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Abstract

Recent studies of the quantum-mechanical processes in the DNA molecule have seriously challenged the principle that
mutations occur randomly. The proton tunneling mechanism causes tautomeric transitions in base pairs resulting in mutations
during DNA replication. The meticulous study of the quantum-mechanical phenomena in DNA may reveal that the process of
mutagenesis is not completely random. We are still far away from a complete quantum-mechanical model of DNA sequence
mutagenesis because of the complexity of the processes and the complex three-dimensional structure of the molecule. In this paper
we have developed a quantum-mechanical description of DNA evolution and, following its outline, we have constructed a classical
model for DNA evolution assuming that some aspects of the quantum-mechanical processes have influenced the determination
of the genetic code. Conversely, our model assumes that the genetic code provides information about the quantum-mechanical
mechanisms of mutagenesis, as the current code is the product of an evolutionary process that tries to minimize the spurious
consequences of mutagenesis. Based on this model we develop an algorithm that can be used to study the accumulation of
mutations in a DNA sequence. The algorithm has a user-friendly interface and the user can change key parameters in order to
study relevant hypotheses.
© 2004 Elsevier Ireland Ltd. All rights reserved.
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1. Introduction

Modeling DNA sequence evolution efforts beg
the question whether mutations happen absolutely at
random. The DNA of complex mammals comprises
about 109 bases, whereas life on earth is about 1017 s
old. The evolution of such a great complexity within
this relatively short time period hints that evolution
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may not be completely random, but may be deter-
mined by some rules instead (Schwefel, 2002). In
this vein, the elementary self-replicating module is
supposed to be a short peptide comprising about 32
amino acids (McFadden, 2000). Since there exist 20
different amino acids, there are 2032 possible pep-
tide sequence permutations 32 amino acids long. At
a striking paradox, according to the random evolu-
tion model, assuming random synthesis of at least
one molecule of every single possible peptide in the
primordial chemical environment, out of which those
able to replicate survived, the total mass of all pos-
sible peptides should have weighted about 1018 kg,
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a quantity vastly exceeding total carbon mass of
tropical forests (McFadden, 2000).

Recently, quantum-mechanical models of DNA
evolution proposed that evolution is directed by
quantum-mechanical mechanisms (Baake et al., 1997,
1998; Bieberich, 2000; Kirby, 2002; McFadden and
Al-Khalili, 1999; Ogryzko, 1997). The aforemen-
tioned models are strongly supported by recent data
indicating that quantum proton tunneling causes tau-
tomeric transitions in base pairs resulting in mutations
during DNA replication (Golo et al., 2002; Hjort
and Stafstrom, 2001; Kryachko, 2002). A complete
quantum-mechanical description of DNA remains
elusive, because of the complexity of the processes
and the complex three-dimensional structure of the
molecule (Altaisky, 2000; Balazs, 2003; Patel, 2001).
Furthermore, several important theoretical problems
have to be addressed, such as the transition from the
quantum to the classical regime through the process
of quantum measurement. Quantum measurement in
biological systems is a very difficult and controversial
issue (Rosen, 1996).

Although an acceptable quantum-mechanical model
of DNA evolution is still distant, there is an increas-
ing demand for the study of its evolution, because it
may allow predictions of mutations. In this work we
have developed a quantum-mechanical description of
DNA evolution and, following its outline, we have
constructed a classical model for DNA evolution in
which some aspects of the quantum-mechanical pro-
cesses are supposed to be reflected on the genetic code.
An algorithm is developed based on this model. The
algorithm has a user-friendly interface and the user can
change several of its parameters, in order to study var-
ious hypotheses concerning DNA evolution models.

2. Quantum-mechanical description and
mathematical modeling of DNA evolution

DNA can be modeled as a one-dimensional lattice
in each site of which one of the four bases: A, C,
T and G may be bound. We define as anevolution
event a base change in a site (mutation). In the case of
non-sexual reproducing, single cellular organisms, if
a DNA sequence is passed unaltered from one gener-
ation to the next, then no changes occur and the DNA
does not evolve. DNA evolves if a change occurs in

one or more of its lattice sites (bases), either during
DNA replication or during the life of the individual
carrying the DNA.

The time step in DNA evolution is the time inter-
val between twoevolution events hence, time flow is
not uniform. Consider for example a non-sexual re-
producing species with a lifespan of 1 year. Suppose
that a mutation occurs now, the next one occurs in 9
years, the next one in 4 years, and the next one in 8
months. Then, the first time step represents 9 years of
real time, the second 4 years and the third 8 months.
As a consequence of this model, the DNA strand and
the individuals passing it from one generation to the
other may exist in different time scales thus, DNA
evolution is time-wise distinct from the life of the in-
dividuals that carry it.

2.1. Quantum-mechanical description of DNA
evolution

We have developed a quantum-mechanical descrip-
tion of DNA, which to the best of our knowledge ap-
pears for the first time in the literature. We believe that
any quantum-mechanical description of DNA should
be developed in accordance with the quantum compu-
tation model, enabling thus its simulation and study
using the forthcoming quantum computers. Physical
systems are characterized by an ensemble of interact-
ing constituents and can be generally represented and
studied by different algebras of operators. In quan-
tum computing the information unit is the quantum
bit (qbit) and several qbits form a quantum register.
The quantum register state evolves in time as a result
of the action of quantum-mechanical operators, which
are known as quantum gates (Williams and Clearwater,
1998). These operators form an algebra. For example
all one-qbit operators can be described by an algebra
generated by the Pauli spin 1/2 operators. To simulate
a physical system using quantum computers a connec-
tion between the system and the computer should be
found. This connection is a transformation (usually an
isomorphism) of the operator algebra describing the
physical system to the operator algebra used in quan-
tum computing (Somaroo et al., 1999; Yepez, 2002).
To simulate a physical system using quantum com-
puters one must find an operator algebra describing
the physical system and the transformation connecting
this algebra with the one used in quantum computing.
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DNA is a physical system and an operator alge-
bra representing its function and evolution should
exist. Such an algebra has not been found yet, but
it will probably develop as a result of studying the
physical and chemical mechanisms of DNA function
and evolution. In this framework, we model DNA
as a quantum system comprising a number of four
base-state quantum subsystems located at the sites of
its one-dimensional lattice. Each quantum subsystem
may be found in any of the four base-states:|A〉, |C〉,
|G〉 and |T〉, or in any linear combination of them,
according to quantum superposition. To perform cal-
culations, the four base-states must be represented
by numbers. Since there are only four base-states the
most appropriate way of representing them by num-
bers is to correspond each one of them to a respective
number of the quaternary number system:

A → 0, C → 1, G → 2, T → 3 (1)

Since in the double DNA strand A binds with T and C
with G, by choosing the above representation the sum
of bases at each base pair in the double strand is 3.

After that, the state of the quantum subsystem at
the ith lattice site at time stept,

∣∣bti〉, is given by:∣∣bti〉 = ct0,i |0〉 + ct1,i |1〉 + ct2,i |2〉 + ct3,i |3〉 (2)

wherect0,i, c
t
1,i, c

t
2,i andct3,i are the probability ampli-

tudes of the subsystem state to be|0〉 , |1〉 , |2〉 or |3〉
at timet, respectively. The probability amplitudes are
generally complex numbers and the corresponding
probability is given by their square. All probabilities
must add up to 1:∣∣ct0,i∣∣2 + ∣∣ct1,i∣∣2 + ∣∣ct2,i∣∣2 + ∣∣ct3,i∣∣2 = 1 (3)

For example, in the case where the base C is sure to
be found at theith site:∣∣ct0,i∣∣2 = 0,

∣∣ct1,i∣∣2 = 1,
∣∣ct2,i∣∣2 = 0,

∣∣ct3,i∣∣2 = 0 (4)

The state of the quantum subsystem at theith lattice
site at time stept,

∣∣bti〉, is a vector in a four-dimensional
Hilbert space, and the quantum state of the DNA
molecule at time stept, |ψ(t)〉, is the tensor product
of all m subsystem states:

|ψ(t)〉 = ∣∣bt0〉 ⊗ ∣∣bt1〉 ⊗ ∣∣bt2〉 ⊗ · · · ⊗ ∣∣bti〉 ⊗ · · · ⊗ ∣∣btm〉
(5)

As any quantum system, the DNA molecule evolves
in time according to the Schrödinger equation:

ih
∂ |ψ(t)〉
∂t

= Ĥ |ψ(t)〉 (6)

where the operator̂H is the Hamiltonian of the quan-
tum system. If the initial conditions are known, i.e. if
the base sequence in the DNA molecule is completely
known at some time, this time is time step 0 and the
initial state is|ψ(0)〉. The state of the DNA molecule
at some later timet is given by the solution of the
Schrödinger equation:

|ψ(t)〉 = exp

(
− i

h
Ĥ t

)
|ψ(0)〉

⇒ |ψ(t)〉 = Û(t) |ψ(0)〉 (7)

In the matrix formulation of quantum mechanics the
operatorÛ is a unitary matrix. The evolution of the
quantum state can be performed in discrete time steps
(Williams and Clearwater, 1998). In this case the sec-
ondEq. (7) takes the form:

|ψ(t + 1)〉 = Ut |ψ(t)〉 (8)

where Ut is the operator applied at time stept. In
Eq. (8), t in Ut is an index, not a power.Fig. 1 de-
picts this evolution.Fig. 1a is a schematic represen-
tation of Eq. (8). At time stept the quantum state of
the DNA molecule, given byEq. (5), is in the left col-
umn. The operator acts on this state and the result of
the operation action is the quantum state of the DNA
molecule at time stept + 1, shown in the right col-
umn. The operatorUt represents in the physical and
chemical processes that cause the evolution and is the
tensor product of local operators as shown inFig. 1b.
These local operators may act on one or more quantum
subsystems. If no operator acts on a subsystem, this
no-action is represented by the unit operatorI, which
corresponds to the 2×2 unit matrix. For example, the
operatorUt of Fig. 1adecomposed in local operators
as shown inFig. 1bis given by:

Ut = Ut1 ⊗ Ut2 ⊗ I ⊗ Ut3 ⊗ · · · ⊗ I ⊗ Utn (9)

The symbol ⊗ denotes the tensor product. The
quantum-mechanical model of DNA described above
can be mapped on a quantum computer with cellu-
lar architecture, where each quantum subsystem is
represented by two qbits (Karafyllidis, 2003).
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Fig. 1. Evolution of the quantum state of the DNA molecule in
discrete time steps. (a) Evolution at time stept. (b) Decomposition
of the operatorUt in local operators.

Two major problems in quantum-mechanical mod-
eling of DNA evolution are now apparent. The first
problem is the construction of the Hamiltonian and,
consequently, of the unitary matrix representingUt .
The Hamiltonian must comprise all possible proton
tunneling processes, the potential barriers that arise
from the three-dimensional geometry of DNA and the
charge distribution in it, which is not yet known. The
second problem is the size of the unitary matrix rep-
resentingUt . The state vector of a DNA molecule
with m bases exists in a 4m -dimentional Hilbert space
and the size of this matrix is 4m × 4m. It is obvi-

ous that the computational complexity for the simu-
lation of DNA evolution is O(42m ), wherem is the
number of bases in the molecule, and that it is an
intractableNP (non-polynomial)-complete problem.
This is not a new fact, since as a result of the hidden
variable theorem no classical computer can simulate
a quantum-mechanical system without suffering from
exponential slowdown (Berman et al., 1998; Feynman,
1986).

Possibly, this problem will not be intractable for
the forthcoming Quantum Computers (Berman et al.,
1998; Feynman, 1986), but until they become avail-
able the quantum-mechanical problem described in
this subsection must be reduced in order to be dealt
with using classical computers.

2.2. Classical mathematical model of DNA
evolution

Following the outline of the quantum-mechanical
description of DNA sequence evolution, we devel-
oped a classical model in which the DNA is modeled
as a one-dimensional lattice in each site of which
one of the four bases A, C, T and G may be bound.
The four bases are the states of the lattice sites and
are represented by one of the numbers of the qua-
ternary number system described in (1). The state
of a DNA molecule with m bases is given by a
vector which exists in anm-dimensional Cartesian
space. For example, the state of the DNA molecule
ATCCGTT that comprises seven bases is given by
the one column vector [0 3 1 1 2 3 3]T. The state
of a DNA molecule withm bases at timet, [St ], is
given by:

[St ] =




bt1

bt2

bt3

...

bti

...

btm




(10)

wherebti is the base located at theith lattice site at
time t andbti ∈ {0,1,2,3}. In analogy toEq. (7) the
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evolution of the DNA molecule withm bases from
time stept to time stept + 1 is given by:

[St+1] = M̂t [St ] (11)

where [St ] and [St+1] are column vectors withm ele-
ments andM̂t is anm×m matrix. The symbolt is an
index denoting the time step. The full form of (11) is:


bt+1
1

bt+1
2

bt+1
3

...

bt+1
i

...

bt+1
m




=




Mt
1,1 Mt

1,2 Mt
1,3 · · · Mt

1,i · · · Mt
1,m

Mt
2,1 Mt

2,2 Mt
2,3 · · · Mt

2,i · · · Mt
2,m

Mt
3,1 Mt

3,2 Mt
3,3 · · · Mt

3,i · · · Mt
3,m

...
...

...
...

...
...

...

Mt
i,1 Mt

i,2 Mt
i,1 · · · Mt

i,i · · · Mt
i,m

...
...

...
...

...
...

...

Mt
m,1 Mt

m,2 Mt
m,3 · · · Mt

m,i · · · Mt
m,m







bt1

bt2

bt3

...

bti

...

btm




(12)

The elements of the matrix̂Mt are real numbers and
may be different in different evolution time steps. The
elementMt

i,j models the effect of the state at thejth
site on the state at theith site at the next evolution
time step.

A comparison of the quantum-mechanical and the
classical models shows that the complexity is very
much reduced in the latter. The quantum-mechanical
DNA state is given by a vector with 4m elements
existing in a 4m -dimensional Hilbert space, whereas
the classical DNA state is given by a vector withm
elements which exists in am-dimensional Cartesian
space. The size of the unitary matrix representingÛ

in (9) is 4m×4m, whereas the size of the matrix̂Mt in
(10) and (11) ism×m. The complexity is significantly
reduced, but all the information about DNA evolution
that is stored in the quantum-mechanical state super-
position is now inaccessible. The quantum-mechanical
model is constructed within the Hilbert space, i.e. the
elements of the state vector|ψ(t)〉 and the elements of
the unitary matrix representinĝU are complex num-
bers. The classical model is constructed into the Carte-
sian space and the elements of the vector [St ] and of
the matrixM̂t are real numbers. Therefore, the infor-
mation on the interaction between DNA bases, stored
in the quantum-mechanical phase interference, is also
inaccessible. Only a small part of the DNA evolu-
tion process can be described by any classical model,

nonetheless classical models must be developed be-
cause of their importance for the study of DNA evolu-
tion. Furthermore, a good classical model may serve
as a foundation for the development of more useful
semi-classical models preserving a larger amount of
information. The number of possible classical models
is equal to the number of the matriceŝMt that can

be constructed. For example all models in which the
elements ofM̂t are real numbers that are constant in
time are linear models. A first-order approximation of
a quantum model is a stochastic model. Following this
line of thought we choose to model DNA evolution
using a matrixM̂t some elements of which change
randomly in time according to a probability scheme
given by the genetic code. Our model will be described
in the following section.

3. A local stochastic classical model of DNA
evolution

We start with the assumption that some of the
quantum-mechanical processes in the DNA molecule
are manifested in the structure of the genetic code
(Osawa, 1995; Chechetkin, 2003). The genetic code
is used to translate triplets of bases (codons) into
amino acids, which are the protein building blocks.
As a result of the redundancy in the genetic code,
mutations at the third base of a codon are some times
silent; when they occur, the new codon codes for the
same amino acid. In this case the mutation has no or
minimal biological consequences. On the other hand,
mutations of the first base of a codon almost always
result in a change in the amino acid encoded by the
new codon, which frequently leads to disfunction and
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even death. It is, therefore, reasonable to assume that
the coding DNA sequences of the genome that has
been selected by the evolution process are composed
in such a way that renders mutations at the first or the
second base of the codon less probable than mutations
at the third base.

Our second assumption is that the occurrence of
mutation at a DNA lattice site is affected by the charge
distribution and the proton number near its neighbor-
hood (Archilla et al., 2002). This assumption is mod-
eled by setting equal to zero the elements of theM̂t

matrix that correspond to sites that are located in a
distance greater than two lattice sites from theith site.
Thus, the state of theith site (base) at the next evo-
lution time step depends on the state of the two sites
(bases) that are located nearest to it. The model is
therefore local. Overlapping antiparallel Open Read-
ing Frames (ORFs) are rare cases where our model
cannot be applied as is. However, we foresee that suit-
able modifications of the model in future, may lead to a
more complex version that could cover this exception,
too. The values of the non-zero elements of theM̂t

matrix are not constant in time. Their values are deter-
mined according to the following evolution scheme:

1. The model starts with a given DNA sequence with
m bases.

2. A real number, 0≤ R < 1, is chosen. This number
is the mutation rate and the number of possible
mutations,C, is given by:

C = mR (13)

If C is not an integer, then the real numberC is
rounded to the nearest smaller integer.

3. The number of bases that will likely mutate isC.
At each evolution time step, a random number gen-
erator is used to generateC integers in the range
from 1 tom. These numbers make a setS with car-
dinality C. The sites with numbers that belong to
S are possible mutation sites. The rest of the sites
will pass unchanged to the next DNA sequence:

If j /∈ S then [Mt
i,j = 0 for i �= j andMt

j,j = 1]

(14)

4. At each site that is candidate for mutation aG
value is assigned, depending on the position of
the site within the corresponding codon, according
to Table 1(a–c), respectively. These tables reflect

Table 1
We postulated that the mutation propensity at each nucleotide
depends on the position of the site in the corresponding codon

G A C T

(a)
G 0 0 0 0 G
G 0 0 0 0 A
G 0 0 0 0 C
G 0 0 0 0 T
A 0.33 0 0 0 G
A 0.33 0 0 0 A
A 0 0 0 0 C
A 0 0 0 0 T
C 0.33 0 0 0.33 G
C 0.33 0 0 0.33 A
C 0 0 0 0 C
C 0 0 0 0 T
T 0 0 0 0.33 G
T 0 0 0 0.33 A
T 0 0 0 0 C
T 0 0 0 0 T

(b)
G 0 0 0 0 G
G 0 0 0 0 A
G 0 0 0 0 C
G 0 0 0 0 T
A 0 0 0 0 G
A 0 0 0 0 A
A 0 0 0 0 C
A 0 0 0 0 T
C 0 0 0 0 G
C 0 0 0 0 A
C 0 0 0 0 C
C 0 0 0 0 T
T 0 0 0 0 G
T 0.33 0.33 0 0 A
T 0 0 0 0 C
T 0 0 0 0 T

(c)
G 1 0.33 1 1 G
G 1 0.33 1 1 A
G 1 0.33 1 1 C
G 1 0.33 1 1 T
A 0.33 0.33 1 0.66 G
A 0.33 0.33 1 0 A
A 0.33 0.33 1 0.66 C
A 0.33 0.33 1 0.66 T
C 1 0.33 1 1 G
C 1 0.33 1 1 A
C 1 0.33 1 1 C
C 1 0.33 1 1 T
T 0 0.33 1 0.33 G
T 0 0.33 1 0.33 A
T 0.33 0.33 1 0.33 C
T 0.33 0.33 1 0.33 T

If a site is located at the first position of a codon, then its
mutation probability is given by (a), at the second place by (b)
and at the third place by (c). The mutation probability values
found in the aforementioned tables result from the genetic code
translating codons into amino acids.
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Table 2
The universal genetic code (whereT is used instead ofU)

First
position

Second position Third
position

G A C T

G Gly Glu Ala Val G
Gly Glu Ala Val A
Gly Asp Ala Val C
Gly Asp Ala Val T

A Arg Lys Thr Met G
Arg Lys Thr Ile A
Ser Asn Thr Ile C
Ser Asn Thr Ile T

C Arg Gln Pro Leu G
Arg Gln Pro Leu A
Arg His Pro Leu C
Arg His Pro Leu T

T Trp STOP Ser Leu G
STOP STOP Ser Leu A
Cys Tyr Ser Phe C
Cys Tyr Ser Phe T

the mutation propensity for each site based on the
genetic code shown inTable 2, whereT is using
instead ofU. As a result,G values range, after nor-
malization by factor 4 (i.e. the number of bases):

0 ≤ G ≤ 0.25 (15)

In detail, if a site is located at the first or second
position of a codon, then its mutation propensity
is rather low, because the probability to generate
a synonymous codon is low. Conversely, if a site
is located at the third position of a codon, the
propensity is rather high. For example, if the third
position of the codon CTG (coding for leucine,
Table 2) is mutated, there is 100% probability that
a synonymous codon will be obtained, as shown in
Table 1(c), and yielding aG value equal to 0.25. If
the second position is mutated, it is absolutely sure
that it will result in a different codon (Table 2), so it
yields aG value equal to 0, as shown inTable 1(b).
Finally, a mutation in the first nucleotide of this
codon has a 33% chance to generate a synonymous
codon, as shown inTable 1(c) and corresponds to a
G value equal to 0.083. According to our assump-
tion, this feature of the genetic code integrates, to
a certain extend, the quantum-mechanical mech-
anism of DNA mutagenesis. Hence, we postulate
that a mutation at the third position of the afore-

mentioned codon is more probable than at the
other two positions, exactly because the biological
consequences of such an event are minimal.

5. The quantum-mechanical process that causes the
mutation is modeled as a random process. A ran-
dom number generator is used to assign another
numberQ at the site that is candidate for mutation,

0 ≤ Q ≤ 0.5 (16)

It should be noted, thatQ values are absolutely
arbitrary. The higher theQ value’s upper limit,
the lower the impact of the codon position on the
mutagenesis. Hence, manipulation of parameterQ
is a built-in opportunity for fine-tuning the impor-
tance of nucleotide position within the codon on
the process of mutagenesis. The two numbersG
and Q are added and their sum is compared to a
number,P that is a user-defined model parame-
ter. If P ≤ (G + Q) mutation will occur, and if
P > (G+Q) will not.

6. Another set,MUT, is constructed. This set is a
subset ofS and contains all the sites at which mu-
tation will occur. At the next evolution step, the
states of the sites change to the values determined
using a random number generator that for each
mutation sitek picks randomly one number,Tk,
which is 0, 1, 2 or 3.

If k ∈ MUT, then{
Mt
i,k = 0, if i �= k − 2, k − 1, k

Mt
k−2,k = 1, Mt

k−1,k = 1, Mt
k,k = Tk

(17)

Thus, the next state at sitek is given by:

bt+1
k = Mt

k−2,k b
t
k−2 +Mt

k−1,kb
t
k−1 + Tkb

t
k (18)

The addition in (18) is modulus 4. At each evo-
lution time step the values of the elements of the
matrix M̂t are given by (14) and (17). Based on
the model described above we developed an algo-
rithm for DNA evolution which will be described
in the next section.

4. DNA evolution algorithm

The flow chart of the algorithm is shown inFig. 2.
The algorithm starts by reading the mutation proba-
bilities, i.e.Table 1. Then the user is prompt to enter
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Fig. 2. The flowchart of the algorithm.
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Fig. 3. The user graphical interface shows a DNA sequence evolution (A: black, C: dark gray, G: light gray, and T: white).

the values of the user-defined parameters, that is the
length of the DNA sequencem, the mutation rateR,
the numberP which will be compared to the sum of
G andQ, andtmax, the number of evolution time steps
that the algorithm will take. The values of these pa-
rameters are checked and if not acceptable the user
is prompted to correct them. Acceptable values for
the parametersm and tmax must be positive integers
and more specifically,m should be a multiple of 3,
while R andP must be positive real numbers smaller
than 1.

If the parameters are acceptable, the user deter-
mines the initial DNA sequence. The user may enter
whichever sequence she/he wishes. Then the random
number generator indicates the possible mutation sites
and a random number is assigned to each site. Subse-
quently,P is compared to the sumG+Q and, if it is
greater, the site passes unaltered to the new sequence,
otherwise the site state (base) is changed according
to (18). The new DNA sequence is produced and, if
the number of time steps taken is less than or equal
to tmax, the algorithm executes another loop, other-
wise a graphical output is produced and the algorithm
stops.

The graphical user interface of the algorithm is
shown inFig. 3. In the field “Initial DNA Sequence”
the user inserts the sequence which will be used as
initial. The user has three choices: by clicking on
the radio button beside the “Default DNA sequence
1, 2 or 3,” a previously defined DNA sequence is
used as initial. By clicking on the radio button beside
the “Random DNA sequence,” a randomly generated
DNA sequence is used as initial. The user can enter
hers/his own DNA sequence by clicking on the radio
button beside the “Manual DNA sequence” and enter-
ing the sequence into the blank field on the right side
of “Manual DNA sequence.” The sequence entered by
the user must be in frame with the corresponding ORF.
That is to say, the first nucleotide of the input sequence
must be the first nucleotide of a codon. In addition
this sequence should not encompass any splice sites.

The number of evolution time steps,tmax, is entered
in the field “Set maximum time of DNA evolution.”
The numberm, i.e. the length of the DNA sequence is
entered in the field “DNA Seq. Size.” The numbersP
and the mutation rateR, are entered in the fields “Set
DNA Mutation Percentage” and “Set DNA Mutation
Rate,” respectively. The user can set periodic or zero
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Fig. 4. (a) Application of the algorithm to a DNA sequence withP = 0.03, and (b) the same initial DNA sequence and the same parameters
as in Fig. 3aare used except for the value ofP which is set equal to 0.04 (A: black, C: dark gray, G: light gray, and T: white).
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Fig. 5. (a) Application of the algorithm to a DNA sequence withR = 0.30, and (b) the same initial DNA sequence and the same parameters
as in Fig. 4aare used except for the value ofR which is set equal to 0.32 (A: black, C: dark gray, G: light gray, and T: white).
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boundary conditions by clicking the corresponding ra-
dio button in the field “Boundary Condition.” Some
statistical properties, such as the number of bases at
each evolution time step, as well as the difference be-
tween the number of each base in the beginning and at
the end of the evolution, are displayed if she/he clicks
on the check buttons “No. of Bases” in the “Statisti-
cal DNA Bases Properties” field. The graphical out-
put is shown in the large box located down and left in
the graphical user interface. Thex-axis represents the
sites of the DNA lattice and they-axis the number of
evolution time steps. The four bases are represented
as follows: A: black, C: dark gray, G: light gray, and
T: white.

The algorithm sensitivity on the two most important
user defined parametersP andR is shown inFigs. 4
and 5. In Fig. 4athe algorithm is applied to a DNA
sequence withP = 0.03. In Fig. 4b the same initial
DNA sequence and the same parameters as inFig. 4a
are used except for the value ofP which is set equal to
0.04. The non-linearity of the model is manifested by
the significant change in the mutation pattern caused
by a minute difference in the value ofP. In Fig. 5athe
algorithm is applied to a different DNA sequence with
R = 0.30. In Fig. 5b the same initial DNA sequence
and the same parameters as inFig. 5aare used except
for the value ofR which is set equal to 0.32. Again
the non-linearity of the model is obvious.

This algorithm with its graphical user interface is a
useful computer tool for the study of various evolution
hypotheses. The source code is free and is available
upon demand.

5. Conclusions

We have developed a quantum-mechanical descrip-
tion of DNA evolution and, following its outline, we
have constructed a classical local stochastic model for
DNA evolution in which we assume that some aspects
of the quantum-mechanical processes are manifested
in the structure of the genetic code. Our second as-
sumption is that the occurrence of mutation at some
DNA lattice site is affected by the state of its neigh-
bors, i.e. that site mutation is a local phenomenon.
Based on this model we have developed an algorithm
that can be used to study the DNA sequence evolu-
tion. The algorithm has a user-friendly interface and

the user can change several parameters of the model,
in order to study various evolution hypotheses.
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