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GWAS
Genome-wide Association Studies
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Genetic susceptibility to type 2 diabetes and obesity:
from genome-wide association studies to rare variants and beyond

Niels Grarup - Camilla H. Sandholt - Torben Hansen -
Oluf Pedersen

Grarup et al., Diabetologia, 2014

Missing heritability: the discrepancy
between h” estimated in twin studies
and the summed variation explained by
genome-wide significant variants. h’gp,
which includes the influence of variants
not reaching genome-wide significance,
accounts for some missing herilability.
While the cause of ‘still missing’
heritability (°—h”sne) remains unclear, it
is likely attributable to (mostly rare)
variants that are poorly tagged by
common SNPs on arrays.

Glossary

1000 Genomes Project The 1000 Genomes Project, launched in January 2008, is an international research
effort to establish a detailed catalogue of human genetic variation. Scientists planned to sequence the
genomes of 2,500 participants from a number of different ethnic groups

Allele One of a number of alternative forms of the same gene or same genetic locus

De novo mutation An alteration in a gene that is present for the first time in one family member as a
result of a mutation in a germ cell (egg or sperm) of one of the parents or in the fertilised egg itself

Epistasis When the effect of one gene depends on the presence of one or more ‘modifier genes’
(genetic background). Also referred to as gene—gene interaction

Exome The protein coding part of the human genome. The exome of the human genome consists of
roughly 180,000 exons, constituting about 1% of the total genome, or about 30 megabases of DNA

Heritability The proportion of phenotypic variation of a trait that is due to underlying genetic variation

Imputation In genetics, imputation refers to the statistical inference of unobserved genotypes. It is
achieved by using known haplotypes in a reference population, such as the 1000 Genomes Project,
thereby allowing non-genotyped genetic variants to be tested for association with a trait of interest

Linkage disequilibrium A non-random association between alleles at different loci

Minor allele frequency Ranging from 0% to 50%, this is the proportion of alleles at a locus that contain
the less frequent allele.

Private variants Variants restricted to probands and immediate relatives

Sequencing depth In DNA sequencing, depth refers to the number of times a nucleotide is read during
the sequencing process. Deep sequencing indicates that the depth of the process is many times larger
than the length of the sequence under study
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=  ASD Diabetes Drug response
=  Tourette - OCD (T2DM)
= SLD
* Duchenne/Becker Cancer
Musc_u lar D)"str_o phies " Schizophrenia Religious belief
= Huntington's Disease ] ]
= Cystic Fibrosis = Bipolar Disorder
Measles
= Blood groups S
= Eye colour ENVIRONMENT — curvy
= Addiction (drugs, alcohol)
= PKU ) . .
« Galactosemia » Height = Arthritis (various forms)
= BMI = Hypertension Car accident

Adapted and modified from

Emery’s Elements of Medical Genetics, 15" ed., 2017
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Fig. 1 Concordance of MZ and DZ twins for different disorders. As a rule, the degree
of concordance in MZ twins is lower than 100% for nearly all complex diseases but  Human Genetics: Concepts and Applications,
substantially higher in comparison to the concordance rate in DZ twins

,  Variance in DZ pairs — Variance in MZ pairs
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P = G + E
Ve = Vg + Vg +Vg
Vp =Vt \\ pt Vi N Vi

Y
Phenotypic Additive Non-Additive Environmental
Variance Genetic Genetic Variance
Variance Variance

H2 = Vv G/VP Broad-sense

heritability
%4
h2 = -4 Narrow-sense
Vp heritability

A heritability close to 1 indicates a large portion of
the phenotypic variation is due to genetic factors

Heritability
(KAnpovounowomrtan
KAnpovouikn Ikavotnta)

Ve=V,+Vp+V,

= The total genetic variance for a character (Vg) is a function
of:

= Additive genetic variance (V,) — variation due to the
additive effects of alleles

* Dominance genetic variation (Vp) — variation due to
dominance relationships among alleles

= Epistatic genetic variation (V) — variation due to
interactions among loci
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D. van Calker and T. Serchov Neuroscience and Biobehavioral Reviews 126 (202]1) 23—42
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Single-gene disorders

Low impact on public health cost

One or a few gene(s)

Mendelian inheritance (dominant/recessive)
Rare variants of large effect

Classical genetics approaches

Examples:

= Huntington’s disease/Myotonic dystrophies
= Cystic fibrosis

= Muscular dystrophy Duchenne/Becker

= Rett Syndrome

= Fragile X

= Osteogenesis Imperfecta

Multifactorial disorders
(Complex traits)

Serious impact on public health cost
Multiple genes and loci

Complex pattern of inheritance (additive)
Variable heritability (h?)

Common and rare genetic variants

Whole-genome scans = new technologies/analytical
tools

Examples:
Stroke/CVD
Diabetes (Type 2)
Schizophrenia/Bipolar Disorder/0CD

Autism Spectrum Disorder (ASD)/ADHD/Language & Learning
Disorders

Osteoarthritis

Alzheimer’s/Dementia



Effect Size (Odds Ratio)

(@ CFTR AF508 (Cystic Fibrosis)

Highly Penetrant

Mendelian \_ Common Variants
Large Mitations N with Large Effects
() APOE4 (Alzheimers) :
CFH(A;AE))O\ '
50 | ‘ |
| Less Common |
Moderate | Variants with : i
: Moderate Effects 2N o ‘ Bush & Moore, PLoS ComputBioI, 2012
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McCarthy et al., Nat Rev Genet, 2008
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MeA£TEC ZVOXETIONG

YkomOG: H aviyvevon cvoxeticewv HeTa&D YEVETIK@WV SESOUEVWOV (SNA. aAAnAopdp@wV 1] YOVOTUTIWV) GUYVODV
TAPAAAQY DV TOV YOVISIWOUATOC LE TMAPARETPOVE TIOU APOPOVV EVA YVWPLOUA 1) (ial KALVIKT KaTtdotoaor (T
voonua) uTtd PeA£TH. AUTO ETIITUYXAVETAL E XPT)OT) CTATIGTIKOV XVAAVGEWV O€ £VA IKAVOTIOTIKA LEYAAO
TANOVo KO Selypa (cuviONG oxeSLOUOG «TIEPITTTWON-UdPTUPO» /case-control), Tpokeluévou va vtootnpiyOel
1 Vo KatappLpBel o Loyuplopog otLn(ot) ocvykekpiuevn(eg) mapailayn(eg) ovuvelc@Epouv oTov Kaboplopud tou

YVWPIoUATOG/ Voo UATOG.

Cases (n=1,000)
(express the trait)

Microsatellites

(TodaoTepa) (onuepa) ’ c |

VS.

Controls (n=1,000)
(do not express
the trait)

ore Tl Ww'ﬁ'ww

Cases

62%

38%

Controls

49%

51%




Genome-wide association studies (2005 - onuepa)
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Workflow of a typical GWAS study PLINK in GWAS workflow

Experimental
Cell Intensity Files - GeneChip g::'g': ;‘
for each chip Scanner = Sample
¥ Collection
Summary statistics l
and quality control
“1 \ Phenotype, 104
Assessment of population SOX anq c:thef
stratification covanates Y
a 64
Whole genome SNP-based -?6
association 4
' |
k3 24
Further exploration of ‘hits’
04
Visualization and follow-up 12 3 4 scns 78 Ie 10 111213141516 182022
< romosomal position
———— OVA
S ampl e DNA Statistical hi-square
extraction and analysis ovariate adjustment

ultiple testing correction
opulation stratification

collection ' Quantification

(trait-dependent)
. B

Peripheral blood Manual purification 96-well plates - ©M. Georgitsi
Buccal cells Kit-based purification 384-well plates
Pl Replication )| Sample 'size (large)
/ study Population
analyses (s taged ) Phenotypic criteria
gﬁ. = : \ Other genotyping platform
Fluorospectrophotometry Ky K — Meta- Validation In silico analysis
Spectrophotometry i : (technical, Sequencing
N + ﬂﬂaly SES _ functional) Gene expression analysis
e ] Cell-based analysis

: — 4
4 —t—t
Odds raio 05 10 15 20 25 30

¢ Animal models
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O=controls
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A) 'vwplopata ToloTIKA
(Suxotoua, Slakpitda Sedopéva)
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MetafAnti 1/ SUVEXNG Awakpitn
MetafAntn 2
t-test
ZUVEXNG ZUVTEAECTNG Z-test
CUOXETLONG Wilcoxon
t-test X2 test
Awakpitn Z-test Fisher’s exact test
Wilcoxon McNeamar test
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Hln 9“ o lllaKl!] Elval évag mapayovtag cuyxvong mov Pumopel va odnynoel o€ Peudws OETIKEG GUOYETIOELS
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1. Ymaitio aAAnAopop@a (18avikd oevaplo, aAdd eatpeTikd omavio!) - Bingo!

= Ta aAAnAdpop@a oV aVIYVEVOVTAL WG CTATIOTIKA CUAVTIKA CLUOXETL{OUEVA SNULOVPYOVV TTPOSLABEST 1] TPOCPEPOLV
TPOCTACLA EVAVTL TNG EKSNAWOTG KATIOLOU (PALVOTUTIOV (0rUEAVOLV 1) LELWVOLV GLECH TOV KIVOUVO)

2. AAAnAdpop@a oe LD pe vmaitio aAANAOpop@a (TUTILKO 0EVAPLO, OL TIEPLOCOTEPES TIEPLTITWOELS) —
XPNOLUO YIX TIEPALTEPW UEAETEG

= Ta aAANAOHOP @A TTOV AVIXYVEVOVTAL WG OTATIOTIKA OT|LAVTIKE CUCYXETI(OUEVH OTNV TIPAYUATIKOTNTA E(val
ouvvoedePEVA, SNAAST CUYKAT|POVOLOVVTOAL LUE TA TPAYUATIKE VTTAITIOL XAANAOpOP @A (TTOV HAAAOV TTHPAPEVOVV AYVWOTA
KoL Xp1{ouV TTEPALTEPW AVIXVELOTG)

3. [IAnBuoulak) SlaoTpwHATWON

= Ta aAANAGpOp @A IOV VIXVEVOVTAL WG OTATIOTIKG ONUAVTIKA Elval Pevdwg BeTIKd cLOYETI(OUEVA UE TOV VTIO LEAETT
@aLVOTUTIO (YVWPLOUD, VOO U, KATT). 2 Ta amoteAEopata lvol TOPATAAVN TIKA
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log,o(Effect Size)

To Tapadetypa TnC oxL{oPPEVELAC

Psychiatric Genomics Consortium

[MA£ov tpoo@ata PGC dcdopéva

cture of schizophrenia: a review of major advancements

PGCZ

» ~270 yevetikol ToTot (130 yovidia)
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oo A
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60 Published online by Cambridge University Press: 08 Eebruary 2021
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Polygenic Risk Scores (PRSs)
(IToAvyoviSiakol Asikteg Kivovvov)

» A count of the number of the risk variants
across multiple genomic loci present in the
person’s DNA, weighted so that the presence
of some risk variants is considered more
important than others.

v IBD (Crohn’s, UC)

v" T1DM and autoimmune
diseases

v' T2DM and obesity

v CVD and hypertension

v AD and neurodegenerative

disorders

ADHD and ASD

Schizophrenia

AN

Preterm delivery
Drug response (PGx)

AN

Figure 2. Schematic of the Steps Needed to Generate and Validate Polygenic Risk Scores (PRS)
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5. Calculate PRS for individuals with unknown disease

4. Evaluate PRS In samples with known
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case-control status

Accuracy of PRS could be lower when applied in non-European individuals

Wray et al., JAMA
Psychiatry, 2020
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Figure 2. Schematic of the Steps Needed to Generate and Validate Polygenic Risk Scores (PRS)
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Wray et al., JAMA Psychiatry, 2020

4. Evaluate PRS In samples with known
case-control status

Accuracy of PRS could be lower when applied In non-European Individuals

1. Large genome-wide association study

summary statistics

—_—

S. Calculate PRS for individuals with unknown disease
status and benchmark risk against population

Polygenic risk scores

v PGSs are a quantitative measure of the additive genetic burden
(polygenic contribution) for a particular disease or trait that can be
used to assess individual genetic load.

v" PGSs typically aggregate hundreds or thousands of variants with
small individual effect sizes and follow a normal distribution on a
population level.

* 6-89% for SCZ (Purcell et al., Nature, 2009)

*  3-4 9% for BD (Purcell etal, Nature, 2009)

e 2-39% for MDD

e ~3%for OCD (Yuetal, Am ] Psychiatry, 2015)

* 0.6-0.8% for GTS (Yuetal,4m] Psychiatry, 2015; 2019)
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Lifestyle modification to avoid risk factors
Early active screening

Low risk



When genetic burden reaches threshold

Walsh et al., Eur Heart J, 2020
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GWAS hits

Trait

Gene with GWAS hits

Known or candidate drug

Type 2 Diabetes
Rheumatoid Arthritis

Ankylosing
Spondylitis(AS)

Psoriasis(Ps)
Osteoporosis
Schizophrenia
LDL cholesterol
AS, Ps, Psoriatic Arthritis

SLC30A8/KCNJ11
PADI4/IL6R

TNFR1/PTGER4/TYK2

IL23A
RANKL/ESR1
DRD2
HMGCR
IL128

ZnT-8 antagonists/Glyburide
BB-Cl-amidine/Tocilizumab

TNF-
inhibitors/NSAIDs/fostamatinib

Risankizumab
Denosumab/Raloxifene and HRT
Anti-psychotics
Pravastatin

Ustekinumab

Visscher et al, Am | Hum Genet, 2017
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BOX 3
Bioinformatics and computational
biology

The maijor bottleneck in genome
sequencing is no longer data
generation—the computational
challenges around data analysis, display
and integration are now rate limiting.
New approaches and methods are

Understanding Understanding Understanding Advancing Improving the required to meet these challenges.
the structure of the biology of the biology of the science of effectiveness of e ey s SUOUMENISRCOrS
genomes genomes disease medicine healthcare SPALIADEDRGOINIG EDo For

- analysing the amount of genomic data
that can now be generated, and this mismatch will worsen. Innovative
approaches to analysis, involving close coupling with data production,
are essential.

Data integration. Genomics projects increasingly produce disparate
data types (for example, molecular, phenotypic, environmental and
clinical), so computational approaches must not only keep pace with
the volume of genomic data, but also their complexity. New integrative
methods for analysis and for building predictive models are needed.

Visualization. In the past, visualizing genomic data involved
indexing to the one-dimensional representation of a genome. New
visualization tools will need to accommodate the multidimensional
data from studies of molecular phenotypes in different cells and
f ﬂ " e, A : . _ ) tissues, physiological states and developmental time. Such tools must

/) - "' . e L o also incorporate non-molecular data, such as phenotypes and
S . ’ environmental exposures. The new tools will need to accommodate
TYNTNTACY the scale of the data to deliver information rapidly and efficiently.

Computational tools and infrastructure. Generally applicable tools
are needed in the form of robust, well-engineered software that meets
the distinct needs of genomic and non-genomic scientists. Adequate
computational infrastructure is also needed, including sufficient
storage and processing capacity to accommodate and analyse large,
complex data sets (including metadata) deposited in stable and
accessible repositories, and to provide consolidated views of many
data types, all within a framework that addresses privacy concems.
Ideally, multiple solutions should be developed'®.

Training. Meeting the computational challenges for genomics
requires scientists with expertise in biology as well as in informatics,
computer science, mathematics, statistics and/or engineering. A new
generation of investigators who are proficient in two or more of these
fields must be trained and supported.




