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A novel approach was developed for predicting the structural classes of proteins based on their

sequences. It was assumed that proteins belonging to the same structural class must bear some sort of

similar texture on the images generated by the cellular automaton evolving rule [Wolfram, S., 1984.

Cellular automation as models of complexity. Nature 311, 419–424]. Based on this, two geometric

invariant moment factors derived from the image functions were used as the pseudo amino acid

components [Chou, K.C., 2001. Prediction of protein cellular attributes using pseudo amino acid

composition. Proteins: Struct., Funct., Genet. (Erratum: ibid., 2001, vol. 44, 60) 43, 246–255] to

formulate the protein samples for statistical prediction. The success rates thus obtained on a previously

constructed benchmark dataset are quite promising, implying that the cellular automaton image can

help to reveal some inherent and subtle features deeply hidden in a pile of long and complicated amino

acid sequences.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Although the details of the 3-D (dimensional) structures of
proteins are extremely complicated and irregular, their overall
topological folding patterns are surprisingly simple and regular. In
view of this, proteins are generally classified into a limited
number of different structural classes, and typically into four
structural classes: all-a, all-b, a/b, and a+b (Levitt and Chothia,
1976) although with more data available recently proteins can be
also further classified into 11 classes (Andreeva et al., 2004) of
which at least 7 classes are highly populated with low sequence
homology within the same class (Chou and Cai, 2004).

The structural class is an important attribute used to
characterize the overall folding type of a protein. Therefore,
prediction of the structural class has attracted many investigators
(see, e.g., Cao et al., 2006; Chandonia and Karplus, 1995; Chen
et al., 2006a, b, 2008a, b; Chou, 1989, 1995; Chou and Zhang, 1994;
Chou and Maggiora, 1998; Deleage and Roux, 1987; Jahandideh
et al., 2007; Kedarisetti et al., 2006; Klein, 1986; Klein and Delisi,
1986; Kneller et al., 1990; Kurgan and Homaeian, 2006; Kurgan
et al., 2007, 2008; Lin and Li, 2007b; Liu and Chou, 1998; Luo et al.,
2002; Mao et al., 1994; Metfessel et al., 1993; Nakashima et al.,
1986; Shen et al., 2005; Sun and Huang, 2006; Zhang et al., 1995;
ll rights reserved.
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Zhang and Ding, 2007; Zhou, 1998; Zhou and Assa-Munt, 2001).
Although various different algorithms were used by these
investigators, they can be basically categorized into the following
two groups. One is based on the amino acid (AA) composition, and
the other based on the pseudo amino acid (PseAA) composition
(Chou, 2005b). Although the amino acid composition model is
simpler and easier to handle, it fails to incorporate any of the
sequence-order information in a protein. To avoid the complete
loss of the sequence-order information as suffered in the amino
acid composition model (Chou, 1995; Nakashima et al., 1986), the
PseAA composition was introduced.

The concept of PseAA composition was originally proposed for
improving the prediction quality of protein subcellular localiza-
tion and membrane protein type (Chou, 2001). The essence of
PseAA composition is to keep using a discrete model to represent
a protein sample, yet without completely losing its sequence-
order information. According to its definition, the PseAA composi-
tion for a given protein sample is expressed by a set of 20+l
discrete numbers, where the first 20 represent the 20 components
of the classical amino acid composition while the additional l
numbers incorporate some of its sequence-order information via
different kinds of coupling modes.

Ever since the concept of PseAA composition was introduced,
various PseAA composition approaches have been proposed to
deal with different problems in proteins and protein-related
systems (see, e.g., Chen et al., 2006a, b; Chen and Li, 2007a, b; Ding
et al., 2007; Du and Li, 2006; Fang et al., 2008; Gonzalez-Diaz

www.sciencedirect.com/science/journal/yjtbi
www.elsevier.com/locate/yjtbi
dx.doi.org/10.1016/j.jtbi.2008.06.016
mailto:xiaoxuan0326@yahoo.com.cn


ARTICLE IN PRESS

X. Xiao et al. / Journal of Theoretical Biology 254 (2008) 691–696692
et al., 2007; González-Dı́az et al., 2008; Jiang et al., 2008; Li and Li,
2008; Lin, 2008; Lin and Li, 2007a, b; Lin et al., 2008; Mondal
et al., 2006; Mundra et al., 2007; Nanni and Lumini, 2008; Pu
et al., 2007; Shi et al., 2007; Zhang et al., 2008; Zhou et al., 2007).
Owing to its wide usage, recently a very flexible PseAA composi-
tion generator, called ‘‘PseAAC’’ (Shen and Chou, 2008), was
established at the website http://chou.med.harvard.edu/bioinf/
PseAAC/, by which users can generate 63 different kinds of PseAA
composition.

To successfully use the PseAA composition for predicting
various attributes of proteins, the key is how to optimally extract
the features for the PseAA components. The present study was
initiated in an attempt to introduce a completely different
approach, the so-called ‘‘geometric invariant moment’’ of protein
cellular automaton image to address this problem.
2. Method

A protein sequence is formed by 20 native amino acids whose
single character codes are: A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S,
T, V, W, and Y. It is very difficult to find its characteristic pattern
particularly when the sequence is very long. To cope with this
situation, we resort to the images derived from the amino acid
sequence by means of the space–time evolution of cellular
automaton (Wolfram, 1984, 2002).

Suppose a protein P consists of N amino acids; i.e.,

P ¼ R1R2 � � �RN (1)
Table 1
Three different types for coding amino acids

Type Code

Character P L Q H R S F Y W C

Decimal 1 3 4 5 6 9 11 12 14 15

Binary 00001 00011 00100 00101 00110 01001 01011 01100 01110 01111

Character T I M K N A V D E G

Decimal 16 18 19 20 21 25 26 28 29 30

Binary 10000 10010 10011 10100 10101 11001 11010 11100 11101 11110

Fig. 1. The image generated by the cellular automaton evolving rule for a protein se

structural class, and (d) the a+b structural class.
where R1 represents the first residue of the protein, R2 the second
residue, and so forth. To transform a protein sequence from a
character code to a numerical one, we adopted the code-converting
relation as given in Table 1, which can better reflect the chemical
and physical properties of an amino acid, as well as its structure
and degeneracy, as detailed in Xiao et al. (2005). If each of the
constituent amino acids in the protein P is coded in a binary code
according to Table 1, the protein sequence will be transformed to a
serial of 5N elements, where the elements are either 0 or 1. For
example, the sequence ‘‘PLQHRSy’’ is accordingly transformed to
‘‘000010001100100001010011001001y’’. Each of these elements
can be treated as a pixel with ‘‘0’’ for ‘‘white’’ and ‘‘1’’ for ‘‘black’’,
then by following the space–time evolution procedures as
described in Xiao et al. (2005), the protein P would correspond to
a cellular automaton image, as shown in Fig. 1, where panel (a) is
the cellular automaton image generated from an all-a protein,
panel (b) from an all-b protein, panel (c) from an a/b protein, and
panel (d) from an a+b protein.

According to Wolfram’s theory (2002), those proteins which
belong to the same structural class should have some similar
textures in their cellular automaton images. However, how to
optimally extract these features and formulate them as a set of
parameters is an important problem yet to be solved. Here, we
introduce the 2-D geometric moment approach to deal with this
problem. First of all, let us define a 2-D image function, as given
below:

f ðx; yÞ ¼
0; when the pixel at ðx; yÞ is white

1; when the pixel at ðx; yÞ is black

(

ðx ¼ 0;1; . . . ;O; y ¼ 1;2; . . . ;5NÞ (2)

where O ¼ 100 is the total number of time evolution cycles
because the texture of a cellular automaton image thus generated
was basically steady after 100 evolution cycles.

Geometric moments are the most popular types of moments
and have been frequently used for a number of image processing
tasks. The two-dimensional geometric moment tpq of order (p+q)
for image f(x, y) is given by:

tpq ¼
XO
x¼0

X5N

y¼1

xpyqf ðx; yÞ ðp; q ¼ 0;1;2Þ (3)
quence in: (a) the all-a structural class, (b) the all-b structural class, (c) the a/b

http://chou.med.harvard.edu/bioinf/PseAAC/
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The image centroid is given by:

xc ¼
t10

t00
¼

PO
x¼0

P5N
y¼1xf ðx; yÞPO

x¼0

P5N
y¼1f ðx; yÞ

yc ¼
t01

t00
¼

PO
x¼0

P5N
y¼1yf ðx; yÞPO

x¼0

P5N
y¼1f ðx; yÞ

8>>>>>><
>>>>>>:

(4)

When the geometric moments tpq in Eq. (3) are referred to the
image centroid (xc, yc), they become the central moments tc

pq, as
given by:

tc
pq ¼

XO
x¼0

X5N

y¼1

ðx� xcÞ
p
ðy� ycÞ

qf ðx; yÞ ðp; q ¼ 0;1;2Þ (5)

The central moments tc
pq are invariant to any spatial translation or

rotation of the image; to make them invariant to the area scaling
as well (Rizon et al., 2006), let us take the normalized form as
given by Hu (1962):

t0
pq ¼

tc
pq

ðtc
00Þ
ðpþqþ2Þ=2

ðp; q ¼ 0;1;2Þ (6)

Based on Eq. (6), several RTS (rotation, translation, size-scaling)
invariant functions were defined by Hu (1962), as given by:

j1 ¼ t0
20 þ t

0
02 (7)

j2 ¼ ðt
0
20 � t

0
02Þ

2
þ 4ðt0

11Þ
2 (8)

j3 ¼ ðt
0
30 � 3t0

12Þ
2
þ ð3t0

21 � t
0
03Þ

2 (9)

j4 ¼ ðt
0
30 þ t

0
12Þ

2
þ ðt0

03 þ t
0
21Þ

2 (10)

j5 ¼ ðt
0
30 � 3t0

12Þðt
0
30 þ t

0
12Þ½ðt

0
30 þ t

0
12Þ

2
� 3ðt0

21 þ t
0
03Þ

2
�

þ ð3t0
21 � t

0
03Þðt

0
21 þ t

0
03Þ½3ðt

0
30 þ t

0
12Þ

2
� ðt0

21 þ t
0
03Þ

2
� (11)

j6 ¼ ðt
0
20 � t

0
02Þ½ðt

0
30 þ t

0
12Þ

2
� ðt0

21 þ t
0
03Þ

2
�

þ 4t0
11ðt

0
30 þ t

0
12Þðt

0
21 þ t

0
03Þ (12)

j7 ¼ ð3t
0
21 � t

0
03Þðt

0
30 þ t

0
12Þ½ðt

0
30 þ t

0
12Þ

2
� 3ðt0

03 þ t
0
21Þ

2
�

� ð3t0
12 � t

0
30Þðt

0
03 þ t

0
21Þ½3ðt

0
30 þ t

0
12Þ

2
� ðt0

03 þ t
0
21Þ

2
� (13)

Of the above seven invariant functions formed by the RTS
invariant central moments, only the first two as given by Eqs. (7)
and (8) were used as the PseAA components (Chou, 2001). This is
because preliminary tests indicated that incorporation of the
other five invariant functions (Eqs. (9)–(13)) did not yield
better results due to that the first two invariant functions might
already contain enough information and the other five would be
redundant for the current study.

As mentioned above, the advantage of introducing the PseAA
components is that they can reflect some important features of a
protein sequence through a discrete model (Chou and Shen,
2008). Thus, according to the Chou’s PseAA composition (Chou,
Table 2
Success rates of jackknife cross-validation with different approaches on the 204 protei

Method Input

Unsupervised fuzzy clustering (Zhang et al., 1995) AA composition

Supervised fuzzy clustering (Shen et al., 2005) AA composition

Covariant matrix algorithm (Chou and Zhang, 1994) Correlation analysis appro

Augmented covariant-discriminant algorithm (Chou, 2000) PseAA composition formu

a Using the geometric invariant moment factors of protein cellular automaton ima
2001), a protein sequence can be expressed by a vector or a point
in a 20+2 ¼ 22-D space; i.e.,

P ¼ ½ p1 p2 � � � p20 p21 p22 �
T (14)

where T is the transpose operator, and

pk ¼

f kP20
i¼1f i þ

P2
j¼1wjjj

; ð1pkp20Þ

wðk�20Þjðk�20ÞP20
i¼1f i þ

P2
j¼1wjjj

; ð21pkp22Þ

8>>>><
>>>>:

(15)

where fi (i ¼ 1, 2, y, 20) are the occurrence frequencies of the 20
native amino acids in the protein, arranged alphabetically
according to their single letter codes, jj (j ¼ 1, 2) are derived
from geometric moments of the cellular automaton image of
protein P as given by Eqs. (7) and (8), and the weight factors
wj ¼ 0.05 (j ¼ 1, 2) (Chou, 2001).

Now the augmented covariant-discriminant algorithm (Chou,
2000; Chou and Elrod, 1999) or CD classifier (Chou and Shen,
2007) was adopted to perform the prediction. For reader’s
convenience, a brief introduction about the CD classifier is given
in Appendix.
3. Results and discussion

As a demonstration, let us use the benchmark dataset
constructed in (Chou, 1999). It consists of 204 proteins, of which
52 are all-a, 61 all-b, 45a/b, and 46a+b. Their PDB codes are given
in Table 2 of Chou (1999). In statistical prediction, the indepen-
dent dataset test, sub-sampling test and jackknife test are the
three cross-validation methods often used for examining the
accuracy of a predictor (Chou and Zhang, 1995). However, as
analyzed in a recent comprehensive review (Chou and Shen,
2007), the independent dataset test and sub-sampling test cannot
avoid arbitrariness. Accordingly, the jackknife test has been
increasingly and widely adopted by investigators (see, e.g., Chen
et al., 2006a, b, 2008c; Chou and Shen, 2008; Ding et al., 2007; Du
and Li, 2006; Guo et al., 2006; Jiang et al., 2008; Jin et al., 2008;
Kedarisetti et al., 2006; Li and Li, 2008; Lin and Li, 2007a, b; Lin
et al., 2008; Mondal et al., 2006; Niu et al., 2006, 2008; Pugalenthi
et al., 2007; Shi et al., 2007; Sun and Huang, 2006; Tan et al.,
2007; Wen et al., 2007; Xiao and Chou, 2007; Zhang et al., 2006;
Zhou, 1998; Zhou and Doctor, 2003) to test the power of various
predictors. Therefore, in this study, we also used the jackknife test
to examine the performance of the new prediction approach.

The success rates by the jackknife test for the aforementioned
204 proteins classified into four structural classes are given in
Table 2, where for facilitating comparison the corresponding rates
obtained by the other methods on the same benchmark dataset
are also listed. It can be seen from Table 2 that the overall success
rate by the current approach is 92.6%, indicating that the new
approach can remarkably enhance the success rate for the current
benchmark dataset, or at least can play a complementary role to
ns from (Chou, 1999)

All-a All-b a/b a+b Overall

35
52 ¼ 67:3% 55

61 ¼ 90:2% 21
45 ¼ 46:7% 28

46 ¼ 60:9% 139
204 ¼ 68:1%

38
52 ¼ 73:1% 55

61 ¼ 90:2% 28
45 ¼ 62:2% 29

46 ¼ 63:1% 150
204 ¼ 73:5%

ach (Du et al., 2003) 49
52 ¼ 94:2% 53

61 ¼ 86:9% 22
45 ¼ 48:9% 41

46 ¼ 89:1% 165
204 ¼ 80:9%

lated in this papera 45
52 ¼ 86:5% 56

61 ¼ 91:8% 45
45 ¼ 100% 43

46 ¼ 93:5% 189
204 ¼ 92:6%

ge for the 21st and 22nd components of PseAA composition.
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Fig. 2. Radar diagrams to show the difference of the 22-D standard vectors for: (a) all-a, (b) all-b, (c) a/b, and (d) a+b structural classes. Here we use the numerical indexes

1, 2, 3, y, 20 to represent the classical 20 amino acid components according to the alphabetical order of the single character codes of amino acids, and use the indices 21

and 22 to represent the PseAA components introduced through the geometric invariant moment factors as defined by Eqs. (7) and (8), respectively.
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the existing method in predicting protein structural classification.
The enhancement of success rates is particularly obvious for the
case of a/b and a+b proteins.

Why could the overall success rate be improved so remarkably
by introducing the geometric moment factors of protein cellular
automaton image? To address this problem, let us consider the
standard vectors for the four structural classes, P̄

a
, P̄

b
, P̄

a=b
, and

P̄
aþb

, as defined in Eq. (A3) in the Appendix. Each of the four
standard vectors in the current approach contains 22 components.
To provide an intuitive picture, each of the four 22-D standard
vector is projected onto a 2-D radar diagram (Chou, 1993) as
shown in Fig. 2, from which we can see that, by introducing the
geometric invariant moment factor into the representation for
protein samples, the standard vectors for the four structural
classes have become remarkably distinct from each other. In
contrast to that, the 20-D standard proteins for the same dataset
are given in Fig. 1 of Du et al. (2003), from which we can see that
the difference between P̄

a=b
and P̄

aþb
is trivial, meaning that the

geometric moments as introduced in this paper are important for
distinctly characterizing the structural class of proteins.
4. Conclusions

Using the geometric moments of protein cellular automaton
images as the PseAA components (Chou, 2001) can more
effectively reflect the overall protein sequence patterns, yielding
a higher overall success rate in predicting protein structural
classification. These kinds of subtle overall patterns are hidden in
a pile of long and complicated sequences and are very difficult to
extract without resorting to the cellular automaton approach
(Wolfram, 1984). The procedures proposed in this study can be
briefly summarized as follows. (1) For each of the protein
sequences concerned, generate a 2-D image function according
to the cellular automaton evolving rule. (2) Based on the image
function, derive the geometric invariant moments. (3) Use the
moments thus obtained as the PseAA components to formulate
the protein sample. (4) The augmented covariant-discriminant
algorithm or CD classifier was utilized as operation engine to
perform the prediction. (5) The jackknife cross-validation test was
adopted to examine the prediction quality.

Here, the protein structural class is just a paradigm for
demonstration. It is instructive to point out that the current novel
approach can also be used to predict a series of other protein
attributes, such as subcellular localization, enzyme functional
class, membrane protein type, proteinase type, and GPCR type,
among many others.
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Appendix

Suppose a system containing N proteins (P1;P2; . . . ;PN), which
have been classified into M subsets (structural classes); i.e.,

S ¼ S1 [ S2 [ S3 [ � � � [ SM (A.1)
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where each subset Sm (m ¼ 1, 2, y, M) is composed of proteins
with the same structural class and its size (the number of proteins
therein) is Nm. Obviously, we have N ¼ N1+N2+?+NM. Now, for a
query protein P (Eq. (1)), how can we identify which subset it
belongs to? According to the CD classifier (Chou and Shen, 2007),
we can suppose without losing generality that the uth protein in
the subset Sm of Eq. (A.1) is formulated by (see Eq. (14)):

Pu
m ¼

pu
m;1 pu

m;2 � � � pu
m;20 pu

m;21 pu
m;22

h iT
(A.2)

where pu
m;jðj ¼ 1;2; . . . ;22Þ is the jth component of the uth protein

in Sm, and the standard vector for the subset Sm is defined by:

P̄m ¼
p̄m;1 p̄m;2 � � � p̄m;20 p̄m;21 p̄m;22

h iT
(A3)

where

p̄m;i ¼
1

Nm

XNm

u¼1

pu
m;i; ði ¼ 1;2; . . . ;22Þ (A.4)

Actually, P̄m as defined above can be deemed as a standard protein
for the subset Sm. Thus, the similarity between a query protein P
and P̄m is defined by the following covariant-discriminant
function:

FðP; P̄mÞ ¼ D2
MahðP; P̄mÞ þ ln jCmj ðm ¼ 1;2; . . . ;MÞ (A.5)

where

D2
MahðP; P̄mÞ ¼ ðP� P̄mÞ

TC�1
m ðP� P̄Þ (A.6)

is the squared Mahalanobis distance (Chou and Zhang, 1994;
Mahalanobis, 1936; Pillai, 1985) between P and P̄m;

Cm ¼

cm
1;1 cm

1;2 � � � cm
1;22

cm
2;1 cm

2;2 � � � cm
2;22

..

. ..
. . .

. ..
.

cm
22;1 cm

22;2 � � � cm
22;22

2
666664

3
777775 (A.7)

is the covariance matrix for the subset Sm; the 22�22 elements in
Cm are given by:

cm
i;j ¼

1

Nm � 1

XNm

u¼1

ðpu
m;i � p̄m;iÞðp

u
m;j � p̄m;jÞ

ði; j ¼ 1;2; . . . ;22Þ (A.8)

and |Cm| is the determinant of the matrix Cm that is always
positive as proved in Appendix B of Chou and Elrod (1999). The
smaller the value of FðX; X̄mmÞ, the higher the similarity between P
and P̄m. Therefore, the query protein is predicted to belong to the
subset Sm or the mth type if:

m ¼ arg minmfFðP; P̄mÞg; ðm ¼ 1;2; . . . ;MÞ (A.9)

where m is the argument of m that minimizes FðP; P̄mÞ. If there are
two or more arguments leading to a same minimum value for
FðP; P̄mÞ, the query protein will be randomly assigned to one of the
structural classes associated with these arguments although this
kind of tie case rarely happens. Note that owing to the normal-
ization condition imposed by Eq. (15), of the 22 components in
Eq. (A.2), only 21 are independent, and hence the covariance
matrix Cm as defined by Eq. (A.8) must be a singular one (Chou
and Zhang, 1994). This would lead the Mahalanobis distance
defined by Eq. (A.6) and the covariant-discriminant function given
by Eq. (A.5) to be divergent and meaningless. To cope with such a
situation, the dimension-reducing procedure (Chou, 1995) was
adopted in practical calculations; i.e., instead of 22-D space, a
protein sample is defined in a (22-1)-D space by leaving out one of
its 22 components. The remaining (22-1) components would be
completely independent, thereby the corresponding covariance
matrix Cm being no longer singular. In other words, the
Mahalanobis distance (Eq. (A.6)) and the covariant-discriminant
function (Eq. (A.5)) based on such a (22-1)-D space can be
uniquely defined without any trouble. However, a question might
be raised: which one of the 22 components can be left out? The
answer is: anyone. Will it lead to a different predicted result by
leaving out a different component? The answer is: no. According
to the Chou’s invariance theorem (see Appendix A of Chou, 1995),
both the value of the Mahalanobis distance and the value of the
determinant of Cm will remain exactly the same regardless of
which one of the 22 components is left out. Accordingly, the
final value of the covariant-discriminant function (Eq. (A.5)) can
be uniquely defined through such a dimension-reducing proce-
dure. For more details about the CD classifier, the reader is
referred to the papers (Chou, 2005a; Chou and Elrod, 1999; Chou
and Shen, 2007).
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