

Το παρόν έργο αδειοδοτείται υπό τους όρους της άδειας Creative Commons Αναφορά Δημιουργού - Μη Εμπορική Χρήση - Όχι Παράγωγα Έργα 4.0. Για να δείτε ένα αντίγραφο της άδειας αυτής επισκεφτείτε το σύνδεσμο: https://creativecommons.org/licenses/by-nc-sa/4.0/

ΟΙΚΟΛΟΓΙΚΗ ΜΗΧΑΝΙΚΗ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ Ι Μηχανική των φερτών υλών

Δρ. Βασίλης Μπέλλος

Εισαγωγή

- Κίνηση και τη συμπεριφορά των φερτών υλών σε δύο χωρικές κλίμακες
 - Λεκάνη απορροής
 - Τμήμα ποταμού

Πηγή: Buffington, J.M., Montgomery, D.R. (2013). Geomorphological classification of rivers. In: Shroder, J. (Editor in chief), Wohl, E. (Ed.), Treatise on Geomorphology. Academic Press, San Diego, CA, USA, 9, Fluvial Geomorphology, 730-767.

Ορισμοί

• Μεταφορά στερεής ύλης…

- Άργιλος-Ιλύς
- Άμμος
- Χαλίκια-Κροκάλες

... μέσω του υδρογραφικού δικτύου

- Ορεινά ρέματα
- Ποτάμια

•... και με τους εξής μηχανισμούς

- Σύρση στον πυθμένα
- Αιωρούμενα
- Επιπλέοντα

Σχηματισμός πυθμένα

- Από μια διάμετρο και πάνω: μη συνεκτικό υλικό
- Ο σχηματισμός πυθμένα προκύπτει
 - Πυθμένας επιδρά στη ροή (οπισθελκουσα δύναμη)
 - Ροή επιδρά στον πυθμένα (κίνηση φερτών υλών)

Παράγοντες

- Κλίση ρέματος
- Βάθος ροής
- Ταχύτητα ροής
- Κοκκομετρία
- Ταχύτητα καθίζησης

Προβλήματα

- Απόπλυνση και υποβάθμιση των εδαφών στις ορεινές ζώνες
- Πρόσχωση των πεδινών κοιτών
- Καταστροφή υδραυλικών έργων
- Διακοπή συγκοινωνίας
- Μετατόπιση κοίτης ποταμών
- Πρόσχωση λιμνών, λιμανιών, παραλιών
- Προώθηση Δέλτα στη θαλάσσια ζώνη
- Μεταφορά ρύπανσης από τους επιφανειακούς στους υπόγειους υδροφορείς

Σχηματισμός πυθμένα

Πηγή: Chanson, H. 2004. The hydraulics of open channel flow: An introduction. 2nd ed. London: Elsevier

Σχηματισμός πυθμένα

Πηγή: Chanson, H. 2004. The hydraulics of open channel flow: An introduction. 2nd ed. London: Elsevier

Δίνες

Σχηματισμός πυθμένα

Bed form (1)	Flow (2)	Bed form motion (3)	Comments (4)
Flat bed	No Flow (or $Fr \ll 1$)	NO	No sediment motion
Ripples	$Fr \ll 1$	D/S	Three-dimensional forms; observed also with air flows (e.g. sand ripples in a beach caused by wind)
Dunes	Fr < 1	D/S	Three-dimensional forms; sand dunes can also be caused by wind
Flat bed	$Fr \le 1$	NO	Observed also with wind flow
Standing waves	Fr = 1	NO	Critical flow conditions; bed standing waves in phase with free-surface standing waves
Antidunes	Fr > 1	U/S	Supercritical flow with tumbling flow and hydraulic jump upstream of antidune crests
Chute-pools	Fr > 1	U/S	Very active antidunes
Step-pools	Fr > 1	-	Cascade of steps and pools; steps are often caused by rock bed

References: Henderson (1966) and Graf (1971). Notes: D/S = in downstream flow direction; Fr = Froude number; U/S = in upstream flow direction.

Πηγή: Chanson, H. 2004. The hydraulics of open channel flow: An introduction. 2nd ed. London: Elsevier

Πηγή: https://riverstyles.com

Σχηματισμός πυθμένα

Πηγή: https://riverstyles.com

Φυσικά χαρακτηριστικά

- Πυκνότητα νερού: ρ=1000 kg/m³
- Πυκνότητα χαλαζία (τυπική τιμή): ρ_s =2650 kg/m³
- Σχετική πυκνότητα s=ρ_s/ρ
- Πυκνότητα φερτών (ξηρή κατάσταση): $ρ_{s,dry}$ =(1-P₀) $ρ_s$
- Πυκνότητα φερτών (υγρή κατάσταση): $ρ_{s,wet} = P_0 ρ + (1-P_0) ρ_s$
- Παράγοντας πορώδους P₀: ~0.26-0.48 (πρακτικά 0.36-0.40)

Συστήματα κατάταξης εδαφών

COMPARISON OF PARTICLE SIZE SCALES

U.C. Ctondard Cieve Numbers

Cieve Opening in Inches

	Sieve Openin	ig in inche	3			0.5.518	iua u S	eve num							
	3 2 1½ 1	^{3/4} ^{3/2} ³	6 4 I I	1 1	0	20 30	40 6	0	200						
					SAND			CU T							
USDA	USDA GRAVEL			Very Coarse	Coarse	Medium	Fine	Very Fine	{	SILI			LLAI		
	GRAVEL SAND														
UNIFIED	Coarse Fine			Coarse	arse Medium Fine			SILI OR CLAY							
	GRAVEL OR STONE SAND SILT - CLAY														
AASHO	Coarse	Medium	F	ine	Coarse Fine				Silt			Clay			
Ц												1		1	
100	50	10) 5	2	2	1 0.	5 0.42 0.	25 0.	1 0.074	0.05	0.02	0.01	0.005	0.002	0.0
	Grain Size in Millimeters														

Κλίμακα φ κατά Krumbein

–1 to –2

0 to -1

1 to 0

2 to 1

3 to 2

4 to 3

8 to 4

10 to 8

20 to 10

Size range (metric)	Size range (approx. inches)	Aggregate name (Wentworth class)	Other names
>256 mm	>10.1 in	Boulder	
64–256 mm	2.5–10.1 in	Cobble	
32–64 mm	1.26–2.5 in	Very coarse gravel	Pebble
16–32 mm	0.63–1.26 in	Coarse gravel	Pebble
8–16 mm	0.31–0.63 in	Medium gravel	Pebble
4–8 mm	0.157–0.31 in	Fine gravel	Pebble
2–4 mm	0.079–0.157 in	Very fine gravel	Granule
1–2 mm	0.039–0.079 in	Very coarse sand	
0.5–1 mm	0.020–0.039 in	Coarse sand	
0.25–0.5 mm	0.010–0.020 in	Medium sand	
125–250 μm	0.0049–0.010 in	Fine sand	
62.5–125 μm	0.0025–0.0049 in	Very fine sand	
3.9–62.5 μm	0.00015-0.0025 in	Silt	Mud
0.98–3.9 μm	3.8×10 ⁻⁵ -0.00015 in	Clay	Mud
0.95–977 nm	3.8×10 ⁻⁸ – 3.8×10 ⁻⁵ in	Colloid	Mud

ISO 14688:1-2017

Name				Size range (mm)	Size range (approx. in)	
		Large boulder	ІВо	>630	>24.8031	
Very coarse soil		Boulder	Во	200–630	7.8740-24.803	
		Cobble	Cobble Co 63–200		2.4803–7.8740	
		Coarse gravel	cGr	20–63	0.78740-2.4803	
Coarse soil	Gravel	Medium gravel	mGr	6.3–20	0.24803–0.78740	
		Fine gravel	fGr	2.0–6.3	0.078740-0.24803	
	Sand	Coarse sand	cSa	0.63–2.0	0.024803-0.078740	
		Medium sand	mSa	0.2–0.63	0.0078740-0.024803	
		Fine sand	fSa	0.063–0.2	0.0024803–0.0078740	
Fine soil		Coarse silt	cSi	0.02–0.063	0.00078740-0.0024803	
	Silt	Medium silt	mSi	0.0063–0.02	0.00024803-0.00078740	
		Fine silt	fSi	0.002–0.0063	0.000078740-0.00024803	
	Clay		Cl	≤0.002	≤0.000078740	

Κοκκομετρία

- Μη ομογενή πεδία: χαρακτηριστικό μέγεθος η διάμετρος του κόκκου όπου το 50% (κατά βάρος) του υπόλοιπου εδάφους είναι πιο λεπτόκοκκο d₅₀
- Αντίστοιχα $d_{10} d_{25} d_{75} d_{90}$
- Συντελεστής κατάταξης $S = \sqrt{\frac{d_{90}}{d_{10}}}$
- Τυπική απόκλιση (λογαριθμοκανονική κατανομή) $\sigma_g = \sqrt{\frac{d_{84}}{d_{16}}}$

• Συντελεστής διαβάθμισης
$$\frac{1}{2} \left(\frac{d_{84}}{d_{50}} + \frac{d_{50}}{d_{16}} \right)$$

Κοκκομετρική καμπύλη

Βασικά φαινόμενα

Βασικά φαινόμενα

- Διάβρωση
 - Πετρώματα
 - Αποσάθρωση
- Μεταφορά
 - Σύρση -
 - Αιώρηση -
 - Απόπλυση

• Απόθεση

- Ποτάμια κοίτη
- Πλημμυρικό πεδίο

Σύρση

Πηγή: http://hydrolab.illinois.edu/people/parkerg/morphodynamics_e-book.htm

Σύρση+αιώρηση

Πηγή: http://hydrolab.illinois.edu/people/parkerg/morphodynamics_e-book.htm

Ταχύτητα καθίζησης

- Τελική ταχύτητα καθίζησης: κατάσταση ισορροπίας
 - 🕻 (βαρύτητα, άνωση, οπισθέλκουσα, τύρβη)
- Σε ακίνητο νερό, ιδεατός κόκκος: σχήμα σφαίρας

$$w_0 = -\sqrt{\frac{4gd_s}{3C_d}(s-1)}$$

• Συντελεστής οπισθέλκουσας

$$C_d = f\left(\frac{w_0 d_s}{v}; \sigma \chi \eta \mu \alpha\right)$$

Συντελεστής οπισθέλκουσας

Πηγή: Chanson, H. 2004. The hydraulics of open channel flow: An introduction. 2nd ed. London: Elsevier

Αν ρίξω μία πέτρα σε μία λίμνη;

Σε πόση ώρα θα φτάσει στον πυθμένα μία πέτρα με διάμετρο 5 cm αν το βάθος ροής είναι 2 m;

$$w_0 = -\sqrt{\frac{4gd_s}{3C_d}(s-1)} = 0.85 \ m/s \Rightarrow t = 2.35 \ s$$

Σε πραγματικές συνθήκες

Για άμμο και χαλίκια (Re<10000)

$$C_d = \frac{24}{Re} + 1.5$$

• Συνολική εξίσωση ταχύτητα καθίζησης (πεπλεγμένη)

$$w_0 = -\sqrt{\frac{4gd_s}{3\left(\frac{24}{v|w_0|d_s} + 1.5\right)}(s-1)}$$

d _s (mm)	W _o (m/s)	Re	C _d
0.089	0.005	0.44	55
0.147	0.013	1.9	15
0.25	0.028	7	6
0.42	0.050	21	3
0.76	0.10	75	1.8
1.8	0.17	304	1.5

Σε πραγματικές συνθήκες

• Για 0.001<d_s<0.1 mm

$$w_0 = \frac{(s-1)gd_s^2}{18v}$$

• Για 0.1<d_s<1 mm

$$w_0 = \frac{10v}{d_s} \left[(1 + 0.01d_*^3)^{0.5} - 1 \right] \qquad d_* = d_s \left[\frac{(s - 1)g}{v^2} \right]^{1/3}$$

• $\Gamma_{I\alpha} d_s > 1 \text{ mm}$

 $w_0 = 1.1[(s-1)gd_s]^{0.5}$

Δυνάμεις που επιδρούν σε ένα κόκκο

- Βαρύτητα
- Άνωση
- Οπισθέλκουσα
- Ανύψωσης
- Σχέσεις δράσηςαντίδρασης με τους λοιπούς κόκκους

Πηγή: Chanson, H. 2004. The hydraulics of open channel flow: An introduction. 2nd ed. London: Elsevier

Εμπειρικές σχέσεις για συρτική τάση

 Εξίσωση Darcy-Weisbach: αγωγός με κυκλική διατομή και ροή υπό πίεση

Συντελεστής τριβής f

Colebrook-White

$$\frac{1}{\sqrt{f}} = -2\log\left(\frac{k}{3.7D} + \frac{2.51}{\operatorname{Re}\sqrt{f}}\right)$$

Swamee and Jain

$$f = \frac{0.25}{\left[\log\left(\frac{5.74}{\text{Re}^{0.9}} + \frac{k/D}{3.7}\right)\right]^2}$$

Κρίσιμη τιμή συρτικής τάσης

Παράμετρος Shields

$$\tau_* = \frac{\tau_0}{\rho(s-1)gd_s}$$

- Κρίσιμη συρτική τάση $au_{*,cr}$
- Ο κόκκος αρχίζει αποσπάται και αρχίζει και κινείται $\tau_* > \tau_{*,cr}$

Πηγή: https://www.geological-digressions.com

Και στον αέρα!

Πηγή: Chanson, H. 2004. The hydraulics of open channel flow: An introduction. 2nd ed. London: Elsevier

Έναρξη μεταφοράς φορτίου σε αιώρηση

Ο λόγος της συρτικής ταχύτητας να είναι μεγαλύτερος από ένα κατώφλι

$$\frac{u_*}{w_0} > 0.2 - 2.5$$

Σχέση	u _* /w ₀
Bagnold (1966)	1
Raudkivi (1990)	0.5-1.2
Julien (1995)	0.2-2.5

Σύρση

Meyer-Peter and Müller

$$q_{b*} = \frac{q_b}{\sqrt{(s-1)gd_s^3}} = 8(\tau_* - \tau_{*,cr})^{3/2} = 8(\tau_* - 0.047)^{3/2}$$
$$\tau_* = \frac{\tau_0}{\rho(s-1)gd_s}$$

αριθμός φορτίου κοίτης Einstein

παράμετρος Shields

Σύρση

• Einstein-Brown (0.3 mm < d_{50} < 28.6 mm) $\gamma_{1\alpha} \psi$ > 5.5

$$q_{b*} = \frac{F_*}{0.465} \exp(-0.391\psi)$$

• Einstein-Brown (0.3 mm < d_{50} < 28.6 mm) $\gamma_{1\alpha} \psi$ <5.5

$$q_{b*} = F_* \frac{40}{\psi^3}$$

$$\psi = \frac{1}{\tau_*} \qquad F_* = \sqrt{\frac{2}{3} + \frac{36}{d_*^3}} - \sqrt{\frac{36}{d_*^3}} \qquad d_* = d_s \left[\frac{(s-1)g}{v^2}\right]^{1/3}$$

Αιώρηση

ΣΔΕ

$$D_{s} \frac{dc_{s}}{dy} = -w_{0}c_{s}$$
διαχυσιμότητα φερτού
 $\int D_{s} \approx \kappa u_{*}(h-y)\frac{y}{h}$

σταθερη $D_{s} \approx \kappa u_{*}(h-y)\frac{y}{h}$

συγκέντρωση φερτών υλών (αιώρηση)

$$c_{s} = c_{b} \left[\frac{\left(\frac{h}{y} \right) - 1}{\left(\frac{h}{\delta_{b}} \right) - 1} \right]^{w_{0}/(\kappa u_{*})}$$

Αιώρηση

Ολικό φορτίο

$$q_{s,tot} = q_s + q_b$$

Ολικό φορτίο

• Du Boys (1879)

$$q_{s,tot} = a_D \tau_0 \big(\tau_0 - \tau_{*,cr} \big)$$

Shields

$$q_{s,tot} = \frac{10q\rho S_0(\tau_0 - \tau_{*,cr})}{(\rho_s - \rho)^2}$$

Ολικό φορτίο

• Engelund and Hansen (1967) (0.19 mm < d_s < 0.93 mm)

$$q_{s,tot} = 0.4f \frac{\tau_0}{\rho} \sqrt{\frac{d_s}{(s-1)g}}$$

• Bagnold (1966)

$$q_{s,tot} = \frac{\rho}{\rho_s - \rho} \tau_0 u \left(\frac{e_b}{S_0} + 0.01 \frac{u}{w_0} \right)$$

Συσχέτιση δεδομένων

- Δεδομένα στερεοπαροχής από μετρήσεις
- Είσοδος
 - Παροχή
 - Θολότητα
 - Παροχή αιχμής
 - Εμβαδό λεκάνης απορροής
 - Μορφολογικά χαρακτηριστικά της λεκάνης
 - •
- Τεχνητή νοημοσύνη
 - Μηχανική Μάθηση

$$\int \frac{\partial H}{\partial t} + \frac{\partial (uH)}{\partial t} = 0 \quad \epsilon\xi i\sigma\omega\sigma\eta \ \sigma\nu\nu\epsilon\chi\epsilon i\alpha\zeta$$

$$\frac{\partial (uH)}{\partial t} + \frac{\partial (u^2H)}{\partial x} = -\frac{1}{2}gH\frac{\partial H}{\partial x} - gH\frac{\partial \eta}{\partial x} - \frac{\tau_b}{\rho} \quad \epsilon\xi i\sigma\omega\sigma\eta \ o\rho\mu\eta\zeta$$

$$\frac{\partial \eta}{\partial t} + \frac{\partial q_{s,tot}}{\partial x} = 0$$

εξίσωση Exner

$$\frac{\partial \eta}{\partial t} + \frac{\partial q_{s,tot}}{\partial x} = 0 \qquad q_b = f(u)$$

εξίσωση Exner

εξίσωση Exner

Εφαρμογή

- Τμήμα ποταμού με πλάτος διατομής B=100 m, κατά μήκος κλίση 1‰ και το οποίο αποτελείται από ομογενές υλικό με διάμετρο κόκκων d=5 mm δέχεται πενθήμερο πλημμυρικό γεγονός με μέση παροχή ανά μονάδα πλάτους q=2 m³/s/m. Να βρεθεί:
 - Το ομοιόμορφο βάθος ροής
 - Αν θα διαμορφωθούν οι συνθήκες για κίνηση των φερτών υλών
 - Αν το φορτίο είναι σύρσης ή αιώρησης
 - Η στερεοπαροχή
 - Πόσο θα μεταβληθεί ο πυθμένας σε μία μοναδιαία λωρίδα κατά πλάτος