
Citation: Dabbousy, R.; Rima, M.;

Roufayel, R.; Rahal, M.; Legros, C.;

Sabatier, J.-M.; Fajloun, Z. Plant

Metabolomics: The Future of

Anticancer Drug Discovery.

Pharmaceuticals 2024, 17, 1307.

https://doi.org/10.3390/ph17101307

Academic Editors: Sikiru Olaitan

Balogun and Edson Lucas Dos Santos

Received: 10 July 2024

Revised: 19 September 2024

Accepted: 25 September 2024

Published: 30 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

pharmaceuticals

Review

Plant Metabolomics: The Future of Anticancer Drug Discovery
Ranin Dabbousy 1, Mohamad Rima 2 , Rabih Roufayel 3 , Mohamad Rahal 4 , Christian Legros 5 ,
Jean-Marc Sabatier 6,* and Ziad Fajloun 1,7,*

1 Laboratory of Applied Biotechnology (LBA3B), Department of Cell Culture, Azm Center for Research in
Biotechnology and Its Applications, EDST, Lebanese University, Tripoli 1300, Lebanon;
ranindabbousy.rd@gmail.com

2 Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon;
mohamad.rima@lau.edu.lb

3 College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait;
rabih.roufayel@aum.edu.kw

4 School of Pharmacy, Lebanese International University, Beirut 146404, Lebanon; mohamad.rahal@liu.edu.lb
5 INSERM, CNRS, MITOVASC, Equipe CarME, SFR ICAT, Faculty of Medicine, University Angers,

49000 Angers, France; christian.legros@univ-angers.fr
6 CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Université, 13385 Marseille, France
7 Department of Biology, Faculty of Sciences 3, Campus Michel Slayman Ras Maska, Lebanese University,

Tripoli 1352, Lebanon
* Correspondence: sabatier.jm1@gmail.com (J.-M.S.); ziad.fajloun@ul.edu.lb (Z.F.)

Abstract: Drug development from medicinal plants constitutes an important strategy for finding
natural anticancer therapies. While several plant secondary metabolites with potential antitumor
activities have been identified, well-defined mechanisms of action remained uncovered. In fact,
studies of medicinal plants have often focused on the genome, transcriptome, and proteome, dis-
missing the relevance of the metabolome for discovering effective plant-based drugs. Metabolomics
has gained huge interest in cancer research as it facilitates the identification of potential anticancer
metabolites and uncovers the metabolomic alterations that occur in cancer cells in response to treat-
ment. This holds great promise for investigating the mode of action of target metabolites. Although
metabolomics has made significant contributions to drug discovery, research in this area is still
ongoing. In this review, we emphasize the significance of plant metabolomics in anticancer research,
which continues to be a potential technique for the development of anticancer drugs in spite of all
the challenges encountered. As well, we provide insights into the essential elements required for
performing effective metabolomics analyses.

Keywords: metabolomics; anticancer drugs; medicinal plants; drug discovery; bioactive metabolites;
plant metabolomics; promising tool

1. Introduction

Natural extracts have always been a rich source of valuable pharmaceutical
molecules [1,2]. Medicinal plants, in particular, are a major source of natural extracts
that are extensively used in drug discovery [3,4]. In fact, most of the anticancer drugs
approved by the United States Food and Drug Administration (US FDA) are mainly pro-
duced from templates of plant metabolites or their derivatives [5]. In this context, it was
reported that a significant number of recently discovered cancer drugs contain natural con-
stituents [6]. Among the most well-known plant-based anticancer drugs are camptothecin
derivatives [7], taxol (paclitaxel) [8], and vinca alkaloids (vinblastine, vincristine) [9]. Plants
contain a complex mixture of active substances and phytochemicals that are responsible
for their biological activity [10]. Mainly, secondary metabolites having important phar-
maceutical effects on multiple signaling pathways and molecular targets [11,12] are the
main substances used in plant-derived drugs [13]. In fact, these compounds act at the
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cellular or the molecular level [14,15] by exhibiting antioxidant, antiinflammatory, an-
titumor, and anticarcinogenic effects [16]. Tannins, terpenoids, lignans, phenolic acids,
quinones, flavonoids, alkaloids, coumarins, catechins, and isocatechins are among the
metabolites that have a significant role in cancer treatment [17]. Although many studies
focusing on compounds with anticancer properties from various medicinal plants have
been reported [18,19], further research is still required to alleviate the challenges facing the
medicinal plants pharmaceutical sector. These challenges include the scarcity of secondary
metabolites [20], which can seriously hinder metabolite identification from the step of
isolation to the drug development stage. The toxicity of medicinal plants also constitutes a
major problem, as it can cause adverse effects in patients [21]. However, the comprehensive
understanding of the mode of action of anticancer metabolites remains the main challenge.
On the other hand, the heterogenicity of tumor cells and population polymorphism [22], in
addition to their acquired resistance to anticancer treatments [23], make the situation more
challenging. Even though, the anticancer activity of plant metabolites has been confirmed,
new strategies are still required to depict the mechanism of action of these compounds.
Therefore, it is crucial to elucidate the interactions between bioactive plant compounds
and their targets, in order to understand their therapeutic effects [24]. Metabolomics is the
inclusive study of all the metabolites found in a biological system, including carbohydrates,
amino acids, lipids, organic acids [25], aldehydes [26], steroids [27], vitamins [28], polyphe-
nols [29], hormones, and signaling molecules [30]. Over the past few years, metabolomics
has stood out as a powerful tool for identifying novel therapeutic targets, opening up new
routes for therapeutic approaches, especially for cancer [31]. Besides being a simple and
effective tool [32], metabolomics enables the identification of the variations affecting the
various metabolic pathways [33], the investigation of drug efficacy and toxicity [34], and
the discovery of unique biomarkers [35]. Metabolomics also permits to identify the modifi-
cations affecting the endogenous and exogeneous metabolites of biological systems [36–38].
Multiple studies have applied metabolomics to medicinal plant research, some of which
are nicely reviewed in [39]. Accordingly, the use of metabolomics has led to major find-
ings, such as the elucidation of the anticancer mechanisms of plant metabolites [40], the
identification and the validation of metabolic biomarkers for cancer diagnosis [41], and the
investigation of tumor metabolic reprogramming, in addition to other applications in drug
oncology [42]. The integration of genomics, transcriptomics, proteomics, and metabolomics
has helped to achieve a comprehensive picture of bioactive chemicals of plant origin [43].
In this review, we focus on the contributions made by metabolomics studies to support
plant-based anticancer drug discovery, and we emphasize its role in tackling the challenges
associated to this field. In addition, we highlight how advances in metabolomics have
enhanced our understanding of cancer heterogenicity among patients, leading to improved
diagnosis. We also discuss the difficulties associated with metabolomics studies, and we
provide some solutions. indeed, numerous studies exploring plant metabolomics and
its relation to cancer research can be found in the literature including the specific book
chapter [44] and the review by Yani Magfiroh, which examined 28 medicinal plants, and pro-
vided the analytical techniques employed, the biomarkers found, and the major discoveries
made [39]. However, in this review we highlight the key points that should be considered
and the errors to be avoided in order to perform an effective metabolomics study directed
to plant cancer research. Therefore, our review provides a comprehensive understanding
of cancer-related metabolomics, encompassing its advantages and limitations, in order to
establish a well-designed metabolomics process.

2. Plant Metabolomics as a Key Tool for Anticancer Studies

Cancer therapies can be divided into conventional (chemotherapy, radiotherapy, and
surgical) and modern therapies (hormone therapy, stem cell therapies, anti-angiogenic,
immunotherapy, and dendritic cell-based immunotherapy) [45]. Several therapies have
severe side effects [46,47], and patients often exhibit resistance [48], or show poor response
to these therapies [49,50]. Consequently, it is essential to develop treatments for cancer that
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are both safer and more effective, while minimizing side effects. Many studies have been
conducted over the years aiming to find new anticancer therapies, including those based
on medicinal plants [51]. Plant-based treatments are promising, where, plant bioactive
compounds act on different pathways involved in cancer tumorigenesis [52]. But, the
process of identifying bioactive compounds from plant extracts is long and challenging [53].
Until recently, the available methods were time consuming and based on bioactivity-guided
fractionation [54,55]. Mainly, the conventional methods for the identification of anticancer
phytochemicals typically start with crude plant extraction by different solvents, then plant
extracts are separated using different fractionation methods and the bioactive compounds
are purified by various purification techniques [56]. Notably, the complex composition of
plant extracts is a major constraint scientists face when searching for effective and safe plant
treatments. Plant extracts and their fractions are then screened using different bioassays
for determining their antiproliferative and cytotoxicity effects against cancer cells [54,57].
Mechanism-based screening methods are also used for screening anticancer plant-derived
compounds by focusing on the pathways that are activated. [58,59]. Finally, in vivo trials
involving animals and humans allow for the validation of the extracts’ efficacy [60,61].
Nevertheless, most of these studies lack a clear investigation of the anticancer mecha-
nism of action exhibited by the bioactive metabolites [62,63]. Therefore, developing new
methods that provide a better understanding of the mode of action of plant metabolites
is crucial. This helps in the discovery of more targeted drugs, which in its turn lead to
the development of more effective treatments with reduced non-desirable side effects. In
fact, researchers have high expectations for the use of metabolomics in anticancer drug
discovery due to a number of reasons. Metabolomics plays a key role in determining
the mechanism of action of plant extracts as it identifies the altered metabolites and their
underlying pathways [64]. For instance, cancer triggers the overexpression of several
cell components, such as transporters and enzymes, which constitute good targets for
anticancer drugs’ identification [65,66]. Thus, the anticancer activity of natural products
should be ascertained through the metabolic fingerprinting and footprinting of cancer
cells both prior to and following treatment [67]. Another great feature of metabolomics
is that it permits to identify all the metabolic alterations that occur in the body following
treatment. That is, it allows to measure both the intracellular [68] and the extracellu-
lar metabolites (exometabolomic) that are either released by cells into the extracellular
medium or are a result of the different biochemical transformations occurring in the or-
ganism [69]. Thus, a comprehensive understanding of the metabolome provides a better
picture of the altered signaling pathways and the cellular biology of cells, opening up
new routes for drug optimization. Numerous studies have employed metabolomics to
identify anticancer metabolites from medicinal plants. Herein, we highlight some of the
major findings obtained by these studies. For instance, the secondary metabolites from
Ammi visnaga L plant roots extract were identified using metabolomics based on high-
performance liquid chromatography–heated electrospray ionization–high-resolution mass
spectrometry (HPLC–HESI–HRMS), concurrently with assessing their antiproliferative ac-
tivity. Ammi visnaga L plant roots extract exhibited antiproliferative effects against different
types of cancer cells. Four major compounds, including Junipediol A 4-O glucoside (1),
Junipediol A 8-O-glucoside (2), acacetin (3), and apiumetin-O-glucoside (4), were charac-
terized. These metabolites showed an affinity for binding to the epidermal growth factor
receptor (EGFR) tyrosine kinase, suggesting them as EGFR inhibitors, which was proposed
as one of the molecular mechanisms of the antiproliferative properties of this plant [70].
A high-performance liquid chromatography–mass spectrometry (HPLC-MS) and nuclear
magnetic resonance (NMR) spectroscopy-based metabolomics approach was employed to
identify the bioactive compounds of two chamomile varieties, the Jordanian and European
chamomiles, and to distinguish between these metabolites based on their anticancer and
antioxidant activities. Among the isolated metabolites, two compounds from the European
samples, chrysosplenetin (4) and apigenin (5), showed anticancer activity against a breast
cancer cell line (ZR-75 cells), with IC50 values of 21.07 µg/mL and 22.55 µg/mL, respec-
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tively. Also, the metabolomics analysis revealed that the European chamomile produced
more classes of metabolites with respect to the other plant variety, which was grown under
distinct environmental conditions [71]. A gas chromatography–mass spectrometry (GC-MS)
and liquid chromatography coupled to tandem mass spectrometry (LC-MS) untargeted
metabolomics analysis was used to investigate the stigma ethanol extract of Crocus cancel-
latus. The evaluation of the anticancer properties of this extract showed antiproliferative
activity against human breast cancer cell lines (MDA-MB-231 and MCF-7). This activity
was suggested to be related to the action of the cytotoxic metabolites, including crocin (6),
crocetin (7), picrocrocin (8), and safranal (9). This work also presented a potent approach
based on the selection of specific LC-MS regions, called regions of interest (ROI), in ad-
dition to a multivariate curve resolution (MCRALS), which was used for the analysis of
the LC-MS data. Moreover, it allowed to differentiate between the metabolites found in
the extracts of two plants of the same species, Crocus sativus and. Crocus cancellatus, and
helped in the evaluation of concentrations differences between the plant samples [72]. In
addition, a widely targeted metabolomics analysis based on liquid chromatography with
tandem mass spectrometry (LC-MS/MS) analysis allowed to determine the metabolite
variability in different colors of carnation flowers. The key metabolites with different an-
tioxidant and anticancer activities were highly present in the purple flower in comparison
to the other colored flowers. Among the major compounds contributing to its antioxi-
dant and anticancer effects, 2′-deoxyguanosine, 6-hydroxykaempferol-3,6-O-diglucoside,
6-hydroxykaempferol-7-O-glucoside, and quercetin-3-O-sophoroside were mentioned. 2′-
deoxyguanosine was found to have anticancer activity against human cancer cell lines (A549
and U2OS). Interestingly, synergistic effects were also found between 2′-deoxyguanosine
(12) and 6-hydroxykaempferol-3,6-O-diglucoside (13) or quercetin-3-O-sophoroside (14),
which increased the anticancer activity of 2′-deoxyguanosine [73]. A rapid NMR-based
metabolomics approach integrated with biological assays was used to identify the sec-
ondary metabolites in fourteen Fabaceae species of Mediterranean vegetation. Parallel
biological assays helped to determine the antiproliferative activity against human colorectal
cancer cell lines. Cycloartane glycoside (15) and protodioscin derivative (16) were found
to have antiproliferative effects on colon cancer cell lines [74]. An approach based on
the combination of the total phenolic and flavonoid contents, 3-(4,5-dimethylthiazol-2-
yl)-2,5-diphenyltetrazolium bromide (MTT) assays, and LC-MS/MS-based metabolomics
analysis helped to determine the phytochemical profile of Glochidion velutinum. The results
revealed four compounds, epigallocatechin gallate (17), isovitexin (18), ellagic acid (19),
and rutin (20), possessing anticancer activity against both prostate and breast cancer cell
lines [75]. Phytochemical profiling of Citrus aurantifolia plant was performed using a com-
bination of liquid chromatography–quadrupole time-of-flight tandem mass spectrometry
(LC-QTOF/MS) and gas chromatography–high-resolution mass spectrometry (GC-HRMS).
The anticancer activities of its ethanolic extract against liver cancer cells was determined
using MTT assay that showed two compounds, hesperidin (21) and limonin (22) possessing
an average IC50 of 165.615 and 188.073 µg/mL, respectively. A synergistic effect of limonin
and hesperidin on apoptosis induction was revealed [76]. A 1H NMR-based metabolomics
method allowed for the determination of the primary and secondary metabolites from
Mahonia aquifolium stem bark without prior isolation. An orthogonal partial least squares
to latent structures (OPLS) multivariate analysis helped correlate the chemical composition
of the plant extracts to their cytotoxic activity against a human cervical adenocarcinoma
cell line, which determined the protoberberine alkaloids, palmatine (23) and berberine
(24); and the bisbenzylisoquinoline alkaloid, berbamine (25); to be powerful cytotoxic
agents [77]. An interesting integrative approach that combined different omics techniques,
metabolic profiling, and a biological assay significantly contributed to the study of Old-
enlandia corymbose, a medicinal plant used in traditional medicine for cancer treatment.
Oldenlandia corymbose was subjected to different stress conditions to investigate the impact
of abiotic stress on the production of antitumor metabolites. This approach helped fill
the gaps between determining the active metabolites and uncovering their biosynthetic
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pathway and their anticancer mechanism of action. The results showed that ursolic acid
(26) was the major compound responsible for the anticancer activity of the extract against
breast cancer cell lines. However, other compounds including leanolic acid, lutein, phytol,
and pheophorbide, showed only minor contributions to this activity. It was also revealed
that ursolic acid affects cancer cells mitosis [78]. In addition, the phytochemical profiling of
the active root extract of Picrorhiza kurroa was performed using gas chromatography–mass
spectrometry (GC-MS). Its metabolites were characterized by high-resolution atmospheric
pressure chemical ionization mass spectrometry (HR-APCI-MS) based on high-pressure
liquid chromatography (HPLC) fractionation. A compound known as Dihydromikanolide
(27) was purified and was proposed as a promising natural compound having anticancer
activity against ovarian cancer [79]. Selected examples of anticancer plant metabolites
identified by metabolomics studies are presented in Table 1. Notably, the main contribution
of metabolomics to these studies was the phytochemical profiling of the secondary metabo-
lites found in the plant extracts, which was crucial for determining the biological and
pharmacological actions of these plants. Furthermore, it helped the researchers in selecting
target metabolites among the various metabolites identified. Undeniably, metabolomics
profiling is essential besides any omic study, since it targets the end products of metabolism,
which more accurately reflect the state of the organism [80].

Markedly, combining metabolomics and other omics studies offers several advantages.
For example, an integrative study combining transcriptomic, proteomic, and metabolomic
analyses revealed important findings concerning the regulatory pathways of Prunella vul-
garis L. during development [81]. In plant research, the integration of metabolomics and
transcriptomics has facilitated the discovery of relationships between genotype and phe-
notype through the identification of genes’ function, which controls the entire biological
system in response to external influences [82]. Metabolomics studies have also been com-
bined with in silico analyses to determine anticancer secondary metabolites. For instance,
a metabolomics analysis based on liquid chromatography coupled with high-resolution
mass spectrometry (LC-HRMS) allowed for the identification of the target compounds in
Curcuma longa L and Cosmos caudatus extracts, curcumin (10) and lutein (11). Then, the in
silico molecular docking of caspase-8 protein to these compounds revealed different types
of ligand–protein interactions, suggesting these two compounds as anticancer agents [83].
In another study, metabolomic fingerprinting based on the use of reversed-phase liquid
chromatography coupled to a high-resolution mass spectrometer (RPLC-HRMS) was com-
bined with chemometric analyses and in vitro cytotoxic assays of different cancer cell
lines to explore the biological potential of Spondias mombin and Spondias tuberosa plants,
known in Brazilian folk medicine. RPLC-HRMS analysis and multivariate analysis allowed
researchers to distinguish between the metabolomics profiles of both plant species, and
helped them identify novel metabolites that were described for the first time in these species.
The correlation between specific biomarkers that were supposed to be responsible for dif-
ferent degrees of cytotoxicity was also determined. This correlation was further validated
by an in silico analysis compared to a commercial drug [84]. Another interesting point
about integrated metabolomics is that any change in the level of metabolites might reflect
the up- or down-regulation of the underlying biological processes [85]. These changes can
be directly related to the functioning of genes that are metabolites regulators [86]. Also,
comparative metabolomics studies permit the discrimination between plant species by
comparing different plants’ extracts [87]. Metabolomics also provides an idea about the
concentration of metabolites, allowing for both the qualitative and quantitative identifica-
tion of target plants’ metabolites [88–90]. Interestingly, metabolomics not only permits the
screening of plant metabolites [91], but also allows for the determination of the impact of
medicinal plants on cancer cells following treatment [92]. It also allows the prediction of
drug–target relationships through determining which signaling processes are targeted by
which molecules [93]. This helps in screening the effectiveness of a therapy on cancer cells
and its possible side effects.
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Table 1. Examples of plant metabolomics studies and their main findings in relation to cancer research.
NS: not specified.

Plant Method Used
Number of
Identified

Metabolites
Metabolites Classes Cancer Cell Lines

Used
Metabolites Related to the

Anticancer Activity of the Extract Ref.

Ammi
visnaga L.

(roots)

High-performance liquid
chromatography–heated
electrospray ionization

source–high-resolution mass
spectrometry metabolic profiling

(HPLC-HESI-HRMS)

Several

Phenylpropanoids,
flavonoids,

isobenzofuranones,
coumarins,
chromones

Colon cancer
(Caco-2), breast
cancer (Mcf-7),
hepatocellular

carcinoma
(HepG-2) cell lines

Junipediol A 4-O-glucoside (1),
Junipediol A 8-O-glucoside (2),

Acacetin (3),
Apiumetin-O-glucoside (4).

(These compounds have a possible
contribution to the

antiproliferative
activity of the plant extract as

EGFR inhibitors)

[70]

Annona
muricata L.

Metabolomic analysis using liquid
chromatography with tandem

mass spectrometry (LC-MS/MS)
analysis

NS

Flavonoids, steroids,
sugars, alkaloids,
tannins, phenols,

indoles
Human lung

carcinoma cell line
(A549)

NS [94]
Antidesma
bunius L.
(leaves)

Flavonoids, steroids,
sugars, alkaloids,
tannins, phenols,

indoles, coumarins,
anthrones,

anthraquinones

Cannabis
sativa

(leaves)

Untargeted metabolomic study
using liquid

chromatography–quadrupole
time-of-flight mass spectrometry

(LC-QTOF-MS)

38 (positive
ionization

mode)
41 (negative
ionization

mode)

N-containing
products,

polyphenols,
phenylpropanoids,

flavonoids, fatty
acids derivates,

terpenes

Gastric
adenocarcinoma

(AGS), melanoma
(A375),

human lung
carcinoma (A549)

cell lines

NS [95]

Chamomile
(European)

flower
Metabolomic study using
high-performance liquid
chromatography–mass

spectrometry (HPLC-MS) and
NMR

Several
Phenylpropanoids,

flavonoids,
phenolics

Breast cancer cell
line

(ZR-75)

Chrysosplenetin (4), Apigenin. (5) [71]

Chamomile
(Jordanian)

flower
-

Cissus incisa
(leaves)

Metabolomic study using
ultra-high-performance liquid
chromatography–quadrupole

time-of-flight
tandem mass spectrometry
(UHPLC-QTOF-MS/MS)

171, 260, and
114

metabolites
identified in

different
extracts

Phenolics,
diterpenoids,

flavonoids, fatty
acid

derivatives, sterols,
fatty acyl, stilbene,

acyl
glycerol

Prostate ATCC®

CRL-1435 (PC3),
hepatocellular

ATCC® HB-8064
(Hep3B),

hepatocellular
ATCC® HB-8065
(HepG2), breast

(ATCC® HTB-22)
MCF7, lung (ATCC®

CCL-185) A549,
cervical ATCC®

CCL-2 (HeLa) cell
lines

α-tocopherolquinone, phytol,
grandifloric acid, cucurbitacin E,
α-amyrin acetate, ursolic acid,
δ-linolenic acid, oxyacanthine,

stearic acid, matricin. (The
cytotoxicity of the extracts might
be explained by the presence of

these metabolites.)

[96]

Crocus
cancellatus

subsp.
damascenus
(stigmas)

Untargeted metabolomic study
using gas chromatography–mass
spectrometry (GC-MS) and liquid

chromatography–mass
spectrometry (LC-MS)

14 (positive
ionization

mode)
24 (negative
ionization

mode)

Monoterpene
glycoside, fatty

acids, flavonoids

Human breast
cancer cell lines

(MDA-MB-231 and
MCF-7)

Crocin (6), Crocetin (7), Picrocrocin
(8), Safranal (9).

(The antiproliferative activity of
the plant extract is suggested to be

due to these compounds.)

[72]

Curcuma
longa L.

Metabolomic study using liquid
chromatography–high-resolution

mass spectrometry
(LC-HRMS)

16 Mostly fatty acids
Activity

determined
in silico

Curcumin (10). [83]

Cosmos
caudatus 13 Lutein (11).

Dianthus
caryophyllus

(different
colors of
carnation
flower)

Targeted metabolomic study using
liquid chromatography with
tandem mass spectrometry

(LC-MS/MS)

932

Organic acids,
phenolic acids,

nucleotides,
flavonoids, lipids

saccharides,
alcohols,

nucleotides and
derivatives, amino

acids and
derivatives

Osteosarcoma
(U2OS),

human lung
carcinoma (A549)

cell lines

2’-Deoxyguanosine (12),
6-Hydroxykaempferol-3,6-O-

diglucoside (13),
Quercetin-3-O-sophoroside (14).

(The combination of
2’-deoxyguanosine,

6-hydroxykaempferol-3,6-O-
diglucoside, or

quercetin-3-O-sophoroside
increased antitumor activity of

2’-deoxyguanosine.)

[73]
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Table 1. Cont.

Plant Method Used
Number of
Identified

Metabolites
Metabolites Classes Cancer Cell Lines

Used
Metabolites Related to the

Anticancer Activity of the Extract Ref.

Dillenia
suffruticosa
(different
organs)

Genomics, transcriptomics, and
ultra-performance liquid

chromatography–tandem mass
spectrometry

(UPLC-MS/MS) analysis-based
metabolomic study

Leaf (151),
flower (134),

root (134),
stem (137)

Phenolics, alkaloids,
flavonoids,

terpenoids, lipids,
nucleosides, amino

acids, organic
compounds

Cholangiocarcinoma
(CCA),

hepatocellular
carcinoma (HCC),
clear cell renal cell
carcinoma (ccRCC),
gastric cancer, colon

cancer, prostate
cancer, breast
cancer, lung

cancer, natural killer
T cell Page 8/26

lymphoma (NKTL),
diffused large B-cell
lymphoma (DLBCL)

The root extract contains high
levels of triterpenoids (including
ursolic acid), which is known to

have antiproliferative effects.

[97]

Eleusine
indica
(roots)

Ultra-high-performance liquid
chromatography coupled with

high-resolution mass spectrometry
(UHPLC-HRMS) analysis-based

metabolomic study

NS NS

Non-small-cell lung
carcinoma (H1299),

breast
adenocarcinoma

(MCF-7), liver
adenocarcinoma

(SK-HEP-1) cell lines

NS [98]

Astragalus
boeticus
(leaves)

1H NMR (proton nuclear magnetic
resonance) and 2D

(two-dimensional) nuclear
magnetic resonance

spectroscopy-based metabolomic
study

31
Amino acids,
organic acids,

sugars,
flavonoids, phenols,

cinnamic acid
derivatives, caffeic

acid

Colon cancer cell
lines (Caco-2,

HT-29, HCT-116)

Cycloartane glycoside
(6-O-acetyl-3-O-β-D

xylopiranosylcycloastragenol) (15). [74]

Trigonella
esculenta
(leaves)

Protodioscin
derivative

(25 R)-furost-5-ene-3β,22α,26-
triol

3-O-α-L-rhamnopyranosyl-(1 →
4)-α-L-rhamnopyranosyl-(1 →
4)-[α-L-rhamnopyranosyl-(1 →

2)]-β-D-glucopyranosyl
26-O-β-D-glucopyranoside (16).

Glochidion
velutinum
(leaves)

Liquid chromatography– tandem
mass spectrometry (LC-MS/MS)

analysis- based metabolomic study
48

Benzoic acid
derivatives, flavans,

flavones,
O-methylated

flavonoids,
flavonoid O- and

C-glycosides,
pyranocoumarins,

hydrolysable
tannins,

carbohydrate
conjugates, fatty
acids, coumarin

glycosides,
monoterpenoids,

diterpenoids,
terpene glycosides

Prostate cancer
(PC-3), breast

cancer (MCF-7) cell
lines

Epigallocatechin
gallate (17),

isovitexin (18),
ellagic acid (19),

rutin (20).

[75]

Grapefruit
(C. paradisi)

Nontargeted gas
chromatography–mass

chromatography (GC-MS)
analysis-based metabolomic study

Several

Organic compounds
(amino acids and

derivatives,
carbohydrates and

derivatives), organic
acids

Human
melanoma cell line

(A375)
NS. [89]

Kigelia
africana
(fruit)

Nontargeted HPLC coupled to
high-resolution time-of-flight

(TOF) mass spectroscopy-based
metabolomic study

356
Alkaloids,

flavanoids, tannins,
phenolics

Jeg-3
choriocarcinoma cell

line
NS. [91]

Manilkara
zapota

(leaves) Liquid chromatography–tandem
mass spectrometry (LC-MS/MS)

analysis-based metabolomic study
NS

Flavonoids, steroids,
sugars,

anthraquinones,
anthrones,

coumarins phenols,
tannins

Human
adenocarcinoma cell

line (A549)
NS. [99]

Lansium
domesticum

(leaves)

Flavonoids, steroids,
sugars,

anthraquinones,
indoles, triterpenes,

sterols
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Table 1. Cont.

Plant Method Used
Number of
Identified

Metabolites
Metabolites Classes Cancer Cell Lines

Used
Metabolites Related to the

Anticancer Activity of the Extract Ref.

Lime peel
(Citrus

aurantifolia)

Metabolomic study using liquid
chromatography– quadrupole

time-of-flight mass spectrometry
(LC-QTOF-MS) and gas

chromatography–high-resolution
mass spectrometry (GC-HRMS)

62 (detected
by LC-MS) 22
(detected by

GC-MS)

Glycosides,
saccharides, amino
acids, organic acids,

alkaloids,
flavonoids,
flavonoids
glycosides,

furanocoumarins,
terpenoids

Liver cancer cell
lines (PLC/PRF/5)

Hesperidin (21), limonin (22), and
other phytochemical components

(synergistic effect).
[76]

Mahonia
aquifolium

Proton nuclear magnetic resonance
(1H NMR) spectroscopy-based

metabolomic study
Several

Sugars, unsaturated
fatty acids,

protoberberine-type,
aporphine-type and
bisbenzylisoquinoline-

type alkaloids.

Human cervical
adenocarcinoma cell

line (HeLa)

Palmatine (23), berberine (24),
berbamine (25). [77]

Myracrodruon
urundeuva

(bark,
branch, and

leaf)

Ultra-high-performance liquid
chromatography with quadrupole
time-of-flight mass spectrometry

(UPLC-QTOF-MS) analysis-based
metabolomic study

50

Flavonoids, phenols,
tannins, quercetin

derivatives,
anacardic acids

Colorectal
(HCT-116),

glioblastoma
(SF-295), leukemia
(HL-60), leukemia

(RAJI) cell lines

Compounds derived from
quercetin, galloy derivatives, and
phenolic acids (Might contribute to

the high cytotoxic activity of the
extracts). Quercetin derivatives,
corilagin, chlorogenic acid (are

known to have antitumor activity),

[100]

Oenothera
rosea

Liquid chromatography–mass
spectrometry (LC-MS)

analysis-based metabolomic study
307

Organic compounds,
terpenes, lipids,

flavonoids

Human prostate
cancer cell line

(DU145)

40 metabolites were identified for
having anticancer and/or
antiproliferative activity.

[101]

Oldenlandia
corymbose

(roots,
flowers,

stems, and
leaves)

Genomic, transcriptomic, and
metabolomic study using liquid
chromatography with tandem

mass spectrometry (LC-MS/MS)

NS NS Breast cancer
(SK-BR3) cell line Ursolic acid (26). [78]

Picrorhiza
kurroa
(roots)

Gas chromatography–mass
spectrometry (GC-MS)

analysis-based metabolomic study
and high-resolution atmospheric

pressure chemical ionization mass
spectroscopy (HR-APCI-MS)

characterization

Several
Sesquiterpenoid,

alkaloids, fatty ester,
others

Breast cancer
(MCF7,

MDA-MB-231,
SKBR3), ovarian

cancer (SKOV3) cell
lines

Dihydromikanolide (27). [79]

Plicosepalus
curviflorus

Metabolomic profiling using liquid
chromatography–electrospray

ionization–quadrupole
time-of-flight tandem mass

spectrometry
(LC-ESI-TOF-MS/MS)

NS

Phenolic
compounds
(flavonoid

derivatives),
triterpenes, sterols

Lung (A549),
prostate (PC-3),
ovarian (A2780),

breast
(MDA-MB-231)
cancer cell lines

NS. [102]

Xanthium
Strumarium

(root)

Proton nuclear magnetic resonance
(1H NMR) spectroscopy-based

metabolomics
Several NS

Human ovarian
cancer cell line

(A2780cp)
NS. [103]

3. Plant Secondary Metabolites Used for Cancer Therapy

Plants contain a large number of secondary metabolites that can be classified, according
to their biosynthetic origin into different categories: (i) terpenes (or isoprenoids, biosynthesized
by the mevalonic acid pathway), (ii) phenolics (compounds possessing aromatic rings with
attached hydroxyl groups, biosynthesized by the shikimate pathways), (iii) alkaloids (nitrogen-
containing compounds other than proteins, biosynthesized from amino acids and well known
for their use in medicine) and sulfur-containing compounds [104]. In fact, the antitumoral
effects of medicinal plants are linked to different classes of secondary metabolites. Important
medicinal plants commonly used in traditional medicine, in particular for cancer treatment,
their active metabolites, and their anticancer mechanisms of action are nicely reviewed in [105].
Interestingly, some of these plants have been targeted by metabolomics studies, including
Curcoma Longa [106], Garcinia oblongifolia [107], and Perilla frutescens [108]. Also, the major
phytochemicals from different plant varieties and their molecular targets in lung cancer can
be found in [109,110]. Another review also focused on the secondary metabolites that were
isolated from medicinal plants traditionally used in South Africa for cancer treatment [111].
Plant secondary metabolites are the basis for the synthesis of semisynthetic derivatives used
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in clinical oncology [112]. These metabolites have different mechanisms of action, in which
they act either as cytotoxic chemicals or as inhibitors of specific targets, such as transporters
or metabolic enzymes [113,114]. Also, they show various activities, including antiprolifera-
tive [115], antiinflammatory, cytotoxic [116], and antioxidant [117]. In addition, they induce
apoptosis [118] and reactive oxygen species (ROS); suppress the oncogenicity of cancer cells;
and inhibit metastasis, migration, and invasion [119]. The structure of some of the metabolites
identified in the metabolomics studies mentioned in this review is given in Figure 1.
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The compounds including cycloartane glycoside (6-O-acetyl-3-O-β-D xylopiranosylcy-
cloastragenol), protodioscin derivative (25 R)-furost-5-ene-3β,22α,26-triol 3-O-α-L-rhamnop
yranosyl-(1 → 4)-α-L-rhamnopyranosyl-(1 → 4)-[α-L-rhamnopyranosyl-(1 → 2)]-β-D-
glucopyranosyl 26-O-β-D-glucopyranoside [74], berberine, berbamine, palmatine [77],
Junipediol A 4-O-glucoside, and Junipediol A 8-O-glucoside [70], were drawn using Biovia
Draw 2022. The SMILES string of all the other compounds were obtained from Pub-
Chem and their chemical structures were generated using Biovia Draw 2022 (accessed
March/September 2024). The structures were saved in Mol format and then converted to
SDF format.

4. Metabolomics as a Powerful Tool for Cancer Diagnosis and Therapy

Cellular abnormalities induced by cancer affect cell metabolism in different ways.
These abnormalities encompass several metabolic pathways, such as carbohydrates [120],
lipids [121], amino acids [122], and nucleotides pathways [123]. Metabolomics has made
a significant contribution to resolving these issues through various approaches. Indeed,
metabolomics is considered as a significant tool for the determination of cancer signatures
that mark the early stages of the disease, allowing for the identification of new anticancer
agents. These biomarkers can be found, for instance, in the plasma of cancer patients that
are in the early stages of the disease [124]. So, metabolomics reveals novel diagnostic cancer
biomarkers based on the variations in the metabolic profiles between patients and healthy
individuals, providing insights into the altered pathways resulting from cancer-induced
metabolic reprogramming. This aids in improving the survival rate and helps in the discov-
ery of better remedies and prevention measures [125]. Also, metabolomics is employed for
assessing drug toxicity. For instance, NMR-based metabolomics combined with pattern
recognition data successfully identified the toxicity of Emodin, an anticancer agent found
in herbal treatments, by comparing the metabolic profiles of cells before and after treatment.
This demonstrated varying levels of metabolites associated with particular pathways [34].
Moreover, metabolomics is used for discovering new biomarkers that are useful for de-
veloping novel therapeutic targets. For instance, in the study by Lina A. Dahabiyeh et al.,
metabolomics improved the understanding of the metabolic alterations that occurred upon
the treatment of cancer cells with dihydroquinazolinone derivatives, and also helped to
understand the underlying mechanisms of action of the antiproliferative effects of the
tested compounds [126]. It also allows to propose novel therapeutic pathways based on
modifications in the concentration of specific metabolites, revealing the altered metabolic
pathways that cause cancer [31]. In addition, metabolomics permits to follow-up patients at
the clinical level [127]. Another interesting point is that metabolomics permits researchers
to overcome the difficulties arising from the fact that the bioactivity of natural compounds
does not come from the action of a single compound, but from various compounds that act
synergistically [128]. Metabolomics has also improved our understanding of the chemo-
preventive effects of natural phytochemicals. For example, the analysis of mice serum
samples by metabolomics after treatment with American ginseng extract revealed altered
metabolites that were associated with inflammatory and oxidative properties of the extract;
and that were responsible for its chemopreventive effect [129]. Indeed, when aiming to
perform a metabolomics study, it is important to maintain the integrity of the sample
before and after extraction in order to protect the metabolites from modifications, such as
degradation [130]. Metabolomics uses samples from serum, plasma [131], and urine [132],
thus, facilitating the conduction of high-throughput large-scale metabolomics studies [133]
and making them non-invasive [134]. On the other hand, highly promising branches of
metabolomics have evolved including pharmacometabonomics, which allows to develop
an individualized therapy response [135]. Significantly, personalized medicine helps in the
development of an effective therapy for each patient, taking into consideration their genetic
profile and disease history [136]. In addition, single-cell-based metabolomics has aided in
the study of cellular behavior, as well as the identification of complex cellular metabolites
and the understanding of cellular and subcellular processes [137]. Therefore, progress
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in metabolomics is highly expected to contribute to drug development starting from an
optimized diagnosis [138], passing through drug discovery [139], and ending by testing
the treatment efficacy [140]. Figure 2 provides an overview of the use of metabolomics in
plant-based drug discovery.
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5. Metabolomics Approaches to Cancer Research: Untargeted, Targeted, and Beyond

Metabolomics studies are divided into different types, including untargeted, tar-
geted [141], semitargeted, pseudotargeted [142], widely targeted [143], and stable isotope
resolved metabolomics [144]. Untargeted metabolomics allows for an extensive and compre-
hensive analysis of a large number of unknown analytes in a sample using high-resolution
mass spectrometry. Given that untargeted metabolomics allows for the development of
an inclusive overview of all the metabolites present in the biological sample under study,
it should be first applied prior to targeted metabolomics [141]. Untargeted metabolomics
helps to determine the synergistic effects and the underlying mechanisms of drugs used in
combination [145] and permits to identify novel bioactive compounds; whereas targeted
metabolomics permits to measure groups of metabolites that are chemically characterized
or biochemically annotated. Untargeted metabolomics relies on specific sets of known
metabolites that are associated with a particular pathway and it involves the use of in-
ternal standards making the analysis semi-quantitative or quantitative [141]. Widely
targeted metabolomics allows for the qualitative and semiquantitative identification of
many metabolites by combining the precision of targeted metabolomics with the compre-
hensive analysis of untargeted metabolomics. It uses LC-MS or GC-MS or a combination
of both techniques [146,147]. While, pseudotargeted metabolomics depends on the selec-
tion of a targeted ion pair, which is measured using a triple quadrupole MS by multiple
reaction monitoring (MRM). An interesting feature of this technique is that it combines
the advantages of both targeted and untargeted metabolomics [148]. In fact, metabolomics
studies combined with in vitro cancer bioassays have helped to reduce the time required
for plant-based drug discovery by correlating the data obtained from both methods [74]. In
other words, the cytotoxic activity of the plant extract is measured against a specific type of
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cancer cell line using, for instance, MTT cytotoxicity assay, followed by subjecting the active
extract fractions to metabolomics profiling in order to determine the bioactive metabo-
lites [94]. Here are some examples highlighting the contribution of plant metabolomics to
cancer research. For instance, NMR based-metabolomics study was applied to study the
effect of curcumin obtained from Curcuma longa on the metabolome of breast cancer cells.
In this study, different doses of curcumin were applied to cancer cell cultures, followed by
metabolomic profiling that emphasized the dose–effect relationship of natural bioactive
compounds in cancer studies [149]. In another study, an untargeted metabolomic analysis
was carried out to investigate the potential of Cissus incisa leaves extract on cancer cells,
which led to the identification of different metabolites and metabolomic pathways, with
an emphasis on particular metabolites that were previously reported to have cytotoxic
activity against hepatocellular cancer cells [96]. Other studies showing the contribution of
plant metabolomics to cancer research and their main findings concerning the metabolic
alterations identified upon treatment with different plant extracts are summarized in
Tables 1 and 2, respectively.

Table 2. Examples of some plants and their main cancer inhibition pathways.

Plant Altered Metabolic Pathway Cancer Type Study

Aloe vera (leaves)
Protein biosynthesis, catecholamine biosynthesis,

mitochondria transport chain, and pentose
phosphate pathway.

Raji cell lines
(cancerous lymphoma cells) [150]

American ginseng
(Panax quinquefolius L.)

Amino acid, lipids, and carbohydrates metabolism.
Metabolites involved in inflammation and

oxidation.
Colon carcinogenesis [129]

Xanthium strumarium Tyrosine metabolism, nucleotide metabolism, fatty acid
biosynthesis, and glycerolipid metabolism.

Ovarian cancer cell line
(A2780cp) [103]

Xanthium strumarium Aminoacyl-tRNA synthesis, glycerolipid metabolism,
fatty acid biosynthesis, and biotin metabolism.

Epithelial ovarian
cancer cell line (SK-OV-3) [151]

6. Plant Metabolomics Facing Challenges of Anticancer Drugs Development

The discovery of new bioactive compounds from plants is associated with several
difficulties [152] that make the development of plant-based drugs challenging. Finding
the precise mechanisms of action of the bioactive compounds is one of the primary causes
of these difficulties [40]. Another concern is plant toxicity, which is due to the inherent
toxicity of the metabolites or microbial contamination that threatens human safety [153].
Metabolomics has contributed significantly to our understanding of the mechanisms of
action of diseases [154] and of drugs, thanks to the identification of the metabolites and
metabolic pathways that are directly or indirectly controlled by the drug, including those
mediated by the gut microbiota [155]. Also, metabolomics has enabled the evaluation
of the effectiveness of plant preparations and their safety [156], which constitutes an
important factor that must be tested at the pre-clinical level prior to their approval for
human use. Indeed, exposure to drugs causes changes in the metabolome, such as the
accumulation of drug and metabolites; in addition to alterations in the metabolites of the
host’s microbiota and endobiotic. So, drug safety evaluation should be performed for both
the biological sample and the target organs. Notably, the analysis of metabolic changes
enables the identification of relationships between the altered metabolites, the associated
pathways, and the cytotoxic mechanism. Hence, providing information about drug off-
targets and allowing to understand drug toxicity [157,158]. Moreover, plant medicines
are made up of a complex mixture of bioactive compounds that when introduced into the
human body react with a complex system rendering the identification of drugs’ molecular
targets difficult. This further complicates plant-based drug development. Interestingly,
metabolomics helps to find molecular targets of medicinal plants by elucidating the changes
affecting the endogenous metabolites’ behavior following drug administration [159]. Also,
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pharmacometabolomics permits to predict drug response through the identification of the
altered metabolites or the dysregulated metabolic pathways [160]. Knowing that different
types of cancer show resistance to chemotherapies [161], researchers have developed
multitargeted therapies as promising tools to enhance the pharmacological potency of
anticancer drugs [162]. In this context, metabolomics has helped reveal the multitarget
effects of plants against cancer cell lines’ growth by targeting key metabolic pathways [163].
Metabolomics, in integration with other omics studies, has also allowed the identification
of crucial metabolites, paving the way for the prediction of drugs concentration in the
treated organ. This facilitates the understanding of drug bioavailability and clearance [164].
Furthermore, metabolomics has emerged as a promising tool for quality control of plant
medicines using different analytical techniques; mainly, NMR-based strategies. Indeed,
quality control of plant preparations is necessary for ensuring the reproducibility of the
therapeutic activity of the active compounds found in different batches [165,166]. It also
serves as a tool for the authentication of plant-based products based on specific biomarkers
that discriminate between close plant species [167]. In fact, plant authentication is one of the
most significant stages of plant-based drug discovery. Therefore, it is crucial to authenticate
the plant species from which the compounds were isolated in order to correctly associate
the compounds’ therapeutic benefits to the appropriate plant species. This will facilitate
further research on the identified compounds in the future [168]. In addition, metabolomics
can be efficiently used to discriminate between plant samples prepared under different
conditions based on metabolic variations [169].

7. Avoiding Difficulties and Performing Successful Plant Metabolomic Analyses

Metabolomics is a highly promising tool for cancer research [170]. However, in order
to obtain reliable results, certain measures need to be taken into account at every stage, from
sample preparation to data analysis [171]. It is worth noting that achieving a comprehensive
profiling of all metabolites using a single method is not possible. Herein, we provide a list
of several key steps to be considered and the errors to be avoided when aiming to conduct
a successful metabolomics analysis of anticancer medicinal plants, Table 3.

Table 3. Illustration of the key points for designing an effective metabolomics study for the investiga-
tion of medicinal plants in cancer research.

Procedure
standardization

To consider The metabolomics procedure including sample preparation, measurement and data
analysis should be standardized [67].

Benefit

Standardization of all the steps facilitates the direct comparison of data obtained in
different laboratories (inter/intra-laboratory exchanges). This helps to ensure
reproducibility [172], and broaden the identification of key metabolites; it also permits
the building of comprehensive metabolomics databases [173].

Plant collection,
sample size,

preparation and
extraction

To consider
- Plant samples should be quickly collected [174].
- The season and the tissue from which the bioactive compounds are to be isolated
should be carefully chosen [20,175].

Benefit - Avoiding activity loss and change in metabolites’ composition [130,175,176].
- Obtaining the highest activity of metabolites.

To consider Samples should be immediately frozen in liquid nitrogen and stored at −80 ◦C
or lyophilized.

Benefit Avoiding any significant changes in plant composition [20].

To consider The sample size should be considered.

Benefit Avoiding non-reliable results [177].

To consider

Quality assurance (QA) (the measures implemented by the laboratory to ensure that
quality standards will be fulfilled) and quality control (QC) samples (the quality of
untargeted data is ensured by preparing various types of mixtures) should be used in
untargeted metabolomics studies.
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Table 3. Cont.

Benefit - Acquiring high-quality publishable data.
- Avoiding batch variations [178–180].

To consider
An efficient extraction method using a solvent system with the proper solvent and
solvent-to-sample ratio should be used. Attention should be paid to the
extraction duration.

Benefit
An effective extraction method enables the extraction of the maximum quantity of
metabolites and provides access to low abundant compounds that are difficult to extract.
It also helps in achieving reproducible quantification of metabolites [20,181–183].

Combining
metabolomics

studies and
anticancer activity

bioassays

To consider Metabolomics results should be compared to data from biological assays.

Benefit

- Achieving reliable correlations between the identified phytochemicals and the
biological activity of the extract.
- Achieving good discrimination between the different samples based on their activity,
in correlation with metabolites identification [184].

MS-based
metabolomics

analysis

To consider

Metabolomics approach involving experimental deconvolution of the tandem mass
spectrometry (MS/MS) data acquired in a broad MS isolation window (ex. 9 Da) is
recommended (For more details, see reference) [185,186].
Direct analysis of the samples using quadrupole (Q) time of flight-mass spectrometry
(TOF-MS) [187] or a Fourier transform ion cyclotron MS (FT-MS) [188] or direct infusion
of the samples using direct infusion mass spectrometry (DIMS) and flow infusion mass
spectrometry (FIMS) is highly useful [189].

Benefit

- The experimental deconvolution of MS/MS data acquired in a broad MS isolation
window permits to obtain high quality spectra and the identification of novel
metabolite [185,186].
- TOF instruments provides high mass accuracy and high resolution, and allows to
detect large diversity of masses [187].
- Fourier transform ion cyclotron MS (FT-MS) eliminates any need for chromatography
prior to analysis [188].
- Direct infusion mass spectrometry provides reduced instrument cycle times, reduced
sample pretreatment and high-throughput screening (analysis of more than 1000
samples/week) [189].

NMR-based
metabolomics

analysis

To consider The use of NMR analysis for metabolomics studies is highly recommended.

Benefit Quantification of metabolites [190].

Combining
analytical platforms

(MS-NMR)

To consider The integration of different analytical platforms (mass spectrometry (MS) and NMR
techniques) in a metabolomics study is highly recommended. [191,192].

Benefit Obtaining broader metabolome coverage and high-quality data using hyphenated
separation platforms [191,192].

Sample analysis
by MS-based

targeted
metabolomics

To consider

- Ultra-high-performance liquid chromatography coupled to a triple quadrupole MS
(UPLCQqQ-MS), which is operated in MRM (Multiple Reaction Monitoring) mode is an
ideal technique to be used in targeted metabolomics [193,194].
Attention to false positives is necessary [177]. False positives might be observed as a
result of isomeric metabolites having similar product ion used to detect the target
compounds, but are inadequately separated by liquid chromatography [193,194].

Benefit
- UPLCQqQ-MS is sensitive, reproducible, characterizes a wide range of compounds,
and allows for robust quantification [193,194].
- Avoiding false metabolic data [177].

To consider Metabolomics data standards are useful.

Benefit Ensure reproducible research [195].

Integrated
metabolomics

analysis

To consider Metabolomics studies should be integrated with other Omics studies including
genomics, proteomics, transcriptomics, and metabolomics is highly recommended.

Benefit - Obtaining a comprehensive picture of cancer metabolism [196].
- Revealing biosynthetic pathways and mechanisms of action of active metabolites [78].

Data
normalization

To consider Metabolomics data should be normalized.

Benefit - Minimizing batch-to-batch variations.
- Important for large-scale metabolomics analyses [197].
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Table 3. Cont.

Metabolomic
profiling in
relation to

previous studies

To consider Metabolic profiling of plants previously reported to have anticancer activity is
highly useful.

Benefit
- The generation of a database will allow for robust differentiation of active extracts and
for the selection of target bioactive metabolites.
- Speeding up drug discovery from anticancer plants [91].

Assessing
response to
treatment

To consider Analysis of the biological sample (cells/tissues) following treatment with plant
extracts/extracted plant compounds is useful.

Benefit
- Validation of the effectiveness of the extract/extracted bioactive compounds.
- Elucidation of the metabolic alterations induced in the host cell upon treatment.
- Understanding the impact of the treatment on cancer metabolism [198,199].

8. Challenges of Plant Metabolomics-Based Anticancer Drug Development and Possible
Solutions

Although metabolomics studies are highly promising, they are associated with a
number of difficulties, such as analytical and technical challenges [200,201]. Accordingly,
it is critical to search for optimal extraction methods and to standardize protocols in or-
der to ensure the proper data exchange between laboratories and to establish uniform
databases [173]. One of the major problems associated with metabolomics is that perform-
ing metabolomic analyses solely in vitro may lead to incomplete results, which will not
reflect natural cell behavior. This problem can be solved by the combination of both in vivo
and in vitro studies, which allows for a more reliable study of cancer metabolism [202]. An-
other difficulty is the samples’ incompatibility with most of the analytical techniques used
for metabolomics analyses. This might lead to certain losses in the poorly fixed metabolites
from the liquid chromatography (LC) column in the hyphenated MS system, which could
lead to insufficient ionization during mass spectrometry [203,204]. Also, some metabolites
are not suitable for metabolomics applications, since they can degrade easily through-
out the extraction process [202]. Although NMR is an excellent tool for metabolomics
research, there are a number of challenges associated with the identification, quantitation,
and reliable detection of metabolites by this technique [205]. Moreover, great attention
should be given to the statistical approaches used in metabolomics studies, in particular,
the method, the number of samples, and the duplication of studies [206,207]. On the other
hand, thousands of metabolites (or mass peaks) have been detected using untargeted
metabolomics experiments, but the main problem is identifying these metabolites. Indeed,
metabolite annotation is a critical step to achieve the reliable identification of metabolites.
But it constitutes a major difficulty, especially for untargeted metabolomics [208,209]. The
challenge of acquiring a comprehensive phytochemical profile is demonstrated by a study
that sought to determine the anticancer activity of Kigelia africana extracts; only 63.8% of
the detected signals were identified after a comparison with the available data libraries.
Thus, the lack of inclusive databases leads to the incomplete identification of the detected
signals, and complicates the differentiation between isoforms. This limits the identification
of all the compounds that are responsible for the anticancer activity of the extract [91].
Nevertheless, some studies have developed new strategies to overcome the limitations
of databases. For instance, a structural motif-based approach (SUMMIT Motif), was de-
veloped to identify the undiscovered metabolites, in which their spectroscopic signatures
have no matches in the available metabolomics databases. This approach requires no
extensive purification, and uses NMR in tandem with new NMR molecular structural
motif metabolomics databases [210]. Another study used a novel strategy called struc-
ture of unknown metabolomic mixture components by MS/NMR (SUMMIT MS/NMR),
which allowed for the identification of unknown metabolites without any purification,
and with no need for MS and NMR databases [191]. Also, several attempts have been
carried out to improve metabolomic annotation [211,212]. For example, the use of tandem
mass spectrometry reveals additional structural data leading to better annotation [194].
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There exist several open databases that can be used for natural product identification,
including MassBank [213] and Metlin databases [214], in addition to PRIMe [215] and
PlantMetSuite, which are public website databases [216]. Another commercial database
is Wiley Registry/NIST Mass Spectral Library that provides electron ionization (EI) and
tandem MS/MS spectra [217]. Also, in-house spectral libraries have been constructed and
used for plant studies [216,218], but they are not accessible by other laboratories. Notably,
there are around two thousand standards available for expanding plant metabolites spec-
tral libraries [219]. While metabolomics studies help identify phytochemicals and, thus,
eliminate the need for long purification steps [220], one should take into account to what
extent metabolomics data can be considered reliable and reproducible [172]; as this might
affect the accuracy of the link established between the health benefits of different plants
and their phytochemicals’ content.

9. Conclusions

Conducting fruitful cancer research and finding novel therapeutics necessitates a close
investigation of the changes impacting the biochemical state and the underlying biological
processes occurring in cells, tissues, and organisms. This can be only achieved through
well-planned metabolomics research, which is predicated on rapid, comprehensive, and
reliable identification of metabolites. Metabolomics studies give insights into the metabolic
network rearrangements that naturally occur during the transformation of normal cells
into malignant cells. So, discovering these metabolic changes through a comprehensive
identification of metabolites, will lead to a better understanding of the mechanisms of
action of anticancer drugs, and to the identification of novel biomarkers. In this regard,
finding good correlations between metabolites obtained from both the medicinal plants
and the biological samples taken from patients will help develop new effective therapies.
Also, a critical point to consider is the patients’ backgrounds and the external factors, which
can greatly affect metabolic profiling. Since metabolomics is still in the developmental
stage, it faces several difficulties. The lack of effective strategies for the identification
of metabolites, the need for a standardized method, the low detection sensitivity of the
analytical techniques, the difficulty in achieving unbiased and high-throughput quantitative
analyses, and the absence of comprehensive databases constitute the major problems for
drug discovery from medicinal plants. Combining NMR and MS techniques in addition
to the integration of metabolomics with other omics studies remains indispensable for
metabolomics to uncover the different mechanisms and the underlying pathways. All in all,
a profound knowledge of metabolomics in plants and in the human body can help better
comprehend the body response to therapy, making it possible to determine the optimal dose,
and to develop individualized treatment. Also, discovering biomarkers for cancer diagnosis
holds great promises for detecting the early stages of the disease and save patients a lot of
pain and suffering. The main purpose of this work was to guide researchers to develop
well-designed metabolomics studies for cancer research. In the first place, we emphasized
the importance of metabolomics in the search for plant-based therapeutics. Furthermore,
we detailed several medicinal plants and the different metabolomics approaches used to
identify anticancer metabolites. Then, we outlined the most important parameters that
researchers should consider before conducting any metabolomics research, as well as the
potential advantages. We also reviewed the most common challenges that researchers might
face when aiming to perform metabolomics studies, and we provided some solutions.
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