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Abstract—We have developed a novel method for the identi-
fication and retrieval of DNA sequences which are represented
as binary images. This type of representation emanates from the
evolution of one-dimensional nucleotide arrays abiding to a set
of Cellular Automaton rules. A thorough investigation of these
rules was performed in order to determine their efficiency. The
presented method has been applied on short nucleotide sequences
as well as on eleven complete genes of various origins. The
technology presented offers a novel approach for the rapid and ef-
ficient sequence identification of nucleotide sequences in database
repositories. The proposed framework will be practically useful
for applications involved in virus recognition and personalized
medicine which rely heavily on the processing of huge volumes
of nucleotide sequence data.

I. INTRODUCTION

Advances in sequencing methodologies caused an unprece-
dented flux of information requiring even more efficient data
handling approaches. The content of sequence databases such
as GenBank and EMBL, increases at an exponential rate.
Gene sequences are stored in the form of long sequences
of characters. The mere reading of any long stretch of these
sequences is meaningless as their bewildering complexity does
not allow the extraction of a key characteristic. However,
meaningful features could emerge and become distinguishable
if a sequence was to be transformed into some kind of a
diagram [1]. Thus, the visualization of nucleotide sequences
is a very important issue [2], [3], [4].

Cellular Automata (CA) have been extensively used in
the past for modeling biological systems [5], [6]. Following
this trend, Xiao et al. [7] presented a method that transforms
nucleotide sequences into binary images that result from the
evolution of an array through the use of a Cellular Automata
Representation Algorithm (CARA). This representation pro-
vides an inexpensive and extremely rapid genome visualization
which in this work facilitates sequence information retrieval,
recognition and comparison. Essentially, the contribution of
this paper lies in the use of this representation in a dual
retrieval process of DNA sequences. To the best of our knowl-
edge it is the first time that a subset of a genome sequence
is being used as a binary image representation to retrieve the
original genome. An application of this process could be the
identification of a virus when provided with only a small part
of its nucleotide sequence. We applied our method on relatively

short DNA sequences as well as on eleven full length gene
sequences derived from a range of viruses.

We then evaluated the efficiency of all possible CA rules
to transform nucleotide sequences into 2D binary images. For
this purpose, we subjected all of the binary images derived
from the transformation of a variety of nucleotide sequence of
diverse length in extensive tests in order to identify those ones
that yield the most useful results. Our analysis substantiated
the reliability of our approach and illustrated the usefulness of
the resulting binary images for the identification of nucleotide
sequences a lot faster and easier in respect to other conven-
tional methods.

The rest of the paper is organized as follows. Section II
provides a brief description and analysis of the DNA image
representation using the CA tool. The DNA image comparison
and identification algorithms are presented in Section III. The
experimental results are discussed in Section IV. Last, the
conclusions are drawn in Section V.

II. DNA IMAGE REPRESENTATION USING CELLULAR
AUTOMATA

CAs were originally proposed by von Neumann [8] and
Ulam [9] as a possible idealization of biological systems,
with the particular purpose of modeling biological self-
reproduction. They are dynamical systems in which space and
time are discrete and operate according to local interaction
rules [10]. In this section a formal definition of a CA will be
presented. More specifically, in this paper, we focus on one-
dimensional (1-d) CA of a regular uniform lattice, which may
be of N size and expands in a space. Each site of this lattice
is called cell and the corresponding variables of each cell are
taking values from a discrete state resulting to the state of each
cell. As proposed by [10] we consider two possible states per
cell, i.e., S = (0, 1). The CA lattice consists of identical cells,
. . . , i−3, i−2, i−1, i, i+1, i+2, i+3, . . ., and the correspond-
ing states of these cells are Si−3, Si−2, Si−1, Si, Ci+1, Si+2

and Si+3. The time evolution of CA in discrete time steps
is described by the local transition/evolution rule f , which is
usually a function f : (0, 1)

n → 0, 1. Consequently, the possi-
ble change of CA cell state during time evolution is affected
by the states of its neighboring cells and all the involved cells
constitute CA cell’s neighborhood. The neighborhood size n
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is usually taken to be n = 2r + 1 such that:

Si (t+ 1) = f (Si−r(t), . . . , Si(t), . . . , Si+r(t)) (1)

where r (positive integer) is a parameter, known as the radius,
representing the standard 1-d cellular neighborhood. We shall
furthermore limit ourselves to the r = 1 case, i.e., so-called
elementary CA, for which the neighborhood size is n = 3:

f : {0, 1}3 → {0, 1} Si (t+ 1) = f (Si−1 (t) , Si(t), Si+1(t))
(2)

The domain of f is the set of all 23 3-tuples, which gives rise
to 28 = 256 distinct elementary rules. We will use Wolfram’s
decimal numbering convention for describing these rules [11],
e.g. f(111) = 1, f(110) = 0, f(101) = 1, f(100) =
1, f(011) = 1, f(010) = 0, f(001) = 0, f(000) = 0, is
denoted rule 184. Having in mind that we are using Boolean
variables to express the CA state, each of its cells can be
considered to be black or white, respectively. For two-state CA
a configuration of a size N grid at time t is a binary sequence
C(t). For a two-dimensional (2-d) CA, two neighborhoods are
often considered, Von Neumann and Moore neighborhood. Von
Neumann neighborhood is a diamond shaped neighborhood
and can be used to define a set of cells surrounding a given cell
(x0, y0). Equation 3 defines the Von Neumann neighborhood
of range r.

Nν
(x0,y0)

= {(x, y) : |x− x0|+ |y − y0| ≤ (r)} (3)

For a given cell (x0, y0) and range r, Moore neighborhood
can be defined by the following equation:

NM
(x0,y0)

= {(x, y) : |x− x0| ≤ (r), |y − y0| ≤ (r)} (4)

The local rule, f, in all cases determines the way in which each
cell of the 2-d CA is updated. Every cell’s state is affected by
the cell values in its neighborhood and its value on the previous
time step, according to the transition rule or a set of rules.

Molecular biologists identify the nucleotide sequence of
the genes in an organism’s genome in order to deduce the
aminoacid synthesis of the proteins encoded by these genes and
the interspecies evolutionary relationships. It is easy to figure
that DNA can be modeled as a 1-d CA, where the phosphate
chain corresponds to the CA lattice and the deoxyribose sugars
to the CA cells as follows: at each sugar molecule one of
the four bases adenine (A), cytosine (C), guanine (G) and
thymine (T) which is replaced by uracil (U) in RNA may
bind. Consequently the cell state of the CA DNA model
will now result as S=(A,C,T,G). Nevertheless, to enhance the
CA performance we choose to represented the four bases by
numbers. The most appropriate way is to correspond each one
of them either to a respective number of the quaternary number
system, which contains only four numbers, i.e. 0, 1, 2 and 3
or to two digit of the binary code, i.e. A=00, C=01, G=10,
U=T=11. As already mentioned, it is now clear that a vast
number of evolution rules can be applied to the CA DNA
model [5], [12] More specifically, proteins are polymers of
amino acids, hence each protein has a characteristic amino
acid sequence. Taking into consideration that there are 20
amino acids and applying the rule of resemblance, the rule
of complementarity, the theory of molecular recognition and
the theory of information, a group of digital codes is formed
for the representation of amino acids [12].

In this paper, we employ Xiao’s et al. method for DNA
image representation [7]. As a result, we use a CA based
approach to transform gene sequences into binary images
and evaluate the usefulness of the generated images as a
means for information retrieval and genome identification. It
is worth noting that CA showed to be a promising model for
DNA sequence evolution [5], [6] as well combined with the
retrieval process [13]. More specifically, based on the afore-
mentioned 256 Wolfram 1-d CA evolution rules, for any given
sequence, different CA rules generate distinct corresponding
images which means that it is possible to create 256 different
images for each sequence. In correspondence to Wolfram’s
categorization [10], [11], these images can be indexed into four
categories. The first category leads to a homogeneous state,
since the cell states quickly transform into uniform patterns
where everything is stabilized to 0 or 1. The second category
leads to a set of separated simple stable or periodic structures,
while the third category leads to chaotic, aperiodic patterns,
respectively. Finally, the fourth one is composite and produces
persistent, complex patterns of localized structures. The rule
of choice for the evolution of the visual representation should
generate the most distinguishable characteristics so that it may
be possible to distinguish gene sequences with a substantial
degree of similarity. In this case, the bases in a nucleotide
sequence behave as a single entity that defines the image to
be generated.

III. COMPARISON AND IDENTIFICATION ALGORITHM

Once a nucleotide sequence has been transformed into a
binary image, the image is stored in a database. Since there
are 3 coding alternatives and 256 available rules there is a
dire need to index this database in order to be able to retrieve
any matching sequence when a similar sequence is used as a
query in a sequence search. Therefore, we have developed a
retrieval system which searches the database and identifies the
best matching images using a similarity ranking system.

A. Viral Genomes Identification based on image comparison

In case the query sequence is an entire viral genome,
the retrieval algorithm is fairly simple. It compares the query
image, i.e. the binary image derived from the transformation
of the query sequence, to all the images in the database using
the Sum of Absolute Differences (SAD) method (Eq. 2) and
then ranks the SADs in increasing order. The image with the
smallest SAD is the most similar one in respect to the query
image.

SAD =
∑

|Q(x, y)−D(x, y)| (5)

where Q is the query image, D is the image from the database
and x, y are the coordinates of each pixel.

Following a large number of tests, it was concluded that
when the query image was a representation of the complete
viral genome, the retrieval success was guaranteed, that is the
queried virus came up always first in the ranking. However, as
incomplete genome sequences are commonly used as queries,
we modulated the retrieval process so that it may be applied
to partial genome sequences as well.



B. Virus Identification using partial genome sequences

In case a part of a viral genome is presented as a query
(top, middle or bottom part of the genome), the retrieval system
algorithm is modified as follows: The part of the genome
(query image) is cross-correlated with all the virus images in
the database (Eq. 3). At the end of each cross-correlation, the
greatest peak resulting for each image is retained and the final
ranking for the full query is performed using this peak list.

C(x, y) =

Ma−1∑
m=0

Na−1∑
n=0

Q(m,n) · conj(D(m+ x, n+ y)) (6)

where Q is the query image with dimensions (Ma,Na), D
is the image from the database with dimensions (Mb,Nb),
0 ≤ x < Ma + Mb − 1 and 0 ≤ y < Na + Nb − 1. In
contrast to the infallible retrieval results using the full genome
image, in this case retrieval success may be compromised
as a result of differences caused by the border conditions
or even from the position of the genome part in the whole
genome image. As expected, the effectiveness of the method
is inversely proportional to the size of the query sequence.
Extended examples and typical results are presented in the
following section.

IV. EXPERIMENTAL RESULTS

In order to test the validity and effectiveness of the
employed CARA-DNA algorithm, the genome sequences of
the following 11 viruses were selected at random from the
Genbank database: The African horsesickness virus segment
7, the Bluetongue virus segment 4, the Boolarra virus RNA
2, the Burkholderia pseudomallei phage phi52237, the Carrot
mottle mimic virus, the Chikungunya virus, the Citrus yellow
mosaic virus (CMBV), the Ovine lentivirus, the Papaya leaf
curl China virus, the Thogoto virus segment 4 and the Tomato
yellow spot virus.

The images in Figure 1 resulted from the CARA-DNA
algorithm using rule 184 and base coding 0 (i.e. A=00, G=01,
C=10, U or T=11). It is obvious that there are distinguishable
alterations in the entire length of the image and that the patterns
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Fig. 1. DNA genome images of 11 viruses using the CARA-DNA algorithm.
The rule 184 and coding 0 were applied.

in the image are not repeated thus rendering each image much
more diverse than the next. Similar alterations are also present
when base coding 1 and 2 are used.

The mere representation of the genes is not our main
aim. The ultimate goal is the ability to insert a query image
into a database of genome images and to retrieve the virus
represented by that image. The retrieval experiments were
performed using the viruses in Figure 1 on a database which
was created using the representation of the viruses for all
the available CA evolution rules and for all possible base
codings. In order to find the most effective rule, the brute force
trial and error method was employed. Identification tests were
performed using all of the aforementioned 11 viruses for all
three base codings. Moreover, given that our method should
be able to correctly identify an organism even when only a
small part of its genome sequence is available, small parts
from the top, middle and bottom section of the sequences of
each virus were used to perform a series of identifications thus
leading to the most effective rule. Specifically, mini sequences
ranging from 10 to 100 samples (with a step of 10) were
extracted from three different parts of the sequence of each
virus so as to create mini query images in order to strenuously
test the employed algorithm. Hence, 23,040 mini databases (3
base codings × 256 rules × 10 sequence sizes × 3 different
sequence areas) were created in order to test every aspect of
the representation algorithm. As expected, the effectiveness of
the method is inversely proportional to the size of the query
sequence regardless to the position from which the part of the
sequence was extracted as illustrated in Figure 2.

There are actually three aspects to be considered in respect
to the effectiveness: the most effective base coding, the most
effective rule and the most effective combination of base
coding and rule. As follows, researching all three will pro-
vide the answer concerning the selection of parameters when
implementing a virus identification system. Figure 3 presents
the effectiveness of all three base codings through a histogram
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Fig. 2. Effectiveness of the representation method for all ten different
sequence sizes from a) the beginning of the sequence, b) the middle and c)
the end. Graph d) depicts the overall efficiency of the representation method
using all possible rules and base coding 1.
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Fig. 3. Effectiveness comparison between base codings from the sequence
a) top, b) middle and c) bottom. The overall sum for the three codings using
every rule, for every mini sequence and for every virus is presented in d).
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Fig. 4. Efficiency of all the rules for base codings; a) coding 0, b) coding
1, c) coding 2, d) the aggregate efficiency of each rule for all codings.

representing the sum of all correct identifications made for all
possible combinations of rules, sequence lengths and viruses.
It is easy to conclude that the most effective one is coding
1 (i.e. A=0, G=1, C=1, U or T=0). The first conclusion to
be reached is that since not all coding can be used when a
realistic virus identification system is to be utilized, coding 1
is the safest option.

The second aspect in respect to efficiency is that of the
best performing rule. Figure 4 presents the efficiency of all
the rules for all three base codings, as well as the aggregate
efficiency of each rule pointing out rule 52 as the most efficient
one. Moreover, Figure 4b provides the answer as to which
combination is the most efficient and verifies the aggregate
efficiency of base coding 1 as well as rule 52. Thus, it would
be safe to say that this combination would present a fair result
if a virus identification system were to be built.

V. CONCLUSIONS

A new method is presented in this paper for the identifica-
tion and retrieval of gene sequences which relies on the binary
image representation constructed via CAs. In particular, the
aim is to use sections of DNA and of entire genes to construct
query images in order to retrieve and identify the original
whole genome in a fast and simple manner. The method was
applied on eleven complete genomes from a range of viruses
including the African horsesickness and the Bluetongue virus.
The decision for the best CA rule was made through extensive
efficiency tests using all of the binary genome images for
all base codings and for a variety of sequence sizes. The
cross correlation between the query image and the image
dataset provides the means of identification. Future work in the
identification part of the system could be made by extracting a
descriptor from the images (e.g. moments). Such higher order
features could increase the efficiency of the system rendering it
faster. Moreover, it would be interesting to investigate the use
of pseudo-color in the system in contrast to the binary black
and white rules. Color would raise the dimensionality of the
descriptor and thus the complexity of the algorithm but would
also provide additional information which would prove useful
in the genome representation process. The proposed method
could also be used in the representation of the genome of
more complex species.
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