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Abstract

Recent studies of the quantum-mechanical processes in the DNA molecule have seriously challenged the principle that
mutations occur randomly. The proton tunneling mechanism causes tautomeric transitions in base pairs resulting in mutations
during DNA replication. The meticulous study of the quantum-mechanical phenomena in DNA may reveal that the process of
mutagenesis is not completely random. We are still far away from a complete quantum-mechanical model of DNA sequence
mutagenesis because of the complexity of the processes and the complex three-dimensional structure of the molecule. In this papel
we have developed a quantum-mechanical description of DNA evolution and, following its outline, we have constructed a classical
model for DNA evolution assuming that some aspects of the quantum-mechanical processes have influenced the determination
of the genetic code. Conversely, our model assumes that the genetic code provides information about the quantum-mechanical
mechanisms of mutagenesis, as the current code is the product of an evolutionary process that tries to minimize the spurious
consequences of mutagenesis. Based on this model we develop an algorithm that can be used to study the accumulation of
mutations in a DNA sequence. The algorithm has a user-friendly interface and the user can change key parameters in order to
study relevant hypotheses.
© 2004 Elsevier Ireland Ltd. All rights reserved.
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1. Introduction may not be completely random, but may be deter-
mined by some rules instea&cghwefel, 200 In
Modeling DNA sequence evolution efforts beg this vein, the elementary self-replicating module is
the question whether mutations happen absolutely atsupposed to be a short peptide comprising about 32
random. The DNA of complex mammals comprises amino acids KlcFadden, 2000 Since there exist 20
about 18 bases, whereas life on earth is about’s) different amino acids, there are ¥0possible pep-
old. The evolution of such a great complexity within tide sequence permutations 32 amino acids long. At
this relatively short time period hints that evolution a striking paradox, according to the random evolu-
tion model, assuming random synthesis of at least
one molecule of every single possible peptide in the
mpon ding author. Teks30-25410-79548; primordial chemical epvironment, out of which those
fax: +30-25410-26947. able to replicate survived, the total mass of all pos-
E-mail address: ykar@ee.duth.gr (1. Karafyllidis). sible peptides should have weighted about®i@,
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a quantity vastly exceeding total carbon mass of
tropical forests McFadden, 2000

Recently, quantum-mechanical models of DNA
evolution proposed that evolution is directed by
guantum-mechanical mechanisr@agéke et al., 1997,
1998; Bieberich, 2000; Kirby, 2002; McFadden and
Al-Khalili, 1999; Ogryzko, 199). The aforemen-
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one or more of its lattice sites (bases), either during
DNA replication or during the life of the individual
carrying the DNA.

The time step in DNA evolution is the time inter-
val between twaevolution events hence, time flow is
not uniform. Consider for example a non-sexual re-
producing species with a lifespan of 1 year. Suppose

tioned models are strongly supported by recent data that a mutation occurs now, the next one occurs in 9
indicating that quantum proton tunneling causes tau- years, the next one in 4 years, and the next one in 8
tomeric transitions in base pairs resulting in mutations months. Then, the first time step represents 9 years of
during DNA replication Golo et al., 2002; Hjort real time, the second 4 years and the third 8 months.
and Stafstrom, 2001; Kryachko, 20022 complete As a consequence of this model, the DNA strand and
guantum-mechanical description of DNA remains the individuals passing it from one generation to the

elusive, because of the complexity of the processes other may exist in different time scales thus, DNA

and the complex three-dimensional structure of the evolution is time-wise distinct from the life of the in-

molecule Altaisky, 2000; Balazs, 2003; Patel, 2001

Furthermore, several important theoretical problems

dividuals that carry it.

have to be addressed, such as the transition from the2.1. Quantum-mechanical description of DNA
guantum to the classical regime through the process evolution

of quantum measurement. Quantum measurement in

biological systems is a very difficult and controversial
issue Rosen, 1996

We have developed a quantum-mechanical descrip-
tion of DNA, which to the best of our knowledge ap-

Although an acceptable quantum-mechanical model pears for the first time in the literature. We believe that

of DNA evolution is still distant, there is an increas-
ing demand for the study of its evolution, because it
may allow predictions of mutations. In this work we

any quantum-mechanical description of DNA should
be developed in accordance with the quantum compu-
tation model, enabling thus its simulation and study

have developed a quantum-mechanical description of using the forthcoming quantum computers. Physical

DNA evolution and, following its outline, we have
constructed a classical model for DNA evolution in

systems are characterized by an ensemble of interact-
ing constituents and can be generally represented and

which some aspects of the quantum-mechanical pro- studied by different algebras of operators. In quan-
cesses are supposed to be reflected on the genetic codeum computing the information unit is the quantum
An algorithm is developed based on this model. The bit (gbit) and several gbits form a quantum register.
algorithm has a user-friendly interface and the user can The quantum register state evolves in time as a result
change several of its parameters, in order to study var- of the action of quantum-mechanical operators, which
ious hypotheses concerning DNA evolution models. are known as quantum gat&%i{liams and Clearwater,
1998. These operators form an algebra. For example
all one-gbit operators can be described by an algebra
generated by the Pauli spin 1/2 operators. To simulate
a physical system using quantum computers a connec-
tion between the system and the computer should be
found. This connection is a transformation (usually an
in each site of which one of the four bases: A, C, isomorphism) of the operator algebra describing the
T and G may be bound. We define as emolution physical system to the operator algebra used in quan-
event a base change in a site (mutation). In the case of tum computing $omaroo et al., 1999; Yepez, 2002
non-sexual reproducing, single cellular organisms, if To simulate a physical system using quantum com-
a DNA sequence is passed unaltered from one gener-puters one must find an operator algebra describing
ation to the next, then no changes occur and the DNA the physical system and the transformation connecting
does not evolve. DNA evolves if a change occurs in this algebra with the one used in quantum computing.

2. Quantum-mechanical description and
mathematical modeling of DNA evolution

DNA can be modeled as a one-dimensional lattice



G.Ch. Srakoulis et al./BioSystems 77 (2004) 11-23 13

DNA is a physical system and an operator alge- As any quantum system, the DNA molecule evolves
bra representing its function and evolution should in time according to the Schrédinger equation:
exist. Such an algebra has not been found yet, but )
it will probably develop as a result of studying the ih o
physical and chemical mechanisms of DNA function
and evolution. In this framework, we model DNA where the operataf is the Hamiltonian of the quan-
as a quantum system comprising a number of four tum system. If the initial conditions are known, i.e. if
base-state quantum subsystems located at the sites ofhe base sequence in the DNA molecule is completely
its one-dimensional lattice. Each quantum subsystem known at some time, this time is time step 0 and the
may be found in any of the four base-stajs; |C), initial state is|y(0)). The state of the DNA molecule
|G) and |T), or in any linear combination of them, at some later time is given by the solution of the
according to quantum superposition. To perform cal- Schrédinger equation:
culations, the four base-states must be represented .
by numbers. Since there are only four base-states the|y,(y)) = exp(—if{t) [%(0))
most appropriate way of representing them by num- h
bers is to correspond each one of them to a respective = Y1) = U@) |¥(0)) )
number of the quaternary number system:

= H|y®) (6)

In the matrix formulation of quantum mechanics the
A—-0C—->1GC—-2T—-3 1) operatorU is a unitary matrix. The evolution of the

. . . , guantum state can be performed in discrete time steps
Since in the double DNA strand A binds with T and C (Williams and Clearwater, 1998In this case the sec-

with G, by choosing the above representation the sum

of bases at each base pair in the double strand is 3.
After that, the state of the quantum subsystem at [¥(t + 1)) = U" [y(1)) (8)

theith lattice site at time step |bf) is given by:

ondEq. (7)takes the form:

where U’ is the operator applied at time stépin

|b§) = Cfli |0) + Ctl,i |1) + ClZ,i |2) +C§,i 13) 2) Eqg. (8) t in U’ is an index, not a poweFig. 1 de-
picts this evolutionFig. lais a schematic represen-
wherecg ;, ¢ ;, ¢5; andey ; are the probability ampli-  tation of Eq. (8) At time stept the quantum state of

tudes of the subsystem state to|B, |1), |2) or |3) the DNA molecule, given b¥q. (5) is in the left col-
at timet, respectively. The probability amplitudes are umn. The operator acts on this state and the result of
generally complex numbers and the corresponding the operation action is the quantum state of the DNA
probability is given by their square. All probabilities molecule at time step+ 1, shown in the right col-

must add up to 1: umn. The operatot)’ represents in the physical and
2 2 2 2 chemical processes that cause the evolution and is the
[0l + fenil ™+ ||+ 5" = 1 3) i
0.i 1 2,i 3il = tensor product of local operators as showtrig. 1h

These local operators may act on one or more quantum
subsystems. If no operator acts on a subsystem, this
no-action is represented by the unit operdtoxrhich
c§7i|2 =0 (4 corresponds to the2 2 unit matrix. For example, the

operatorl’ of Fig. ladecomposed in local operators
The state of the quantum subsystem atithéattice as shown irFig. 1bis given by:

site at time step, |b!), is a vector in a four-dimensional

For example, in the case where the base C is sure to

be found at theth site:
<o

Cg.,i|2 =1, C[2,i|2 =0,

!
|Co,i

Hilbert space, and the quantum state of the DNA U' =U1®U;®@1@U3®-- @11 U, 9)
molecule at time stefy [/(1)), is the tensor product  The symbol ® denotes the tensor product. The
of all m subsystem states: guantum-mechanical model of DNA described above
can be mapped on a quantum computer with cellu-
V(1) = [bp) ® [Ph) ® [Po) @ -+ ® [bf) ® - ® |1}, lar architecture, where each quantum subsystem is

(5) represented by two gbitKéarafyllidis, 2003.
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Fig. 1. Evolution of the quantum state of the DNA molecule in
discrete time steps. (a) Evolution at time stefb) Decomposition
of the operatolJ’ in local operators.

Two major problems in quantum-mechanical mod-
eling of DNA evolution are now apparent. The first
problem is the construction of the Hamiltonian and,
consequently, of the unitary matrix representidg
The Hamiltonian must comprise all possible proton
tunneling processes, the potential barriers that arise
from the three-dimensional geometry of DNA and the
charge distribution in it, which is not yet known. The
second problem is the size of the unitary matrix rep-
resentingU’. The state vector of a DNA molecule
with mbases exists in @4-dimentional Hilbert space
and the size of this matrix is™4x 4™. It is obvi-
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ous that the computational complexity for the simu-
lation of DNA evolution is O(4™), wherem is the
number of bases in the molecule, and that it is an
intractable NP (non-polynomial)-complete problem.
This is not a new fact, since as a result of the hidden
variable theorem no classical computer can simulate
a quantum-mechanical system without suffering from
exponential slowdowrBerman et al., 1998; Feynman,
1986.

Possibly, this problem will not be intractable for
the forthcoming Quantum ComputeBgrman et al.,
1998; Feynman, 1986but until they become avail-
able the guantum-mechanical problem described in
this subsection must be reduced in order to be dealt
with using classical computers.

2.2. Classical mathematical model of DNA
evolution

Following the outline of the quantum-mechanical
description of DNA sequence evolution, we devel-
oped a classical model in which the DNA is modeled
as a one-dimensional lattice in each site of which
one of the four bases A, C, T and G may be bound.
The four bases are the states of the lattice sites and
are represented by one of the numbers of the qua-
ternary number system described in (1). The state
of a DNA molecule withm bases is given by a
vector which exists in aimm-dimensional Cartesian
space. For example, the state of the DNA molecule
ATCCGTT that comprises seven bases is given by
the one column vector0[3 1 1 2 3 3]. The state
of a DNA molecule withm bases at time, [S], is
given by:
h
b
v
[S1=| : (20)
b

L b |

wherebd! is the base located at thth lattice site at
timet andb! € {0, 1, 2, 3}. In analogy toEq. (7)the
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evolution of the DNA molecule withm bases from nonetheless classical models must be developed be-
time stept to time stepr + 1 is given by: cause of their importance for the study of DNA evolu-

[S1] = F1[S'] (11) tion. Furthermore, a good classical model may serve
o as a foundation for the development of more useful
where B] and [s"+1] are column vectors witim ele- semi-classical models preserving a larger amount of
ments and?&t is anm x m matrix. The symbot is an ?nformation. The number of pOSSible'ClAaSSical models
index denoting the time step. The full form of (11) is: IS equal to the number of the matrica#' that can
[ t+17] - - - -
by Mig Mi, Myg - My - My, [
+1
by Mé,l Mé,z Myg - My, - Mé,m b,
1
bsF My Mz, Mzg - My, - Mg, || b
= : : : : : : : : (12)
b;+l Mf,l M;,z Mil Mit,i Mit,m bf
ot LM M, Mg M, ; My ] L

The elements of the matrik’ are real numbers and  be constructed. For example all models in which the
may be different in different evolution time steps. The elements ofif! are real numbers that are constant in

elementM; ; models the effect of the state at tfth time are linear models. A first-order approximation of
site on the state at thieh site at the next evolution 3 quantum model is a stochastic model. Following this
time step. line of thought we choose to model DNA evolution

A comparison of the quantum-mechanical and the ysing a matrixi#* some elements of which change
classical models shows that the complexity is very randomly in time according to a probability scheme

much reduced in the latter. The quantum-mechanical given by the genetic code. Our model will be described
DNA state is given by a vector with™ elements in the following section.

existing in a 4*-dimensional Hilbert space, whereas

the classical DNA state is given by a vector with

elements which exists in erdimensional Cartesian 3. A local stochastic classical mode of DNA

space. The size of the unitary matrix representihg  evolution

in (9) is 4" x 4", whereas the size of the matti%’ in

(10) and (11) isn x m. The complexity is significantly We start with the assumption that some of the
reduced, but all the information about DNA evolution quantum-mechanical processes in the DNA molecule
that is stored in the quantum-mechanical state super-are manifested in the structure of the genetic code
position is now inaccessible. The quantum-mechanical (Osawa, 1995; Chechetkin, 2003’he genetic code
model is constructed within the Hilbert space, i.e. the is used to translate triplets of bases (codons) into
elements of the state vecta#(r)) and the elements of amino acids, which are the protein building blocks.
the unitary matrix representing are complex num-  As a result of the redundancy in the genetic code,
bers. The classical model is constructed into the Carte- mutations at the third base of a codon are some times
sian space and the elements of the vec&jrdnd of silent; when they occur, the new codon codes for the
the matrix M’ are real numbers. Therefore, the infor- same amino acid. In this case the mutation has no or
mation on the interaction between DNA bases, stored minimal biological consequences. On the other hand,
in the qguantum-mechanical phase interference, is alsomutations of the first base of a codon almost always
inaccessible. Only a small part of the DNA evolu- result in a change in the amino acid encoded by the
tion process can be described by any classical model,new codon, which frequently leads to disfunction and
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even death. It is, therefore, reasonable to assume thatrable 1

the coding DNA sequences of the genome that has We postulated that the mutation propensity at each nucleotide
been selected by the evolution process are COmposeodepends on the position of the site in the corresponding codon
in such a way that renders mutations at the first or the G A C T

second base of the codon less probable than mutationga)

at the third base. G 0 0 0 0 G
Our second assumption is that the occurrence of g 8 8 8 8 é
mutation at a DNA lattice site is affected by the charge G 0 0 0 0 T
distribution and the proton number near its neighbor- A 0.33 0 0 0 G
hood @Archilla et al., 2002. This assumption is mod- '2 8'33 g g g é
eled by setting equal to zero the elements of Mie A 0 0 0 0 T
matrix that correspond to sites that are located ina C 0.33 0 0 0.33 G
distance greater than two lattice sites fromitiesite. g 8'33 8 g 8'33 é‘
Thus, the state of thgh site (base) at the next evo- C 0 0 0 0 T
lution time step depends on the state of the two sites T 0 0 0 0.33 G
(bases) that are located nearest to it. The model is [ 0 J 0 933 &
therefore local. Overlapping antiparallel Open Read- T 0 0 0 0 T

ing Frames (ORFs) are rare cases where our model(b)
cannot be applied as is. However, we foresee that suit- G 0 0 0 0 G
able modifications of the model in future, may lead to a g 8 8 8 8 é
more complex version that could cover this exception, 0 0 0 0 T
too. The values of the non-zero elements of Mé A 0 0 0 0 G
matrix are not constant in time. Their values are deter- ﬁ 8 8 8 8 é
mined according to the following evolution scheme: A 0 0 0 0 T
1. The model starts with a given DNA sequence with g 8 8 8 8 2
m bases. c 0 0 0 0 c
2. Areal number, &< R < 1, is chosen. This number C 0 0 0 0 T
; : ; T 0 0 0 0 G
is the. mutatpn rate an.d the number of possible T 0.33 0.33 o o A
mutations,C, is given by: T 0 0 0 0 Cc
C—mR (13) ( )T 0 0 0 0 T

C
If Cis not an integer, then the real numb@ris g 1 8-32 i i E
rounded to the nearest smaller integer. G 1 033 1 1 C
3. The number of bases that will likely mutateGs G 1 0.33 1 1 T
At each evolution time step, a random number gen- ﬁ 8 gg 8 gg 1 8-66 E
erator is used to genera€integers in the range A 033 033 1 0.66 c
from 1 tom. These numbers make a Swith car- A 0.33 0.33 1 0.66 T
dinality C. The sites with numbers that belongto  C 1 0.33 1 1 G
S are possible mutation sites. The rest of the sites g 1 g'gg i i é
will pass unchanged to the next DNA sequence: C 1 0.33 1 1 T
. . T 0 0.33 1 0.33 G
If j ¢ Sthen[M; ; = Ofori # jandM; ; = 1] T 0 0.33 1 0.33 A
T 0.33 0.33 1 0.33 C
(14) T 0.33 0.33 1 0.33 T

4. At each site that is candidate for mutationGa If a site is located at the first position of a codon, then its

; ; ; it mutation probability is given by (a), at the second place by (b)
value is assigned, depending on the position of and at the third place by (c). The mutation probability values

the site within the corres_ponding codon, according found in the aforementioned tables result from the genetic code
to Table 1(a—c), respectively. These tables reflect translating codons into amino acids.
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Table 2
The universal genetic code (whefeis used instead of))

First Second position Third
position G A c T position 5.
G Gly Glu Ala Val G
Gly Glu Ala Val A
Gly Asp Ala Val C
Gly Asp Ala Val T
A Arg Lys Thr Met G
Arg Lys Thr lle A
Ser Asn Thr lle C
Ser Asn Thr lle T
C Arg GIn Pro Leu G
Arg GIn Pro Leu A
Arg His Pro Leu C
Arg His Pro Leu T
T Trp STOP Ser Leu G
STOP STOP Ser Leu A
Cys Tyr Ser Phe C
Cys Tyr Ser Phe T

the mutation propensity for each site based on the
genetic code shown ifable 2 whereT is using
instead ofU. As a resultG values range, after nor-
malization by factor 4 (i.e. the number of bases):

0<G <025 (15)

In detall, if a site is located at the first or second
position of a codon, then its mutation propensity
is rather low, because the probability to generate
a synonymous codon is low. Conversely, if a site
is located at the third position of a codon, the
propensity is rather high. For example, if the third
position of the codon CTG (coding for leucine,
Table 2 is mutated, there is 100% probability that

a synonymous codon will be obtained, as shown in
Table Xc), and yielding & value equal to 0.25. If

the second position is mutated, it is absolutely sure
that it will result in a different codonT@able 2, so it
yields aG value equal to 0, as shown Table Xb).
Finally, a mutation in the first nucleotide of this
codon has a 33% chance to generate a synonymous
codon, as shown iffable Xc) and corresponds to a

G value equal to 0.083. According to our assump- 4.
tion, this feature of the genetic code integrates, to
a certain extend, the quantum-mechanical mech-

17

mentioned codon is more probable than at the
other two positions, exactly because the biological
consequences of such an event are minimal.

The quantum-mechanical process that causes the
mutation is modeled as a random process. A ran-
dom number generator is used to assign another
numberQ at the site that is candidate for mutation,

0<Q0=<05 (16)

It should be noted, tha values are absolutely
arbitrary. The higher th& value’s upper limit,
the lower the impact of the codon position on the
mutagenesis. Hence, manipulation of paraméter
is a built-in opportunity for fine-tuning the impor-
tance of nucleotide position within the codon on
the process of mutagenesis. The two numk@rs
and Q are added and their sum is compared to a
number, P that is a user-defined model parame-
ter. If P < (G + Q) mutation will occur, and if
P> (G + Q) will not.

. Another set,MUT, is constructed. This set is a

subset ofSand contains all the sites at which mu-
tation will occur. At the next evolution step, the
states of the sites change to the values determined
using a random number generator that for each
mutation sitek picks randomly one numbefy,
which is 0, 1, 2 or 3.

If k € MUT, then

M}, =0, ifitk—2k—1k an
M =1 M1, =1 M, =T

Thus, the next state at sikes given by:

bt = Mi_p bl o+ Mi_y b+ Tibl,  (18)

The addition in (18) is modulus 4. At each evo-
lution time step the values of the elements of the
matrix M’ are given by (14) and (17). Based on
the model described above we developed an algo-
rithm for DNA evolution which will be described

in the next section.

DNA evolution algorithm

The flow chart of the algorithm is shown fig. 2

anism of DNA mutagenesis. Hence, we postulate The algorithm starts by reading the mutation proba-

that a mutation at the third position of the afore-

bilities, i.e. Table 1 Then the user is prompt to enter
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Read Mutation Probabilities
(Table 1)

Parameter Definition by the user

m, R, P, tmax

NOT ACCEPTABLE
Check the user-defined

parameters values

ACCEPTABLE

Set the initial

DNA sequence

A 4

Start Random Number Generator to generate C possible
mutation sites in range from 1 to m

}

Start Random Number Generator to assign a number Q
at each site candidate for mutation

|

P>(G+Q)
Compare the sum of G and Q with P

for each site candidate for mutation

P<(G+Q)

Start Random Number Generator
to pick number Tk

l

Produce the next

A

DNA sequence

NO
time > fmax

YES

Graphical Output

Fig. 2. The flowchart of the algorithm.
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Initial DNA Sequence S et maximum time of
(" Default DNA sequencel Default DNA sequence2 DNA evalution
" Default DNA sequence3  ( Random DNA sequence (Z gztf:;& linF
¢ Manual DNA sequence) GTCTTATCGATGCCGGLGAAGT

DN& Seq. Size

" Start at an

+ Default Size

Set DHA Mutation
Percentage

(e Setat 0.30

" Default Mumber

Set DNA Mutation
Rate

fe Setat 0.25

¢ Default Number

Boundary Condition
" Periodic
v Zeo

Statistical DNA
Bases Properties

v No. of Basesl
v No. of Bases2

5 10 15 20 25

(48]
e

Fig. 3. The user graphical interface shows a DNA sequence evolution (A: black, C: dark gray, G: light gray, and T: white).

the values of the user-defined parameters, that is the The graphical user interface of the algorithm is
length of the DNA sequence, the mutation rateR, shown inFig. 3. In the field “Initial DNA Sequence”
the numbeP which will be compared to the sum of the user inserts the sequence which will be used as
G andQ, andtmax, the number of evolution time steps initial. The user has three choices: by clicking on
that the algorithm will take. The values of these pa- the radio button beside the “Default DNA sequence
rameters are checked and if not acceptable the userl, 2 or 3,” a previously defined DNA sequence is
is prompted to correct them. Acceptable values for used as initial. By clicking on the radio button beside
the parameterm andtmax must be positive integers  the “Random DNA sequence,” a randomly generated
and more specificallyn should be a multiple of 3, DNA sequence is used as initial. The user can enter
while R and P must be positive real numbers smaller hers/his own DNA sequence by clicking on the radio
than 1. button beside the “Manual DNA sequence” and enter-
If the parameters are acceptable, the user deter-ing the sequence into the blank field on the right side
mines the initial DNA sequence. The user may enter of “Manual DNA sequence.” The sequence entered by
whichever sequence she/he wishes. Then the randonthe user must be in frame with the corresponding ORF.
number generator indicates the possible mutation sitesThat is to say, the first nucleotide of the input sequence
and a random number is assigned to each site. Subsemust be the first nucleotide of a codon. In addition
quently,P is compared to the su@@ + Q and, if it is this sequence should not encompass any splice sites.
greater, the site passes unaltered to the new sequence, The number of evolution time stefigay, is entered
otherwise the site state (base) is changed accordingin the field “Set maximum time of DNA evolution.”
to (18). The new DNA sequence is produced and, if The numbem, i.e. the length of the DNA sequence is
the number of time steps taken is less than or equal entered in the field “DNA Seq. Size.” The numb&s
to tmax, the algorithm executes another loop, other- and the mutation ratB, are entered in the fields “Set
wise a graphical output is produced and the algorithm DNA Mutation Percentage” and “Set DNA Mutation
stops. Rate,” respectively. The user can set periodic or zero
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Initial DMA Sequence Set maximum time of
(" Default DNA sequencel (" Default DNA sequence2 DNA evolution DNA Seq, Size
(" Default DNA sequence3  ( Random DNA sequence " Setat m ¢ Start at IT
& Manual DNA sequence] GCTTGGTAGTTGOGCCAGCGA [l Do vl fme

* Default Size

Set DNA Mutation
Percentage

5k E E : I (+ Setat 0.03

(" Default Number

] ] Set DNA Mutation
o e ! Rate

(+ Setat 005

" Default Number

15
Boundary Condition
(" Periodic
10 ] * Zein
= Statistical DNA
I i Bases Properties
25 3 Mo. of Bases]
r [~ Mo of Bases2
30
10 15 20
(a)
Initial DNA Sequence Set maximum time of
¢~ Default DNA sequencel  ( Default DNA sequence2 DN evalution

DMNA Seq. Size
(" Default DNA sequence3 (" Random DNA sequence " Setat a0
(" Start at 30

e
& Manusl DNA sequence] GCTTGGTAGTTGGGCCGGDEA [l ot Al - o o

Set DNA Mutation
Percentage

c[ ] p ] & Setat W

(" Default Number

Set DNA Mutation
10 Rate

(+ Setat 0.05

" Default Number

15 F

Boundary Condition
: " Periodic

20
Statistical DNA,
Bases Properties

25 i [~ No. of Basesl

30

5 10 15 20
(b)

Fig. 4. (a) Application of the algorithm to a DNA sequence with= 0.03, and (b) the same initial DNA sequence and the same parameters
as inFig. 3aare used except for the value Bfwhich is set equal to 0.04 (A: black, C: dark gray, G: light gray, and T: white).
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Fig. 5. (a) Application of the algorithm to a DNA sequence with= 0.30, and (b) the same initial DNA sequence and the same parameters
as inFig. 4aare used except for the value Bfwhich is set equal to 0.32 (A: black, C: dark gray, G: light gray, and T: white).
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boundary conditions by clicking the corresponding ra- the user can change several parameters of the model,
dio button in the field “Boundary Condition.” Some in order to study various evolution hypotheses.
statistical properties, such as the number of bases at
each evolution time step, as well as the difference be-
tween the number of each base in the beginning and at
the end of the evolution, are displayed if she/he clicks
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