One Hundred Years of Linkage Disequilibrium
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ABSTRACT One hundred years ago, the first population genetic calculations were made for two loci. They indicated that populations
should settle down to a state where the frequency of an allele at one locus is independent of the frequency of an allele at a second
locus, even if these loci are linked. Fifty years later it was realized what is obvious in retrospect, that these calculations ignored the
effect of chance segregation of linked loci, an effect now widely recognized following the association of closely linked markers (SNPs)
with rare genetic diseases. Linkage disequilibrium is now accepted as the norm for closely linked loci, leading to powerful applications
in the mapping of disease alleles and quantitative trait loci, in the detection of sites of selection in the human genome, in the
application of genomic prediction of quantitative traits in animal and plant breeding, in the estimation of population size, and in the

dating of population divergence.
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HE humble beginnings of the study of linkage disequilib-

rium (LD) can be dated back to 1918, 10 years after the
Hardy-Weinberg law introduced population genetics for a
single locus. Robbins (1918), in volume 3 of GENETICS, de-
veloped the original theory for two loci, taking into account
the then relatively new concepts of linkage and recombina-
tion. LD has now become a huge topic, with nearly 25,000
keyword citations in the most recent PubMed database. In
this article we provide a history of the development of LD
theory and explain and illustrate the many applications of
LD in pure and applied genetics.

Early Theory

The basic theory for two loci, A and B, is simple (see Box 1).
The frequency in a particular population of allele A at the first
locus is pa and of allele B at the second locus is pg, and the
combined haplotype AB has frequency pag. Robbins intro-
duced the measure A, nowadays usually denoted D, to de-
scribe the extent to which alleles at the two loci depart from
random combination, where D = pap — papg. Although
Robbins used an earlier recombination parameter, essentially
what he showed was that one generation of random mating
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reduces the value of D in the population to D(1 — ¢), where ¢
is the recombination rate and quantifies the amount of cross-
ing over or recombination.

For each generation, the same factor 1 — ¢ applies so that,
after t generations, the value of D is reduced to D(1 — ¢)*.
Over time, therefore, for any pair of loci undergoing recom-
bination, D approaches zero. So in a closed population and in
the absence of selection and other forces, genes are expected
to combine at random in the population, i.e., to be in linkage
equilibrium (LE).

Over the 50 years following Robbins’ initial work, the
theory was extended in various ways, most importantly in-
corporating selection. An influential article by Kimura
(1965) showed that “quasi linkage equilibrium” could be
attained under the assumption of weak selection. In con-
trast, it was shown that if particular gene combinations
were favored, then LD could be maintained in populations
(Lewontin and Kojima 1960). Such “equilibrium models”
were studied in considerable detail, frequently in the con-
text of the evolution of recombination (e.g., Bodmer and Fel-
senstein 1967; Karlin and Feldman 1970). Franklin and
Lewontin (1970) extended the theory, predicting the possi-
bility of LD over large regions of the genome due to multipli-
cative selection interaction. Although much of the emphasis
of these articles was on LD, the general conclusion was that
such LD required strong epistatic selection compared with
the amount of recombination, and therefore could apply only
to a minority of locus pairs
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Box 1 Definitions and Expected Changes in LD
Measures

Frequencies in a population:

Frequency of allele A at first locus = pa.
Frequency of allele B at second locus = pg.
Frequency of allele pair (haplotype) AB = pag.

LD measures:

D = paB — paPB;
where D is the coefficient of LD.

D’ = D/maximum value of D;

is an LD measure designed to have a range from —1 to 1.

r> = D?/[paps(1 — pa)(1 = ps)l;
where r is the correlation of allele frequencies.

Expectation from generation t—1 to t (infinite
population):

Djt]= (1 —c¢)D[t — 1];
where c is the recombination frequency.

Expected value at equilibrium in an infinite
population:

E[D] =0

Fifty Years Ago: LD Progresses from Exception to
Expected

In the two-locus theory of that time it had been assumed
implicitly that gene frequencies could be manipulated as if the
population was infinite, thereby ignoring the possibility that
LD could be produced solely by the joint segregation of linked
genes. The emphasis on LD rather than LE as the norm
changed when attention was drawn to the effect of finite size
of populations (Hill and Robertson 1968; Sved 1968; Ohta
and Kimura 1969). Such effects became obvious later follow-
ing the study in human populations, for example in Finland
(Hastbacka et al. 1992), of rare disease alleles and associated
linked polymorphisms.

Of equal importance to the increasing emphasis on LD was
the realization of the extent of closely linked polymorphic sites
in populations. From a present-day point of view, it is difficult
to appreciate the background of population genetics theory in
the premolecular era. It was well known, from Drosophila for
example, that there are many cases of very closely linked loci.
What was less clear, however, was whether there are many
cases of closely linked polymorphic loci in populations. In
retrospect, the lack of thought given to this possibility seems
surprising given the background of Fisher’s multi-locus model
for quantitative traits, Wright's concept of relationship as a
correlation, and the subsequent widespread acceptance of
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the polygenic model of inheritance of continuous traits
(e.g., Falconer’s 1960 textbook).

This situation changed following the work of Lewontin and
Hubby (1966) in Drosophila, whose study has been the subject
of a previous Perspectives article (Charlesworth et al. 2016),
and a study by Harris (1966) in humans. These authors were
the first to address systematically the question of what pro-
portion of loci were polymorphic, focusing on loci where a
protein product could be visualized on a gel. Their conclusion
was that at least one third of such loci in both species were
polymorphic, implying that there had to be many thousands of
such loci, and that many would have to be closely linked. The
first systematic study of polymorphism at the DNA level, at the
Adh locus in Drosophila (Kreitman 1983), indicated that DNA
polymorphism vastly exceeded the amount of detectable poly-
morphism at the protein level. Later studies at the genome
level in humans (International HapMap Consortium 2005)
and more generally have strongly borne out this early finding.

One result of this history is the usage of the term LD. In
modern usage it usually applies to closely linked loci, where
the idea that linked SNPs within linkage blocks are somehow
in “disequilibrium” seems counterintuitive. The LD term is
also used to describe the situation for unlinked loci (e.g.,
see section on estimation of population size below), where
the term is especially inappropriate. In retrospect, the term
“allelic association” (see, e.g., Morton et al. 2001) would
probably have been more suitable.

Measures of LD

The range for D is —0.25 to 0.25, but it depends on allele
frequencies (see Box 1): the maximum and minimum values
can be attained only if the frequencies of both alleles (p, and
ps) are 0.5. These allele frequencies in the population are
referred to by Weir and Goudet (2017) as “allele probabili-
ties” to clarify that these are the expected values of the allele
proportion. Correspondingly, the haplotype frequencies are
haplotype proportions in the population. If, for example, ps =
0.3 and pg = 0.1, the possible range is asymmetric and re-
stricted to —0.03 = D = 0.07. Consequently, Lewontin
(1964) introduced the quantity D', in which D is divided by
its minimum and maximum values for the particular ob-
served allele frequencies, so that D' can range from —1 to
1. Its sampling properties are unknown, however, so its use
has declined. The use of other measures, e.g., as discussed by
Devlin and Risch (1995), has also declined.

The measure 12 = D?/[pa(1 — pa)pe(1 — pp)], introduced
by Hill and Robertson (1968), is simply the square of the
conventional correlation of gene frequencies in the sample.
It reduces some of the influence of allele frequency on its
range: for py = 0.3, pg = 0.1, for example, to —0.22 = r <
0.51; but if py = pg, the full range from —1 to +1 for r (0-1
for r2) is possible. As the Chi-square statistic with 1 d.f. for a test
of correlation in a sample size of n haplotypes is equal to nr?, it
facilitates significance testing for departure from LE, albeit ran-
domization tests are a simple alternative. Further, as discussed
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Figure 1 Summary of r? values from two popula-
tions averaged over all SNP pairs (International
HapMap Consortium 2005; Sved et al. 2008).
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subsequently, 2 is relevant to the power of marker-trait associ-
ation studies [genome-wide association studies (GWAS)].

An example showing the range of r? values in human
populations is shown in Figure 1. r? values are dependent
on allele frequencies, and SNPs with a minimum allele
frequency <0.1 have been omitted for the figure. The higher
LD values in European populations are expected if there was
a reduction in population size (bottlenecking) during their
establishment.

The measures of LD discussed to date involve only pairs of
loci. The extension to more loci rapidly becomes very messy
because the possible values of a three-locus quantity, e.g.,
frequency(ABC) — paprpc, have feasible boundaries depen-
dent on both single- and two-locus haplotype frequencies.
Although parametrizations and dynamics of frequency
changes have been derived for multiple loci (Hill 1974a),
the multi-locus disequilibria are rarely used. In random mat-
ing populations, haplotype frequencies and D can be esti-
mated by iterative maximum likelihood for pairs (Hill
1974b) and for multiple loci (Hill 1975; Excoffier and
Slatkin 1995) and explicitly for pairs (Weir and Cockerham
1979).

Other parameters have been used for different situations.
Sabeti et al. (2002) defined the statistic extended haplotype
homozygosity in measuring the decay of LD to determine
sites of selection in the human genome, using multiple SNP
data to define homozygous segments. Chromosome segment
homozygosity, introduced by Hayes et al. (2003), is a similar
measure, except that it uses a correction to infer identity by
descent rather than homozygosity.

An important measure of LD introduced by Weir (1979)
and used in population size estimation (see below) is the
“composite LD measure,” sometimes known as “Burrows’
composite disequilibrium measure.” It addresses the practical
problem in diploid organisms that coupling and repulsion
haplotype gametes cannot be distinguished in genotypes
when both loci are heterozygous, so D cannot be estimated
directly. However, a second D value can be calculated which
considers not the gametes in the zygote (designated as the
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“coupling gametes”) but rather the “repulsion gametes,” the
combination of the A gene from one parent and the B gene
from the other parent. The sum of these two D values is the
composite measure which can be calculated directly from the
data. An equivalent measure to r? that does not assume ran-
dom mating can be calculated by normalizing for gene and
genotype frequencies (Weir 1979).

The Expectation of r?2 in Random Mating Populations

We now turn to the problem of predicting the expected
magnitude of 2 due to chance segregation as a function of
parameters of the population, effective size, and the degree
of linkage. The first approaches to this issue (Hill and Rob-
ertson 1968; Sved 1968) indicated that the expectation is
a function of 1/(N.c) and approximately equal to 1/(4N.c)
for large N.c, where N, is the effective population size.

A problem in these calculations is that r2 is a ratio and is
defined only when both loci are segregating, making it im-
possible to write down an exact forward recurrence relation-
ship between generations. There is an extensive literature,
in part to overcome this, notably the standardized LD quan-
tity introduced by Ohta and Kimura (1969), o3 = E(D?)/
E[pa(1 — pa)ps(1 — pp)], the ratio of expectations rather
than E[r?], the expectation of the ratio. The difference be-
tween o?p and E[r?] is typically small.

Expectations of the components of 03, E[pa(1 — pa)ps(1 —
pe)], and E(D?) can be calculated by iteration of the moments
over generations, requiring a third quantity, E[(1 — 2p,) (1 —
2pp)D], to obtain a closed form (Hill and Robertson 1968).
Calculation can also be carried out by diffusion methods
(Ohta and Kimura (1969), or by adopting a genealogical
interpretation and using coalescent techniques (McVean
2002). A further complication in assessing data is that E(r2)
also depends on the current allele frequencies, and conditioning
of the statistics on them may be needed (VanLiere and Rosenberg
2008). A full analysis has been given by Song and Song (2007).

A more general approach and analysis was undertaken by
Weir and Cockerham (e.g., Weir and Cockerham 1974, and
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see also Weir 1979 for further review). Rather than initially
setting up moments, they undertake analysis based on de-
scent measures, probabilities that the two genes at two loci
in an individual are descended from one, two, three, or four
ancestral gametes, which are then identified by the individ-
uals in which they are located. Together these provide a set of
equations that enable iteration over generations, taking into
account the mating system; selfing, for example, can be ex-
cluded or allowed. The methods developed by Weir and
Cockerham require complicated notation, but in their hands
it is a straightforward, formal, and powerful approach. The
moments are functions of the allele frequencies in the base
population and of the descent measures, and so can be
obtained by iteration with results that are very close, except
for very small populations, to those using the moments ap-
proach directly.

A simple, although less rigorous, approach to the expec-
tation of r? was put forward by Sved and Feldman (1973).
This was suggested by the treatment of inbreeding at a sin-
gle locus, which can be defined using either the correlation
between uniting gametes or the probability of identity by
descent (Crow and Kimura 1970, section 3.2). For identical
gametes, the correlation is one, otherwise zero, so the over-
all correlation is simply the probability of identity by de-
scent. Extending the approach to two loci, the expected
correlation r is equal to the probability of no recombination
in a gamete. The probability of no recombination in either
gamete of a pair, or the probability of linked identity-
by-descent (L), estimates r2. Its calculation is straightforward
using recurrence, leading to an equilibrium at L = 1/(1 + 4Nc)
for small c. The same recurrence relationship and equilibrium
have been derived approximately but directly in terms of r?
rather than L (Tenesa et al. 2007).

Population Subdivision and Assortative Mating

Nei and Li (1972) pointed out that LE requires dealing
with a closed population. Just the act of mixing populations
that are individually in LE will lead to LD in the com-
bined population if gene frequencies are different in the
subpopulations.

A related, but more complex, problem concerns expecta-
tions for LD due to drift in individual populations that are
exchanging migrants. Different parameter sets and expecta-
tions for this case have been given by Ohta (1982), Tachida
and Cockerham (1986), and Sved (2009).

Hedrick (2017) has also pointed to the effect of assortative
mating in generating LD. In general, any departure from ran-
dom mating can potentially lead to LD, although the level as
measured using r? may be low.

The Multiple Applications of LD

So far we have looked at the description and prediction
of the magnitude of LD, but not considered its uses. We consider
five categories here:
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1. Detecting sites of past selection in human populations.

. Dating divergence of human and animal populations.

3. Estimation of effective population size in conservation
biology.

. GWAS.

5. Genomic prediction.

N

N

Of these categories, (4) and (5) are by far the largest areas
of current interest.

Detecting sites of past selection in human populations

This method uses hitchhiking, the increase in frequency of a
neutral mutation linked to an advantageous one (Smith and
Haigh 1974), originally introduced without reference to LD.
Sabeti et al. (2002) apply a similar principle, defining SNPs
that are in high LD with a gene region and where the LD
diminishes with increased distance from the region.

The test loses power when fixation of the newly selected
gene is nearly complete, and the LD measure r? is undefined
when complete fixation occurs. The availability of HapMap
data from different populations in Africa, Asia, and Europe
overcomes this difficulty, however, allowing the identification
of sites of gene replacement that differ between populations.
On a longer timescale, chimpanzees have been used as an
outgroup to define selected regions in all human populations
(Sabeti et al. 2007).

More than 20 chromosomal regions have been identified in
this way, with many more regions showing evidence for lower
levels of gene replacement. In many cases the functional gene
substitutions have not been defined, but specific evidence for
the substitution of genes affecting skin pigmentation, hair folli-
cles, and resistance to Lassa virus were found (Sabeti et al. 2007).

Recently, Racimo et al. (2018) have proposed methods for
inferring polygenic adaptation in complex traits by analyzing
changes in genome frequency at multiple loci, and comparing
the expected changes from this model with those expected
from population history and simple genetic drift. These in-
voke the assumption that the genes analyzed are acting di-
rectly and that frequency changes do not arise through LD.
Novembre and Barton (2018) recommend caution in inter-
preting the results.

The estimation of effective population size from LD

The expectation of r2 is a function of effective population size
N. and recombination fraction c. Measurement of r2 in a
population from loci that are neutral for fitness should there-
fore lead to an estimate of population size, provided the re-
combination frequencies are known and the population size
is constant (Hill 1981). Most other methods for estimation of
population size from genetic data require measurement of
gene frequencies in more than one generation.

In practice, because the methods are most useful in
natural populations (often in species for which map dis-
tances are unknown) and because most pairs of loci are
on different chromosomes, unlinked loci have been of most
use for such measurement (Waples 2006). The expectation



given above, E(r?) = 1/(1 + 4N.c), actually measures aver-
age N, over the period of time during which the LD value
settles down to an equilibrium, which takes much longer for
closely linked loci than for loosely linked loci. Hayes et al.
(2003) showed that the term 1/(2c) defines the time period
relevant to population size estimation. Therefore, unlinked
loci are most useful for measuring recent population size,
in which case the composite r> measure is the method of
choice. It may seem counterintuitive that unlinked loci
can be in disequilibrium at all, but recombination can ran-
domize gene combinations only in double heterozygote
genotypes, which are expected to be less than half of the
population.

The main difficulty with the measurement of LD for un-
linked loci is that sample size tends to dominate the measured
value of r? (Hill 1981). For unlinked loci, the expected value
of the composite r? is 1/3N. + 1/n (Weir and Hill 1980),
where n is the sample size, which is likely to be small for wild
populations. This difficulty can be overcome if enough highly
variable markers, e.g., microsatellite markers, are available.
In practice, it seems that the method is sufficiently accurate
only to distinguish between small and large population size
(Wang 2016).

The recently developed multiple sequential Markovian
coalescent (Schiffels and Durbin 2014) and pairwise sequen-
tially Markovian coalescent methods, based on coalescence
analysis of complete sequence data of a few individuals, may
soon supersede the composite LD method. Currently they
have been applied only on an evolutionary timescale in hu-
man populations. They require substantial genomic informa-
tion and may not be applicable in many conservation studies,
but have been used in a study of flycatchers by Nadachowska-
Brzyska et al. (2016).

Dating population subdivision

A means of using LD to date the divergence between popu-
lations was proposed by de Roos et al. (2008) and Sved et al.
(2008). A locus pair has a correlation equal to r; in one
population, and a correlation equal to r in a second popula-
tion. The expected value of riry is then equal to r2(1 — ¢)%,
where r? is the square of the correlation in the ancestral
population, c is the recombination frequency, and t is the
number of generations since the populations separated. With
knowledge of c, estimation of the value of 72 in the ancestral
population thus allows an estimate of t.

The method was used on HapMap data to estimate the
number of generations since European populations diverged
from African populations (Sved et al. 2008). The resulting
estimate, ~1000 generations, is low compared to archaeo-
logical records, but is consistent with the notion of multiple
waves of migration (Tassi et al. 2015).

GWAS

Mapping of disease genes in humans using association with
SNP markers constitutes the earliest major GWAS application
(see, e.g., Altshuler et al. 2008 and Slatkin 2008) and has now

expanded into a major research tool in human genetics and
medicine and in the understanding of biological function (see
review by Visscher et al. 2017 and the Web sites http://Idsc.
broadinstitute.org, http://gwascentral.org, and http://www.
ebi.ac.uk/gwas).

In GWAS, a test is made for each individual marker in turn
(e.g., by linear regression) of whether there is a significant
difference in trait mean between alternative alleles at the
marker. A significant difference indicates LD and that a trait
gene is closely linked to that marker. As thousands of tests are
undertaken, very stringent criteria for significance must be
imposed to control for type-I errors, typically set at a rate of
5 X 10~ 8 for human data. As nearby markers are also likely to
be in LD with each other, multiple hits occur, as exemplified in
a Manhattan plot.

The power of an individual test depends on the effect of the
trait gene and its frequency, formally on E(?) times its addi-
tive variance plus E(r%) times its dominance variance, and
on sample size (Weir 2008). As 2 can take high values only
when the marker and trait gene have near equal frequency,
the power is likely to be low if the risk variant is uncommon
and the marker has high heterozygosity. Indeed, the sites of
largest effect are likely to have been at a selective disadvan-
tage and are therefore rare. Eyre-Walker (2010) models some
scenarios.

In such studies and indeed in all association tests, popu-
lation substructure can lead to bias and false positives, so care
to minimize these is needed. Many population studies record
multiple health and phenotypic data on very many individuals
(e.g., the United Kingdom’s Biobank). Summary statistics are
made available to enable multiple other research groups to
combine and use these data efficiently in subsequent analyses
for specific projects.

GWAS have involved large and increasing resources.
GWAS discoveries rose from <80 before 2008 to >10,000
by September 2016 (Visscher et al. 2017). Data sets can be
used in GWAS for any trait on which records are included, so
they are being combined. In early 2017, >30 summary asso-
ciation statistics of sample sizes of at least 20,000 were avail-
able (Pasaniuc and Price 2017). There has been extensive
development of statistical and computational methodology
to effect such advances. The successful hits in a GWAS study
then provide a route for further study of gene action and
understanding of the biochemistry and physiology of the loci
identified, as well as the pathways through which they act.

Genomic prediction

Power and precision of identifying trait genes using GWAS can
clearly be increased by fitting multiple markers, including
those tightly linked to each other, and indeed the whole
genome. Prediction of marker-associated effects and, from
those, genotypic values (formally breeding values) for the trait
onallindividuals can, however, be undertaken simultaneously
using whole genome marker data of all individuals included
in the analysis. This approach was initially suggested by
Meuwissen et al. (2001) in the context of selecting animals
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in a dairy cattle improvement program. These predictions can
be applied immediately to relatives and progeny as yet un-
born based on their pedigree relationship, and predictions
recomputed as data on more animals become available. Pre-
viously, young bulls were selected on their pedigree (parental
records) and the most promising progeny were then tested,
requiring long generation intervals and low selection inten-
sity. Now, young bulls are selected on their genomic predic-
tion and, consequently, rates of improvement have roughly
doubled (Wiggans et al. 2017).

The increased accuracy of selection and opportunity for
major modifications in the design and execution of breeding
programs (e.g., Hickey et al. 2017) is such that, in all livestock
and increasingly in plant breeding (at least for outbreeding
species), genomic prediction is becoming the norm, with
clear benefit to society.

In contrast to classical GWAS, significance tests for indi-
vidual genes are not required. Marker genotypes are now the
independent variables in a multiple regression context, and
individual animals’ genetic merit, their “genomic predic-
tion,” are the dependent variables. Pedigree relationships
among the animals are included in constructing the covari-
ance matrix. To avoid overfitting, a random effects model is
fitted for the vast number of marker-associated effects. The
choice of its prior is an active and sometimes contentious
issue, as it depends on the actual but unknown distribution
of marker-associated effects. The priors that are used range
from assuming the effects are all normally distributed with
equal variance (now termed genomic best linear unbiased predic-
tion or GBLUP) to Bayesian alternatives (Meuwissen et al. 2001).

One measure of the accuracy of genomic methods is the
magnitude of the additive genetic variance accounted for by
fitting just markers, the “genomic (or SNP) heritability” (Yang
et al. 2017), compared with that from conventional analyses
of quantitative traits based on pedigree. Critically, such esti-
mates do not require a pedigree at all as this is provided by
the SNPs. Early estimates differed quite substantially, creat-
ing an unproductive search for the “missing heritability”
(Maher 2008). However, Yang et al. (2010) showed that
much of this missing heritability was due to genes of small
effect that could not be detected as significant in GWAS, but
whose overall effect could be detected statistically. Con-
versely, conventional pedigree-based estimates can be biased
upwards by common environment of sibs, maternal effects,
and nonadditive gene action. Even so, the estimate of geno-
mic heritability—just as for the prediction of breeding values
using genomic prediction—is dependent on the statistical
model fitted and on the actual distribution of gene effects
in the population, which is of course unknown. De los Campos
et al. (2015) discuss relevant concepts.

Consequences of the LD Revolution

The vast array of SNP and related markers now available,
entirely unanticipated in earlier days, has led to increased
recognition of the importance of LD among closely linked
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markers and the potential for its application to understanding
the genetic basis of complex traits. As we discuss above,
genomic methods using LD are now a major source of research
activity and gene discovery in agriculture, human medicine,
and health studies. Indeed, LD has provided a demand for
research training, employment, and genome sequencing
technology.
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