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With the advent of massively parallel scientific computation, the parallel
generation of pseudorandom numbers has become essential. During the
last decades several researchers have successfully implemented Cellular
Automata (CA) as Pseudorandom Number Generators (PRNGs). On the
other hand, recently Autonomous DNA Turing Machines and DNA Cel-
lular Automata were proposed as cellular computing devices that can
serve as reusable, compact computing devices to perform (universal)
computation. In this paper, we introduce a methodology for the design
of one-dimensional (1-d) Hybrid Autonomous DNA Cellular Automata
(HADCA), able to run in parallel, different CA rules with certain modi-
fications on their molecular implementation and information flow com-
pared to their origins. In this aspect, an easy to use HADCA simulator
was developed to encourage the possible use of the biological inspired
computation tool. As a result, the proposed 1-d HADCAs are used to
generate high-quality random numbers which can pass the statistical
tests of DIEHARD, one of the most well known general test suites for
randomness, proving their suitability as PRNGs.

Keywords: Cellular automata; hybrid autonomous cellular automata; DNA
molecular reactions; pseudorandom number generation

1 INTRODUCTION

Since real random numbers can be obtained from some physical phenomena
only, they are difficult to be employed in real applications. Hence, pseudo-
random numbers generated by artificial designed patterns have to be used
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instead. Pseudorandom number sequences are widely used in digital com-
puting and communication applications, such as cryptography, VLSI testing,
coding, D-A conversion, etc. [1, 2]. One commonly used type of pseudo-
random number generators (PRNGs) is based on Cellular Automata (CA).
More specifically, it was back in 1986 when Wolfram [3] first applied CA
in pseudorandom number generation. The intensive interest in this field can
be attributed to the phenomenal growth of the VLSI technology that permits
cost-effective realization of the simple structure of local-neighborhood CA.
Wolfram’s work in [4] proved that one randomness of the patterns gener-
ated by maximum-length CA is significantly better than other widely used
methods, such as linear feedback shift registers (LFSRs). As a result, the last
years, several one dimensional (1-d) and two dimensional (2-d) CA PRNGs
have been proposed [1, 2, 5–12]. The proposed 1-d CAs PRNGs are advanta-
geous in terms of easy implementation, modularity and required silicon area
but, in some cases, present reduced randomness, as they fail to pass certain
test suites [13–15]. On the other hand, the statistical random tests of the pro-
posed 2-d CAs PRNGs result in that their randomness is much better than that
of 1-d CAs PRNGs. However, taking into account design complexity, ease of
large scale implementation, maximum switching frequency, time delay and
computation efficiency it is difficult to state which one is better.

On the other hand, during the last decades, certain research emphasis has
been placed on building synthetic molecular machinery from DNA. In spe-
cific, biological systems in which individual molecules act, singly and in
concert, as specialized machines result are called DNA machines. It was
back in the late 80s when the researchers first started to think of using
DNA molecules not only as cornerstone for their biological research but
also as possible virtual machines able to perform tasks that are currently
beyond our reach. More specifically, DNA nanomachines were made by self-
assembly, using techniques that rely on the sequence-specific interactions that
bind complementary oligonucleotides together in a double helix [16]. DNA
machines can be logically designed since DNA assembly of the double helix
is based on strict rules of base pairing that allow portions of the strand to be
predictably connected based on their sequence [17]. Consequently, several
tasks can be accomplished since devices that change state in response to an
external trigger might be used for molecular sensing, intelligent drug delivery
or programmable chemical synthesis.

In the latter days, certain advances have been reported, like the DNA
machine reported by Bernard Yurke and co-workers at Lucent Technolo-
gies in the year 2000, who constructed molecular tweezers out of DNA [17].
Furthermore, Wang et al. have built a molecular machine out of DNA that
could act as a logic device for chemical sensing and medicine delivery [18].
In details, they built three DNA tweezers that are activated by the inputs
H+/OH−; Hg2+/cysteine; nucleic acid linker/ complementary antilinker to
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yield a 16-states finite-state automaton. The outputs of the automata are the
configuration of the respective tweezers (opened or closed) determined by
observing fluorescence from a fluorophore/quencher pair at the end of the
arms of the tweezers [18].

In correspondence to the aforementioned works, Yin et al. successfully
managed to use DNA molecules as micromachines capable of universal com-
puting [19]. As also mentioned in [18], it is of significant importance, com-
pared to earlier DNA machines, that unlike its ancestors DNA machines, the
proposed nano devices have a degree of memory, making them potentially
programmable. The system exhibits a memory because each current state and
output depends not only on the source configuration but also on past states
and inputs. Moreover, the reported design of an autonomous unidirectional
DNA mechanical device capable of universal sequential computation, termed
as Autonomous DNA Turing Machine is also capable of complex transla-
tional motion which authors defined as universal translational motion [19].
In [20], the same authors extend their previous work and obtain the design
of an Autonomous DNA Cellular Automaton (ADCA). By mimicking a 1-d
universal CA, the ADCA can perform parallel universal computation, and in
the process, demonstrate well coordinated parallel motion.

In this paper we introduce the design and implementation of simultane-
ous evolution of more than one 1-d CA rules in parallel based on certain
modifications of molecular implementations and information flow compared
to their origins [20]. More specifically, we have introduced a methodology
depicturing the possible needed modifications so as to implement different
CA rules resulting into 1-d Hybrid ADCA (HADCA) and in this direction we
have developed a simulator to extend the computational usage of the given
DNA based CA structures. Taking into account design complexity, maxi-
mum switching frequency, timing delay and computation efficiency of CAs
we investigated the resulted HADCA as efficient PRNGs. For doing so, we
have implemented several CA rules, like rules 110, 30 and 90 and, moreover,
we have applied their parallel output as possible PRNGs. Eventually, the pro-
duced 1-d HADCA results generate high-quality random numbers which can
pass the statistical tests of DIEHARD suite of Marsaglia [13], which seem to
be one of the most well known general test suites for measuring the quality
of a PRNG. As a result, the presented simulation results can be considered as
a promising application of DNA computing.

2 AUTONOMOUS DNA (ADCA) CELLULAR AUTOMATA:
DESIGN AND IMPLEMENTATION

2.1 ADCA Preliminaries
In this Section a brief outlook of the original proposed Autonomous DNA
Cellular Automaton (ADCA) is provided [20]. Although most of the details
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can be found in [20], for readability and comprehension reasons, the key
points of the proposed method are also described here to help the reader to
appreciate the forecoming modifications as found in the next Sections. More
specifically, ADCA operates in a solution system and it is composed of four
parts, namely a rigid symbol track, a linear array of dangling DNA molecules
tethered to the symbol track, a set of floating DNA molecules, and a group of
floating protein enzymes.

More specifically, the symbol track provides a rigid structural platform
on which the dangling-molecules are tethered. It can be implemented, for
example, as a rigid addressable DNA lattice, such as the barcode DNA lat-
tice reported in [21]. The array of dangling-molecules, also called symbol-
molecules, tethered to the symbol track represent the array of cells (symbols)
in the CA (and hence the name symbol-molecule). A dangling-molecule is
a duplex DNA fragment, with one end tethered to the symbol track via a
flexible single strand DNA fragment and the other end possessing a single
strand DNA extension (the sticky end). Due to the flexibility of the sin-
gle strand DNA linkage, a dangling-molecule moves rather freely around
its joint on the symbol track. In the presented approach the only possi-
ble interactions between two dangling-molecules are those between two
immediate neighbors. This requirement can be ensured by properly spac-
ing the dangling-molecules along the rigid track. Furthermore, in addition
to the array of dangling-molecules, the system contains floating-molecules.
A floating-molecule is a free floating (unattached to the symbol track) duplex
DNA segment with a single strand overhang at one end (sticky end). A
floating-molecule floats freely in the solution and thus can interact with
another floating-molecule or a dangling-molecule provided that they pos-
sess complementary sticky ends. There are two kinds of floating-molecules:
the rule-molecules and the assisting-molecules. The rule-molecules collec-
tively specify the computational rules and are the programmable part of the
ADCA, while the assisting-molecules assist in carrying out the operations
of the ADCA [20]. Finally, the system also contains floating DNA ligase
and three types of DNA endonucleases. The enzymes perform ligations and
cleavages on the DNA molecules to effect the designed structural changes
and hence the information processing.

2.2 Structural Changes
Figure 1 top row depicts an example abstract CA in its top panel, and a cor-
responding ADCA in its bottom panel [19]. For simplicity and clarity, the
floating enzymes and the floating DNA molecules in the ADCA are omitted;
the symbol track, as well as the duplex and sticky end portions of a dangling-
molecule, is depicted as a thick line segment; the flexible hinge of a dangling-
molecule as a thin curve. The leftmost symbol-molecule is a special initiator
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FIGURE 1
Structural changes during the operation of an ADCA. In lower line red (dark) and green (grey)
boxes indicate two pipelined [19].

dangling molecule, I, representing the cell 0 in the abstract CA. To the right
of I, three types of dangling-molecules, A, B, and C, are positioned evenly
along the track in a periodic order such that cells 3i+1, 3i+2, and 3i+3, where
i is a non-negative integer, in the abstract CA are represented in the ADCA
by symbol-molecules A, B, and C, respectively. The symbol-molecules differ
in their default sticky ends, i.e. the sticky ends they possess in their respective
initial configurations before the reaction starts. The color of each cell in the
abstract CA is encoded in a corresponding symbol-molecule in the ADCA.

Figure 1, bottom line, illustrates structural changes [19]. During the oper-
ation of the ADCA, the initiator molecule I sends out a “reaction wave”
that travels down the track from left to right. A critical novel property of
the ADCA is that multiple reaction waves can travel down the track in
a “pipelined” fashion. However, a “synchronization” mechanism has been
carefully engineered so that a reaction wave that starts at a later stage can
never overtake one that starts earlier. This ensures the synchronization of the
state changes of the ADCA, and hence its correct operation. In the same Fig-
ure 1 bottom line two consecutive reaction waves are shown, respectively
indicated with red (dark) and green (grey) boxes and arrows [19]. Next, the
first reaction wave (indicated by dark boxes and arrows) is presented, and the
structural changes of ADCA are described.
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In Stage 0, the reaction wave starts at the initiator I at position 0, then
travels sequentially to A in Stage 1, B in Stage 2, and C in Stage 3. The
reaction wave finishes one full cycle in Stages 1, 2, and 3, and thus goes on
inductionally down the track. In Stage i, where i = 0, 1, 2, 3, three types of
reactions occur, namely reactions i.0, i.1. and i.2.

In specific, stage 0, I has a complementary sticky end to its right neighbor
A and is thus ligated to A, and the ligation product is subsequently cleaved
by an endonuclease (Reaction 0.1). Next, I is “modified” by an assisting-
molecule, depicted as a pink (grey) line segment, and restored to its default
configuration (Reaction 0.2). The “modification” will be implemented as lig-
ation and cleavage events and will be described in detail in Section 3. In a
parallel reaction 0.3, A is also modified by another assisting-molecule such
that A will possess a complementary sticky end to B, and thus the reaction
wave is ready to enter Stage 1 (Reaction 0.3).

In Stage 1, similar structural changes occur as in Stage 0. However, after
reaction 1.1, A will possess a sticky end that encodes the state, i.e. color, infor-
mation of itself, its left neighbor I, and its right neighbor B. In the ensuing
reaction 1.2, a rule-molecule corresponding to a transition rule 1-d CA rule
110 recognizes A’s sticky end and effects a state transition of molecule A. A
will then be modified by an assisting-molecule and restored to its default con-
figuration, encoding its new state. In the example shown in Figure 1, bottom
line, a rule-molecule corresponding to rule 110 changes the color encoded in
A from WHITE to BLACK. In the parallel reaction 1.3, B will be modified to
posses a complementary sticky end to C.

In Stages 2 and 3, reactions of the same nature as in Stage 1 will occur.
Details are omitted for brevity.

2.3 Information Flow
Here a short description of the information flow during the operation of the
ADCA is given [19]. For ease of exposition, the information encoding DNA
molecule is denoted as Xa[y]b, where X is its duplex portion, [y] is its sticky
end portion, and a and b respectively represent the state information encoded
in X and [y]. There are two ways to encode information a in the duplex X .
In specific a is encoded as a unique DNA sequence GTA ∗ ; and a is encoded
as the number of base pairs (L bp in the Figure 1) between an endonucle-
ase recognition site and the sticky end of DNA molecule. The sequence of
the sticky end [y], in this case CGC, encodes the state information b. Fur-
thermore, [ȳ] is used to denote the complementary sticky end of [y]. Finally,
ligation and cleavage events are represented as follows: the ligation of two

∗ The primary nucleobases are cytosine (DNA and RNA), guanine (DNA and RNA), adenine (DNA
and RNA), thymine (DNA) and uracil (RNA), abbreviated as C, G, A, T, and U, respectively.
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molecules Xa[y]b and [ȳ]c Zd is described by the equation:

Xa[y]b + [ȳ]c Zd → XY (1)

Suppose XY incorporates an endonuclease recognition site and is cut into
Xa′

[u]b′
and [ū]c′

Zd ′
. This is represented as:

X Z → Xa′
[u]b′ + [ū]c′

Zd ′
(2)

Now, from the above two equations results,

Xa[y]b + [ȳ]c Zd → Xa′
[u]b′ + [ū]c′

Zd ′
(3)

To demonstrate the practicality of the proposed design, a detailed description
of the molecular implementation of the ADCA is given in [19]. More specif-
ically, in [19], all the detailed info regarding the molecular implementation
step-by-step as well as the complete set of DNA molecules that constitute
ADCA evolution are found in the main text as well as in the appendix.

3 HYBRID AUTONOMOUS DNA CELLULAR
AUTOMATA (HADCA)

3.1 HADCA Basics and the Corresponding Simulator
In this subsection the ADCA evolution based on rule 110 as well as on dif-
ferent rules than the one found in the original paper [20] is described. More
specifically, rules 90 and 30 are also examined, selected mainly because of
their previous application on pseudorandom number generation as found in
literature [10]. However, the most interesting part refers to the simultane-
ous application in parallel of all the aforementioned rules resulting in Hybrid
DNA Cellular Automata (HADCA) concept. It should be made clear that
every other 1-d CA rule could be also selected without any loss of gen-
erality for the proposed HADCA design method. The key point of gener-
ating successful HADCA is located on the requested modifications of the
molecular reactions for the development of the presented CAs as described
in the following subsection. However, for implementation reasons, a simula-
tor has been developed in Matlab that enables the HADCA generation for the
researcher without any prior knowledge of the molecular implementation of
the provided hybrid CA DNA model.

As mentioned before, each ADCA corresponds to the following initial
molecular structural configuration: I ABC ABC ABC where A, B and C can
be found in either white (W) or black (B) state corresponding to logic 0 or 1,
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respectively, while the I state corresponds by default to white (W) or in other
words to logic 0 for our simulator. It should be also mentioned, once again,
that I , A, B and C are DNA molecules that consisted of the four well known
DNA bases adenine (A), thymine (T), cytokine (C) and guanine (G) which
are represented by numbers of the quaternary number system, namely 0, 1, 2
and 3 for our simulation needs.

The presented ADCA evolves based on some simple rules. For t = 0, the
initial configuration of ADCA is one-dimensional array [1, n] where n stands
for the number of the ACDA cells. The cell state of an arbitrary cell, i.e.
c(t, i), where t the evolution time and i positive integer, depends on the state
of the left neighboring cell of c(t, i) found on two (2) previous time steps,
i.e. l(t − 2, i − 1), the state of the c(t, i) itself during previous time step, i.e.
c(t − 1, i) and the state of the right neighboring cell in just last time step, i.e.
r (t − 1, i + 1). The boundary conditions of the presented CA remain fixed,
in other words the virtual cell that has been added as left neighboring cell
of c(t, 1) cell is always found on 0. Cell state changes only when triangle
inequality i ≤ t applies.

In view of the foregoing, some simulation results for each of the tested
rules will be provided. More specifically, evolution results after 60 time steps
for rule 110 arrived from our simulator are provided in Figure 2 while the cor-
responding ADCA evolution is depictured in Figure 3, respectively. Beyond
the fact that the aforementioned rule applied also in [20], rule 110 has been
proven to be a Turing machine able for universal computing.

FIGURE 2
Simulation of ADCA rule 110 evolution
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FIGURE 3
ADCA evolution for rule 110 (CA cells subject to change are depictured with yellow colour)

The application of another CA rule, namely rule 90 than the one proposed
in [20] resulted in somehow different behavior for ADCA as found in Figures
4 and 5. It is clear that three (3) initial 3-tuples out of 23 3-tuples are different
in case of rule 90 when compared with rule 110 evolution. We will use the
aforementioned B and W letter convention for describing these 3-tuples [8],
i.e. f (WBW), f (BWW), f (BWB), where function f corresponds to any
transition rule, resulting B, W and B, in case of rule 110 and W, B and W in
case of rule 90, respectively. How these different results for the exact initial 3-
tuples affect the information flow of the ADCA? In case of rule 110, WBW
and BWW result in the same state as the previous ones meaning that the
molecular reactions taken into account are i.1, i.2 and i.3 [20], while in case
BWB the new state is different than the one found before and eventually,
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FIGURE 4
Simulation of ADCA rule 90 evolution.
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FIGURE 5
ADCA evolution for rule 90 (CA cells subject to change are depictured with yellow colour).
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FIGURE 6
Simulation of ADCA rule 30 evolution.

molecular reactions i.1, i.2.1, i.2.2 and i.3, occur where i = 1, 2, 3, 4. In case
of rule 90, WBW and BWW configurations result in news states compared
with the previous one meaning that the molecular reactions taken into account
are i.1, i.2.1, i.2.2 and i.3, while in case BWB the new state is the same
as before eventually, molecular reactions i.1, i.2 and i.3, take place where
i = 1, 2, 3, 4. For the rest of the 3-tuples rules 110 and 90 result in identical
molecular reactions. More specifically, when WWW, WBB and BBW occur
new state remains the same as before and eventually, molecular reactions i.1,
i.2 and i.3, take place, while in WWB the new state is different than the
one found before and eventually, molecular reactions i.1, i.2.1, i.2.2 and i.3,
occur where i = 1, 2, 3, 4.

The application of another CA rule, namely rule 30, has been also exam-
ined as depicted in Figures 6 and 7. Using Wolfram’s classification scheme,
Rule 30 is a Class III rule, displaying aperiodic, chaotic behaviour. This rule
is of particular interest because it produces complex, seemingly random pat-
terns from simple, well-defined rules. Because of this, rule 30 has also been
used as a random number generator in Mathematica, [3] and has also been
proposed as a possible stream cipher for use in cryptography. As in case of
rules 110 and 90, certain similarities and differences arise in case of rule
30 ADCA evolution, when molecular reactions occur based mostly on the
3-tuples that result in different states when applied to each of the aforemen-
tioned rules. For example, in case of rule 30 initial configurations BWW,
BWB and BBW result in different states when applied to rules 110 and 90.
However, in two of these cases (BWW and BWB) rule 30 results the same
as rule 90 and the only case that rule 30 differs from both aforementioned
rules is BBW. As before, while for rule 110, the BBW configuration results
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FIGURE 7
ADCA evolution for rule 30 (CA cells subject to change are depictured with yellow colour).

in a new state the same as before, and the molecular reactions i.1, i.2 i.3,
take place, for rule 30, this case, namely BBW, results in a different new state
compared to the one before and therefore the molecular reactions i.1, i.2.1,
i.2.2 and i.3, will happen where i = 1, 2, 3, 4. For the rest of the cases the
exact same reactions occur for any of the above CA rules.

It is now clear that the provided simulator can evolve any of the 1-d
CA rules, taking into account Wolfram’s decimal numbering convention for
describing these rules and the aforementioned molecular reactions modifica-
tions. The user does not need to know the biological “background” of the
under study rules and the simulations are in every case straightforward, since
the developed code detects and provides automatically the requested changes
to information flow of molecular reactions.

Moreover, in the context of the aforementioned simulator simultaneous
application in parallel of all the aforementioned rules resulting in Hybrid
DNA Cellular Automata (HADCA) concept is also described. In specific, for
most of the CA cells, (for visualization reasons we have chosen the number
of CA cells to be equal to 50) rules 110 applies. For 15 ≤ i < 39, where i ∈
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FIGURE 8
Simulation of HADCA rules 110, 90 and 30 evolution in parallel.

[1, 50] rule 90 applies for time t , 15 ≤ t < 39. Furthermore, rule 90 applies
also for the cells where 9 ≤ i < 24 but this time for time t , 51 ≤ t < 55 in
order to confirm that cells change their state when triangle inequality i ≤ t
applies. Finally, for CA cells where 24 ≤ i < 33 rule 30 applies for time
steps 24 ≤ t < 33. As mentioned before for the rest of CA cells same rule,
namely 110 applies when inequality i ≤ t applies. The HADCA results are
depictured in Figures 8 and 9 for 60 time steps colored by the application of
each rule, respectively.

Finally, we have tested our simulator and the corresponding HADCA for
different initial sequences when applying all the aforementioned rules in par-
allel. In such a way we are trying to investigate the applicability of the pro-
posed scheme under random initial conditions. It is clear as found in Figures
10 and 11 after the rules parallel application for 60 time steps as described
above, where results are colored by the application of each rule, namely once
again 30, 90 and 110, respectively, that the proposed scheme succeeds to
reproduce the requested results without problems.

It should be noticed that the above choices regarding the length and evo-
lution time of each of the aforementioned rules were arbitrary and can be
easily modified by the simulator user. However, to apply these rules several
modifications on the original information flow of the ADCA model should
be made.

3.2 Modifications to Molecular Reactions Based on Simultaneous
Application of Different CA rules in Parallel

In this subsection the molecular reactions taking place in every stage as well
as the resulting modifications caused by different CA rule application are
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0 1 1 0 1 1 0 0 1 1 1 0 1 1 0 1 0 0 1 1 1 1 0 1 1 1 1 1 0 1 0 1 0 0 0 0 1 1 0 1 0 0 0 1 1 0 0 0 1 1 1
0 1 1 0 1 1 0 0 1 1 1 0 1 1 0 1 0 0 1 1 1 1 0 1 1 1 1 1 0 1 0 1 0 0 0 0 1 1 0 1 0 0 0 1 1 0 0 0 1 1 1
0 1 1 0 1 1 0 0 1 1 1 0 1 1 0 1 0 0 1 1 1 1 0 1 1 1 1 1 0 1 0 1 0 0 0 0 1 1 0 1 0 0 0 1 1 0 0 0 1 1 1
0 1 1 0 1 1 0 0 1 1 1 0 1 1 0 1 0 0 1 1 1 1 0 1 1 1 1 1 0 1 0 1 0 0 0 0 1 1 0 1 0 0 0 1 1 0 0 0 1 1 1
0 1 1 1 1 1 0 0 1 1 1 0 1 1 0 1 0 0 1 1 1 1 0 1 1 1 1 1 0 1 0 1 0 0 0 0 1 1 0 1 0 0 0 1 1 0 0 0 1 1 1
0 1 0 1 1 1 0 0 1 1 1 0 1 1 0 1 0 0 1 1 1 1 0 1 1 1 1 1 0 1 0 1 0 0 0 0 1 1 0 1 0 0 0 1 1 0 0 0 1 1 1
0 1 0 0 1 1 0 0 1 1 1 0 1 1 0 1 0 0 1 1 1 1 0 1 1 1 1 1 0 1 0 1 0 0 0 0 1 1 0 1 0 0 0 1 1 0 0 0 1 1 1
0 1 0 0 0 1 0 0 1 1 1 0 1 1 0 1 0 0 1 1 1 1 0 1 1 1 1 1 0 1 0 1 0 0 0 0 1 1 0 1 0 0 0 1 1 0 0 0 1 1 1
0 1 0 0 0 1 0 1 1 1 1 0 1 1 0 1 0 0 1 1 1 1 0 1 1 1 1 1 0 1 0 1 0 0 0 0 1 1 0 1 0 0 0 1 1 0 0 0 1 1 1
0 1 0 0 1 1 1 1 1 1 1 0 1 1 0 1 0 0 1 1 1 1 0 1 1 1 1 1 0 1 0 1 0 0 0 0 1 1 0 1 0 0 0 1 1 0 0 0 1 1 1
0 1 0 1 1 1 1 1 1 0 1 0 1 1 0 1 0 0 1 1 1 1 0 1 1 1 1 1 0 1 0 1 0 0 0 0 1 1 0 1 0 0 0 1 1 0 0 0 1 1 1
0 1 1 1 1 1 0 1 1 0 1 0 1 1 0 1 0 0 1 1 1 1 0 1 1 1 1 1 0 1 0 1 0 0 0 0 1 1 0 1 0 0 0 1 1 0 0 0 1 1 1
0 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1 0 0 1 1 1 1 0 1 1 1 1 1 0 1 0 1 0 0 0 0 1 1 0 1 0 0 0 1 1 0 0 0 1 1 1
0 1 0 1 0 1 0 0 0 1 1 1 1 1 0 1 0 0 1 1 1 1 0 1 1 1 1 1 0 1 0 1 0 0 0 0 1 1 0 1 0 0 0 1 1 0 0 0 1 1 1
0 1 0 1 0 1 0 0 0 0 1 0 1 1 0 1 0 0 1 1 1 1 0 1 1 1 1 1 0 1 0 1 0 0 0 0 1 1 0 1 0 0 0 1 1 0 0 0 1 1 1
0 1 1 1 1 1 0 0 0 0 1 0 0 1 0 1 0 0 1 1 1 1 0 1 1 1 1 1 0 1 0 1 0 0 0 0 1 1 0 1 0 0 0 1 1 0 0 0 1 1 1
0 1 1 1 1 1 0 0 0 1 1 0 0 1 0 0 0 0 1 1 1 1 0 1 1 1 1 1 0 1 0 1 0 0 0 0 1 1 0 1 0 0 0 1 1 0 0 0 1 1 1
0 1 0 1 0 1 0 0 1 1 1 0 1 1 1 0 1 0 1 1 1 1 0 1 1 1 1 1 0 1 0 1 0 0 0 0 1 1 0 1 0 0 0 1 1 0 0 0 1 1 1
0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 1 0 0 0 0 1 1 0 1 0 0 0 1 1 0 0 0 1 1 1
0 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 1 0 0 0 0 1 1 0 1 0 0 0 1 1 0 0 0 1 1 1
0 1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 1 0 1 0 1 1 0 1 1 1 1 1 0 1 0 1 0 0 0 0 1 1 0 1 0 0 0 1 1 0 0 0 1 1 1
0 1 0 1 0 1 0 1 0 1 0 0 0 1 1 0 1 0 1 0 0 1 0 1 1 1 1 1 0 1 0 1 0 0 0 0 1 1 0 1 0 0 0 1 1 0 0 0 1 1 1
0 1 0 1 0 1 0 1 0 1 0 0 0 0 1 1 1 0 1 1 0 1 0 1 1 1 1 1 0 1 0 1 0 0 0 0 1 1 0 1 0 0 0 1 1 0 0 0 1 1 1
0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 0 0 1 1 1 1 0 1 1 1 1 1 0 1 0 1 0 0 0 0 1 1 0 1 0 0 0 1 1 0 0 0 1 1 1
0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 0 0 1 0 1 0 0 1 1 1 1 1 0 1 0 1 0 0 0 0 1 1 0 1 0 0 0 1 1 0 0 0 1 1 1
0 1 0 1 0 1 0 1 0 1 0 0 0 0 1 1 1 0 0 0 1 0 0 1 0 1 1 1 0 1 0 1 0 0 0 0 1 1 0 1 0 0 0 1 1 0 0 0 1 1 1
0 1 0 1 0 1 0 1 0 1 0 0 0 1 1 1 1 0 0 0 1 1 0 1 0 0 1 1 0 1 0 1 0 0 0 0 1 1 0 1 0 0 0 1 1 0 0 0 1 1 1
0 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 1 0 1 0 1 0 0 0 0 1 1 0 1 0 0 0 1 1 0 0 0 1 1 1
0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 0 1 1 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 1 1 0 1 0 0 0 1 1 0 0 0 1 1 1
0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 0 0 1 1 1 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 1 0 0 0 1 1 0 0 0 1 1 1
0 1 0 1 0 1 0 1 0 0 1 1 1 0 1 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 1 1 0 1 0 0 0 1 1 0 0 0 1 1 1
0 1 1 1 1 1 1 1 0 0 0 1 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 1 0 1 0 0 0 0 1 1 0 1 0 0 0 1 1 0 0 0 1 1 1
0 1 1 1 1 1 1 1 0 0 0 0 1 0 0 1 0 1 1 1 0 0 0 0 0 1 0 1 1 1 0 1 0 0 0 0 1 1 0 1 0 0 0 1 1 0 0 0 1 1 1
0 1 0 1 0 1 0 1 0 0 0 0 1 0 1 1 0 1 1 1 0 0 1 0 1 1 0 1 1 1 0 1 1 0 0 0 1 1 0 1 0 0 0 1 1 0 0 0 1 1 1
0 1 0 1 0 1 0 1 0 0 0 1 1 1 1 0 0 1 1 1 0 1 1 1 1 0 0 1 1 1 0 1 1 0 0 0 1 1 0 1 0 0 0 1 1 0 0 0 1 1 1
0 1 1 1 1 1 1 1 0 0 1 1 1 1 0 0 0 1 0 1 0 1 1 1 0 0 0 1 0 1 0 1 1 0 0 0 1 1 0 1 0 0 0 1 1 0 0 0 1 1 1
0 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 0 0 1 0 1 1 1 0 1 0 0 0 1 0 1 1 1 0 1 1 1 0 1 0 0 0 1 1 0 0 0 1 1 1
0 1 0 1 0 1 0 1 1 1 1 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 1 1 1 1 0 1 0 0 0 1 1 0 0 0 1 1 1
0 1 0 1 0 1 0 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 0 0 1 1 0 0 0 1 1 1
0 1 1 1 1 1 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 1 1 0 0 0 1 1 1
0 1 1 1 1 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 1 1 0 0 0 1 1 1
0 1 0 1 0 1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 1 1 0 0 0 1 1 1
0 1 0 1 0 1 0 1 1 1 0 0 0 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0 0 1 1 0 0 0 1 1 1
0 1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 0 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 1 0 0 0 1 1 1
0 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 1 1 1 1 1 0 1 1 1 0 1 1 1 1 0 0 0 1 1 1
0 1 0 1 0 1 0 1 0 1 1 1 1 1 0 0 1 1 1 1 0 1 1 1 0 0 0 0 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1
0 1 0 1 0 1 0 1 0 0 1 1 1 1 0 1 1 1 1 1 0 0 1 1 0 0 0 0 0 1 1 1 1 1 0 0 1 1 1 0 1 1 1 0 1 0 0 0 1 1 1
0 1 1 1 1 1 1 1 0 0 0 1 0 1 1 1 1 1 0 1 0 0 0 1 0 0 0 0 1 1 1 1 0 1 0 0 0 1 1 0 0 1 1 0 1 0 0 0 1 1 1
0 1 1 1 1 1 1 1 0 0 0 1 0 0 1 1 1 1 0 1 0 0 0 1 0 0 0 1 1 1 1 1 0 1 0 0 0 0 1 0 0 0 1 1 1 0 0 1 1 1 1
0 1 0 1 0 1 0 1 0 0 1 1 0 0 0 1 0 1 1 1 0 0 1 1 0 0 1 1 1 1 0 1 1 1 0 0 0 0 1 0 0 0 0 1 1 0 1 1 1 1 1
0 1 0 1 0 1 0 1 0 1 1 1 0 0 0 1 0 0 1 1 0 1 1 1 0 1 1 1 1 1 0 0 1 1 0 0 0 1 1 0 0 0 0 0 1 1 1 1 1 0 1
0 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 0 0 1 0 1 1 1 1 1 1 1 0 1 0 0 0 1 0 0 1 1 1 0 0 0 0 0 0 1 1 1 1 0 1
0 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 0 0 1 0 1 1 0 1 1 1 1 0 1 0 0 0 1 0 1 1 1 1 0 0 0 0 0 0 0 1 0 1 1 1
0 1 0 1 0 1 0 1 0 1 1 0 0 1 1 1 1 0 1 1 0 1 1 0 0 1 0 1 1 1 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 1 1 0 0 1 0 1 0 1 0 0 1 1 0 0 1 0 0 1 1 0 1 1 1 1 1 1 0 1 0 0 0 0 0 0 1 1 0 0 0 1
0 1 1 1 1 1 1 1 1 1 0 1 0 0 1 0 1 0 1 0 1 1 1 0 1 1 0 0 0 1 1 1 1 1 0 1 1 0 1 0 0 0 0 0 1 1 1 0 0 0 1
0 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 0 0 0 1 0 1 0 0 0 1 1 0 0 0 1 1 1 1 1 0 1 1 1
0 1 0 1 0 1 0 1 0 0 1 1 1 1 1 0 1 0 1 0 1 1 0 0 1 1 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 1 1 1 1 0 1 1 1 1 1
0 1 1 1 1 1 1 1 0 0 0 1 0 1 1 0 1 0 1 0 0 1 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 0 1 1 1 1 1 0 0 1 1 1 1
0 1 1 1 1 1 1 1 0 0 0 1 0 0 1 1 1 1 1 0 0 1 0 0 0 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 1 0 0 0 1 0 1

FIGURE 9
HADCA evolution for simultaneous application of rules 110, 90 and 30 in parallel. CA cells
subject to change are depictured with colour. Rule 110 applies to yellow cells, while rules 90
and 30 apply to blue and green ones, respectively.

presented. It should be mentioned that the below modifications can be applied
to any other 1-d CA rules without loss of generality. In such a way the embed-
ded changes of the HADCA as depicted in the aforementioned simulator
allow the user to develop any rules combination of the hybrid DNA CA with
minimum effort.

In stage 0, for both possible cases (WWW and WWB) since a ∈W,B, all
three aforementioned rules 110, 90 and 30 will be identical. In case WWW,
the new state will be W, while in case WWB the resulting state will be B.
Therefore, the same molecules will be used for all the molecular reactions
in every case (WWW WWB) the used molecules will be the same no mat-
ter which rule is taken into account. The only difference between WWW
and WWB is found on the application of different molecules Ria and T ia ,
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FIGURE 10
Simulation of HADCA rules 110, 90 and 30 evolution in parallel with random initial conditions.

0 0 1 1 0 0 0 1 0 1 0 1 0 1 1 1 1 1 0 0 0 1 0 1 0 1 0 0 0 1 0 0 1 1 1 1 0 1 1 0 1 0 0 1 1 1 0 1 0 0 0
0 0 1 1 0 0 0 1 0 1 0 1 0 1 1 1 1 1 0 0 0 1 0 1 0 1 0 0 0 1 0 0 1 1 1 1 0 1 1 0 1 0 0 1 1 1 0 1 0 0 0
0 1 1 1 0 0 0 1 0 1 0 1 0 1 1 1 1 1 0 0 0 1 0 1 0 1 0 0 0 1 0 0 1 1 1 1 0 1 1 0 1 0 0 1 1 1 0 1 0 0 0
0 1 1 1 0 0 0 1 0 1 0 1 0 1 1 1 1 1 0 0 0 1 0 1 0 1 0 0 0 1 0 0 1 1 1 1 0 1 1 0 1 0 0 1 1 1 0 1 0 0 0
0 1 1 1 0 0 0 1 0 1 0 1 0 1 1 1 1 1 0 0 0 1 0 1 0 1 0 0 0 1 0 0 1 1 1 1 0 1 1 0 1 0 0 1 1 1 0 1 0 0 0
0 1 0 1 0 0 0 1 0 1 0 1 0 1 1 1 1 1 0 0 0 1 0 1 0 1 0 0 0 1 0 0 1 1 1 1 0 1 1 0 1 0 0 1 1 1 0 1 0 0 0
0 1 0 1 0 0 0 1 0 1 0 1 0 1 1 1 1 1 0 0 0 1 0 1 0 1 0 0 0 1 0 0 1 1 1 1 0 1 1 0 1 0 0 1 1 1 0 1 0 0 0
0 1 1 1 0 0 1 1 0 1 0 1 0 1 1 1 1 1 0 0 0 1 0 1 0 1 0 0 0 1 0 0 1 1 1 1 0 1 1 0 1 0 0 1 1 1 0 1 0 0 0
0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 1 1 0 0 0 1 0 1 0 1 0 0 0 1 0 0 1 1 1 1 0 1 1 0 1 0 0 1 1 1 0 1 0 0 0
0 1 0 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 0 0 0 1 0 1 0 1 0 0 0 1 0 0 1 1 1 1 0 1 1 0 1 0 0 1 1 1 0 1 0 0 0
0 1 0 0 1 1 1 0 1 1 0 1 0 1 1 1 1 1 0 0 0 1 0 1 0 1 0 0 0 1 0 0 1 1 1 1 0 1 1 0 1 0 0 1 1 1 0 1 0 0 0
0 1 0 0 0 1 1 0 0 1 1 1 0 1 1 1 1 1 0 0 0 1 0 1 0 1 0 0 0 1 0 0 1 1 1 1 0 1 1 0 1 0 0 1 1 1 0 1 0 0 0
0 1 0 0 0 0 1 0 0 0 1 1 0 1 1 1 1 1 0 0 0 1 0 1 0 1 0 0 0 1 0 0 1 1 1 1 0 1 1 0 1 0 0 1 1 1 0 1 0 0 0
0 1 0 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1 0 0 0 1 0 1 0 1 0 0 0 1 0 0 1 1 1 1 0 1 1 0 1 0 0 1 1 1 0 1 0 0 0
0 1 0 0 0 1 1 0 0 0 0 0 1 1 1 1 1 1 0 0 0 1 0 1 0 1 0 0 0 1 0 0 1 1 1 1 0 1 1 0 1 0 0 1 1 1 0 1 0 0 0
0 1 0 0 1 1 1 0 0 0 0 0 0 1 0 1 1 1 0 0 0 1 0 1 0 1 0 0 0 1 0 0 1 1 1 1 0 1 1 0 1 0 0 1 1 1 0 1 0 0 0
0 1 0 1 1 1 1 0 0 0 0 0 0 1 0 0 1 1 0 0 0 1 0 1 0 1 0 0 0 1 0 0 1 1 1 1 0 1 1 0 1 0 0 1 1 1 0 1 0 0 0
0 1 1 1 1 1 1 0 0 0 0 0 1 1 1 0 0 1 0 0 0 1 0 1 0 1 0 0 0 1 0 0 1 1 1 1 0 1 1 0 1 0 0 1 1 1 0 1 0 0 0
0 1 1 1 1 0 1 0 0 0 0 1 1 1 1 0 0 1 0 0 0 1 0 1 0 1 0 0 0 1 0 0 1 1 1 1 0 1 1 0 1 0 0 1 1 1 0 1 0 0 0
0 1 0 1 1 0 1 0 0 0 1 1 1 1 1 0 1 1 1 0 0 1 0 1 0 1 0 0 0 1 0 0 1 1 1 1 0 1 1 0 1 0 0 1 1 1 0 1 0 0 0
0 1 0 0 1 1 1 0 0 1 1 1 1 0 1 0 1 1 1 0 0 1 0 1 0 1 0 0 0 1 0 0 1 1 1 1 0 1 1 0 1 0 0 1 1 1 0 1 0 0 0
0 1 0 0 0 1 1 0 1 1 1 1 1 0 1 0 1 1 1 0 1 1 0 1 0 1 0 0 0 1 0 0 1 1 1 1 0 1 1 0 1 0 0 1 1 1 0 1 0 0 0
0 1 0 0 0 0 1 1 1 1 1 0 1 1 1 0 1 0 1 0 1 0 0 1 0 1 0 0 0 1 0 0 1 1 1 1 0 1 1 0 1 0 0 1 1 1 0 1 0 0 0
0 1 0 0 0 0 0 1 1 1 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 1 0 0 1 1 1 1 0 1 1 0 1 0 0 1 1 1 0 1 0 0 0
0 1 0 0 0 0 0 0 1 0 1 0 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0 0 0 1 0 0 1 1 1 1 0 1 1 0 1 0 0 1 1 1 0 1 0 0 0
0 1 0 0 0 0 0 0 1 0 1 0 1 1 0 1 0 0 1 1 1 1 1 1 0 1 0 0 0 1 0 0 1 1 1 1 0 1 1 0 1 0 0 1 1 1 0 1 0 0 0
0 1 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 1 1 0 1 1 1 1 0 1 0 0 0 1 0 0 1 1 1 1 0 1 1 0 1 0 0 1 1 1 0 1 0 0 0
0 1 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 1 0 0 0 1 0 1 0 1 1 0 0 1 0 0 1 1 1 1 0 1 1 0 1 0 0 1 1 1 0 1 0 0 0
0 1 0 0 0 1 1 1 1 0 1 0 1 0 1 0 0 0 0 1 0 1 0 0 0 1 1 0 0 1 0 0 1 1 1 1 0 1 1 0 1 0 0 1 1 1 0 1 0 0 0
0 1 0 0 1 1 1 1 1 0 1 0 1 0 1 0 0 0 0 1 1 1 1 0 0 1 0 0 1 1 0 0 1 1 1 1 0 1 1 0 1 0 0 1 1 1 0 1 0 0 0
0 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 0 0 1 0 0 1 1 0 0 1 1 1 1 0 1 1 0 1 0 0 1 1 1 0 1 0 0 0
0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 1 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 1 1 0 1 0 0 1 1 1 0 1 0 0 0
0 1 1 1 1 0 1 0 0 0 1 0 1 0 1 1 0 1 1 0 0 0 1 0 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 0 1 0 0 1 1 1 0 1 0 0 0
0 1 0 1 1 0 1 0 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 1 1 0 1 0 0 0 1 1 1 1 1 0 1 1 0 1 0 0 1 1 1 0 1 0 0 0
0 1 0 0 1 1 1 0 0 1 1 1 1 0 0 1 0 0 0 0 1 1 1 0 1 1 0 1 0 1 0 0 1 0 1 1 0 1 1 0 1 0 0 1 1 1 0 1 0 0 0
0 1 0 0 0 1 1 0 1 1 1 1 1 0 1 1 1 0 1 0 1 1 0 0 1 1 0 1 0 1 0 0 1 0 0 1 0 1 1 0 1 0 0 1 1 1 0 1 0 0 0
0 1 0 0 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 0 0 0 1 1 1 0 1 0 1 1 0 1 0 0 1 1 1 0 1 0 0 0
0 1 0 0 0 0 0 1 1 1 1 0 0 1 1 1 0 1 1 1 1 1 1 0 1 1 1 0 1 0 0 1 1 1 1 1 0 1 1 0 1 0 0 1 1 1 0 1 0 0 0
0 1 0 0 0 0 0 0 1 0 1 0 0 0 1 1 0 0 1 0 1 0 1 1 1 0 1 1 1 0 0 1 1 0 1 0 0 1 1 0 1 0 0 1 1 1 0 1 0 0 0
0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 1 0 0 1 1 0 0 1 1 0 1 1 1 0 1 0 1 1 1 0 1 0 0 1 1 1 0 1 0 0 0
0 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 0 1 1 1 1 0 0 0 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 0 1 0 0 0
0 1 0 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0 1 1 1 0 1 1 1 1 1 0 1 1 0 0 1 1 1 0 1 0 0 0
0 1 0 0 0 1 1 1 1 0 1 0 0 1 1 1 1 1 1 0 1 0 0 1 1 0 0 0 0 0 1 1 0 0 1 0 1 1 0 0 1 0 0 1 1 1 0 1 0 0 0
0 1 0 0 1 1 1 1 1 0 1 0 1 1 1 1 0 1 1 0 1 0 1 1 1 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 1 1 1 0 1 0 0 0
0 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 1 0 1 1 0 0 1 0 1 1 1 1 1 1 1 0 1 0 0 0
0 1 1 1 1 1 1 0 0 1 1 1 1 1 0 1 0 0 0 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 0 1 0 0 0
0 1 1 1 1 0 1 0 0 0 1 0 1 1 0 1 0 0 0 0 1 0 1 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1 0 0 0
0 1 0 1 1 0 1 0 0 0 1 0 0 1 1 1 0 0 0 0 1 0 1 0 1 0 0 0 1 1 1 1 0 1 0 1 1 1 0 1 1 0 0 1 1 1 1 1 0 0 0
0 1 0 0 1 1 1 0 0 1 1 0 0 0 1 1 0 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 0 1 0 0 1 1 0 0 1 0 0 0 1 1 1 1 0 0 0
0 1 0 0 0 1 1 0 1 1 1 0 0 0 0 1 0 0 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 0 0 0 1 0 0 1 0 0 0 0 1 0 1 0 0 0
0 1 0 0 0 0 1 1 1 1 1 0 0 0 0 1 0 1 1 1 1 0 1 0 1 1 1 1 1 1 0 0 1 1 0 0 0 1 0 1 1 0 0 0 0 1 0 1 0 0 0
0 1 0 0 0 0 0 1 1 1 1 0 0 0 1 1 0 1 1 1 1 0 1 0 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 1 1 0 0 0 1 1 1 1 0 0 0
0 1 0 0 0 0 0 0 1 0 1 1 0 1 1 0 0 1 1 0 1 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 1 1 1 1 1 0 0 1 1 1 1 1 0 0 0
0 1 0 0 0 0 0 0 1 0 0 1 1 1 0 0 0 1 1 0 1 0 0 0 0 0 0 1 1 1 0 0 1 1 1 1 1 1 0 1 1 0 1 1 1 1 0 1 0 0 0
0 1 0 0 0 0 0 1 1 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1 0 0 0
0 1 0 0 0 0 1 1 1 1 0 0 1 0 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 1 0 0 0 1 1 1 0 1 1 1 0 0 0
0 1 0 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 1 0 0 0 0 1 1 0 0 1 1 0 0 0
0 1 0 0 1 1 1 1 0 1 1 1 1 1 1 1 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 0 0 0 0 1 0 0 0 1 0 0 0
0 1 0 1 1 1 1 1 0 0 1 1 1 0 1 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 0 0 0 0 1 0 0 0 1 0 0 0
0 1 1 1 1 1 0 1 0 0 0 1 1 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 0 1 1 0 0 1 1 0 0 0
0 1 1 1 1 1 0 1 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 0 0 1 0 1 0 0 0 1 1 1 0 1 1 1 0 0 0

FIGURE 11
HADCA evolution for simultaneous application of rules 110, 90 and 30 in parallel. As before
the same rules for the exact specified conditions have been considered. The only difference
compared to Figure 9 is the application of the whole scheme to different initial conditions. Once
again, CA cells subject to change are depictured with colour. More specifically, rule 110 applies
to yellow cells, while rules 90 and 30 apply to blue and green ones, respectively.
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respectively. Consequently, the following reactions apply:

Reaction 0.1 : I i [u] + [ū]Aa → I [t]ia + [t̄]ia A (4)

Reaction 0.2 : I [t]ia + [t̄]ia R → I i [u] + [ū]R (5)

Reaction 0.3 : T ia[t]ia + [t̄]ia A → T [v̄] + [v]Aia (6)

resulting to the following sequence of reactions:

S0,1 = (0.1, 0.2, 0.3). (7)

In stage 1 we have four different cases, due to the fact i=W.
1st case when iab=WWW.
In this case all three aforementioned rules 110, 90 and 30 will be identical.

The new state will remain W and the same molecules will be used for the
resulting reactions no matter which rule is taken into account.

Reaction 1.1 : Aia[v] + [v̄]Bb → A[t]iab + [t̄]iab B (8)

Reaction 1.2 : Aq [t]iab + [t̄]iab Ra′ → Aa′
[ū] + [u]R (9)

Reaction 1.3 : T ab[t]iab + [t̄]iab B → T [w̄] + [w]Bab (10)

thus, resulting to the following sequence of reactions:

S1,1 = (1.1, 1.2, 1.3) (11)

2nd case when iab=WWB.
As before all three aforementioned rules 110, 90 and 30 will be identi-

cal. The new state will change to B and for the resulting reactions, the same
molecules will be used no matter which rule is taken into consideration. The
following additional reactions take place as follows:

Reaction 1.1 : Aia[v] + [v̄]Bb → A[t]iab + [t̄]iab B (12)

Reaction 1.2.1 : Aq [t]iab + [t̄]iab Ra′ → A[e]qa′ + [ē]qa′
R (13)

Reaction 1.2.2 : A[e]qa′ + [ē]qa′
E → Aa′

[ū] + [u]E (14)

Reaction 1.3 : T ab[t]iab + [t̄]iab B → T [w̄] + [w]Bab (15)
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Stage 1 : i ab Rule 110 Rule 90 Rule 30

1 WWW S1,1 S1,1 S1,1

2 WWB S1,2 S1,2 S1,2

3 WBW S1,1 S1,2 S1,1

4 WBB S1,1 S1,1 S1,1

TABLE 1
Four (4) cases of Stage 1 (iab) and the required reactions emanate from the application of CA
rules 110, 90 and 30, respectively.

and the corresponding sequence of reactions will be:

S1,2 = (1.1, 1.2.1, 1.2.2, 1.3) (16)

3rd case when iab=WBW.
In this case, rules 110 and 30 result in the same manner while rule 90 dif-

fers. The new state for rules 110 and 30 is B, and for the resulting reactions,
the same molecules will be used for rules 110 and 30, respectively. The reac-
tions take place exactly like in the aforementioned 1st case, since a does not
change its state. Consequently, the sequence of reactions found in equation
11, i.e. S1,1 = (1.1, 1.2, 1.3) will apply. The new state of rule 90 will change
to W and the molecules that will be used for the molecular reactions will
differ from the ones used for rules 110 and 30. More specifically, all the reac-
tions look alike the 2nd case reactions since a changes its state, i.e. sequence
S1,2 = (1.1, 1.2.1, 1.2.2, 1.3) of equation (16) follows.

4th case when iab=WBB. In this case all three aforementioned rules 110,
90 and 30 will be identical. The new case will be still and for the resulting
reactions, the same molecules will be used no matter which rules apply to. All
the corresponding reactions are exactly the same with the 1st case due to the
fact that a does not change and sequence S1,1 = (1.1, 1.2, 1.3) of equation
(11) is applied to.

Table 1 summarizes all four (4) cases of Stage 1 according to the applied
rules and the corresponding reactions:

Stage 2 corresponds to eight different cases.
1st case when abc=WWW. In this case all three aforementioned rules are

identical. The new state will remain W and the same molecules will be used
for the resulting reactions no matter which rule is taken into account. The
following reactions take place:

Reaction 2.1 : Bab[w] + [w̄]Cc → B[t]abc + [t̄]abcC (17)

Reaction 2.2 : Bq [t]abc + [t̄]abc Rb′ → Bb′
[v̄] + [v]R (18)

Reaction 2.3 : T bc[t]abc + [t̄]abcC → T [ū] + [u]Cbc, (19)
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and the resulting sequence of reactions is as follows:

S2,1 = (2.1, 2.2, 2.3) (20)

2nd case when abc=WWB. In this case all three aforementioned rules are
identical. The new state will change to B and for the resulting reactions, the
same molecules will be used no matter which rule is taken into consideration.
The following reactions take place:

Reaction 2.1 : Bab[w] + [w̄]Cc → B[t]abc + [t̄]abcC (21)

Reaction 2.2.1 : Bq [t]abc + [t̄]abc Rb′ → B[e]qb′ + [ē]qb′
R (22)

Reaction 2.2.2 : B[e]qb′ + [ē]qb′
E → Bb′

[v̄] + [v]E (23)

Reaction 2.3 : T bc[t]abc + [t̄]abcC → T [ū] + [u]Cbc (24)

and the resulting sequence of reactions is as follows:

S2,2 = (2.1, 2.1.2, 2.2.2, 2.3) (25)

3rd case when abc=WBW.
In this case, rules 110 and 30 result in the same manner while rule 90

differs. The new state for rules 110 and 30 is B, and for the resulting reac-
tions, the same molecules will be used for rules 110 and 30, respectively. The
reactions take place exactly like in the aforementioned 1st case, since b does
not change its state. Consequently, sequence S2,1 = (2.1, 2.2, 2.3) of equa-
tion (20) is applied to. The new state of rule 90 will change to W and the
molecules that will be used for the molecular reactions will differ from the
ones used for rules 110 and 30. More specifically, all the reactions look alike
the 2nd case reactions since b changes its state and the sequence of reactions
S2,2 = (2.1, 2.1.2, 2.2.2, 2.3) of equation (25) takes place.

4th case when abc=WBB.
In this case all three aforementioned rules 110, 90 and 30 will be identical,

the new state will be still and for the resulting reactions, the same molecules
will be used no matter which rules apply to, and, as a result, sequence S2,1 =
(2.1, 2.2, 2.3) takes place.

5th case when abc=BWW. In this case, rules 90 and 30 result in the same
manner while rule 110 differs. The new state for rule 110 remains W. b does
not change its state and the reactions happen alike S2,1 = (2.1, 2.2, 2.3). The
new state of rules 90 and 30 will change to B and the molecules that will be
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used for the molecular reactions will differ from the ones used for rule 110.
Since b changes its state, S2,2 = (2.1, 2.1.2, 2.2.2, 2.3) reactions take place.

6th case case when abc=BWB. In this case, rules 90 and 30 result in the
same manner while rule 110 differs. The new state of rule 110 changes to B.
Since b changes its state, S2,2 = (2.1, 2.1.2, 2.2.2, 2.3) reactions take place.
The new state of rule 90 and 30 will remain to W and the molecules that will
be used for the molecular reactions will differ from the ones used for rules
110. Since b does not change its state, S2,1 = (2.1, 2.2, 2.3) reactions take
place.

7th case case when abc=BBW. In this case, rules 110 and 90 result in
the same manner while rule 30 differs. The new state for rules 110 and 90
remains B, and for the resulting reactions, the same molecules will be used
for rules 110 and 90, respectively. Once again, b does not change its state,
and the reactions of S2,1 = (2.1, 2.2, 2.3) are used in the same way as before.
The new state of rule 30 will change to W and the molecules that will be
used for the molecular reactions will differ from the ones used for rules 110
and 90. More specifically, in this case b changes its state and all the reactions
follow, i.e. S2,2 = (2.1, 2.1.2, 2.2.2, 2.3).

8th case case when abc=BBB. In this case all three aforementioned rules
110, 90 and 30 will be identical. The new state will change to B and for the
resulting reactions, the same molecules will be used no matter which rules
apply to. Consequently, all the corresponding reactions apply one after the
other like in S2,2 = (2.1, 2.1.2, 2.2.2, 2.3).

Once again Table 2 summarizes all eight (8) cases of Stage 2 according to
the applied rules and the corresponding reactions.

As found with the previous stages, Stage 3 also corresponds to eight dif-
ferent cases as follows.

1st case when bca=WWW. In this case all three aforementioned rules are
identical. The new state will remain W and the same molecules will be used

Stage 2 : abc Rule 110 Rule 90 Rule 30

1 WWW S2,1 S2,1 S2,1

2 WWB S2,2 S2,2 S2,2

3 WBW S2,1 S2,2 S2,1

4 WBB S2,1 S2,1 S2,1

5 BWW S2,1 S2,2 S2,2

6 BWB S2,2 S2,1 S2,1

7 BBW S2,1 S2,1 S2,2

8 BBB S2,2 S2,2 S2,2

TABLE 2
Eight (8) cases of Stage 2 (abc) and the required reactions emanate from the application of CA
rules 110, 90 and 30, respectively.
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for the resulting reactions no matter which rule is taken into account. Namely,
the following reactions take place:

Reaction 3.1 : Cbc[u] + [ū]Aa → C[t]bca + [t̄]bca A (26)

Reaction 3.2 : Cq [t]bca + [t̄]bca Rc′ → Cc′
[w̄] + [w]R (27)

Reaction 3.3 : T ca[t]bca + [t̄]bca A → T [v̄] + [v]Aca (28)

resulting to the following sequence of reactions:

S3,1 = (3.1, 3.2, 3.3) (29)

2nd case when bca=WWB. In this case all three aforementioned rules 110, 90
and 30 will be identical. The new state will change to B and for the resulting
reactions, the same molecules will be used no matter which rules apply to. In
this case, reactions as found in the following equations occur:

Reaction 3.1 : Cbc[u] + [ū]Aa → C[t]bca + [t̄]bca A (30)

Reaction 3.2.1 : Cq [t]bca + [t̄]bca Rc′ → C[e]qc′ + [ē]qc′
R (31)

Reaction 3.2.2 : C[e]qc′ + [ē]qc′
E → Cc′

[w̄] + [w]E (32)

Reaction 3.3 : T ca[t]bca + [t̄]bca A → T [v̄] + [v]Aca (33)

resulting to the following sequence of reactions:

S3,2 = (3.1, 3.2.1, 3.2.2, 3.3) (34)

3rd case when bca=WBW. In this case, rules 110 and 30 result in the same
manner while rule 90 differs. The new state for rules 110 and 30 is B, and for
the resulting reactions, the same molecules will be used for rules 110 and 30,
respectively. The reactions take place exactly like in the aforementioned 1st

case, i.e. sequence of reactions S3,1 = (3.1, 3.2, 3.3), since c does not change
its state. The new state of rule 90 will change to W and the molecules that
will be used for the molecular reactions will differ from the ones used for
rules 110 and 30. More specifically, all the reactions look alike the 2nd case
reactions, i.e. S3,2 = (3.1, 3.2.1, 3.2.2, 3.3) since c changes its state.

4th case when bca=WBB. In this case all three aforementioned rules 110,
90 and 30 will be identical. The new state will be still, c does not change and
for the resulting reactions, i.e. S3,1 = (3.1, 3.2, 3.3) the same molecules will
be used no matter which rules apply to.
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5th case when bca=BWW. In this case, rules 90 and 30 result in the
same manner while rule 110 differs. The new state for rule 110 remains
W and since b does not change its state, reactions in S3,1 = (3.1, 3.2, 3.3)
take place. The new state of rules 90 and 30 will change to B and the
molecules that will be used for the molecular reactions in this case, i.e.
S3,2 = (3.1, 3.2.1, 3.2.2, 3.3), will differ from the ones used for rule 110,
since c changes its state.

6th case case when bca=BWB. In this case, rules 90 and 30 result in the
same manner while rule 110 differs. The new state of rule 110 changes to B
and since c changes its state, the reactions in S3,2 = (3.1, 3.2.1, 3.2.2, 3.3)
take place. The new state of rule 90 and 30 will remain to W and the
molecules that will be used for the molecular reactions in this case, i.e.
S3,1 = (3.1, 3.2, 3.3), will differ from the ones used for rule 110, since c does
not change its state.

7th case when bca=BBW. In this case, rules 110 and 90 result in
the same manner while rule 30 differs. The new state for rules 110 and
90 remains B, and since c does not change its state, reactions in S3,1 =
(3.1, 3.2, 3.3) take place. The new state of rule 30 will change to W and
the molecules that will be used for the molecular reactions in this case, i.e.
S3,2 = (3.1, 3.2.1, 3.2.2, 3.3), will differ from the ones used for rules 110 and
90, since c changes its state.

8th case when bca=BBB. In this case all three aforementioned rules 110,
90 and 30 will be identical, the new state will change to W since c changes
its state and for the resulting reactions in S3,2 = (3.1, 3.2.1, 3.2.2, 3.3), the
same molecules will be used no matter which rules apply to.

As before Table 3 summarizes all eight (8) cases of Stage 3 according to
the applied rules and the corresponding reactions.

Finally, Stage 4 corresponds to the eight different following cases.

Stage 3 : bca Rule 110 Rule 90 Rule 30

1 WWW S3,1 S3,1 S3,1

2 WWB S3,2 S3,2 S3,2

3 WBW S3,1 S3,2 S3,1

4 WBB S3,1 S3,1 S3,1

5 BWW S3,1 S3,2 S3,2

6 BWB S3,2 S3,1 S3,1

7 BBW S3,1 S3,1 S3,2

8 BBB S3,2 S3,2 S3,2

TABLE 3
Eight (8) cases of Stage 3 (bca) and the required reactions emanate from the application of CA
rules 110, 90 and 30, respectively.
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1st case when cab=WWW. In this case all three aforementioned rules
110, 90 and 30 will be identical. The new state will remain W and the same
molecules will be used for the resulting reactions in this case no matter which
rule is taken into account. Namely, the following reactions take place:

Reaction 4.1 : Aca[v] + [v̄]Bb → A[t]cab + [t̄]cab B (35)

Reaction 4.2 : Aq [t]cab + [t̄]cab Ra′ → Aa′
[ū] + [u]R (36)

Reaction 4.3 : T ab[t]cab + [t̄]cab B → T [w̄] + [w]Bab (37)

thus, resulting to the corresponding sequence of reactions given below:

S4,1 = (4.1, 4.2, 4.3) (38)

2nd case when cab=WWB. As before all three aforementioned rules 110, 90
and 30 will be identical. The new state will change to B and for the resulting
reactions, the same molecules will be used no matter which rule is taken
into consideration. In this case, reactions as found in the following equations
occur:

Reaction 4.1 : Aca[v] + [v̄]Bb → A[t]cab + [t̄]cab B (39)

Reaction 4.2.1 : Aq [t]cab + [t̄]cab Ra′ → A[e]qa′ + [ē]qa′
R (40)

Reaction 4.2.2 : A[e]qa′ + [ē]qa′
E → Aa′

[ū] + [u]E (41)

Reaction 4.3 : T ab[t]iab + [t̄]iab B → T [w̄] + [w]Bab (42)

resulting to the corresponding sequence of reactions given below:

S4,2 = (4.1, 4.2.1, 4.2.2, 4.3) (43)

3rd case when cab=WBW. In this case, rules 110 and 30 are identical, while
rule 90 differs. The new state for rules 110 and 30 is B, and since a does not
change its state, for the resulting reactions of sequence S4,1 = (4.1, 4.2, 4.3),
the same molecules will be used for rules 110 and 30, respectively. The new
state of rule 90 will change to W and since a changes its state, the molecules
that will be used for the molecular reactions will differ from the ones used for
rules 110 and 30. More specifically, all the reactions look alike the 2nd case
reactions, i.e. S4,2 = (4.1, 4.2.1, 4.2.2, 4.3) since a changes its state.

4th case when cab=WBB. In this case all three aforementioned rules 110,
90 and 30 will be identical. The new case will be still and since a does
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not change for the resulting reactions, i.e. S4,1 = (4.1, 4.2, 4.3), the same
molecules will be used no matter which rules apply to.

5th case when cab=BWW. In this case, rules 90 and 30 result in the
same manner while rule 110 differs. The new state for rule 110 remains W
and since a does not change its state, the reactions in S4,1 = (4.1, 4.2, 4.3)
take place. The new state of rules 90 and 30 will change to B and the
molecules that will be used for the molecular reactions in this case S4,2 =
(4.1, 4.2.1, 4.2.2, 4.3) will differ from the ones used for rule 110, since a
changes its state.

6th case case when cab=BWB. In this case, rules 90 and 30 result
in the same manner while rule 110 differs. The new state of rule 110
changes to B and since a changes its state, the following reactions S4,2 =
(4.1, 4.2.1, 4.2.2, 4.3) take place. The new state of rule 90 and 30 will remain
to W and the molecules that will be used for the molecular reactions in this
case S4,1 = (4.1, 4.2, 4.3) will differ from the ones used for rule 110, since a
does not change its state.

7th case when cab=BBW. In this case, rules 110 and 90 result in the
same manner while rule 30 differs. The new state for rules 110 and 90
remains B, and since a does not change its state for the resulting reac-
tions, namely S4,1 = (4.1, 4.2, 4.3), the same molecules will be used for
rules 110 and 90, respectively. The new state of rule 30 will change to W
and the molecules that will be used for the molecular reactions in this case
S4,2 = (4.1, 4.2.1, 4.2.2, 4.3) will differ from the ones used for rules 110 and
90, since a changes its state.

8th case when cab=BBB. In this case all three aforementioned rules 110,
90 and 30 will be identical. The new state will change to W and since a
changes its state for the resulting reactions of S4,2 = (4.1, 4.2.1, 4.2.2, 4.3),
the same molecules will be used no matter which rules apply to.

As before Table 4 summarizes all eight (8) cases of Stage 4 according to
the applied rules and the corresponding reactions.

Stage 4 : cab Rule 110 Rule 90 Rule 30

1 WWW S4,1 S4,1 S4,1
2 WWB S4,2 S4,2 S4,2
3 WBW S4,1 S4,2 S4,1
4 WBB S4,1 S4,1 S4,1
5 BWW S4,1 S4,2 S4,2
6 BWB S4,2 S4,1 S4,1
7 BBW S4,1 S4,1 S4,2
8 BBB S4,2 S4,2 S4,2

TABLE 4
Eight (8) cases of Stage 4 (cab) and the required reactions emanate from the application of CA
rules 110, 90 and 30, respectively.
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Stage i =
⎧⎨
⎩

2 : abc
3 : bca
4 : cab

Rule 110 Rule 90 Rule 30

1 WWW Si,1 Si,1 Si,1

2 WWB Si,2 Si,2 Si,2

3 WBW Si,1 Si,2 Si,1

4 WBB Si,1 Si,1 Si,1

5 BWW Si,1 Si,2 Si,2

6 BWB Si,2 Si,1 Si,1

7 BBW Si,1 Si,1 Si,2

8 BBB Si,2 Si,2 Si,2

TABLE 5
The general table of the eight (8) cases corresponding to different Stages i.e. 2, 3 and 4 and the
required reactions emanate from the application of CA rules 110, 90 and 30, respectively.

In the next stages of the HADCA methodology stages 2, 3 and 4 are
repeated. In general someone could say that the modifications needed for
the all cases of these stages are summarised in Table 5. Consequently, with
slight modifications the proposed methodology can reproduce any CA rule
and most important allow the parallel application of any desired combination
of 1-d CA rules.

4 HADCA PRNG

Real random numbers can only be obtained from physical phenomena. The
random numbers generated by PRNGs are not truly random, but only pseu-
dorandom. Although this assertion is inevitable, we would still like to obtain
sequences that behave as if they were random. Thus, the problem is how
to decide whether the sequences are random enough. Statistical (empirical)
tests could be a good solution in this respect. If a sequence passed a num-
ber of quantitative tests, we could assert that the sequence is random. But we
should also note that there are no guarantees, only predictions in numerical
practice are possible.

In general, there are four aspects of CA configuration affecting the ran-
domness: transition rule, initial seed, i.e. the initial state configuration in CA,
length of the CA, i.e. the total number of cells in a CA, time of execution and
boundary conditions. In more details, the randomness of the sequences gen-
erated are greatly affected by the rules used, the length of the CA increases
the maximum possible cycle length of the pseudorandom sequence, while the
effect of initial seed on randomness is trivial. In our case in order to accom-
plish the aforementioned requirements so as to generate high-quality random
numbers, we decided to use the aforementioned three different rules when
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applied to CA grid with the help of a real time computer clock sequence
taking into account all the resulting numbers of the clock sequence. More
specifically, the length and the time interval of each of the above rules result
from different products of all the above numbers, namely day, month, year,
hour, min and seconds was calculated. The result of this operation produced
a binary number which indicated the initial CA configuration and simultane-
ously the length of the CA. More details regarding the usage of the aforemen-
tioned idea can be found on [10]. The random number sequences produced
by the HADCA as described above are coded in hexadecimal form.

We used DIEHARD test suites values [13]. Generally, a PRNG which can
pass DIEHARD can be considered to present adequate randomness for most
applications. The DIEHARD battery consists of 18 different, independent
statistical tests. The results of these tests are real valued, between 0 and 1,
and are referred to as “P-values”. For any given test, a P-value between 0.025
and 0.975 corresponds to a pass at the 0.05 level. A complete description
of all the tests in DIEHARD is available in [13]. The proposed HADCA
passes successfully the statistical DIEHARD tests. It should also noticed that
compared to other PRNGs the proposed HADCA approach is able to generate
“true” random numbers, since the described methodology uses, if we can say
so, random DNA events without taking into consideration any further random
“sources”. Finally, some simulation results of the proposed HADCA PRNG
are already depictured in Figures 9 and 11.

5 CONCLUSIONS

In this paper 1-d Hybrid Autonomous DNA Cellular Automata (HADCA)
were presented. HADCA are able to run simultaneous different CA rules in
parallel with certain modifications on their molecular implementation and
information flow compared to their origins. A detailed methodology that
describes the requested modifications on information flow and molecular
reactions caused by different CA rule application was also introduced. In such
a way the embedded changes of the HADCA as depicted in the proposed sim-
ulator allow the user to develop any rules combination of the hybrid DNA CA
with minimum effort. Finally, it was shown that the proposed 1-d HADCA
can generate high-quality random numbers which can pass the statistical tests
of DIEHARD one of the most well known general test suites for randomness.

As part of future research, taking into account that the batteries of test
have been evolved in the past years, the proposed HADCA will be tested
with different test suites for randomness like NIST [14] and “TestU01” [15],
which can be considered new particularly hard batteries that “stresses” even
high-quality PRNGs. Moreover, based on the proposed methodology we will



88 GEORGIOS CH. SIRAKOULIS

extent the HADCA usage taking into account all the 1-d CA rules so as to
produce a real life RNG. Finally, we do expect that with further enhance-
ments of the proposed methodology to implement 2-d HADCA, several other
engineering related problems will be also possible to be solved.
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