
Computers in Biology and Medicine 33 (2003) 439–453
www.elsevier.com/locate/compbiomed

A cellular automaton model for the study of DNA sequence
evolution

G.Ch. Sirakoulisa, I. Karafyllidisb;∗, Ch. Mizasa, V. Mardirisa, A. Thanailakisb,
Ph. Tsalidesb

aUlysses Ltd., Pipinou 4, Kavala 65201, Greece
bDepartment of Electrical and Computer Engineering, Democritus University of Thrace, Laboratory of Electrical and

Electronic Materials Technology, Xanthi GR-671 00, Greece

Received 19 April 2002; received in revised form 26 November 2002; accepted 9 January 2003

Abstract

Cellular automata are introduced as a model for DNA structure, function and evolution. DNA is modeled
as a one-dimensional cellular automaton with four states per cell. These states are the four DNA bases A,
C, T and G. The four states are represented by numbers of the quaternary number system. Linear evolution
rules, represented by square matrices, are considered. Based on this model a simulator of DNA evolution is
developed and simulation results are presented. This simulator has a user-friendly input interface and can be
used for the study of DNA evolution.
? 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Biologists and Computer Scientists and Engineers have recently put combined e:orts in the in-
terdisciplinary task to understand the information storage and processing in DNA [1,2], giving thus
rise to Bioinformatics. Bioinformatics may be de=ned as a discipline that generates computer tools,
databases, hardware, algorithms and methods to support genomic and post-genomic research. It com-
prises the study of DNA structure, function and evolution, gene and protein expression, protein
production, structure and function, genetic regulatory systems and clinical applications [3,4].

Methods successfully used in Computer Science and Engineering have recently been used in mod-
eling and simulation of the DNA structure, function and evolution [3,4]. Because of the vast amount
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of information stored into the DNA structure new models, algorithms and dedicated processors are
expected to be developed soon.

The aim of this work is to introduce cellular automata (CAs) as a model for DNA structure, func-
tion and evolution. A simulator with a user-friendly input interface was developed. This simulator can
be used for the study of DNA evolution. CAs, originally developed by John von Neumann as models
of self-reproducing systems [5], have been extensively used to model and simulate physical systems
and processes [6–9]. Furthermore CAs have been successfully used in modeling and simulations of
Environmental and Biological systems, such as forest =re spreading [10], oil slick movement and
spreading [11], greenhouse e:ect on insect and microorganism geographical distribution and popula-
tion dynamics [12], e:ects of population movement and vaccination on epidemic propagation [13],
tumor invasion and growth [14,15], and dynamics of the evolution of HIV infection [16]. CAs have
also been used as high performance simulators of the immune system [17,18].

This paper is organized as follows: All the necessary background in CAs is given in Section 2.
In Section 3, DNA is modeled as a one-dimensional CA, and in Section 4 this model is used to
simulate DNA evolution. In Section 5, the graphical user interface is described and some examples
of its use are presented. The conclusions of this work are presented in Section 6.

2. Cellular automata

CAs were originally introduced by von Neumann [5] and Ulam [19] as a possible idealization of
biological systems, with the particular purpose of modeling biological self-reproduction. Since then
CAs have been reinvented several times under various names such as “cellular spaces,” “tessellation
automata,” “cellular structures,” “cellular spaces” and “iterative arrays” [8]. During the last two
decades CAs have been extensively used as mathematical idealizations of physical systems in which
space and time are discrete, interactions are local and physical quantities take on a =nite set of
discrete values. DNA will be modeled in this paper as a one-dimensional CA and, therefore, only
one-dimensional CAs will be presented in this section.

A one-dimensional CA consists of a regular uniform lattice, which may be in=nite in size and
expands in a one-dimensional space. Each site of this lattice is called cell. At each cell a variable
takes values from a discrete set. The value of this variable is the state of the cell. Fig. 1(a) shows a
one-dimensional CA. The CA lattice consists of identical cells, : : : ; i−3; i−2; i−1; i; i+1; i+2; i+3; : : :,
and the corresponding states of these cells are Ci−3; Ci−2; Ci−1; Ci; Ci+1; Ci+2 and Ci+3.

The state of the ith cell takes values from a prede=ned discrete set:

Ci ∈{c1; c2; c3; : : : ; cn}; (1)

where c1; c2; c3; : : : ; cn are the elements of the set. This set may be a set of integers, a set of real
numbers, a set of atoms, a set of molecules, or even a set of properties. If the set contains only the
two binary numbers, i.e. Ci ∈{0; 1}, the CA is called elementary.

The CA is a dynamic system, which evolves in time. The CA evolves in discrete time steps and
its evolution is manifested by the change of its cell states with time. The state of each cell is a:ected
by the states of its neighboring cells. All the cells that a:ect the change of the state of the ith cell
are the neighborhood of this cell. The neighborhood is de=ned as follows:

N (i; r) = {Ci−r ; : : : ; Ci−3; Ci−2; Ci−1; Ci; Ci+1; Ci+2; Ci+3; : : : ; Ci+r}; r = 0; 1; 2; 3; : : : ; m; (2)
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Fig. 1. (a) A one-dimensional CA, (b) the evolution of a one-dimensional CA.

where r is the size of the neighborhood. If r=1, which is the most usual case then the neighborhood
of the ith cell consists of the same cell and its left and right immediate neighbors:

N (i; 1) = {Ci−1; Ci; Ci+1}: (3)

The state of the ith cell at time step t+ 1 is a:ected by the states of its neighbors at the previous
time step t, i.e. the state of the ith cell at a time step is a function of the states of its neighbors at
the previous time step:

Ct+1
i = F(Cti−r ; : : : ; C

t
i−3; C

t
i−2; C

t
i−1; C

t
i ; C

t
i+1; C

t
i+2; C

t
i+3; : : : ; C

t
i+r): (4)

This function is the CA evolution rule. The upper index in the state symbol denotes the time step.
Ct+1
i is the state of the ith cell at time step t + 1. If r = 1, Eq. (4) becomes

Ct+1
i = F(Cti−1; C

t
i ; C

t
i+1): (5)

Fig. 1(b) shows the evolution of a one-dimensional CA. The horizontal axis is space and the
vertical axis is time. Each row represents the CA at each time step and each column represents the
state of the same cell at various time steps.

3. Cellular automaton model of DNA

A schematic DNA structure is shown in Fig. 2(a). DNA can be modeled as a one-dimensional
CA. In this model, the phosphate chain corresponds to the CA lattice and the deoxyribose sugars to
the CA cells. At each sugar molecule one of the four bases A, C, T and G may bind. These four
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Fig. 2. (a) A schematic DNA structure, (b) the CA that models the DNA structure.

bases correspond to the four possible states of the CA cell. Fig. 2(b) shows the CA that models the
DNA structure shown in Fig. 2(a).

The state of the ith cell of this CA takes values from the discrete set that comprises the four
bases:

Ci ∈{A; C; T; G}: (6)

In non-sexual reproduction, the DNA molecule is passed from an individual to its o:spring,
whereas in sexual reproduction, the DNA of the o:spring consists of parts of the parental DNA. We
de=ne as an evolution event a change in state, which may occur in one or more CA cells. Therefore,
mutation is an evolution event and it corresponds to cell state changes. In the case of non-sexual
reproduction, if a DNA strand is passed unaltered from one generation to the other, then no state
change occurs, and the CA does not evolve. The CA evolves if a change in one of its cells occurs,
either during the reproduction process or during the life of the individual carrying the DNA.

The time step in CA evolution is the time interval between two CA cell changes and, therefore, the
time Low is not uniform. Consider for example a non-sexual reproducing species that the mean life of
its individuals is 1 year. Suppose that a CA cell state change (DNA mutation) occurs now, the next
one occurs in 10 years, the next one in 3 years and the next one in 6 months. Then the =rst time step
represents 10 years of real time, the second 3 years and the third 6 months. But, in the CA model all
time steps are equivalent, i.e. the di:erence in real time between the =rst, the second and the third
time step does not become evident. A result of modeling DNA as a CA is that the DNA strand and
the individuals passing it from one generation to the other may exist in di:erent time scales and,
therefore, the DNA evolution is time-like separated from the life of the individuals that carry it.

The main question that rises when one tries to model DNA is whether mutations are completely
random or not. As explained above, DNA mutations are represented by CA cell state changes. If
mutations are completely random, then CAs, which are deterministic computational models, cannot
model DNA evolution. In this case probabilistic methods, such as Markov chains may be appropriate.
Although the answer to this question is not known, there are some indications that mutations and,
therefore, DNA evolution may not be completely random [20,21]. One of the indications is that life
on earth is about 1017 s old, whereas the DNA of complex mammals comprises about 109 bases.
The evolution of such complex living beings in this relatively very short time period is an indication
that evolution is not completely random, but may be determined by some evolution rules [21].
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We will proceed to the model construction by assuming that mutations, i.e. CA cell changes are
not completely random, but depend on the states of some of the cells that are located near by.
Neighbor-dependent mutation has been studied using Markov chains and revealed biases in mutation
rates that depend on the neighboring bases [22]. Suppose that a state change at the ith cell occurs,
and a time step is taken. In the model, presented here it is supposed that the state of this cell has
changed as a result of the e:ect of the states of its neighbors. The new state of the ith cell at this
time step (which is generally the t + 1 step) is given by

Ct+1
i =

∧
M (Cti−r ; : : : ; C

t
i−3; C

t
i−2C

t
i−1; C

t
i ; C

t
i+1; C

t
i+2; C

t
i+3; : : : ; C

t
i+r): (7)

Eq. (7) is a more general expression of the evolution rule given in Eq. (4), where the function F

has been replaced by an operator,
∧
M , which is a more general mathematical abstraction. An operator

may be a mathematical function, a logic function, a matrix, etc. The operator operates on the state
of the neighborhood of the ith cell at time step t and produces the state of this cell at time step
t + 1.

In Eq. (7) cell states are one of the four bases A, C, T and G. Operators act on numbers and
symbols that represent numbers. Therefore, the four bases must be represented by numbers. Since
there are only four bases, the most appropriate way of representing them by numbers is to correspond
each one of them to a respective number of the quaternary number system, which contains only four
numbers, i.e. 0, 1, 2 and 3. We represent the bases with numbers as follows:

A→ 0; C → 1; T → 2; G → 3: (8)

A vast number of evolution rules can be applied to the CA that models DNA. Furthermore,
evolution rules that include base insertion and/or base deletion may be used. Usually, when a new
CA is proposed, the linear evolution rules are the =rst ones to be studied. The study of linear rules
reveals the dynamics of the CA evolution and provides a very good insight to the structures created
by evolution. The use of linear rules is further justi=ed by the fact that a linear algebra has already
been successfully used to the analysis of mutation rates [23].

In the case of linear evolution rules the operator
∧
M of Eq. (7) is a matrix, M , and the evolution

rule takes the form



...
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

=




: : : : : : : : : : : : : : : : : : : : :

: : : Mi−2; j−2 Mi−2; j−1 Mi−2; j Mi−2; j+1 Mi−2; j+2 : : :

: : : Mi−1; j−2 Mi−1; j−1 Mi−1; j Mi−1; j+1 Mi−1; j+2 : : :

: : : Mi; j−2 Mi;j−1 Mi;j Mi; j+1 Mi;j+2 : : :

: : : Mi+1; j−2 Mi+1; j−1 Mi+1; j Mi+1; j+1 Mi+1; j+2 : : :

: : : Mi+2; j−2 Mi+2; j−1 Mi+2; j Mi+2; j+1 Mi+2; j+2 : : :

: : : : : : : : : : : : : : : : : : : : :
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
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Cti−1

Cti

Cti+1
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...




: (9)

The column matrix at the right-hand side of Eq. (9) is formed by the states of all CA cells at
time step t. This matrix is multiplied by the matrix M , which represents the evolution rule. The
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matrix elements Mi;j may take only two values, namely 0 and 1. The column matrix at the left-hand
side of Eq. (9) is the result of the matrix multiplication and it contains the states of all CA cells at
time step t + 1. All the additions are modulo 4 additions. In the case of a CA with n cells (DNA
strand with n bases) the column matrices have n rows and the matrix M is a square matrix with
n columns and n rows. Each square matrix M represents a CA rule. Consider, for example, a very
small DNA strand which at present time t has seven bases: { G, C, T, G, A, G, T }. This strand
is represented by the following numbers: {3; 1; 2; 3; 0; 3; 2}. Suppose that this DNA strand evolves
according to the following evolution rule:

M =




1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 1 1 1 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1




: (10)

The CA state at the next time step is calculated using Eq. (9) as follows:



3

1

2

2

0

3

2




=




1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 1 1 1 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1







3

1

2

3

0

3

2




: (11)

It is reminded that the additions are modulo 4. The CA state at time t + 1 is {3, 1, 2, 2, 0, 3, 2}
and the DNA strand at this time is {G, C, T, T, A, G, T}. The fourth base has changed from G to
T. Consider another evolution rule applied to the same DNA strand, given by the matrix:

M =




1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 1 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 1

0 0 0 0 0 1 0

0 0 0 0 0 0 1




: (12)
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In this case the CA state at time t+1 is {3, 1, 3, 3, 2, 3, 2} and the DNA strand at this time is {G,
C, G, G, T, G, T}. The third base changed from T to G and the =fth from A to T. As mentioned
before each (di:erent) matrix M corresponds to a di:erent evolution rule.

In elementary CAs, given an evolution pattern the evolution rule that generated it can be deter-
mined [24,25]. It is very probable for such a method to exist for CAs that model DNA. In this case
if the evolution of the DNA strand at various time steps is given, it will be possible to determine
the evolution rule (or rules) that generated the evolution. After that, since the evolution rule and
the DNA strand at present time are known, it may be possible to predict the next evolution event
(or events) and, therefore, the DNA strand at the next time step.

4. Simulation of DNA sequence evolution using the proposed model

The model developed in the previous section will now be used to simulate the evolution of DNA
sequences. Most of the studies on mathematical models of DNA are limited to nearest-neighbor
interaction [26]. Because of that, we have chosen to use in our simulations an evolution rule that
incorporates only nearest-neighbor interaction, and it is given by the following matrix:

M =




: : : : : : : : : : : : : : : : : : : : :

: : : 1 1 0 0 0 : : :

: : : 1 1 1 0 0 : : :

: : : 0 1 1 1 0 : : :

: : : 0 0 1 1 1 : : :

: : : 0 0 0 1 1 : : :

: : : : : : : : : : : : : : : : : : : : :




: (13)

All the elements in a matrix row are zero, except the three neighboring elements that are equal to
one. If this matrix is multiplied by the column matrix formed by the states of all CA cells, at time
step t, the state of the ith element at time step t + 1 will be the modulo 4 addition of its own state
and the states of its left and right neighbors (cells i − 1 and i + 1, respectively), at time step t.

Fig. 3(a) shows the simulated evolution of a DNA sequence. The simulation starts with a random
sequence of a DNA strand with 30 bases and produces the strands for 30 successive time steps.
Base A is shown in white, C in light gray, T in dark gray and G in black. Fig. 3(b) shows the
number of cells with the same DNA base at various time steps.

Fig. 4(a) shows the simulated evolution of a periodic DNA sequence of 30 bases for 30 time
steps. The initial sequence comprises repetitions of the triplet CCT. Fig. 4(b) shows the number of
cells with the same DNA base at various time steps.

Fig. 5(a) shows the simulated evolution of a random DNA sequence of 30 bases for 30 time
steps. In this case, only a part of the sequence changes, whereas the rest remains unaltered. Fig.
5(b) shows the number of cells with the same DNA base at various time steps.

These simulations show that the evolution data visualization is straightforward, and the evolution
patterns can be easily studied and interpreted. The simulator presented in this section is available
from http://www.ulyssestech.com.

http://www.ulyssestech.com
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Fig. 3. (a) Simulated evolution of a random DNA sequence, (b) the number of cells with the same DNA base at various
time steps. (A: white, C: dark gray, T: light gray and G: black).



G.Ch. Sirakoulis et al. / Computers in Biology and Medicine 33 (2003) 439–453 447

5 10 15 20 25 30
0

5

10

15

20

25

30

Time Steps

T
C
A
G

N
um

be
r 

of
 D

N
A

 B
as

es
 (

A
,C

,T
,G

)
5

10

15

20

25

30
5 10 15 20 25 30

T
im

e 
S

te
ps

Initial State

(a)

(b)

Fig. 4. (a) Simulated evolution of a periodic DNA sequence, (b) the number of cells with the same DNA base at various
time steps. (A: white, C: dark gray, T: light gray and G: black).
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Fig. 5. (a) Simulated evolution of a random DNA sequence. In this case only a part of the sequence changes, (b) the
number of cells with the same DNA base at various time steps. (A: white, C: dark gray, T: light gray and G: black).
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5. The graphical user interface of the simulator

The simulator can be used as a computer tool for the study of DNA evolution. No previous
knowledge of CAs or computer programming is necessary to use the simulator, because of the
user-friendly graphical user interface that was developed.

The graphical user interface is shown in Fig. 6. In the =eld “Initial DNA sequence” the user inserts
the sequence which will be used as initial. By clicking on the radio button beside the “Default DNA
sequence 1”, a previously de=ned DNA sequence is used as initial. There are three prede=ned initial
sequences that are used in order to familiarize the user with the interface. By clicking on the radio
button beside the “Random DNA sequence”, a randomly generated DNA sequence is used as initial.
A random number generator that has been incorporated into the simulator generates the sequence.
Therefore, a di:erent sequence is generated each time this radio button is selected. The user can enter
his/hers own DNA sequences by clicking on the radio button beside the “Manual DNA sequence”.
After that he/she can enter the sequence into the blank =eld on the right side of “Manual DNA
sequence”. The user enters a sequence of the capital letters A, C, G and T.

The number of evolution time steps is entered in the =eld “Set Maximum time of DNA evolution”.
The user can use the default number of time steps, which is 30, or enter another number by clicking
on the radio button “Set at.” After that the number is entered into the blank =eld on the right.

Fig. 6. The graphical user interface of the simulator.
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Fig. 7. Results produced by the simulator, (a) the evolution pattern, (b) number of bases at various evolution steps.
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The size (number of bases) of the DNA sequence is entered in the =eld “DNA Seq. Size”. The
user can use the default size, which is 30, or enter size by clicking on the radio button “Set at”.
After that the number is entered into the blank =eld on the right.

The size of the CA cell neighborhood is entered in the =eld “Set Neighborhood Size”. The user
can use the default size, which is 3, or enter size by clicking on the radio button “Set at”. After
that the number is entered into the blank =eld on the right.

The user can set periodic or zero boundary conditions by clicking the corresponding radio button
in the =eld “Boundary Conditions”. Some statistical properties, such as the number of bases at each
evolution step, are displayed if the user clicks on the check buttons “No. of Bases” in the “Statistical
DNA Bases Properties” =eld.

After setting all the simulation parameters, the simulator is activated by clicking the button “Start”
on the top-right of the interface.

Fig. 7(a) shows results produced by the simulator. The initial sequence was random, the evolution
time steps were set to 70. The size of the DNA sequence and the size of the neighborhood were
set to 70 and 31, respectively. Zero boundary conditions were imposed.

In the blank frame of the interface of Fig. 6, the evolution pattern is now displayed. The x-axis
is the number of cells and the y-axis the number of evolution steps. Base A is shown in white, C
in light gray, T in dark gray and G in black.

Fig. 7(b) shows the number of bases at various evolution steps and has been displayed because
the “No. of Bases” check buttons were selected.

6. Conclusions

CAs have been introduced as a model for DNA structure, function and evolution and a simulator
with a user-friendly input interface was developed. This simulator can be used for the study of DNA
evolution. DNA was modeled as a one-dimensional cellular automaton. In this model, the phosphate
chain corresponds to the CA lattice and the deoxyriboze sugars to the CA cells. There are four
possible states per cell. These states are the four DNA bases A, C, T and G. These four states
are represented by numbers of the quaternary number system. Linear evolution rules, represented by
square matrices, were considered. Based on this model a simulator of DNA evolution was developed
and simulation results have been presented. CAs appear to be a promising model for DNA, because
the DNA structure, function and evolution can be simulated using several mathematical tools (such
as linear algebra and operators), introduced through the use of CAs. Furthermore, it is very likely
that a methodology will be developed for determining the evolution rules generating given evolution
patterns.
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