH3A1 protein tagged with MBP, BL21(+) *E. coli* cells were transformed with the pMAL/ALDH3A1 construct and incubated in LB broth (with 0.2% glucose and 100 µg/ml ampicillin for selection). The medium was inoculated with an overnight culture (1:100 dilution) and the culture was incubated under shaking at 37°C until an OD₆₀₀ = ~ 0.5 was

Figure 1. Cloning of the coding sequence of ALDH3A1 into the expression vectors. (A) Construction of the pMAL/ALDH3A1 vector. The *Hind*III/*Eco*RI fragment of the PCR product containing the coding region of human ALDH3A1 was inserted into the *Hind*III and *Eco*RI sites of the pMAL vector. (B) Construction of the pET-26b(+)ALDH3A1 vector. The *Nde*I/*Xba*I fragment of the PCR product containing the coding region of human ALDH3A1 was inserted into the *Nde*I and *Xba*I sites of the pET-26b(+) vector. doi:10.1371/journal.pone.0056582.g001

reached. Subsequently, 0.5 mM IPTG was added and the culture was further incubated at 37°C or 25°C for 6 hours.

pET-26b(+)/ALDH3A1 Vector Construction

The coding sequence of human ALDH3A1 was amplified once more from the ApCEP4Δ/ALDH3A1 plasmid by PCR. The following two primers were designed so as to introduce an *Nde*I restriction site at the 5' end and an *Xba*I restriction site at the 3' end of the ALDH3A1 coding sequence. 1st forward primer: 5'-

E. coli Expression Strategies for Human ALDH3A1

GGGAATTC**CATATG**AGCAAGATCAGCGAG-3' and, 2nd reverse primer: 5'-CCG**CTCGAG**TGCTGGTCAT-3'. The PCR conditions used for amplification were: initial denaturation at 95°C (90 sec), denaturation at 95°C (30 sec), annealing at 56°C (90 sec), extension at 72°C (120 sec) for 30 cycles and an extra step of 10 min incubation at 72°C. The *Nde*I/*Xba*I fragment of the PCR product was inserted into the *Nde*I and *Xba*I sites of the pET-26b(+) expression vector. The resulting vector of pET-26b(+)ALDH3A1 (Figure 1B) was verified by restriction digestion and sequencing from both ends of the inserted fragment.

ALDH3A1 his-tagged Expression

BL21(DE3) *E. coli* transformed with pET-26b(+)ALDH3A1 were cultured at 37°C, in the presence of 30 µg/ml kanamycin for plasmid selection, and when OD₆₀₀ reached ~ 0.5, 0.5 mM IPTG was added and incubation continued at 18–37°C for 6 hours.

Auto-induction

For auto-induction, ZYM-5052 medium was used containing 1% tryptone, 0.5% yeast extract, 25 mM Na₂HPO₄, 25 mM KH₂PO₄, 50 mM NH₄Cl, 5 mM Na₂SO₄, 2 mM MgSO₄, 0.5% glycerol, 0.05% glucose and 0.2% α -lactose as previously described [21]. An overnight culture of BL21(DE3) transformed with pET-26b(+)ALDH3A1 was used for inoculation at a dilution of 1:1000. Cultures were incubated (in ZYM-5052 medium with 100 µg/ml kanamycin) at 18°C, 25°C and 37°C, for 9 hours.

Molecular Chaperone Co-expression

The pET-26b(+)ALDH3A1 transformed BL21(DE3) *E. coli* were re-transformed with one of the set's plasmids: pG-KJE8, pGro7, pKJE7, pG-Tf2 and pTf16 and cultured in LB broth with 20 µg/ml chloramphenicol, along with 30 µg/ml kanamycin for the selection of the transformed clones. For protein expression, cells were incubated in shaking cultures at 37°C and in the presence of the appropriate chaperone inducer (0.5 mg/ml L-arabinose and/or 5 mg/ml tetracycline) for allowing the chaperones to be already expressed at the time of ALDH3A1 induction (Table 1). When culture reached OD₆₀₀ ~ 0.6, 0.5mM IPTG was added and the incubation proceeded for 6 hours at 25°C.

ALDH3A1 Enzymatic Activity

ALDH3A1 activity determinations were carried out using a spectrophotometer (Libra S22, Biochrom Ltd, Cambridge, UK) by monitoring NADPH production at 340 nm as described previously [6]. Briefly, a total of 1 ml reaction containing sodium

E. coli Expression Strategies for Human ALDH3A1

pyrophosphate (100 mM, pH 8.0), 1 mM pyrazole and 2.5 mM NADP⁺ (co-enzyme) and recombinant ALDH3A1 at various concentrations were prepared and incubated at 25°C. The reaction was initiated using benzaldehyde as a substrate (to a final concentration of 0.5 mM) and was monitored as an increase in NADPH at 340 nm for 5 min. Enzyme activity was calculated using a molar extinction coefficient of 6.22 mM⁻¹cm⁻¹ for NADPH. Enzyme specific activities are expressed as nmoles of NADPH/min/mg protein.

Purification of the ALDH3A1/MBP Recombinant Protein

Cells were harvested through centrifugation at 4,000xg, at 4°C for 20 min and lysed in 20 mM Tris-HCl pH 7.4, 200 mM NaCl and 1 mM EDTA (with the addition of the protease inhibitors: 100 µg/ml PMSF, 0.5 µg/ml leupeptin, 0.5 µg/ml aprotinin and 1 µg/ml pepstatin) by sonication for 3s using the UPT50H sonifier by Hielscher Ultrasonics GmbH (Teltow, Germany) at an intermediate setting (cycle 1, 70% amplitude). The lysates were cooled on ice for 30s and the procedure was repeated for a total of 6 cycles. Crude extract was isolated by centrifugation of samples at 9,000xg (4°C) for 30 min and further applied to an amylose resin column, already equilibrated with the lysis buffer. Recombinant protein was eluted after the addition of elution buffer with 10 mM maltose. The presence of ALDH3A1 throughout *E. coli* expression and purification steps was determined by SDS-PAGE and western blot analysis.

Purification of the ALDH3A1/6XHis Recombinant Protein

Cells were collected and placed in lysis buffer (50 mM Na₂HPO₄, 300 mM NaCl, 1% Tween-20, 20 mM imidazole, pH 8.0) in the presence of protease inhibitors as mentioned above. Purification was conducted via affinity chromatography, by Ni-NTA resin. For the two washes, the concentration of imidazole in the buffer was increased to 40 and 70mM respectively. Bounded protein was eluted through the addition of elution buffer (50 mM Na₂HPO₄, 300 mM NaCl, 300 mM imidazole, pH 8.0).

Western Blotting

Elution fractions of ALDH3A1 purification were subjected to SDS-PAGE electrophoresis. The separated proteins were then transferred to a PVDF membrane (Polyvinylidene, which was subsequently blocked with 5% of non-fat dry milk in TBS-T solution (100 mM Tris, 150 mM NaCl, 0.1% Tween-20). Membrane was subsequently incubated overnight (at 4°C) with the primary, polyclonal anti-ALDH3A1 antibody at a dilution of 1:500 in 5% non-fat dry milk in TBS-T, while the secondary horseradish peroxidase conjugated goat anti-rabbit IgG was used in a dilution

Table 1. Description of the chaperone plasmids used in the study.

Plasmid	Resistance Marker	Inducer	Chaperones	Molecular Weights
pG-KJE8	Chloramphenicol (20 µg/ml)	L-arabinose (0.5 mg/ml) tetracycline (5 ng/ml)	dnak-70 kDa dnaj-40 kDa grpE-22 kDa grpE-10 kDa groEL-60 kDa	dnak-70 kDa dnaj-40 kDa grpE-22 kDa grpE-10 kDa groEL-60 kDa
pGro7	Chloramphenicol (20 µg/ml)	L-arabinose (0.5 mg/ml)	groES-groEL	groES-10 kDa groEL-60 kDa
pKJE7	Chloramphenicol (20 µg/ml)	L-arabinose (0.5 mg/ml)	dnak-dnaj-grpE	dnak-70 kDa dnaj-40 kDa grpE-22 kDa
pG-Tf2	Chloramphenicol (20 µg/ml)	tetracycline (5 ng/ml)	groES-groEL/tig	groES-10 kDa groEL-60 kDa tig-56 kDa
pTf16	Chloramphenicol (20 µg/ml)	L-arabinose (0.5 mg/ml)	tig	tig-56 kDa

doi:10.1371/journal.pone.0056582.t001

Σχεδιασμός και μορφοποίηση άρθρου

of 1:5000 (1 hour incubation). Finally, the protein bands were visualized by the SuperSignal West Pico Chemiluminescent Substrate (Thermo Scientific) for alkaline phosphatase-conjugated secondary antibody as described by the manufacturer.

Results

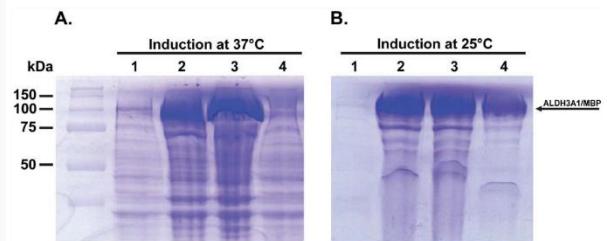
Expression of MBP Fused ALDH3A1 Leads to High Yield and Sufficient Solubility

Initially, we tested the expression of the MBP-tagged ALDH3A1, through the pMAL-c2X system, given that MBP is known to contribute to increased solubility of the heterologous produced proteins. As it is shown (Figure 2A), ALDH3A1 was expressed at high yields, but with extremely low solubility, when the induction occurred at 37°C (Table 2). After lowering cultivation temperature to 25°C, during induction time (a common strategy to overcome insolubility), significant improvement in ALDH3A1 solubility was observed by increasing from 2.5% at 37°C to 35.5% at 25°C (Figure 2B; Table 2). The recombinant MBP-fused ALDH3A1 was found to be functionally active when tested for the presence of ALDH3A1 enzymatic activity even though it was tagged with the 42kDa MBP (Table 3, specific activity of the crude extract).

Expression of his-tagged ALDH3A1 Leads to High Protein Yield but Insufficient Solubility

Although the MBP tag facilitated the expression of the target heterologous protein, there are further limitations considering the usage of the MBP-fused recombinant proteins including the fact that a number of assays do not allow for the use of a tag with the size of MBP. To this end, the usage of the specialized protease, factor Xa, could solve the problem but the required extra step of the purification process could be a limitation. Consequently, we sought to examine the expression of recombinant human ALDH3A1 fused with a rather smaller but very common 6-histidines tag. Although the resulted recombinant his-tagged ALDH3A1 was expressed at remarkably higher rates, almost the whole amount of the recombinant protein was insoluble and trapped into the inclusion bodies (Figure 3A, Table 2). Unlike the case of MBP-fused expression, lowering the induction temperature at 25°C (Figure 3B) and at 18°C (Figure 3C) did not improve significantly the solubility of the recombinant protein (Table 2).

E. coli Expression Strategies for Human ALDH3A1


Auto-induction Leads to Enhanced Expression Levels of his-tagged ALDH3A1 but Poor Solubility

In order to improve the solubility of the his-tagged recombinant ALDH3A1, we employed the auto-induction protocol described recently by Studier et al [21]. An important factor during heterologous protein expression is the need for a strict control of protein induction and the retention of cultures' viability for as long as possible. The auto-induction protocol requires specialized culture media which in combination with high rates of aeration allows for a firm hold of the induction, an equilibrated pH and a subsequent elongated viability even at extremely high cell densities. Isopropyl β-D-1-thiogalactopyranoside (IPTG) induction is not applied in this case, as glucose, glycerol and lactose are all included in the media. Glycerol is used as an efficient carbon and energy source, which contributes to the growth of cells. On the other hand, as long as glucose is available in the media and usually until the late log phase, bacteria do not metabolize lactose. Near saturation, though, and when glucose is depleted, cells metabolize lactose to the inducer allo-lactose and the induction of the protein begins then manually with no extra addition. Due to the high viability of cultures, the yield of recombinant protein is extremely high.

In the case of ALDH3A1, while the expression of the protein was sufficiently rich under conditions of auto-induction, almost all of the produced ALDH3A1 was found in the inclusion bodies, as inactive aggregates (Figure 4). The soluble fraction of the expressed ALDH3A1 estimated to represent approximately 3% of the induced protein at 37°C (Table 2). Lowering the temperature from 37°C to 25°C and 18°C did not improve any further the solubility of the recombinant protein (Figure 4; Table 2).

Molecular Chaperones' Co-expression Facilitates the Production of Soluble Recombinant his-tagged ALDH3A1

Molecular chaperones play an important role in the conformation process of newly synthesized proteins. In the case of heterologous expressed proteins, which commonly exhibit solubility problems and misfolding, the presence of chaperones could become even more of a necessity. *E. coli* affords a variety of proteins that could be characterized as chaperones, and amongst them, the GroEL/GroES and the DnaK/DnaJ/GrpE are considered to be key groups. The above, along with the Trigger factor could be co-

Figure 2. ALDH3A1 heterologous expression through the pMAL-c2X expression system. SDS-PAGE pattern showing induction of ALDH3A1 expression at (A) 37°C and (B) 25°C. Samples were subjected to SDS-PAGE and stained with Coomassie blue. Lane 1, whole cell lysate prior to IPTG induction; Lane 2, whole cell lysate 6 hours after IPTG induction; Lane 3, insoluble fraction; Lane 4: soluble fraction, respectively, 6 hours after IPTG induction. The arrow indicates the position of ALDH3A1/MBP protein.
doi:10.1371/journal.pone.0056582.g002

- Τι βρέθηκε
- Τι δείχνουν τα αποτελέσματα
- Φιγούρες και διαγράμματα
- Καλές επεξηγήσεις (Figure Legends) στις φιγούρες και τα διαγράμματα
- Κάνουμε περιγραφή των αποτελεσμάτων
- 2-3 σελίδες

Σχεδιασμός και μορφοποίηση άρθρου

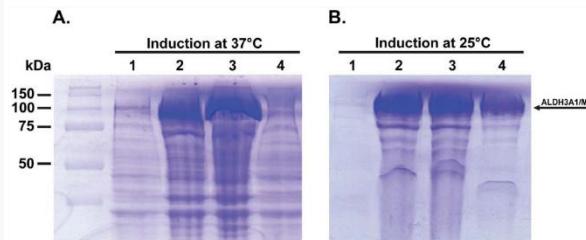
- Τα διαγράμματα να έχουν μπάρες τυπικής απόκλισης (όπου είναι εφικτό)
- Τα διαγράμματα πάντα με σύμβολο για την στατιστική σημαντικότητα (όπου είναι εφικτό)
- Στην λεζάντα αναφέρουμε τον αριθμό των επαναλήψεων (τουλάχιστον 3)
- Προτιμούμε τα απαλά χρώματα ή κάνουμε τα γραφήματα ασπρόμαυρα (πιο οικονομικό)

Σχεδιασμός και μορφοποίηση άρθρου

- Οι πίνακες να είναι ξεκάθαροι
- Οι τίτλοι των γραμμών και των στηλών επεξηγηματικοί και απλοί
- Δεν ξεχνάμε να αναφέρουμε τις μονάδες

Σχεδιασμός και μορφοποίηση άρθρου

of 1:5000 (1 hour incubation). Finally, the protein bands were visualized by the SuperSignal West Pico Chemiluminescent Substrate (Thermo Scientific) for alkaline phosphatase-conjugated secondary antibody as described by the manufacturer.


Results

Expression of MBP Fused ALDH3A1 Leads to High Yield and Sufficient Solubility

Initially, we tested the expression of the MBP tagged ALDH3A1, through the pMAL-c2X system, given that MBP is known to contribute to increased solubility of the heterologous produced proteins. As it is shown (Figure 2A), ALDH3A1 was expressed at high yields, but with extremely low solubility, when the induction occurred at 37°C (Table 2). After lowering cultivation temperature to 25°C, during induction time (a common strategy to overcome insolubility), significant improvement in ALDH3A1 solubility was observed by increasing from 2.5% at 37°C to 35.5% at 25°C (Figure 2B; Table 2). The recombinant MBP-fused ALDH3A1 was found to be functionally active when tested for the presence of ALDH3A1 enzymatic activity even though it was tagged with the 42kDa MBP (Table 3, specific activity of the crude extract).

Expression of his-tagged ALDH3A1 Leads to High Protein Yield but Insufficient Solubility

Although the MBP tag facilitated the expression of the target heterologous protein, there are further limitations considering the usage of the MBP-fused recombinant proteins including the fact that a number of assays do not allow for the use of a tag with the size of MBP. To this end, the usage of the specialized protease, factor Xa, could solve the problem but the required extra step of the purification process could be a limitation. Consequently, we sought to examine the expression of recombinant human ALDH3A1 fused with a rather smaller but very common 6-histidines tag. Although the resulted recombinant his-tagged ALDH3A1 was expressed at remarkably higher rates, almost the whole amount of the recombinant protein was insoluble and trapped into the inclusion bodies (Figure 3A, Table 2). Unlike the case of MBP-fused expression, lowering the induction temperature at 25°C (Figure 3B) and at 18°C (Figure 3C) did not improve significantly the solubility of the recombinant protein (Table 2).

Figure 2. ALDH3A1 heterologous expression through the pMAL-c2X expression system. SDS-PAGE pattern showing induction of ALDH3A1 expression at (A) 37°C and (B) 25°C. Samples were subjected to SDS-PAGE and stained with Coomassie blue. Lane 1, whole cell lysate prior IPTG induction; Lane 2, whole cell lysate 6 hours after IPTG induction; Lane 3, insoluble fraction; Lane 4: soluble fraction, respectively, 6 hours after IPTG induction. The arrow indicates the position of ALDH3A1/MBP protein.
doi:10.1371/journal.pone.0056582.g002

E. coli Expression Strategies for Human ALDH3A1

Auto-induction Leads to Enhanced Expression Levels of his-tagged ALDH3A1 but Poor Solubility

In order to improve the solubility of the his-tagged recombinant ALDH3A1, we employed the auto-induction protocol described recently by Studier et al [21]. An important factor during heterologous protein expression is the need for a strict control of protein induction and the retention of cultures' viability for as long as possible. The auto-induction protocol requires specialized culture media which in combination with high rates of aeration allows for a firm hold of the induction, an equilibrated pH and a subsequent elongated viability even at extremely high cell densities. Isopropyl β-D-1-thiogalactopyranoside (IPTG) induction is not applied in this case, as glucose, glycerol and lactose are all included in the media. Glycerol is used as an efficient carbon and energy source, which contributes to the growth of cells. On the other hand, as long as glucose is available in the media and usually until the late log phase, bacteria do not metabolize lactose. Near saturation, though, and when glucose is depleted, cells metabolize lactose to the inducer allo-lactose and the induction of the protein begins then manually with no extra addition. Due to the high viability of cultures, the yield of recombinant protein is extremely high.

In the case of ALDH3A1, while the expression of the protein was sufficiently rich under conditions of auto-induction, almost all of the produced ALDH3A1 was found in the inclusion bodies, as inactive aggregates (Figure 4). The soluble fraction of the expressed ALDH3A1 estimated to represent approximately 3% of the induced protein at 37°C (Table 2). Lowering the temperature from 37°C to 25°C and 18°C did not improve any further the solubility of the recombinant protein (Figure 4; Table 2).

Molecular Chaperones' Co-expression Facilitates the Production of Soluble Recombinant his-tagged ALDH3A1

Molecular chaperones play an important role in the conformation process of newly synthesized proteins. In the case of heterologous expressed proteins, which commonly exhibit solubility problems and misfolding, the presence of chaperones could become even more of a necessity. *E. coli* affords a variety of proteins that could be characterized as chaperones, and amongst them, the GroEL/GroES and the DnaK/DnaJ/GrpE are considered to be key groups. The above, along with the Trigger factor could be co-

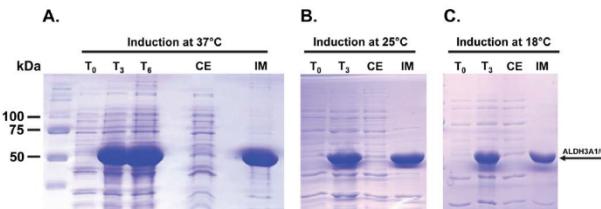
E. coli Expression Strategies for Human ALDH3A1

Table 2. Comparison of different *E. coli* strategies for production of soluble recombinant ALDH3A1.

Method of expression	Induction temperature (°C)	Solubility (% of the induced protein) ^a
ALDH3A1/MBP tagged	37	2.5±0.59
	25	35.47±3.29
ALDH3A1/6xHis tagged	37	2.02±0.57
	25	3.45±1.26
ALDH3A1/6xHis tagged (autoinduction)	18	2.73±0.48
	37	3.11±0.34
ALDH3A1/6xHis tagged pG-KJE8	25	4.02±0.11
	18	2.96±0.59
ALDH3A1/6xHis tagged pGro7	25	19.54±1.01
ALDH3A1/6xHis tagged pKE7	25	11.63±1.03
ALDH3A1/6xHis tagged pTF2	25	4.36±0.36
ALDH3A1/6xHis tagged pTF16	25	3.75±0.48
		6.29±1.01

^aThe % solubility values reported are mean of three different experiments.
doi:10.1371/journal.pone.0056582.t002

expressed with a heterologous protein and assist to its production in native and active forms. As these chaperone molecules are normally expressed at low levels in prokaryotic cells, heterologous over-expression of eukaryotic proteins with chaperones has been shown to improve the solubility of the overexpressed proteins in *E. coli* [24].


In this study, we used different combinations of chaperones to enhance the expression of the recombinant his-tagged ALDH3A1 in BL21(DE3) *E. coli* (Table 1). The solubility was improved in the cases of co-expression with the pG-KJE8 (approximately 20%), and pGro7 (approximately 12%) plasmids (Figure 5; Table 2). However, the expression levels of soluble his-tagged ALDH3A1 were significantly lower (3.7%) when the recombinant protein was co-expressed in the presence of pG-TF2 plasmid (Figure 5C; Table 2). On the other hand, negligible enhancement in solubility was observed when his-tagged ALDH3A1 was co-expressed with pTTF6 (approximately 6%) and pKE7 (approximately 4%) (Figure 5B/C; Table 2). Our results demonstrate that the presence of chaperone complexes especially those contain GroES and GroEL (e.g. plasmids pGKJE8 and pGro7) increased the solubility of the recombinant protein. In the presence of T₄ chaperone, the

solubility of his-tagged was significantly impeded. Combination of GroES/GroEL and DnaK/DnaJ/GrpE chaperone groups exhibited the most profound effect on his-tagged ALDH3A1 solubility. Lower induction temperatures or addition of ethanol did not facilitate any further the protein's solubility (data not shown).

Purification of the Recombinant Human Fused ALDH3A1 Hybrids

Recombinant human fused ALDH3A1 hybrids were produced and purified from *E. coli* using the MBP-fused expression strategy (under low temperature conditions during protein induction) and the his-tagged ALDH3A1 expression strategy (under conditions of co-expressing the pG-KJE8) both of which produced soluble recombinant ALDH3A1 at sufficient levels.

Purification of MBP-fused recombinant human ALDH3A1 was conducted with the use of affinity chromatography. Protein supernatant obtained from *E. coli* lysate was applied to amylose resin column in column buffer (see Methods). MBP-fused ALDH3A1 was then eluted from the column in the same buffer containing 10 mM maltose and appeared in the elution fractions (Figure 6). This convenient step of immobilized affinity chroma-

Figure 3. ALDH3A1 heterologous expression through the pET-26b(+) expression system. Induction at (A) 37°C, (B) 25°C and (C) 18°C. Samples were subjected to SDS-PAGE and stained with Coomassie blue. T₀: Total cell extract form bacterial culture prior of protein induction, T₃: Total cell extract 3 hours after induction, T₆: Total cell extract 6 hours after induction, CE: Crude extract of lysed cells 6 hours after induction, IM: Insoluble matter of lysed cells 6 hours after induction. The arrow indicates the position of ALDH3A1/6xHis protein.
doi:10.1371/journal.pone.0056582.g003

- Πως εξηγούνται τα αποτελέσματα
- Κάνουμε επεξήγηση των αποτελεσμάτων
- Συσχετίζουμε τα αποτελέσματα με παλαιότερη βιβλιογραφία
- Με ποιον τρόπο συμβάλλουν τα αποτελέσματα στο βιολογικό ερώτημα

- Μελλοντικοί στόχοι
- Δεν φοβόμαστε να αναφέρουμε έρευνες που είχαν αντίθετα αποτελέσματα
- Είμαστε ρεαλιστές με τα αποτελέσματα μας
- 2-3 σελίδες

Σχεδιασμός και μορφοποίηση άρθρου

E. coli Expression Strategies for Human ALDH3A1

Table 3. Purification of MBP-tagged recombinant human ALDH3A1 from *E. coli*.

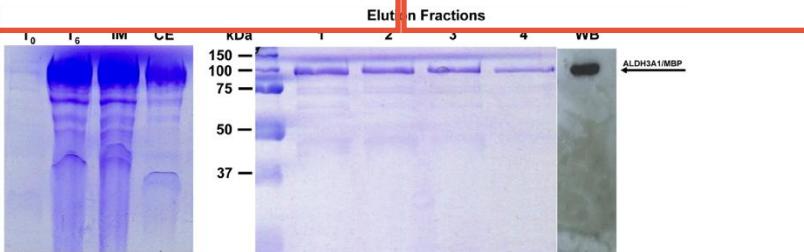
Purification Steps	Total Protein (mg)	Yield (%)	Specific Activity ^b (mU/mg protein)	Purification (fold)
Crude supernatant ^a	62.5	100	90	1
Amylose resin column	3.2	5.12	250	2.77

^aThe starting material was 250 ml of crude *E. coli* supernatant.

^bOne milliunit (mU) of activity was defined as the amount of activity that oxidized of 1 nmol of NADPH/min at 25°C. Representative results of three different isolation procedures.

doi:10.1371/journal.pone.0056582.t003

tagged recombinant human ALDH3A1 to homogeneity (Figure 7). The final yield was approximately 7% from the initial 36 mg of crude protein and purification of the recombinant protein was 5.8-fold (Table 4).


Discussion

Previous attempts to express active recombinant human ALDH3A1 in *E. coli* have failed primarily because of low solubility, yield and insufficient purity issues. In this study, we compared different *E. coli* fusion expression strategies (the MBP- and the 6-his-tagged expression) under various conditions intending to increase their efficiency for producing soluble recombinant ALDH3A1. We have shown that the MBP-tagged expression in combination with lower-temperature culture conditions resulted in active soluble recombinant ALDH3A1. Expression of the fused his-tagged ALDH3A1 protein resulted in poor solubility and neither lowering temperature culture conditions nor auto-induction conditions improved solubility. Furthermore, higher yield of soluble, fully active native form of his-tagged ALDH3A1 was facilitated through the co-expression of the two groups of *E. coli*'s molecular chaperones GroES/GroEL and DnaK/DnaJ/GrpE. Convenient one-step immobilized affinity chromatography methods were utilized to purify the fused ALDH3A1 hybrids to sufficient homogeneity. To our knowledge, this is only the second time that recombinant techniques have been used to produce human crystallin ALDH3A1. We have previously utilized the baculovirus expression system to produce recombinant human ALDH3A1 in order to overcome the insolubility problems

occurred at our initial attempts to express the protein in *E. coli*. The baculovirus infection system in Sf9 cells in combination with 5' AMP sepharose chromatography resulted to extremely high yield of recombinant ALDH3A1 with sufficient solubility [5]. However, while it is true that the baculovirus expression systems allow for high yields of structurally and functionally foreign proteins in insect cells, their high cost, complexity and requirement of specific equipment and trained personnel pose limitations thus providing reasoning for the development of alternative recombinant expression strategies.

Insolubility is the number one issue of recombinant proteins expressed in *E. coli*. The reason for this is believed to be their non-native, aggregation-prone conformation and their subsequent expression as inactive forms in the inclusion bodies. Important parameters include the interactions between the hydrophobic patches of newly synthesized unfolded polypeptides, which are influenced by the rate of protein synthesis along with the cellular microenvironment of expression. Therefore, factors considered important during protein synthesis are usually related with the expression vector used, the induction parameters and the cultivation conditions [17].

The selection of the appropriate tag for the fusion of the heterologous protein usually depends on the desired method of chromatography and the experimental needs of the protein's utilization. On the other hand, protein solubility depends on the type of the fusion tag to be used. Tags known for their contribution to solubility are the MBP, the NusA and the GST (glutathione S-transferase) [19]. MBP, in particular, is considered to be one the

Figure 6. Protein expression and purification of recombinant MBP fused ALDH3A1. SDS-PAGE analysis at various stages of purification of recombinant MBP-fused ALDH3A1 using amylose resin chromatography (Coomassie blue staining). T₀: Total cell extract form bacterial culture prior of protein induction, T₆: Total cell extract 6 hours after IPTG induction, IM: Insoluble matter of lysed cells 6 hours after IPTG induction, CE: Crude extract of lysed cells 6 hours after IPTG induction, Elution fractions: purified recombinant ALDH3A1 eluted from amylose resin column, WB: western immunoblotting of purified recombinant ALDH3A1/MBP. The arrow indicates the position of the MBP-fused ALDH3A1 recombinant protein at approximately 92 kDa.

doi:10.1371/journal.pone.0056582.g006

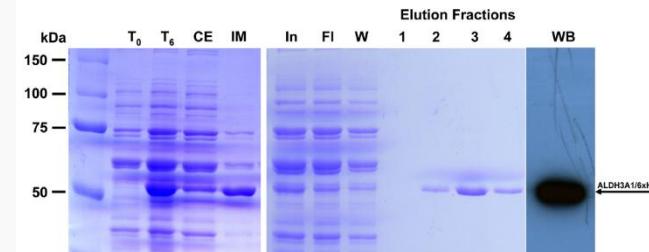
E. coli Expression Strategies for Human ALDH3A1

Table 4. Purification of his-tagged recombinant human ALDH3A1 from *E. coli*.

Purification Steps	Total Protein (mg)	Yield (%)	Specific Activity ^b (mU/mg protein)	Purification (fold)
Crude supernatant ^a	36	100	200	1
NI-NTA column	2.43	6.75	1150	5.75

^aThe starting material was 250 ml of crude *E. coli* supernatant.

^bOne milliunit (mU) of activity was defined as the amount of activity that oxidized of 1 nmol of NADPH/min at 25°C. Representative results of three different isolation procedures.


doi:10.1371/journal.pone.0056582.t004

most effective and has been widely used. Although, MBP appears to facilitate the correct formation of disulfide bonds in the newly synthesized proteins, the exact mechanism through which it improves the solubility of the target heterologous proteins remains unknown [25]. Indeed, in our case, the expression of MBP-fused ALDH3A1 in combination with lower induction temperature in *E. coli* resulted in much better solubility compared to his-tagged ALDH3A1 expression under all different strategies tested.

While the establishment of a highly productive system with strict control elements is a well known and crucial issue, another prominent, but often underestimated factor is the need for high cell density cultures with enhanced viability [16]. Even though *E. coli* cultures are easy to be cultivated, the limited sources of oxygen and nutrition elements as well as the increased energy needs under conditions of protein induction, lead to stress and inadequately operated metabolism. This is the reason why the induced protein expression occurs during the exponential rather than the stationary phase, but even in this case, problems could also occur and the yield of production could be significantly restrained [13]. Auto-induction, a technique introduced by Studier et al [21], was designed so as to solve the above restrictions. Contrary to the classic method, protein expression is induced near saturation phase, when cultures have a high cell density, by lactose supplementation in the media instead of IPTG. Induction prior to saturation is prevented by glucose. The specially formulated media required along with proper aeration conditions are responsible for balancing the pH of the cell cultures and the growth of cells to extremely high densities without loss of viability.

Considering cultivation conditions, several different strategies have been demonstrated, in everyday laboratory practice, for the enhancement of protein solubility. The most commonly and easily tested one is with no doubt the low-temperature culture which was proved to be miraculous in a variety of cases [20,33] including ours as well by enhancing the solubility of the MBP-fused ALDH3A1. On the other hand, temperature is known to correlate with the production of active protein through a variety of mechanisms. Hydrophobic interactions, the basic driving force of inclusion bodies formation depend on temperature. Furthermore, (i) the temperature-dependent expression of molecular chaperones, (ii) the reduction of protein synthesis rate, (iii) the different folding kinetics and (iv) the lower activity of specific proteases [17,18] can also contribute to the enhanced yield of active recombinant proteins.

Co-expressing the recombinant protein with chaperones has been exploited as the most effective way and a quality control

Figure 7. Protein expression and purification of recombinant his-tagged ALDH3A1. SDS-PAGE analysis at various stages of purification of recombinant his-fused ALDH3A1 using NI-affinity chromatography (Coomassie blue staining). T₀: Total cell extract form bacterial culture co-expressing pG-KUB along with ALDH3A1 prior to IPTG induction, T₆: Total cell extract 6 hours after IPTG induction, IM: Insoluble matter of lysed cells 6 hours after IPTG induction, WB: western immunoblotting of purified recombinant ALDH3A1/6xHis. The arrow indicates the position of the recombinant his-tagged ALDH3A1 at approximately 51 kDa.

doi:10.1371/journal.pone.0056582.g007

Σχεδιασμός και μορφοποίηση άρθρου

E. coli Expression Strategies for Human ALDH3A1

system to increase the solubility of recombinant proteins in *E. coli* [34-37]. Molecular chaperones facilitate the correct conformation of newly synthesized proteins and contribute in the retention of their native folding. Among them, DnaK/DnaJ/GpE along with GroES/GroEL are the most commonly used systems for the expression of soluble proteins [22,38]. Basically, they are ATP-dependent folding chaperones which induce the partial unfolding and re-folding of non-native proteins [17]. Trigger factor, on the other hand, associates with the synthesized proteins as soon as they leave ribosome and through its interaction with their exposed hydrophobic patches averts their subsequent aggregation [14,38]. Co-expression of molecular chaperones resulted in enhanced solubility and production of recombinant rice plant catalase A [39] active ribonuclease inhibitor [40], human scramblase 1 [41] and zeta-crystallin [42]. Solubility of his-tagged ALDH3A1 was significantly improved under conditions of co-expressing the pGK-JE8) suggesting that DnaK/dnaJ/gpE and groES/groEL are the essential chaperones for the correct folding of recombinant human ALDH3A1 (his-tagged ALDH3A1) when over-expressed in *E. coli*.

In summary, soluble MBP-fused and his-tagged recombinant human ALDH3A1 proteins have been successfully expressed in *E.*

coli and purified to homogeneity. Both fusion proteins retained their biological activity and so can be used directly without removing the fusion tags. The methods described in this study permit the production of substantial amounts of the recombinant human ALDH3A1 for conducting functional studies on the biological role of this interesting crystallin, which exists in high concentrations in the cornea of certain mammalian species.

Acknowledgments

This study represents part of the doctoral thesis of Ms Georgia-Persephoni Voulgaridou. The authors would like to thank Dr. Vasiliki Fadouloglou for her valuable advice and suggestions.

Author Contributions

Conceived and designed the experiments: AP MP GPV KC. Performed the experiments: GPV TM. Analyzed the data: GPV TM AP. Contributed reagents/materials/analysis tools: AP MP KC. Wrote the paper: GPV AP MP.

References

1. Estey T, Blaikie J, Lassen N, Vasiliou V (2007) ALDH3A1: a corneal crystallin with diverse functions. *Exp Eye Res* 84: 3–12.
2. Pappa A, Sophas NA, Vasiliou V (2001) Corneal and stomach expression of aldehyde dehydrogenases: from fish to mammals. *Chem Biol Interact* 130–132: 181–191.
3. Piatigorsky J (2001) Enigma of the abundant water-soluble cytoplasmic proteins of the cornea: the “refract” hypothesis. *Cornea* 20: 833–837.
4. Piatigorsky J (2000) Review: A case for corneal crystallins. *J Ocul Pharmacol Ther* 16: 173–180.
5. Pappa A, Estey T, Manzer B, Brown D, Vasiliou V (2003) Human aldehyde dehydrogenase 3A1 (ALDH3A1): biochemical characterization and immunohistochemical localization in the cornea. *Biochem J* 376: 613–623.
6. Pappa A, Chen G, Manzer Y, Tsoi M, Al-Jasini N, Vasiliou V (2003) Aldh3a1 protects human corneal epithelial cells from ultraviolet B-induced 4-hydroxy-2-nonenal-induced oxidative damage. *Free Radic Biol Med* 34: 1178–1189.
7. Black W, Chen Y, Matsumoto A, Thompson DC, Lassen N, et al. (2012) Molecular mechanisms of ALDH3A1-mediated cellular protection against 4-hydroxy-2-nonenal. *Free Radic Biol Med* 52: 1937–1944.
8. Atherton SJ, Lambert G, Schultz J, Williams N, Zigmund S (1999) Fluorescence studies of lens epithelial cells and their constituents. *Photochem Photobiol* 70: 823–828.
9. Estey T, Cantore M, Weston PA, Carpenter JF, Petrasch JM, et al. (2007) Mechanisms involved in the protection of UV-induced protein inactivation by the corneal crystallin ALDH3A1. *J Biol Chem* 282: 4382–4392.
10. Uina L, Hariharan J, Sharma Y, Balasubramanian D (1996) Corneal aldehyde dehydrogenase displays antioxidant properties. *Exp Eye Res* 63: 117–120.
11. Lassen N, Estey JB, Estey T, Kuzsak JR, Neff DW, et al. (2007) Multiple and distinct functions of ALDH3A1 and ALDH1A1: cataract phenotype and ocular oxidative damage in ALDH3A1(−/−) / ALDH1A1(−/−) knockout mice. *J Biol Chem* 282: 25668–25676.
12. Pappa A, Brown D, Koutoulas Y, DeGregori J, White G, et al. (2005) Human aldehyde dehydrogenase 3A1 inhibits proliferation and promotes survival of human corneal epithelial cells. *J Biol Chem* 280: 27998–28006.
13. Chou CP (2007) Engineering cell physiology to enhance recombinant protein production in *Escherichia coli*. *Appl Microbiol Biotechnol* 76: 521–532.
14. Sorensen HP, Mortensen KK (2005) Advanced genetic strategies for recombinant protein expression in *Escherichia coli*. *J Biotechnol* 113: 113–128.
15. de Marco A, Deuerling E, Mogk A, Tomoyasu T, Bukan B (2007) Chaperone-based procedure to increase yields of soluble recombinant proteins produced in *E. coli*. *BMC Biotechnol* 7: 32.
16. Islam RS, Tsi D, Levy MS, Lye GJ (2007) Framework for the rapid optimization of soluble protein expression in *Escherichia coli* combining microscale experiments and statistical experimental design. *Biotechnol Prog* 23: 705–708.
17. Saludey S, Khatar SK, Saini KS (2008) Production of active eukaryotic proteins through bacterial expression systems: a review of the existing biotechnology strategies. *Mol Cell Biochem* 307: 249–264.
18. Georgiou G, Vali V (1996) Expression of correctly folded proteins in *Escherichia coli*. *Curr Opin Biotechnol* 7: 190–197.
19. Gao W, Cao L, Jia Z, Wu G, Li T, et al. (2011) High level soluble production of functional ribonuclease inhibitor in *Escherichia coli* by fusing it to soluble partners. *Protein Expr Purif* 77: 185–192.
20. Semb H, Ichijo E, Imanaka T, Atomi H, Aoyagi H (2010) Efficient production of active form recombinant cassava hydroxynitrile-lyase using *Escherichia coli* in low-temperature culture. *Methods Mol Biol* 643: 133–144.
21. Studier FW (2000) Protein production by auto-induction in high density shaking cultures. *Protein Expr Purif* 21: 207–234.
22. Nishihara K, Kanemori M, Kitaigawa M, Yanagi H, Yura T (1998) Chaperone coexpression plasmids: differential and synergistic roles of DnaK-DnaJ-GpE and GroEL-GroS in assisting folding of an allergen of Japanese cedar pollen, Cryj2, in *Escherichia coli*. *Appl Environ Microbiol* 64: 1694–1699.
23. Bunting KD, Townsend AJ (1996) Protection by transfected rat or human class 3 aldehyde dehydrogenase against the cytotoxic effects of oxazaphosphorine alkylating agents in hamster V79 cell lines. Demonstration of aldehydesphosphamide mechanism by the human cytosolic class 3 isozyme. *J Biol Chem* 271: 11891–11896.
24. Ma N, Wei L, Fan Y, Hua Q (2012) Heterologous expression and characterization of soluble recombinant 3-deoxy-D-arabinohexitulonate-2-phosphate synthase from *Actinomyces pectinissim ssp. auranticum* ATCC31563 through coexpression with Chaperones in *Escherichia coli*. *Protein Expr Purif* 82: 263–269.
25. Tait AR, Stratis SK (2011) Overexpression and purification of U24 from human herpesvirus type-6 in *E. coli*: unconventional use of oxidizing environments with a malate binding protein-hexahistidine dual tag to enhance membrane protein yield. *Microb Cell Fact* 10: 51.
26. Yu S, Wang Y, Liu Y, Mo W, Song H, et al. (2009) Expression and purification of APRIL by auto-induction. *Protein Expr Purif* 68: 49–53.
27. Renner JN, Kim Y, Cherry KM, Liu JC (2011) Modular cloning and protein expression of long, repetitive resin-based proteins. *Protein Expr Purif*.
28. Li Z, Chen W, Liu R, Hu X, Ding Y (2010) A novel method for high-level production of damage repair protein Aldh3a1(−/−) / Aldh1a1(−/−) knockout mice. *J Biol Chem* 285: 25668–25676.
29. Wang X, Hall H, Ernst HA, Egelbrecht J, Christensen KV, et al. (2010) Overexpression, purification, and characterization of an Asc-1 homologue from *Gloeo bacter violaceus*. *Protein Expr Purif* 71: 179–183.
30. Nishi K, Kim IH, Ma SJ (2010) Expression of the human soluble epoxide hydrolase in *Escherichia coli* by auto-induction for the study of high-throughput inhibition assays. *Protein Expr Purif* 69: 34–38.
31. Tu W, Cai K, Gao X, Xiao L, Chen R, et al. (2009) Improved production of holoenzin Sr2 with biological activities by using a single-promoter vector and an auto-induction expression system. *Protein Expr Purif* 67: 169–174.
32. Harrois T, Rousset M, Rognaus H, Zal F (2009) High-level production of recombinant *Arenicola marina* globin chains in *Escherichia coli*: a new generation of blood substitute. *Artif Cells Blood Subst Immobil Biotechnol* 37: 106–116.
33. Gao W, Saini KS, Aghajanian N (2010) A strategy for the production of soluble human serine/cysteine-rich protein-30 in *Escherichia coli*. *Biochem Biophys Res Commun* 393: 500–513.
34. Hartl FU, Martin J (1995) Molecular chaperones in cellular protein folding. *Curr Opin Struct Biol* 5: 92–102.
35. Welch WJ, Brown CR (1996) Influence of molecular and chemical chaperones on protein folding. *Curr Opin Cell Biol* 8: 109–115.
36. Young JC, Agadjanyan VR, Siegers K, Hartl FU (2004) Pathways of chaperone-mediated protein folding in the cytosol. *Nat Rev Mol Cell Biol* 5: 781–791.

- Δεν ξεχνάμε να αναφέρουμε όσους μας βοήθησαν
- Πάντα αναφέρουμε την χρηματοδότηση

Σχεδιασμός και μορφοποίηση άρθρου

E. coli Expression Strategies for Human ALDH3A1

system to increase the solubility of recombinant proteins in *E. coli* [34-37]. Molecular chaperones facilitate the correct conformation of newly synthesized proteins and contribute in the retention of their native folding. Among them, DnaK/DnaJ/GpE along with GroES/GroEL are the most commonly used systems for the expression of soluble proteins [22,38]. Basically, they are ATP-dependent folding chaperones which induce the partial unfolding and re-folding of non-native proteins [17]. Trigger factor, on the other hand, associates with the synthesized proteins as soon as they leave ribosome and through its interaction with their exposed hydrophobic patches averts their subsequent aggregation [14,38]. Co-expression of molecular chaperones resulted in enhanced solubility and production of recombinant rice plant catalase A [39] active ribonuclease inhibitor [40], human scramblase 1 [41] and zeta-crystallin [42]. Solubility of his-tagged ALDH3A1 was significantly improved under conditions of co-expressing the pGK-KJE8 suggesting that dnaK/dnaJ/gpE and groES/groEL are the essential chaperones for the correct folding of recombinant human ALDH3A1 (his-tagged ALDH3A1) when over-expressed in *E. coli*.

In summary, soluble MBP-fused and his-tagged recombinant human ALDH3A1 proteins have been successfully expressed in *E. coli*.

References

1. Estey T, Piatigorsky J, Lassen N, Vasiliou V (2007) ALDH3A1: a corneal crystallin with diverse functions. *Exp Eye Res* 84: 3-12.
2. Pappa A, Sophas NA, Vasiliou V (2001) Corneal and stomach expression of aldehyde dehydrogenases: from fish to mammals. *Chem Biol Interact* 130-132: 181-191.
3. Piatigorsky J (2001) Enigma of the abundant water-soluble cytoplasmic proteins of the cornea: the "refraction" hypothesis. *Cornea* 20: 833-837.
4. Piatigorsky J (2000) Review: A case for corneal crystallins. *J Ocul Pharmacol Ther* 16: 173-180.
5. Pappa A, Estey T, Manzer R, Brown D, Vasiliou V (2003) Human aldehyde dehydrogenase 3A1 (ALDH3A1): biochemical characterization and immunohistochemical localization in the cornea. *J Toxicol Sci* 28: 613-623.
6. Pappa A, Chen G, Manzer Y, Tsoyko A, Vasiliou V (2003) Aldh3A1 protects human epithelial cells from ultraviolet B 4-hydroxy-2-nonenal-induced oxidative damage. *Free Radic Biol Med* 34: 1178-1189.
7. Black W, Chen Y, Matsumoto A, Thompson DC, Lassen N, et al. (2012) Molecular mechanisms of ALDH3A1-mediated cellular protection against 4-hydroxy-2-nonenal. *Free Radic Biol Med* 52: 1937-1944.
8. Atherton SJ, Lambert G, Schultz J, Williams N, Zigmaj S (1999) Fluorescence studies of lens epithelial cells and their constituents. *Photochem Photobiol* 70: 823-828.
9. Estey T, Cantore M, Weston PA, Carpenter JF, Petrasch JM, et al. (2007) Mechanisms involved in the protection of UV-induced protein inactivation by the corneal crystallin ALDH3A1. *J Biol Chem* 282: 4382-4392.
10. Uina L, Hariharan J, Sharma Y, Balasubramanian D (1996) Corneal aldehyde dehydrogenase displays antioxidant properties. *Exp Eye Res* 63: 117-128.
11. Lassen N, Estey T, Hariharan J, Neff DW, et al. (2007) Multiple and distinct functions of ALDH3A1 and ALDH3A1: catarract phenotype and ocular oxidative damage in ALDH3A1(-/-) and ALDH3A1(-/-) knock-out mice. *J Biol Chem* 282: 25608-25616.
12. Pappa A, Brown D, Koutoulas Y, DeGregori J, White G, et al. (2005) Human aldehyde dehydrogenase 3A1 inhibits proliferation and promotes survival of human corneal epithelial cells. *J Biol Chem* 280: 27998-28006.
13. Chon CP (2007) Engineering cell physiology to enhance recombinant protein production in *Escherichia coli*. *Appl Microbiol Biotechnol* 76: 521-532.
14. Sorensen HP, Mortensen KK (2005) Advanced genetic strategies for recombinant protein expression in *Escherichia coli*. *J Biotechnol* 113: 113-128.
15. de Marco A, Deuerling E, Mogk A, Tomoyasu T, Bukan B (2007) Chaperone-based procedure to increase yields of soluble recombinant proteins produced in *E. coli*. *BMC Biotechnol* 7: 32.
16. Islam RS, Tsi D, Levy MS, Lye GJ (2007) Framework for the rapid optimization of soluble protein expression in *Escherichia coli* combining microscale experiments and statistical experimental design. *Biotechnol Prog* 23: 705-708.
17. Saludeen SK, Khatar SK, Saini KS (2008) Production of active eukaryotic proteins through bacterial expression systems: a review of the existing biotechnology strategies. *Mol Cell Biochem* 307: 249-264.
18. Georgiou G, Vali V (1996) Expression of correctly folded proteins in *Escherichia coli*. *Curr Opin Biotechnol* 7: 190-197.
19. Gao W, Cao L, Jia Z, Wu G, Li T, et al. (2011) High level soluble production of functional ribonuclease inhibitor in *Escherichia coli* by fusing it to soluble partners. *Protein Expr Purif* 77: 185-192.
20. Saito H, Ichijo E, Imanaka T, Atomi H, Aoyagi H (2010) Expression of a native form recombinant cassava hydroxynitrile lyase using low-temperature culture. *Methods Mol Biol* 643: 133-144.
21. Studier FW (2000) Protein production by auto-induction in cultures. *Protein Expr Purif* 21: 207-234.
22. Nishihara S, Kanemori M, Kitaogawa M, Yanagi H, Yura T (2002) Coexpression of plasmids: differential and synergistic roles of GroEL/GroES and DnaK/DnaJ in assisting folding of an allergen of *Jas Cryst* in *Escherichia coli*. *Appl Environ Microbiol* 68: 165-170.
23. Bunting KD, Tomkowiak AJ (1996) Protection by transfected aldehyde dehydrogenase against the cytotoxic effects of alkylating agents in transfecter V79 cell lines. Demonstration of mechanism by the human cytosolic class 3 isozyme. *J Biol Chem* 271: 11899-11906.
24. Ma N, Wei L, Fang J, Hua Q (2012) Heterologous characterization of soluble recombinant 3-deoxy-D-arabino-phosphate synthase from *Actinomyces pectinissimum* ATCC31563 through co-expression with Chaperones. *Protein Expr Purif* 82: 263-269.
25. Tait AR, Stratis SK (2011) Overexpression and purification of hepatitis type-c in *E. coli*: unconventional use of oxidized in a maltooligosaccharide-binding protein-bead-binding dual tag to enhance yield. *Microb Cell Fact* 10: 51.
26. Yu S, Wang Y, Liu Y, Mo W, Song H, et al. (2009) Expression of RAB10 by auto-induction. *Protein Expr Purif* 68: 49-53.
27. Renner JN, Kim Y, Cherry KM, Liu JC (2011) Modular expression of long, repetitive resistin-based proteins. *Protein Expr Purif* 77: 17-22.
28. Li Z, Chen W, Liu R, Hu X, Ding Y (2010) A novel method to express recombinant human ALDH3A1 in *Escherichia coli* using T7 alkaline phosphatase. *Protein Expr Purif* 77: 217-222.
29. Wang X, Hall H, Ernst HA, Egelbjerg J, Christensen KV (2009) Expression, purification and characterization of an *Aspergillus glaucostachyus* protein. *Protein Expr Purif* 71: 179-183.
30. Nishi K, Kim H, Ma SJ (2010) Expression of the human hyaluronidase in *Escherichia coli* by auto-induction for the study inhibition assays. *Protein Expr Purif* 69: 34-38.
31. Tu W, Cai K, Gao X, Xiao L, Chen R, et al. (2009) Improved production of holotoxin Stx2 with biological activities by using a single-promoter vector and an auto-induction expression system. *Protein Expr Purif* 67: 169-174.
32. Harrois T, Rousselot M, Rognaus H, Zal F (2009) High-level production of recombinant *Arenicola marina* globin chains in *Escherichia coli*: a new generation of blood substitute. *Artif Cells Blood Subst Immobil Biotechnol* 37: 106-116.
33. Islam RS, Saini KS, Chilkur BN (2010) A strategy for the production of soluble human serine/arginine-rich protein-30 in *Escherichia coli*. *Biochem Biophys Res Commun* 393: 500-513.
34. Hartl FU, Martin J (1995) Molecular chaperones in cellular protein folding. *Curr Opin Struct Biol* 5: 92-102.
35. Welch WJ, Brown CR (1996) Influence of molecular and chemical chaperones on protein folding. *Curr Opin Cell Biol* 8: 109-115.
36. Young JC, Agadjanyan VR, Siegers K, Hartl FU (2004) Pathways of chaperone-mediated protein folding in the cytosol. *Nat Rev Mol Cell Biol* 5: 781-791.

Acknowledgments

This study represents part of the doctoral thesis of Ms Georgia-Persephoni Voulgaridou. The authors would like to thank Dr. Vasiliki Fadouoglou for her valuable advice and suggestions.

Author Contributions

Conceived and designed the experiments: AP MP GPV KC. Performed the experiments: GPV TM. Analyzed the data: GPV TM AP. Contributed reagents/materials/analysis tools: AP MP KC. Wrote the paper: GPV AP MP.

Acknowledgments

This study represents part of the doctoral thesis of Ms Georgia-Persephoni Voulgaridou. The authors would like to thank Dr. Vasiliki Fadouoglou for her valuable advice and suggestions.

Author Contributions

Conceived and designed the experiments: AP MP GPV KC. Performed the experiments: GPV TM. Analyzed the data: GPV TM AP. Contributed reagents/materials/analysis tools: AP MP KC. Wrote the paper: GPV AP MP.

- Δεν ξεχνάμε να αναφέρουμε τις πηγές μας
- Δεν παίρνουμε αυτούσια κομμάτια από άλλες δουλειές
- Όταν πρέπει αναγκαστικά να αναφέρουμε κάτι αυτούσια, πάντα βάζουμε εισαγωγικά

Βιβλιογραφία/References

- Οι πηγές αναφέρονται και για εικόνες που δανειζόμαστε και για τις μεθόδους
- Δεν βάζουμε αυτούσιες φιγούρες ή σχεδιαγράμματα από τις πηγές
- Μεγάλη προσοχή στην λογοκλοπή (plagiarism)

Σχεδιασμός και μορφοποίηση άρθρου

- Προσέχουμε οι πηγές μας να είναι ακριβείς
- Ελέγχουμε την εγκυρότητα των πηγών μας
- Προτιμούμε πηγές από αξιόπιστα περιοδικά
- Δεν χρησιμοποιούμε πολύ παλιά βιβλιογραφία
- Η μορφή της βιβλιογραφίας καθορίζεται από το περιοδικό
- Υπάρχουν ειδικά προγράμματα για την δημιουργία βιβλιογραφίας (π.χ. Endnote, Reference manager)

Σχεδιασμός και μορφοποίηση άρθρου

E. coli Expression Strategies for Human ALDH3A1

system to increase the solubility of recombinant proteins in *E. coli* [34–37]. Molecular chaperones facilitate the correct conformation of newly synthesized proteins and contribute in the retention of their native folding. Among them, DnaK/DnaJ/GpE along with GroES/GroEL are the most commonly used systems for the expression of soluble proteins [22,38]. Basically, they are ATP-dependent folding chaperones which induce the partial unfolding and re-folding of non-native proteins [17]. Trigger factor, on the other hand, associates with the synthesized proteins as soon as they leave ribosome and through its interaction with their exposed hydrophobic patches averts their subsequent aggregation [14,38]. Co-expression of molecular chaperones resulted in enhanced solubility and production of recombinant rice plant catalase A [39] active ribonuclease inhibitor [40], human scramblase 1 [41] and zeta-crystallin [42]. Solubility of his-tagged ALDH3A1 was significantly improved under conditions of co-expressing the pGK-JE8) suggesting that DnaK/DnaJ/gpE and groES/groEL are the essential chaperones for the correct folding of recombinant human ALDH3A1 (his-tagged ALDH3A1) when over-expressed in *E. coli*.

In summary, soluble MBP-fused and his-tagged recombinant human ALDH3A1 proteins have been successfully expressed in *E.*

coli and purified to homogeneity. Both fusion proteins retained their biological activity and so can be used directly without removing the fusion tags. The methods described in this study permit the production of substantial amounts of the recombinant human ALDH3A1 for conducting functional studies on the biological role of this interesting crystallin, which exists in high concentrations in the cornea of certain mammalian species.

Acknowledgments

This study represents part of the doctoral thesis of Ms Georgia-Persephoni Voulgaridou. The authors would like to thank Dr. Vasiliki Fadouloglou for her valuable advice and suggestions.

Author Contributions

Conceived and designed the experiments: AP MP GPV KC. Performed the experiments: GPV TM. Analyzed the data: GPV TM AP. Contributed reagents/materials/analysis tools: AP MP KC. Wrote the paper: GPV AP MP.

References

1. Estey T, Blaigiey J, Lassen N, Vasiliou V (2007) ALDH3A1: a cornel crystallin with diverse functions. *Exp Eye Res* 84: 3–12.
2. Pappa A, Sopos NA, Vasiliou V (2001) Corneal and stomach expression of aldehyde dehydrogenases: from fish to mammals. *Chem Biol Interact* 130–132: 181–191.
3. Piatigorsky J (2001) Enigma of the abundant water-soluble cytoplasmic proteins of the cornea: the “refracton” hypothesis. *Cornea* 20: 833–837.
4. Piatigorsky J (2000) Review: A case for cornel crystallins. *J Ocul Pharmacol Ther* 16: 173–180.
5. Pappa A, Estey T, Manzer D, Vasiliou V (2003) Human aldehyde dehydrogenase 3A1 (ALDH3A1): biochemical characterization and immunohistochemical localization in the cornea. *Biochem J* 376: 613–623.
6. Pappa A, Chen G, Manzer Y, Manzer AJ, Vasiliou V (2003) Aldh3A1 protects human corneal epithelial cells from ultraviolet 4-hydroxy-2-nonenal-induced oxidative damage. *Free Radic Biol Med* 34: 1178–1189.
7. Black W, Chen Y, Matsumoto A, Thompson DC, Lassen N, et al. (2012) Molecular mechanisms of ALDH3A1-mediated cellular protection against 4-hydroxy-2-nonenal. *Free Radic Biol Med* 52: 1937–1944.
8. Atherton SJ, Lambert G, Schultz J, Williams N, Ziegman S (1999) Fluorescence studies of lens epithelial cells and their constituents. *Photoclinic Photol* 7: 823–828.
9. Estey T, Cantore M, Weston PA, Carpenter JF, Petrasch JM, et al. (2007) Mechanisms involved in the protection of UV-induced protein inactivation by the cornel crystallin ALDH3A1. *J Biol Chem* 282: 4382–4392.
10. Uma L, Hariharan J, Sharma Y, Balasubramanian D (1996) Corneal aldehyde dehydrogenases display antioxidant properties. *Exp Eye Res* 63: 117–128.
11. Lassen N, Estey JB, Estey T, Kuzsak JR, Neet DW, et al. (2007) Multiple and additive functions of ALDH3A1 and ALDH1A1: cataract phenotype and ocular oxidative damage in ALDH3A1(−/−) ALDH1A1(−/−) knockout mice. *J Biol Chem* 282: 25608–25616.
12. Pappa A, Brown D, Koutoulas Y, DeGregori J, White G, et al. (2005) Human aldehyde dehydrogenase 3A1 inhibits proliferation and promotes survival of human corneal epithelial cells. *J Biol Chem* 280: 27998–28006.
13. Chen CP (2007) Engineering cell physiology to enhance recombinant protein production in *Escherichia coli*. *Appl Microbiol Biotechnol* 76: 521–532.
14. Sorensen HP, Mortensen KK (2005) Advanced genetic strategies for recombinant protein expression in *Escherichia coli*. *J Biotechnol* 113: 113–128.
15. de Marco A, Deuerling E, Mogk A, Tomoyasu T, Bukan B (2007) Chaperone-based procedure to increase yields of soluble recombinant proteins produced in *E. coli*. *BMC Biotechnol* 7: 32.
16. Islam RS, Tsi D, Levy MS, Lye GJ (2007) Framework for the rapid optimization of soluble protein expression in *Escherichia coli* combining microscale experiments and statistical experimental design. *Biotechnol Prog* 23: 705–708.
17. Saludey S, Khatar SK, Saini KS (2008) Production of active eukaryotic proteins through bacterial expression systems: a review of the existing biotechnology strategies. *Mol Cell Biochem* 307: 249–264.
18. Georgiou G, Vali V (1996) Expression of correctly folded proteins in *Escherichia coli*. *Curr Opin Biotechnol* 7: 190–197.
19. Gao W, Cao L, Jia Z, Wu G, Li T, et al. (2011) High level soluble production of functional ribonuclease inhibitor in *Escherichia coli* by fusing it to soluble partners. *Protein Expr Purif* 77: 185–192.
20. Semb H, Jelbegg I, Imanaka T, Atomi H, Aoyagi H (2010) Efficient production of active form recombinant cassava hydroxynitrile lyase using *Escherichia coli* in low-temperature culture. *Methods Mol Biol* 643: 133–144.
21. Studier FW (2000) Protein production by auto-induction in high density shaking cultures. *Protein Expr Purif* 21: 207–234.
22. Nishihara K, Kanemori M, Kitaigawa M, Yanagi H, Yura T (1998) Chaperone coexpression plasmids: differential and synergistic roles of DnaK-DnaJ-GpE and GroEL-GroES in assisting folding of an allergen of Japanese cedar pollen, Cryj2, in *Escherichia coli*. *Appl Environ Microbiol* 64: 1694–1699.
23. Bunting KD, Townsend AJ (1996) Protection by transfected rat or human class 3 aldehyde dehydrogenases against the cytotoxic effects of oxazaphosphorine alkylating agents in hamster V79 cell lines. Demonstration of aldehydesphosphamide mechanism by the human cytosolic class 3 isozyme. *J Biol Chem* 271: 11891–11896.
24. Ma N, Wei L, Fan Y, Hua Q (2012) Heterologous expression and characterization of soluble recombinant 3-deoxy-D-arabinohexitulose-2-phosphate synthase from *Actinomyces pectinissimilis* spp. *auranticum* ATCC31563 through co-expression with Chaperones in *Escherichia coli*. *Protein Expr Purif* 82: 263–269.
25. Tait AR, Stratis SK (2011) Overexpression and purification of U24 from human herpesvirus type-6 in *E. coli*: unconventional use of oxidizing environments with a malate binding protein-hexahistidine dual tag to enhance membrane protein yield. *Microb Cell Fact* 10: 51.
26. Yu S, Wang Y, Liu Y, Mo W, Song H, et al. (2009) Expression and purification of APRIL by auto-induction. *Protein Expr Purif* 68: 49–53.
27. Renner JN, Kim Y, Cherry KM, Liu JC (2011) Modular cloning and protein expression of long, repetitive resin-based proteins. *Protein Expr Purif*.
28. Li Z, Chen W, Liu R, Hu X, Ding Y (2010) A novel method for high-level production of phosphopeptides TAB5 alkaline phosphatase. *Protein Expr Purif* 74: 217–222.
29. Wang X, Hall H, Ernst HA, Egelbjerg J, Christensen KV, et al. (2010) Overexpression, purification and characterization of an Asc-1 homologue from *Gloeo bacter violaceus*. *Protein Expr Purif* 71: 179–183.
30. Nishi K, Kim IH, Ma SJ (2010) Expression of the human soluble epoxide hydrolase in *Escherichia coli* by auto-induction for the study of high-throughput inhibition assays. *Protein Expr Purif* 69: 34–38.
31. Tu W, Cai K, Gao X, Xiao L, Chen R, et al. (2009) Improved production of holoenzin Sr2 with biological activities by using a single-promoter vector and an auto-induction expression system. *Protein Expr Purif* 67: 169–174.
32. Harrois T, Rousset M, Rognaus H, Zal F (2009) High-level production of recombinant *Arenicola marina* globin chains in *Escherichia coli*: a new generic of blood substitute. *Artif Cells Blood Subst Immobil Biotechnol* 37: 106–116.
33. Gao W, Saini KS, A Chikudzuki N (2010) A strategy for the production of soluble human serine/arginine-rich protein-30 in *Escherichia coli*. *Biochem Biophys Res Commun* 393: 509–513.
34. Hartl FU, Martin J (1995) Molecular chaperones in cellular protein folding. *Curr Opin Struct Biol* 5: 92–102.
35. Welch WJ, Brown CR (1996) Influence of molecular and chemical chaperones on protein folding. *Cell Stress Chaperones* 1: 109–115.
36. Young JC, Agadjanyan MP, Siegers K, Hartl FU (2004) Pathways of chaperone-mediated protein folding in the cytosol. *Nat Rev Mol Cell Biol* 5: 781–791.
37. Sjursk J, Neubauer P (2011) Heterologous production of active ribonuclease inhibitor in *Escherichia coli* by redox state control and chaperonin coexpression. *Microp Cell Fact* 10: 65.
38. Sahu SK, Rajsekharan A, Gummadi SN (2009) GroES and GroEL are essential chaperones for refolding of recombinant human phospholipid scramblase 1 in *E. coli*. *Biotechnol Lett* 31: 1745–1752.
39. Ray M, Mishra P, Das P, Sabat SC (2012) Expression and purification of soluble bio-active rice plant catalase-A from recombinant *Escherichia coli*. *J Biotechnol* 157: 12–19.
40. Siurkus J, Neubauer P (2011) Heterologous production of active ribonuclease inhibitor in *Escherichia coli* by redox state control and chaperonin coexpression. *Microp Cell Fact* 10: 65.
41. Sahu SK, Rajsekharan A, Gummadi SN (2009) GroES and GroEL are essential chaperones for refolding of recombinant human phospholipid scramblase 1 in *E. coli*. *Biotechnol Lett* 31: 1745–1752.
42. Goettsch S, Gao X, Cai M (2001) Expression of recombinant zeta-crystallin in *Escherichia coli* with the help of GroEL/ES and its purification. *Protein Expr Purif* 21: 260–267.

Ενότητα

Συγγραφή διατριβής - εργασίας

Τι είναι;

- Η τελική εργασία ενός προγράμματος σπουδών (π.χ. προπτυχιακό, μεταπτυχιακό)
- Επισφραγίζει τις επιστημονικές – ερευνητικές ικανότητες του φοιτητή
- Αποτελεί **ερευνητική** εργασία (παράγει νέα γνώση)
- Ερευνητική, βιβλιογραφική (συστηματική ανασκόπηση, μετα-ανάλυση)

1 Dissertation

Σε τι διαφέρει από την
δημοσίευση ή το poster;

- Πολύ πιο εκτενής σαν κείμενο
- Περισσότερες τεχνικές λεπτομέρειες
- Περισσότερη αναφορά στο θεωρητικό υπόβαθρο
- Αναφορά σε όλα τα αποτελέσματα της μελέτης
(ακόμη και αυτά που ίσως δεν είναι
δημοσιεύσιμα)
- Πιο άμεση και ολοκληρωμένη παρουσίαση της
ερευνητικής δουλειάς ενός φοιτητή-ερευνητή

1 Dissertation

Σε τι διαφέρει από την
δημοσίευση ή το poster;

- Συχνά χρησιμοποιείται ως μέτρο για την «κρίση» ενός φοιτητή
- Δεν περνά διαδικασία peer-review αλλά συχνά κρίνεται από μια επιτροπή
- Πλέον δημοσιεύεται σε ιδρυματικά αποθετήρια διαθέσιμα για ανάγνωση
- Μπορεί να λειτουργήσει και ως βάση για μια επιστημονική δημοσίευση

- Αντικείμενο σπουδών
- Προσωπική εξειδίκευση
- Πρακτικά δυνατό
- Επιβλέπων καθηγητής
- Μελέτη βιβλιογραφίας
- Πρωτοτυπία
- Ενδιαφέρον
- Πιθανές εφαρμογές

- Συχνά υπάρχουν προδιαγραφές από το Τμήμα ή το ΜΠΣ
- Είναι προτιμότερη μια απλή και επίσημη γραμματοσειρά (Times New Roman, Calibri, Arial) εάν δεν υπάρχουν άλλες διευκρινήσεις
- Δίστιχο: 1,5, πλήρης στοίχιση, μέγεθος 12
- Χρησιμοποιούμε την ίδια γραμματοσειρά σε όλο το κείμενο

- Τίτλος
- Ευχαριστίες
- Περίληψη
- Λέξεις κλειδιά
- Περιεχόμενα
- **Κύριο μέρος**
- Βιβλιογραφία
- Συντομεύσεις
- Παράρτημα/παραρτήματα

- **Κύριο μέρος:**
 - ✓ Εισαγωγή
 - ✓ Υλικά και μέθοδοι
 - ✓ Αποτελέσματα
 - ✓ Συζήτηση
 - ✓ Συμπεράσματα

Συχνά τα ΜΠΣ έχουν συγκεκριμένες προδιαγραφές

- Αναφέρουμε το ίδρυμα στο οποίο πραγματοποιήθηκε η έρευνα
- Σχολή φοίτησης
- Το όνομα μας
- Την τοποθεσία
- Τον/τους επιβλέποντες
- Κάνουμε και ελληνική και αγγλική εκδοχή

Συμπεριλαμβάνω όλους όσους μας

βοήθησαν για την ολοκλήρωση της
εργασίας

Π.χ. συναδέλφους, φορείς, άτομα που
βοήθησαν συμβουλευτικά κτλ

- Μια σύντομη περιγραφή όλης της μελέτης:
- ✓ Ποια είναι η βασική υπόθεση
- ✓ Πως διαμορφώθηκε η βασική υπόθεση
- ✓ Ποια μεθοδολογία επιλέχθηκε
- ✓ Ποια ήταν τα αποτελέσματα
- ✓ Ποιο το βασικό συμπέρασμα
- Σύντομο και περιεκτικό (μέχρι 500 λέξεις περίπου—προσοχή στους εκάστοτε ξεχωριστούς κανόνες)
- Την γράφουμε στο **τέλος**
- Είναι από τα πιο σημαντικά κομμάτια της εργασίας
- Το πρώτο που διαβάσεις για να σχηματίσεις μια αρχική εικόνα για την εργασία είναι η περίληψη

- Σημαντική η επιλογή τους
- Θα καθορίζουν τα αποτελέσματα στο αποθετήριο
- Ισορροπία: όχι πολύ ειδικά, όχι πολύ γενικά
- Σχηματίζουν μια περιγραφή του αντικειμένου της έρευνας

- Κατάλογος όλων των υποκεφαλαίων και κεφαλαίων
- Τον ετοιμάζουμε στο **τέλος** αφού έχουν γίνει και όλες οι διορθώσεις
- Το Word έχει δυνατότητα αυτόματης ενσωμάτωσης
- Ένας σύνδεσμος είναι βοηθητικός στον αναγνώστη
- Μπορούμε να έχουμε και έναν κατάλογο με τις εικόνες, τα σχήματα και τους πίνακες του κειμένου

- Ακολουθούμε τις οδηγίες
- Βοηθητικά τα ειδικά προγράμματα
- Συμπεριλαμβάνουμε όλες τις πηγές που χρησιμοποιήσαμε
- **ΠΡΟΣΟΧΗ στην λογοκλοπή**
- Δεν αντιγράφουμε αυτολεξεί προτάσεις
- Αναφέρουμε την πληροφορία με δικά μας λόγια

- Ότι συντόμευση αναφέρεται στο κείμενο την προσθέτουμε σε ένα πίνακα στο τέλος
- Και στο κύριο μέρος του κειμένου την πρώτη φορά που θα αναφέρουμε την συντόμευση την επεξηγούμε

- Οτιδήποτε δεν ενσωματώνεται στα βασικά αποτελέσματα της μελέτης
- Ότι σχετίζεται έμμεσα με το αντικείμενο της εργασίας και είναι απαραίτητο για να ενισχύσει τα αποτελέσματα

- Αναλυτική παρουσίαση του θεωρητικού υπόβαθρου
- Περισσότερες πληροφορίες και από το poster και από την δημοσίευση
- Ξεκινάμε από το πιο γενικό και εξειδικεύουμε

• Π.χ. Ο ρόλος της αλδεϋδικής αφυδρογονάσης $\text{3}^{\text{A}1}$ στην κυτταρική ομοιόσταση του κερατοειδούς

- ✓ Τι είναι οι αλδεϋδικές αφυδρογονάσες → ALDH3A1
- ✓ Κερατοειδής χιτώνας → οξειδωτικό στρες στον κερατοειδή → ALDH3A1 στον κερατοειδή χιτώνα

- Πιο λεπτομερής αναφορά στα υλικά που χρησιμοποιήθηκαν και τις μεθόδους
- Αναλυτικά τα πρωτόκολλα
- Επεξήγηση του τρόπου λειτουργίας των τεχνικών και της μεθοδολογίας που ακολουθήθηκε

- Πίνακες, εικόνες, γραφικά με στατιστική επεξεργασία
- Παρουσίαση των αποτελεσμάτων
- Τι παρατηρήθηκε
- Αναφορά των δεδομένων
- Μπορούμε να αναφέρουμε και δεδομένα τα οποία δεν θεωρούμε σημαντικά

- Σύγκριση των αποτελεσμάτων με προηγούμενες έρευνες που μπορεί να σχετίζονται με την δική μας
- Δεν χρειάζεται να είναι πολύ εκτενής
- Μπορούμε να προσθέσουμε και θα έχει αξία τους περιορισμούς, τις αδυναμίες, τις μελλοντικές κατευθύνσεις που προκύπτουν από την εργασία μας

- Μια μικρή παράγραφο με τα βασικά συμπεράσματα βάση και όσων αναφέρονται στην συζήτηση
- Απαντάμε στο βασικό ερώτημα;
- Πόσο σημαντικά είναι τα ευρήματα;
- Επιβεβαιώνονται από άλλες μελέτες;

Επιστημονικό κείμενο

- ΠΡΟΣΟΧΗ στην χρήση AI
- Δεν χρησιμοποιούμε AI για να μας ετοιμάσει την εργασία μας
- Υπάρχουν εργαλεία που αναγνωρίζουν εάν ένα κείμενο έγινε με AI