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ABSTRACT: The millisecond time scale needed for
molecular dynamics simulations to approach the quanti-
tative study of protein folding is not yet routine. One
approach to extend the simulation time scale is to perform
long simulations on specialized and expensive super-
computers such as Anton. Ideally, however, folding
simulations would be more economical while retaining
reasonable accuracy, and provide feedback on structure,
stability and function rapidly enough if partnered directly
with experiment. Approaches to this problem typically
involve varied compromises between accuracy, precision,
and cost; the goal here is to address whether simple
implicit solvent models have become sufficiently accurate
for their weaknesses to be offset by their ability to rapidly
provide much more precise conformational data as
compared to explicit solvent. We demonstrate that our
recently developed physics-based model performs well on
this challenge, enabling accurate all-atom simulated folding
for 16 of 17 proteins with a variety of sizes, secondary
structure, and topologies. The simulations were carried out
using the Amber software on inexpensive GPUs, providing
∼1 μs/day per GPU, and >2.5 ms data presented here. We
also show that native conformations are preferred over
misfolded structures for 14 of the 17 proteins. For the
other 3, misfolded structures are thermodynamically
preferred, suggesting opportunities for further improve-
ment.

Proteins typically function properly only after folding into a
specific three-dimensional structure. Experimental techni-

ques can very accurately determine folded structures, as
evidenced by greater than 90 000 structures available in the
protein data bank.1 However, this remains a small subset of the
number of known sequences.2 Moreover, folding is a dynamic
process, involving transitions among many unfolded states.3,4

Insight to the factors controlling the folding landscape is crucial
to designing proteins with new or enhanced functionality,
determining the structures of proteins not yet characterized
experimentally, or understanding detrimental effects of protein
misfolding and aggregation.
Atomistic simulation models could potentially elucidate

folding with full spatial, temporal and energetic resolution, but
millisecond-scale simulation is far from routine.5 One way
around the time scale problem is approaches like Rosetta, where

a combination of empirical and physical rules aids in the
prediction of the final native coordinates.6 Limited experimental
data can also be used to focus the search.7,8 The structural
optimization approach, however, does not provide physical
details about the folding process, and may be less useful for
misfolded, disordered, or dynamic proteins where physics-based
approaches may be more successful. Folding@Home uses
distributed computing to harvest numerous but relatively short
simulations, which can be assembled into models describing
folding.9 Recently, Shaw and colleagues used the specialized
Anton supercomputer10 to fold 12 proteins.11 This brute-force
calculation spanning ∼8 ms remains state of the art.
Is there a way to simulate protein folding dynamics in atomic

resolution using inexpensive computer hardware that would
make these protocols more widely accessible? Implicit solvent
models can dramatically accelerate folding due to lower viscosity
that facilitates chain diffusion.12 Pairwise variants of the
generalized Born (GB) model13 perform particularly well on
inexpensive GPUs,14 leveraging a vast consumer video game
market to make folding simulations more widely accessible.
However, many fast GB models are inaccurate,15 often with
incorrect secondary structures preferences and ion pair strength,
thus succeeding in anecdotal cases but lacking broad trans-
ferability. GBMV216 is arguably the most accurate GBmodel, but
at a cost of reduced speed. The best performing combination of
implicit solvent and protein force field can result from fortuitous
cancellation of error in models that have significant but
sometimes compensating weaknesses.17

Recently, we reported development of a new fast pairwise GB
model that was trained to reproduce more accurate Poisson−
Boltzmann solvation across a broad range of peptide and protein
systems.18 Here, we combine it with our widely used ff99SB
protein force field,19 along with our recently updated protein side
chain parameters.20 The solvent and protein energetics were
trained for independent accuracy, in an attempt to avoid
cancellation of error and improve transferability. In this report,
we demonstrate that this new physics-based combined model is
an attractive trade-off, enabling accurate folding for all but 1 of a
set of 17 proteins ranging from 10 to 92 amino acids.
We address two key issues in detail: the sampling problem

(whether simulations can fold to the correct structure) and the
accuracy problem (whether the preferred structure in the
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simulated ensemble is native-like). An additional aspect of
simulated folding is whether the overall nature of the energy
landscape is accurately modeled (e.g., can the model reproduce
experimental measurements of protein stability or folding
cooperativity). While desirable, such studies are beyond the
focus of this report.
Peptides and proteins studied. A total of 17 systems were

simulated (Supporting Information, Table S1), including 12
studied by Shaw and colleagues:11 CLN025, Trp-cage, BBA,
villin HP36, WW domain GTT, NTL939, BBL, protein B,
homeodomain 2P6J, the NuG2 variant of protein G, α3D, and λ-
repressor. We added a second WW domain (Fip35), and several
larger systems: NTL952, cold shock protein A (CspA),
hypothetical protein 1WHZ, and Top7. Unless otherwise
noted, RMSD values are for Cα atoms in regions well-defined
in structures based on experiments, as are fraction of native
contacts (Q).
Simulation details. All MD simulations used the GPU

implementation14 of pmemd in AMBER1421 with the combina-
tion of GB-Neck2,18 mbondi3 intrinsic radii,18 and ff14SBonlysc,
which includes ff99SB19 with new side chain dihedral parameters
from ff14SB.20 We did not use the backbone dihedral
modifications from ff14SB, since they are empirical adjustments
aimed at improving agreement between experiment and
simulations in explicit water. The protocol delivered 0.6 to 1.4
μs/day (Table S2). Additional details are provided as Supporting
Information.
Our goal in this study is to investigate feasibility of simulating

all-atom folding for a variety of proteins with a single force field
and solvent model combination, using widely available computer
hardware and software. Systems range from short peptides to
proteins of nearly 100 amino acids, with topologies including all
α-helix, all β-sheet, and combinations. Experimental folding
times vary from microseconds to seconds (Table S2).
We first performed a baseline study on native state dynamics of

2 proteins, CspA and lysozyme, and compared backbone order
parameters from the resulting simulations to those obtained from
experiment as well as from simulation with explicit water (Figure
S1). We obtained excellent quantitative agreement (0.05 and
0.02 RMSD to experimental and TIP3P S2 for CspA, and 0.02

RMSD to both experimental and TIP3P S2 for lysozyme),
suggesting that more challenging tests were warranted.
We separate our analysis of protein folding below along two

general goals. First, we address sampling: despite the limitations
of the implicit solvent model, can standard MD simulations
properly fold to the correct experimentally determined structure
when starting from a fully extended conformation? Second, we
address accuracy: is the experimental structure also the most
favorable in our model? The latter goal is significantly more
challenging; the physics must be accurate enough to reproduce
the correct global free energy minimum for a variety of
topologies and secondary structure combinations, and the
populations of the minima must be well converged in order to
make precise predictions. For several of the larger systems
studied here, convergence was not readily achieved in standard
MD, and thus we used replica exchange (REMD22). The ability
to use REMD supports our premise that in some cases
disadvantages of implicit solvent can be offset by significant
advantages; although ∼1 μs REMD in explicit water for proteins
up to ∼40 amino acids has been reported (for example, see ref
23), it currently remains computationally intractable for proteins
of the size studied here, especially with solvent box sizes large
enough to enclose unfolded conformations.24

Can simulations fold to native conformations? Simulations
starting in extended conformations were able to locate structures
in excellent agreement with experiment for 16 of the 17 systems
(Table S2). All of the proteins smaller than 50 amino acids fold
well in standard MD on this time scale, reaching Cα RMSD
values below 2 Å, except BBLwhich reaches 3.2 Å (all time series
data are in the Supporting Information). This includes systems
with β-sheet (the hairpin CLN025 and the 3-stranded sheets
Fip35 and GTT), α-helix (tc5b, HP36, and protein B) and
mixed α/β (BBA andNTL939). In REMD, these systems all fold
to <2.1 Å Cα RMSD and contact fractions Q > 0.9, with
minimum RMSD values often below 1 Å. While it is beyond the
scope of this work to fully analyze side chain packing accuracy,
the heavy atom RMSD of the Fip35 conformation with the
lowest Cα RMSD is 1.8 Å, while that of NTL939 is 1.0 Å,
suggesting that highly accurate folding is achievable with our
protocol.

Figure 1. Comparison of structures based (red) on experiment and (blue) lowest RMSD in simulations started from extended conformations. Under
each structure is shown the protein name, chain length, and Cα RMSD value (gray regions were poorly defined by experiment and are excluded, see text
for details).
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The larger proteins (50−92 amino acids) tend to become
kinetically trapped in standard MD on the microsecond time
scale, with only the entirely α-helical proteins homeodomain
(1.9 Å), α3D (2.5 Å), and λ-repressor (4.4 Å) finding native-like
conformations. The enhanced sampling in REMD provides
notable benefit, with 16 of the 17 proteins now folding to
structures with RMSD under 3 Å (Figure 1). Only the NuG2
variant was unable to sample the correct conformation; the
minimum RMSD is 4.8 Å and the maximum Q is ∼0.6 (Figures
S51−S54). Here, folding successfully occurs for the region
including the first hairpin and helix, but the second hairpin has
not yet formed. NuG2 simulations initiated from the
experimental structure underwent unfolding to ∼10 Å RMSD,
followed by refolding to an accurate native state (<1.0 Å RMSD,
Figure S51).
One advantage of simulating folding is that it is possible to

analyze folding pathway(s). Direct comparison to kinetics
experiments is precluded by our use of low viscosity to enhance
sampling. Instead, we consider the relative flux through folding
pathways, presenting one example since a comprehensive
analysis is beyond the scope of the present manuscript. We
analyzed which of the 2 hairpins in Fip35 folded first in 12
folding events seen in MD from the extended structure (Figure
S20). The 4:1 ratio for hairpin 1 folding first is in excellent
agreement with the 4:1 ratio reported for explicit solvent
simulations of the same system.25

Does the model show the correct structure preferences? Next, we
address the more challenging issue of accuracy, and whether our
model could predict a qualitatively reasonable structure if it were
not already known, by comparing the experimental structure to
the most populated simulation cluster. For 10 of 17 systems,
multiple (>3) folding and unfolding events were observed in the
standard MD runs; however, the larger proteins remained poorly
converged even on the microsecond time scale. We therefore use
the REMD ensembles to obtain qualitative estimates of the
preferred conformations for each protein. The cluster with the
largest population was in good agreement with conformations
based on experiment for roughly half (8 of 17) of the proteins
studied (RMSD values are provided in Table S2, with structures
shown in Figure S2). Once again, performance tended to be
better for proteins under 50 amino acids, with CLN025, Trp-
cage, Fip35, GTT, HP36, and NTL939 all preferring the correct
structure, with representative structure RMSD values of 0.6−2.3
Å. For protein B, the representative structure has an RMSD
value of 4.2 Å: properly folded but with a slight rotation of the
middle helix relative to the core. In the case of BBA, the native
zinc finger fold is present in the ensemble, but with lower
population than the preferred alternate structure with RMSD of
4.6 Å, in which the hairpin and helix are both still present, but
with somewhat longer hairpin and shorter helix. Although
NTL952 folds properly in the simulations, the 6.0 Å RMSD for
the most populated cluster reflects an otherwise properly folded
structure with an alternate conformation of the loop connecting
β-strands 1 and 2. Neglecting this loop, the RMSD of the largest
cluster becomes a more reasonable 4.2 Å (Figure S46). The only
protein under 50 amino acids that prefers an incorrect fold is
BBL, which locates the correct fold from extended structures, but
favors a conformation with 8.3 Å RMSD in which the region
connecting the N- and C-terminal helices becomes disordered.
However, the second and third most populated clusters have
more reasonable RMSD values of 4.3 and 4.8 Å. Lindorff-Larsen
et al.11 estimated a very low melting temperature in BBL
simulations (270 ± 10 K), suggesting that BBL also challenges

MD with explicit water. For the other seven proteins >50 amino
acids, only homeodomain and α3D have most populated
clusters (23% and 33%, respectively) that are close to the
experimental fold (3.2 and 4.0 Å, respectively). The second most
populated cluster of homeodomain (8%) is even closer to
experiment (2.3 Å). For both systems, differences are
predominantly in the surface loops; RMSDs for the 3 helices
are 2.5 Å for homeodomain and 2.1 Å for α3D.
As discussed above, theNuG2 variant was the only system that

never sampled the native conformation, thus the cluster
populations cannot report on whether the correct structure
would be preferred if folding had occurred. To explore this
further, we carried out an additional ∼40 ns “seeded” REMD
simulation continuing from the end of the previous one, but
adding two equilibrated native structures at two new temper-
atures in the middle of the previous temperature ladder (see
Supporting Information). Our expectation was that the REMD
exchanges would sort the more favorable structures at the lower
temperatures. The simulations showed a strong preference for
the native fold over the other structures, moving both low RMSD
structures to low temperatures (Figure S55). We next competed
six native and six misfolded structures from the initial REMD run.
The native structures were again strongly preferred at low
temperature (Figure S56), suggesting that our model correctly
identifies the NuG2 native fold, and misfolding represents a
sampling failure.
The other four systems for which the largest cluster in REMD

was non-native (RMSDs of 10−12 Å) were CspA, 1WHZ, λ-
repressor, andTop7. In each case, examination of RMSD history
for each of the replicas in REMD showed that only a few replicas
properly folded, and likewise, only a few misfolded. The data
suggest that even though the structures are reproducibly
sampled, REMD remains unreliable for distinguishing the
relative stability of these alternate conformations. We again
turned to a seeded REMD approach for gaining additional insight
into the conformational preferences of our model. In each case,
native-like structures were alternated in the temperature ladder
with representative structures from misfolded clusters with large
populations (Figures S61, S68, S77, S86). The results suggest
that, among the four proteins with unconverged ensembles, our
model can accurately identify the native conformation for CspA
and Top7. ForCspA, only two replicas misfolded in REMD, and
two others located a near-native fold, suggesting poor population
convergence even after ∼30 μs of REMD, which is perhaps not
surprising given the experimental folding rate of∼5ms.26 REMD
seeded with native, near-native, and misfolded structures showed
a strong preference for the native structure at the lowest
temperatures. Top7 showed similar behavior, with the highest
population misfolded structure only being sampled by 1 REMD
replica. Seeded REMD combining the misfolded and correctly
folded structures showed a strong preference for the correct fold,
moving all misfolded structures to higher temperatures.
Interestingly, two of the Top7 replicas that were initially
misfolded underwent spontaneous refolding to the correct
structure during this run. The results provide additional evidence
that that our model prefers the native fold and that the variety of
kinetic traps that the Top7 simulations encountered was a result
of the noncooperative, seconds-time scale folding experimentally
observed for this system.27

In contrast to the other systems, the seeded REMD results
suggest that the model fails to accurately recognize the native
conformation of λ-repressor and 1WHZ, preferring misfolded
over native structures at low temperature. λ-repressor shows
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transient folding to the native structure in REMD, but prefers a
misfolded structure with the 5 α-helices largely present, but
packed against the first helix in a clockwise fashion, rather than
counterclockwise as seen in the native fold (SI Figure S87).
1WHZ also folds to the correct structure with a 3-stranded β-
sheet and 3 helices, but the preferred structure replaces the first
β-strand with a helix and the last two helices with two β-strands.
Otherwise, the RMSDs of the first helix and N-terminus
(residues 1 to 18) and the second and third β-strands (residues
28 to 44) are both 1.8 Å.
To summarize the analysis of our second goal (conformational

preferences), all 11 proteins smaller than 55 amino acids were
reasonably converged and all except BBL preferred the native
fold, with some differences in loop regions. For the six larger
proteins, only α3D appears well converged in the REMD runs,
with the others all sampling multiple clusters and having
populations that indicated the model favors non-native folds. We
used a seeded REMD approach to evaluate the relative
populations of native vs non-native folds, and found that
NuG2, CspA, and Top7 prefer native conformations, while the
model prefers misfolded structures for λ-repressor and 1WHZ.
Overall, the data suggest correct preference for the native fold in
14 of the 17 proteins that we studied (Figure S2).
We presented ab initio folding for a set of 17 proteins, ranging

from 10 to 92 amino acids, with different topologies and
secondary structure content. We used an efficient implicit solvent
model18 combined with an accurate protein force field, using the
Amber software running on GPUs. This largely solves the
sampling aspect of folding proteins of this size; we demonstrated
that folding to the correct structure is achievable for all but 1 of
the systems that we studied, within run times of several days to
weeks. For the larger proteins where convergence was
inadequate, we used REMD to evaluate the extent to which
our model could correctly predict preference of native over
misfolded structures; such analysis remains highly challenging in
explicit water. Despite being able to fold to correct structures,
some of the systems showed stronger preference for alternate,
non-native structures, ranging from misfolded loops to incorrect
topologies. In many of the systems, overall thermal stability also
seems too weak in our model, which could be improved with
more accurate treatment of nonpolar solvation contributions.
Future detailed analysis of possible trends in misfolding,
quantitative relative stabilities of the alternate basins, along
with application to a larger range of systems, could provide
crucial insight into the limitations in accuracy of our models and
possible routes for further improvement.
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