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Tandem Mass Spectrometry
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Opauon TTETITIOIOU O€ dlagopa
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Peptide: S-G-F-L-E-E-D-E-L-K
MW ion ion MW
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534 b; SGFLE EDELK ys 633
663 b, SGFLEE DELK v, 504
778 b, SGFLEED ELK ys 389
907 by SGFLEEDE LK Y, 260

1020 by SGFLEEDEL, K y, 147
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Metabolic Labeling
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Proteomics software

MASCOT
MAXQUANT

XpelaldpaoTe €va score/TrilavoTnTa yia ToOV CwoTO EVTOTTIONO TOU TTETTTIOIOU
XpelalopaoTe Eva score/troavoTnTa yia ToV OWOTO EVTOTTIONO TNG TTPWTEIVNG

XpelaldbuaoTe €va score/TrilavoTnTa yia ToOV OwWaoTO EVTOTTIONO UIAG META-
METAQPAOTIKNC TPOTTOTTOINONG, OTTWG TTX. PWOPOPUAIWGN
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Many levels of gene regulation




Post-translational regulation:
fast and energy efficient
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What is protein phosphorylation

« Addition of a phosphate group on a Serine, Threonine, or Tyrosine, by kinases.
« Amino acid motifs for phosphorylation are short.

» Phosphorylation motifs are known to occur within unstructured and rapidly evolving
regions (loops).

ATP ADP

serine,
threonine. pRUTElN

or tyrosine KINASE O
side chain | N
= 1
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What is protein phosphorylation

Acts as a switch Acts as a dimmer




Importance of phosphorylation

Manipulation of molecular pathways and phenotypes, by modifying a small number of
phosphorylation sites, via a few point mutations.

Phosphorylation involved in many diseases.

A point mutation in cdc28 (S42->A) results in decrease of cell size,

C type monomer S or Y type monomer
AT P A D P p C-C type dimer C-S, C-Y type dimer S-S, S-Y, YY type dimer
\_—/’ STRC——
Weakly blocks Phosphorylation
v DNA binding Totally blocks
protein DNA binding
kinase
Strongly blocks
s Totally blocks
DA binding DNA binding
. . Vv
inactive active




From Low to High-throughput:
Enter Proteomics
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The era of phosphoproteomics
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Motivation

Many high-throughput phosphoproteomic datasets (with various technologies)
have come out, but no thorough comparative evaluation yet.

Previous studies: each technology has its biases.

— Capture different (but also overlapping) sub-space of the entire
phosphoproteome.

Questions arising, related to the high sensitivity of the MS-technology.
— Low stoichiometry phosphorylations (Lienhard)

— Non-functional psites (Landry)

— Correct detection/localization of p-sites

— Same dataset, different software: ~30% overlap in results

How good are the current phosphoproteomic technologies?

Are conclusions of previous studies, robust, or strongly affected by biases?
How can we filter the data and obtain a reliable phosphoproteome?

What are the general properties of a model (the yeast) phosphoproteome?
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Yeast as a model organism

Large number of phosphoproteomics experiments under a reasonably wide
range of conditions.

Unicellular organism.

Large fraction (80%) of the predicted yeast proteome expressed and detected
(by MS based methods) under normal laboratory growth conditions.

A wealth of relevant functional genomic information available for the organism,
including data on

— protein abundance
— half-lives,
— number of kinases targeting a given protein.

Many essential yeast genes may be complemented by human orthologs.
A model for pathogenic fungi.

All of these factors should assist in an in-depth bioinformatics analysis of the
yeast phosphoproteome.



Part A:
Quality of the datasets




Contribution of each e

dataset ﬁ

12 HTP phosphoproteomic datasets

*  99% correct phosphopeptide identification

*  99% correct psite localization

« 9783 p-sites found in 2374 phosphoproteins

» If a single dataset dominates the compendium, its biases will affect our general
conclusions.

* No single dataset dominates the compendium.
— Removal of each dataset resulted in
* 0-16% reduction of non-redundant p-sites
* 0-11% reduction of non-redundant phosphoproteins



Overlap among experiments

The 12 datasets overlap with each other in a statistically significant manner (chi-
squared p< 0.05).

For any two experiments
— ~12% of p-sites are shared.
— ~28% of phosphoproteins are shared.

If not, it would be a reason for concern, some datasets would be of questionable
quality and would need to be removed.

Two experiments from different groups, but on similar biological conditions
(alpha-factor treated cells), had a much lower overlap (11% of p-sites & 31% of
phosphoproteins) between them than two experiments of the same group that
were performed in two different phases of the cell cycle (28% & 54%
respectively)

Protocol is very important



Saturation of the compendium

Chronological incrementation of
non-redundant psites and phosphoproteins
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This compendium (12HQ) found:
27% (131/480) of the PhosphoGrid p-sites
85% (122/144) of the PhosphoGrid phosphoproteins



The non-phosphoproteome

No evidence for phosphorylation in any of the 12 HTP experiments (even with no
filtering applied)
2219 ORFs.



The non-phosphoproteome GO-Slim analysis
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Could it be an artefact?

« The non-phosphoproteome could be an artefact because of:
— Inherent undetectability by MS-proteomics
— Peptide coverage
— Protein abundance
— Protein half-life
— Different properties (length or relative-charge) of digested peptides



The
non-phosphoproteome
does not appear to be a

technical artefact



Part B:
Filtering out “noisy” p-sites




Filtering out “noisy” p-sites

MS-technologies are very sensitive.

They could possibly detect low stoichiometry off-target phosphorylations on
degenerate motifs (Lienhard, 2008).

Landry et al., 2009 used evolutionary analyses on smaller HTP-datasets and
estimated that up to 65% of p-sites could be non-functional.

The presence of many experiments allows to address this very important issue.

We assume that a p-site found in many experiments is more probable to be
functional, than “noisy”.

Five analyses strengthen the validity of the above assumption.



In how many experiments?

In how many experiments should a p-site have been discovered in order to confidently designate it as
functional?

We simulated the datasets, assuming that all p-sites were assigned in a totally random manner.
A cutoff of 23 seemed stringent.
We generated a more stringent dataset (12HQ_3x) with 2566 p-sites in 1112 phosphoproteins.

Cumulative overlap of 12HQ psites vs simulated data
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Why so many p-sites found in so
many experiments?

« According to Soufi et al. (2009) this could be explained by the asynchronous
state of the cell populations in most of the experiments.

« Relatively high overlap (28% and 54% for p-sites and phosphoproteins
respectively) in the 2 Holt et al. experiments [10], which characterised the
phosphoproteome at two different stages of the cell cycle, indicates that this
cannot be a complete explanation.

« We suggest that some p-sites are ubiquitously in an ‘ON’ state (phosphorylated).

- It may be that the cell keeps a small percentage of the expressed protein
molecules of a gene in this phosphorylated state and that this percentage
changes according to external stimuli.



Part C:
Investigating the properties of
the phosphoproteome




General properties
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Distribution of p-sites in proteins

Distribution of p-sites in proteins
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12HQ = 12HQ_3x

«  Similar distribution in other species too.

«  The most phosphorylated protein (with 54 p-sites) is Sec16p (YPLO85W), which is a coat
protein of the COPII vesicle, required for ER transport.



More ancient origin for
phosphoproteins

Ratio

Orthology Ratio for various fungi
(%Phosphoproteins with orthologs / %Negative phosphoproteins with orthologs)
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Phosphoproteins
VS
non-phosphoproteins

More frequently essential (23% vs 10%) (Chi-squared < 6e-23).

WGDs have more psites than singlets

On average, 50% shorter protein half-life (Wilcoxon p<0.001).

More frequently ubiquitinated (27% vs 9%) (Chi-squared < 2e-16).

On average, 40% more genetic interactions (Wilcoxon p< 2e-19).

On average, 48% more protein-protein interactions (Wilcoxon p< 2e13).
182% longer ID regions (Wilcoxon p=0).

38% longer non-ID regions (Wilcoxon p< 2e-16).

Weak correlation (Pearson = 0.18) between number of p-sites and kinases
targeting the protein
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Conclusions !

Yeast Phosphoproteome is incomplete
The various experiments have similar properties

Several of the properties that we observed in the current phosphoproteome
were also observed correctly in previous and much smaller data sets, with less
stringent filtering criteria.

This high-quality sample is sufficient to accurately reveal the major properties of
the entire yeast phosphoproteome.

Important proteins are more tightly controlled at the post-translational level



PNAS

Posttranslational regulation impacts the fate of
duplicated genes
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Gene duplication
_ _CRE8N jihie.

Following WGD, most copies will be lost. l, Duplication

In yeast, ~85% of copies were lost within
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Subfunctionalization Neofunctionalization Degeneration/Gene loss

Gene retention could be due to:

« Subfunctionalisation

* Neofunctionalisation

« Dosage balance in protein complexes or regulatory networks
» The need for increased dosage



Whole Genome duplication

Following WGD, there is a relatively short period of genome instability, extensive gene loss
and elevated levels of mutation.

Regulatory networks need to rewire rapidly, to integrate the newly duplicated genes.

Rapid evolution has been observed at the level of transcription of duplicated genes, by
mutations in short transcription factor binding motifs.

Nevertheless, the effectors of gene action are the proteins.
Rapid changes could occur at the post-translational level of regulation too.



Inferring the ancestral
phosphorylation state
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Inferring the ancestral
phosphorylation state
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Conclusions

WGD phosphoproteins have on average, more p-sites than RSS proteins.
This is a general trend, found in many, though not all gene categories.

We controlled for potential biases stemming from protein abundance, coverage of
experiments, dosage balance hypothesis.

Ancestral proteins that were later retained as duplicates already had more psites.

Subfunctionalisation and neofunctionalisation could be some of the reasons behind gene
retention.

WGD proteins generally have tighter post-translational regulation (ubiquitination, half-lives)
than RSS proteins.

This trend is observed for Single-gene duplicates too.

This trend seems to hold for other species too.
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Half of the metabolic proteins are
regulated by phosphorylation
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Important enzymes
are usually phosphorylated

Phospho-metabolic vs
rest metabolic proteins

Protein abundance 137%-326% higher
Intr!n3|cally disordered 90%-117% longer
regions

Protein-protein 86%-131% more
interactions

Kinase-target interactions |171%-178% more

Essential 17-18% vs 10-12%
Ubiquitinated 41-53% vs 23-25%

Whole genome duplicates |[28-32% vs 18-20%




The general properties of the phosphoproteome, compared to the negative

phosphoproteome.

Phosphoproteome vs Negative Phosphoproteome
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Metabolic
P-sites
are more
conserved

Prediction in other
species

Conservation based  Conservation based
on pairwise on ancestral sequence
comparison reconstruction
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How much can we learn from other species:
Comparative Phosphoproteomics

* Inyeast

— 692 psites of 431 orfs have a conserved and identified p-site in C.albicans
— 477 p-sites of 296 orfs have a conserved and identified p-site in human.

Comparative phosphoproteomics could increase the yeast
phosphoproteome by 15%.

P-sites evolve fast

Yeast M A
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L
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Could phosphorylation be used in
biotechnological applications?

Gene Group

P-sites/proteins

Essential 3025/576
Metabolism essential 339/71
Biotechnological 2363/408

Phenotypes

Phenotype_terms

Psites/prots

chemical compound excretion:

. 1497/248
increased

fermentative growth: increased 7/ 3
fermentative metabolism: increased 85/10
growth in exponential phase: increased (73/8
nutrient uptake/utilization: increased 124/20
respiratory growth: increased 416/75
respiratory metabolism: increased 331/61
utilization of carbon source: increased |36/8
vegetative growth: increased 8 /5
viability: increased 67/17
ALL RELATED_Phenotypes 2363/408




Molecular representations of two p-sites examined with molecular dynamic simulations in (A)
the yeast phosphoglycerate mutase (Gpm1p) and (B) aspartyl-tRNA (transfer RNA)
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Motivation

HTP phosphoproteomics has revolutionized the field and provided
unique insight in a whole level of cell regulation.

But we are still discovering new phosphorylation sites.

We need to have an estimate of the total size, to know where we are
and where we need to go.

Past Suggestions:
1/3 — 2/3 of the proteome

For human p-sites:
« 57K

« 500K

« 700K

« 1M



Datasets used

Scanned >1000 publications

187 high-throughput phosphoproteomic datasets were filtered,
compiled and studied along with two low-throughput compendia.

* Human:97

« Mouse:42

 Yeast:20

« Arabidopsis:28

* PhosphoGrid2 (for yeast LTP)

* Phosphosite + (for human and mouse LTP)



Filtering out “noisy” p-sites

99% correct peptide identification
99% correct p-site localization

Very stringent criteria for individual analyses
Needed when compiling compendiums




Estimation methods

Capture-Recapture: Established method in Ecology and Epidemiology.
Based on overlap among the various experiments

Curve-fitting the saturation curve of cumulative redundant vs.
cumulative non-redundant phosphoproteins/p-sites.

— Modeled by exponential recovery function.
— Can also model different noise levels

Estimates were also adjusted for different levels of noise (1,5,10%)
within the individual datasets and also permutated the data to observe
robustness of conclusions



The saturation curve of a
compendium
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The saturation curve:
Exponential recovery
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Adding Noise:1% average

noise per dataset
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5% average noise

4000

3500

3000

2500

2000

1500

1000

500

0

2000

4000

6000

8000

10000

12000

14000

16000

@ Sum_TP_FP




10% average noise
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A) Saturation curve of yeast phosphoproteins B) Estimation of total yeast phosphoproteins
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A) Saturation curve of human phosphoproteins

12000

20000 40000 60000

80000 100000

C) Saturation curve of human p-sites

100000

20000

50000 100000 150000 200000 250000 300000

B) Estimation of total human phosphoproteins

14000
12000
10000
8000
8000
4000
2000

& R & m

D) Estimation of total human p-sites

225000
200000
175000
150000
125000
100000

75000

25000

'(6‘}

&

>

1%
W5%

"10%

m1%
W5%

"10%



A) Saturation curve of mouse phosphoproteins
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A) Saturation curve of Arabidopsis phosphoproteins
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Conclusions

Most of the phosphoproteins have been discovered for human, mouse and yeast,
while the dataset for Arabidopsis is still far from complete.

The datasets for p-sites are not as close to saturation as those for
phosphoproteins.

Integration of the low-throughput data suggests that current high-throughput
phosphoproteomics is capable of capturing 70-95% of total phosphoproteins &
40-60% of total p-sites.

More datasets needed to provide more accurate estimates in the future.

Capture-Recapture and Curve-fitting should be used to estimate completeness of
experimental replicates






