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Abstract
Enhancing the resilience of plants to abiotic stresses, such as drought, salinity, heat, and cold, is crucial for ensuring 
global food security challenge in the context of climate change. The adverse effects of climate change, characterized by 
rising temperatures, shifting rainfall patterns, and increased frequency of extreme weather events, pose significant threats 
to agricultural systems worldwide. Genetic modification strategies offer promising approaches to develop crops with 
improved abiotic stress tolerance. This review article provides a comprehensive overview of various genetic modification 
techniques employed to enhance plant resilience. These strategies include the introduction of stress-responsive genes, 
transcription factors, and regulatory elements to enhance stress signaling pathways. Additionally, the manipulation of 
hormone signaling pathways, osmoprotectant accumulation, and antioxidant defense mechanisms is discussed. The use 
of genome editing tools, such as CRISPR-Cas9, for precise modification of target genes related to stress tolerance is 
also explored. Furthermore, the challenges and future prospects of genetic modification for abiotic stress tolerance are 
highlighted. Understanding and harnessing the potential of genetic modification strategies can contribute to the development 
of resilient crop varieties capable of withstanding adverse environmental conditions caused by climate change, thereby 
ensuring sustainable agricultural productivity and food security.
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Introduction

Genetic modification in agriculture has emerged as a 
promising approach to address the challenges posed 
by climate change and enhance the resilience of crops 
(Jacobsen et al. 2013). The increasing global population 
and the impacts of climate change on agricultural 
productivity necessitate innovative strategies to sustainably 
increase food production and mitigate environmental 
stressors (R. Singh and Singh 2017). Scheelbeek et al. 
(2018) conducted a review that highlighted the anticipated 
impact of climate change on vegetable and legume yields. 
The findings revealed significant reductions in vegetable 
yields, with an average decrease of 34.7% projected for a 
50% decline in water availability and a reduction of 31.5% 
for a temperature increase of 4°C above a baseline of 20°C 
(Scheelbeek et al. 2018).

These estimates demonstrate that the contemporary 
world is facing severe negative impacts from global 
warming and climate change, which pose significant 
threats to the environment (Shakoor et  al. 2011). The 
global phenomenon of climate change, marked by 
escalating temperatures, shifting rainfall patterns, and 
more frequent occurrences of extreme weather events, 
presents substantial challenges to agricultural systems 
on a global scale (Duchenne-Moutien and Neetoo 2021). 
These changes disrupt the delicate balance between 
crops, pests, and diseases (Fand  al. 2012; Patz et  al. 
2000), leading to reduced crop yields (Olesen and Bindi 
2002), compromised nutritional quality (Louis and Hess 
2008), and decreased overall food security (Schmidhuber 
and Tubiello 2007). In light of these challenging 
circumstances, genetic modification is often seen as a 
promising solution for addressing pressing issues such 
as food security and environmental sustainability (Joy 
2000). Currently, approximately 525 different transgenic 
events across 32 crop species have been approved for 
cultivation in various regions around the world (Kumar 
et al. 2020), providing substantial evidence of the valuable 
contributions these crops make to the global economy.

The objective of genetic modification in agriculture is to 
incorporate favorable characteristics into crops by precisely 
modifying their genetic material (Gepts 2002). This 
technology enables scientists to enhance crop resilience by 
incorporating genes that confer tolerance to abiotic stresses 
such as drought, heat, salinity, and extreme temperatures 
(Bacha and Iqbal 2023(Lal et  al. 2008). Additionally, 
genetic modification offers opportunities to improve 
nutritional content, increase yield potential, and enhance 
resistance to pests and diseases (Hall and Richards 2013; 
Uzogara 2000) (Parmar et al. 2017). One of the primary 
objectives of genetic modification in agriculture is to 

increase crop tolerance to abiotic stresses. By introducing 
specific genes into plant genomes, researchers have been 
successful in enhancing plants’ ability to withstand adverse 
environmental conditions (Sedeek et al. 2019). Genetically 
modified crops display enhanced traits such as improved 
water-use efficiency (Flexas et al. 2013) and increased 
photosynthetic capacity (Ku et  al. 2000) and superior 
nutrient uptake (Bouis et al. 2003), empowering them to 
flourish in demanding climatic conditions.

Furthermore, genetic modification allows for the 
enhancement of nutritional content in crops, addressing the 
growing concern of malnutrition and dietary deficiencies 
(Graham et al. 2001). Through the manipulation of genes 
involved in nutrient metabolism and biofortification 
strategies (Bhambhani et al. 2021), scientists can enrich 
crops with essential vitamins, minerals, and other beneficial 
compounds, thereby improving the nutritional value of the 
harvested produce (Zhao et al. 2020). A global meta-analysis 
on the impact of transgenic crop adoption has shown that, on 
average, the use of transgenic technology results in a 22% 
increase in crop yields, leading to a 68% estimated increase 
in farmer profits (Klümper and Qaim 2014).

Despite these significant successes, widespread public 
acceptance of transgenic crops has been challenging to 
achieve. Concerns about the insertion of foreign genes 
have led to negative attitudes and reluctance towards their 
adoption and use. In response to these concerns, two new 
techniques, intragenesis and cisgenesis, have been developed 
as alternative approaches that address some of the concerns 
associated with transgenesis (Rommens et  al. 2007; 
Schouten et al. 2006). To gain widespread social acceptance 
of genetically modified crops, it is crucial to demonstrate 
their potential socioeconomic benefits, particularly in 
developing countries that are grappling with economic 
adversity and food insecurity due to climate change 
(Zetterberg and Edvardsson Björnberg 2017) (Séralini 
et al. 2011) (Dale, Clarke, and Fontes, 2002). Achieving 
this goal requires further research and the development of 
policies that address stakeholders’ concerns and ensure that 
the benefits of genetically modified crops are accessible to 
those who need them most.

In conclusion, genetic modification in agriculture 
offers promising solutions to address the challenges 
posed by climate change and enhance crop resilience. By 
incorporating favorable traits into crops, such as tolerance to 
abiotic stresses and improved nutritional content, genetically 
modified crops have the potential to increase agricultural 
productivity, improve food security, and mitigate the 
negative impacts of environmental variations. However, 
addressing concerns related to safety, public acceptance, and 
equitable access to the benefits of genetic modification is 
crucial for the responsible deployment of these technologies. 
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This review aims to evaluate the effectiveness of genetic 
modification in enhancing crop tolerance to abiotic stress 
factors and its potential implications for sustainable 
agriculture.

Interplay of genetic modification 
and climate change: opportunities 
and challenges in enhancing plant resilience

Global warming and industrial pollution have a detrimental 
impact on plant life, affecting various aspects such as 
growth, physiology, metabolism, immunity, development, 
and biochemical pathways (Cao et al. 2023) (Al-Khayri et al. 
2023; Sun et al. 2023; Kim et al. 2022; Liu et al. 2023; 
Ahammed et al. 2023; Sim et al. 2023). To counter these 
challenges and enable plants to withstand environmental 
stress, new genetic modification (GM) techniques have 
emerged, successfully developing novel species capable of 
tolerating climatic extremes (Zhang and Zhu 2023).

Studying the interplay of genetic modification and climate 
change is crucial in this review to identify opportunities and 
challenges in enhancing plant resilience. Understanding how 
genetic modification strategies can help plants withstand 
climate-related stressors is essential for ensuring food 
security and sustainable agriculture in a changing climate. 
Recent advancements in genomic research and molecular 
biology, particularly in the field of genome editing, offer 
promising prospects for enhancing crop yields, disease 
resistance, and tolerance to environmental stress (Yarra 
and Sahoo 2021; Molla et  al. 2021; Liu et  al. 2022a). 
The utilization of genetic modification holds potential 
for enlarging the medicinal and economic value of plants 
(Ghimire et  al. 2023). However, the development and 
introduction of new GM techniques remain limited and 
controversial (Eckerstorfer et al. 2020).

Genetic modification can play a crucial role in mitigating 
the effects of climate change by reducing the carbon footprint 
of agriculture. Through the development of genetically 
modified crops that require fewer inputs like fertilizers and 
pesticides, greenhouse gas emissions contributing to climate 
change can be lowered (National Academies of Sciences and 
Medicine 2016; Zhou et al. 2021). Researchers are actively 
working on developing crops capable of withstanding water 
scarcity, pests, and diseases, enabling food production in 
areas prone to extreme weather events (Howell et al. 2018). 
The increasing interest and advantages of gene editing have 
stimulated global research in this field (Strobbe et al. 2023). 
While there is scientific consensus on the safety of GM crops 
for both human health and the environment, a significant 
portion of the US adult population still holds concerns 
regarding their potential negative impacts (Suldovsky and 
Akin 2023).

Different countries have varied responses to genetically 
modified (GM) crops. Some ASEAN countries, including 
the Philippines, Myanmar, Vietnam, and Indonesia, have 
approved the cultivation of GM crops such as maize, 
cotton, and sugarcane (Amirhusin 2023). In Korea, 
extensive research on GM plants, such as rice, pepper, 
lettuce, and grass, is underway alongside the importation 
of GM soybeans, corn, firewood, and canola (Choi et al. 
2023). Conversely, Europe has strict regulations on 
genetically modified organisms (GMOs) due to negative 
consumer attitudes towards their use (Strobbe et  al. 
2023). China has made significant progress in adopting 
and commercializing Bt plants to address pest-related 
challenges, but a consumer survey revealed mixed views 
on GM foods (Chen et  al. 2011; Cui and Shoemaker 
2018). Russia prohibits the commercial cultivation of 
transgenic crops, despite having ample land available 
for cultivation (Chokheli et al. 2021). In Turkey, a pilot 
survey highlighted a lack of knowledge and confidence 
among adults regarding genetic modification, with a 
significant portion expressing concerns about GM foods 
(Basaran, Kilic, Soyyigit, and Sengun,

To recap, the interaction of genetic modification 
and climate change reveals potential opportunities 
and challenges in fortifying plant resilience. Genetic 
modification offers avenues for improving crop productivity, 
enhancing disease resistance, and increasing tolerance 
to environmental stresses. However, further research and 
consideration of public attitudes and international variations 
are necessary. By leveraging genetic modification, we can 
foster sustainable agriculture and confront the impacts of 
climate change head-on.

Mechanism of genetic modification in plants

Genetic diversity is a valuable asset for genetic research 
and the improvement of plant traits (Mao et al. 2019). 
Traditionally, plant breeders relied on natural variations 
to select the best genetic combinations (Mao et al. 2019). 
However, genetic modification, also known as genetic 
engineering, has provided a more effective method to 
expand the plant breeders’ toolkit against pathogens and 
diseases (Van Esse et al. 2020). It involves introducing 
novel genetic variations into plants to develop new 
varieties. In the past, plant breeders used chemical 
compounds and irradiation to induce heritable mutations in 
plants, aiming to create new traits or variations (Hartwell 
et al. 2011). However, these random mutagenesis methods 
had limitations, and identifying specific mutations was 
labor-intensive (Novak and Brunner 1992; Oladosu et al. 
2016).
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With advancements in modern genetics, mutation 
practices have become more precise and less labor-
intensive. Next-generation sequencing (NGS) has 
facilitated easy mapping and identification of causal 
mutations (Santosh Kumar et  al. 2020). Induced 
mutagenesis techniques now aid in developing varieties 
that closely resemble their parents, with minor attribute 
differences and no environmental threats. Plant breeders 
currently employ various mutation techniques to improve 
plant phenotypic characteristics, including stress tolerance, 
nutritional value, quality traits, climate resilience, and 
herbicide resistance (Šamajová et al. 2013; Tien Lea et al. 
2016; Lenaerts et  al. 2019; Anderson and Song 2020; 
Mall et al. 2019). To fully comprehend the significance of 
genetically modified (GM) crops, it is crucial to understand 
the mechanism underlying genetic modification in plants. 
This knowledge helps evaluate the advantages, risks, and 
implications of GM crops, enabling informed decisions 
and progress in agricultural biotechnology.

The process of developing genetically modified 
crops involves several intricate steps to ensure that the 
desired traits are successfully introduced and properly 
evaluated before commercialization. Researchers begin 
by investigating genetic sequences, metabolic pathways, 
and biochemical processes to identify the specific genes 
of interest (Jankowicz-Cieslak et  al. 2017). Induced 
mutagenesis is then utilized as an effective tool to locate 
and map these important genes within the plant’s genome.

Once the target genes are identified, researchers employ 
recombinant DNA technology to insert the gene of interest 
into the plant’s DNA at specific sites. This gene may 
originate from the same species or a different species, 
depending on the desired trait (Irwin 2001). The process of 
molecular characterization is then undertaken to analyze the 
transgene and determine its exact location and the nature of 
its insertion (Thole et al. 2009).

To confirm the successful genetic modification, 
researchers conduct laboratory tests using techniques like 
PCR, DNA sequencing, and Southern blotting. These tests 
validate the presence and accuracy of the inserted gene 
within the plant’s DNA (Ahmed 2002). After laboratory 
testing, the next crucial step involves greenhouse testing. 
Here, researchers evaluate the growth, development, and 
expression of the introduced trait in the genetically modified 
plants. They observe how the plant behaves in response 
to various factors such as pests, herbicides, and different 
weather conditions. Additionally, they assess the yield and 
product quality to determine the potential of the genetically 
modified plant for future commercial cultivation (Veress 
et al. 2013).

Once all testing is completed, the genetically modified 
plant must undergo regulatory approval before it can be 

commercialized and released to the market. Data from 
laboratory, greenhouse, and field testing is compiled and 
submitted to regulatory agencies for thorough review (Nap 
et al. 2003; Fig. 1). These regulatory agencies assess the 
safety, environmental impact, and potential risks associated 
with the genetically modified crop to ensure its safety for 
human consumption and the environment.

Overall, the process of developing genetically modified 
crops involves meticulous scientific research, laboratory 
testing, greenhouse evaluation, and regulatory scrutiny. 
These steps are essential to ensure the successful and 
responsible use of genetically modified crops in agriculture, 
promoting food security and sustainable farming practices. 
In conclusion, genetic modification has revolutionized plant 
breeding, enabling the precise introduction of desirable 
traits. Advances in technology and rigorous testing ensure 
safety and efficacy. These advancements hold great potential 
for addressing agricultural challenges and promoting 
sustainable food production.

Gene editing and CPISPR‑Cas9 technology

Advances in genome engineering have significantly 
transformed our ability to modify genomes with 
unprecedented accuracy, surpassing previous limitations 
(Voytas 2013). Genome engineering involves manipulating 
the genes of living organisms through various techniques, 
including deletion, substitution, and insertion. Among the 
cutting-edge tools available for genome engineering, the 
CRISPR-Cas9 system has emerged as the prevailing approach 
today. It relies on Clustered Regularly Interspaced Short 
Palindromic Repeats and associated protein 9 (El-Mounadi 
et al. 2020).

Compared to other genome editing tools like zinc finger 
nucleases (ZFNs) and transcriptional activator-like effector 
nucleases (TALENs), the CRISPR/Cas9 system offers 
distinct advantages, making it the method of choice for 
many researchers. Notably, CRISPR/Cas9 enables faster, 
cheaper, and highly efficient editing of genomes with greater 
precision (Shi et al. 1996; Voytas 2013).

Researchers have embraced CRISPR/Cas9 due to its 
versatility and ease of use, allowing for targeted modifications 
in various organisms across different scientific disciplines. 
Its wide adoption has accelerated progress in fields like 
agriculture, medicine, and biotechnology, opening new 
possibilities for disease treatment, gene therapy, and the 
development of genetically modified crops with improved 
traits.

By utilizing the CRISPR/Cas9 system, scientists can now 
manipulate specific genes with unprecedented precision, 
leading to a deeper understanding of genetic functions 
and unlocking new avenues for research and applications. 
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As a result, CRISPR/Cas9 has revolutionized genome 
engineering, propelling the scientific community into an era 
of unprecedented possibilities for genetic manipulation and 
gene editing (Shi et al. 1996).

Since its emergence in 2012, CRISPR/Cas9 has played 
an essential role in biological research, enabling precise 
manipulation of DNA sequences within cells and serving 
as a valuable tool for researchers. Despite not being a new 
concept or the first DNA editing technology, CRISPR/Cas9’s 
unique properties of single effector enzymes make a critical 
difference in experimental (Capecchi 2005; Pyzocha and 
Chen 2018). The technique involves several steps: designing 
a guide RNA (gRNA) complementary to the target DNA 
sequence and combining the gRNA with the Cas9 enzyme 
to cut the DNA at the target site (Gao and Zhao 2014). This 
creates a double-strand break, which can be repaired using 
non-homologous end joining (NHEJ) or homology-directed 
repair (HDR) pathways (Chu et al. 2015; Feng et al. 2023; 
Su et al. 2016). NHEJ often leads to small insertions or 
deletions that disrupt the target gene’s function, while HDR 

allows for specific changes in the DNA sequence (Malzahn 
et al. 2017). To confirm the desired changes, the edited DNA 
is amplified and sequenced (Jiang 2013). The accompanying 
Fig. 2 illustrates the steps involved in the CRISPR/Cas9 
technique.

CRISPR/Cas9 has facilitated the development of 
transgenic crops through user-friendly tools and guides. 
These genetically modified plants efficiently address the 
harmful effects of climate change and ensure future food 
security (Haque et al. 2018).

In conclusion, advances in genome engineering, 
particularly with the CRISPR-Cas9 system, have 
revolutionized DNA modification, offering precise and 
efficient editing capabilities. This technology has been 
widely utilized in biological research, enabling targeted 
changes to DNA sequences. Additionally, it has facilitated 
the development of transgenic crops to address climate 
change and enhance food security. Genome engineering has 
opened up new opportunities for scientific exploration and 
practical applications.

Fig. 1  General steps involved in making genetic modified crops
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Transgenic approaches

Given the compelling evidence of climate change and its 
anticipated impacts, it is crucial to adopt a comprehensive 
approach to agricultural adaptation (Howden et al. 2007). 
Adapting to climate variability is essential for both assessing 
the impacts and developing effective policies (Smit 
et al. 2000). Climate change poses a significant threat to 
agricultural production, emphasizing the need to enhance 
climate resilience in agriculture. Research suggests that 
genetic modification, in conjunction with other sustainable 
agricultural practices, can help mitigate the effects of 
climate change on agriculture (Akhtar et al. 2021; Zhou 
et al. 2021). Promoting genetic diversity in crops is also a 
valuable strategy for building resilience (Garland and Curry 
2022). Advances in plant biotechnology, such as genetically 
modified (GM) crops, have contributed to improving 
the genetic diversity of crops and their ability to adapt to 
changing climatic conditions, thus safeguarding agricultural 
production in the face of a changing climate (Sainger et al. 
2015; Garland and Curry 2022; Fig. 3).

Fig. 2  CRISPR/Cas9 technique working principle and steps

Fig. 3  Transgenic approaches used to develop genetically modified 
crops



Functional & Integrative Genomics (2023) 23:283 

1 3

Page 7 of 21 283

Advantages of genetic modification 
in adapting to climate change

In light of the compelling evidence of climate change and 
its anticipated impacts, the adoption of a comprehensive 
approach to agricultural adaptation has become imperative 
(Howden et al. 2007). Adapting to climate variability is 
crucial for assessing impacts and developing effective 
policies (Smit et  al. 2000). The increasing threat of 
climate change to agricultural production necessitates 
the implementation of strategies to enhance climate 
resilience. A study by Akhtar et al. (2021) suggests that 
genetic modification, in combination with other sustainable 
agricultural practices, should be employed to mitigate the 
effects of climate change on agriculture (Zhou et al. 2021). 
Another effective approach to enhancing resilience is the 
promotion of genetic diversity in crops (Garland and Curry 
2022). Advancements in plant biotechnology, particularly 
genetically modified (GM) crops, have significantly 
contributed to improving the genetic diversity of crops 
(Sainger et al. 2015). This enhancement equips crops with 
the ability to adapt to changing climatic conditions and 
safeguards agricultural production in the face of a changing 
climate (Garland and Curry 2022; Fig. 4).

 Increase tolerance to abiotic stress

Abiotic stress refers to the stress caused by non-living 
factors, negatively impacting plant development and 

growth. Examples of abiotic stress include drought, salinity, 
pollutants, and heavy metals (Hernández 2019; Ramadan 
et al. 2023; Shukla et al. 2016; Saeed et al. 2023; Choudhary 
et al. 2019; Zulfiqar and Ashraf 2022). These stresses disrupt 
metabolic and physiological processes in plants, such as 
respiration (Flexas et al. 2006; Zulfiqar 2021), water uptake 
(Abobatta 2020), and photosynthesis (Khan et al. 2010), 
leading to reduced yield (Wang et al. 2013), poor growth 
(Hasanuzzaman et al. 2018), and plant mortality (Nawaz 
et  al. 2010). Mitigating abiotic stress is a significant 
challenge in agriculture, requiring an understanding of 
plant response mechanisms (Suzuki et al. 2014). Liu et al. 
(2022b) reported the molecular characterization of the 
isoflavone 2′-hydroxylase gene (CtCYP81E8) in safflower, 
revealing positive insights into flavonoid accumulation and 
abiotic stress tolerance in safflower plants (Liu et al. 2022b). 
Unfortunately, global warming exacerbates these stresses, 
making the situation worse. This highlights the urgent need 
for research and innovation in developing stress-tolerant 
crops to ensure food security and sustainability in the face 
of climate change (Kawakami et al. 2010).

To address global climatic stress, CRISPR/Cas-mediated 
gene editing can enhance crop plant tolerance to abiotic 
stresses such as temperature, drought, and salinity (Ahmad 
et al. 2021; Høyland-Kroghsbo et al. 2018; Santosh Kumar 
et al. 2020). The CRISPR/Cas system is highly efficient, 
specific, time-efficient, and cost-effective (Bhat et al. 2021). 
Recent studies indicate that CRISPR/Cas editing can target 
complex quantitative genes associated with abiotic stress 

Fig. 4  The advantages of 
genetic modification in crop 
production
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factors (Mushtaq et  al. 2018). For instance, genes like 
phytoene desaturase (OsPDS), mitogen-activated protein 
kinase (OsMPK2), and betaine aldehyde dehydrogenase 
(OsBADH2) in rice can be edited, leading to improved 
abiotic stress tolerance (Kaur et  al. 2018; Kumar et  al. 
2023; Ashokkumar et al. 2020). These findings highlight 
the potential of CRISPR/Cas-based editing to enhance crop 
resilience in challenging environments (Debbarma et al. 
2019; Lin et al. 2020; Lou et al. 2017).

Notably, the manipulation of ethylene responsible factor 
(ERF) and stress/ABA-activated protein kinase 2 (SAPK2) 
genes through CRISPR/Cas editing has shown improved 
abiotic stress tolerance in rice (Debbarma et al. 2019; Lou 
et al. 2017). CRISPR/Cas technology has demonstrated its 
versatility in genome editing across various crops, including 
maize, rice, tomato, soybean, sorghum, flax, camelina, 
cotton, rapeseed, lettuce, potato, cucumber, watermelon, 
grapefruit, apple, and oranges (Chilcoat et al. 2017; Lin 
et al. 2020; Vu et al. 2020; Mao et al. 2016). This powerful 
tool offers new possibilities for crop improvement, enabling 
precise and efficient modifications in plant genomes 
(Chilcoat et  al. 2017; Lin et  al. 2020; Vu et  al. 2020; 
Mao et al. 2016). Please refer to Table 1 for examples of 
successful genetic modification to improve abiotic stress 
tolerance in various crops.

 Drought tolerance

Drought tolerance (DT) refers to the ability of plants to 
maintain a certain level of physiological activity even in 
severe drought conditions. This is achieved through the 
regulation of thousands of genes and metabolic pathways 
that help to reduce or repair the damage caused by drought 
stress (Fang and Xiong 2015). The International Service 
for the Acquisition of Agri-biotech Applications (ISAAA) 
released a report in 2019 which revealed that 29 countries 
had adopted biotech crops, including those with drought 
tolerance traits. The report indicates that 15.4 million farmers 
were planting these crops. Notably, countries such as the 
USA, Brazil, and South Africa have already commercialized 
drought-tolerant maize and soybean varieties (Clive 2008). 
Researchers demonstrated the potential of CRISPR/Cas9 
technology in improving the resilience of rice to drought 
conditions, in 2016 by editing the OsDREB gene and in 2017 
by editing the ARGOS8 gene. The OsDREB gene editing 
resulted in the generation of inheritable mutations that 
improved the plant’s tolerance to abiotic stress; in parallel, 
ARGOS8 gene editing approach resulted in a significant 
increase in grain yield under drought conditions, without 
any loss of yield under optimal growth conditions (Hoang 
et al. 2016; Shi et al. 2017). Conversely, in 2018, scientists 

modify the OsERF109 gene in rice. The resulting edited 
plants displayed enhanced tolerance to abiotic stress factors 
such as salt and drought (Mishra et al. 2018). Moreover, 
according to the recent work by Wang et al. (2023), research 
on cytochrome P450s in safflower unveils their vital role 
in regulating flavonoid accumulation, providing valuable 
insights for enhancing plant natural products (Wang et al. 
2023). Similarly, scientists have successfully modified the 
CBF4 gene in tomato plants, which plays a crucial role in 
the plant’s response to drought stress. The edited plants 
exhibited improved drought tolerance and showed increased 
yields under water-limited conditions (Lin et al. 2020).

Correspondingly, drought-tolerant maize (Zea mays) has 
been genetically engineered to express the  C4 photosynthesis 
pathway enzyme pyruvate orthophosphate dikinase (PPDK). 
This modification enhances the plant’s ability to conserve 
water and maintain photosynthesis under drought conditions, 
resulting in improved yield and productivity. On the same 
pattern, Liu et al. (2019) identified a gene in maize that 
controlled the plant’s response to drought stress and used 
CRISPR-Cas9 gene editing technology to modify the gene. 
The resulting plants had improved drought tolerance and 
increased yield under water-limited conditions (Cummins 
et al. 2019; Gassmann et al. 2011; Koziel et al. 1993; Vaughn 
et al. 2005). Currently, researchers are identifying genes 
that control the plant’s response to water stress and used 
CRISPR-Cas9 to modify that gene. The resulting plants have 
improved drought tolerance and increase yield under water-
limited conditions; in this pattern, Ha et al. (2021) developed 
a genetically modified soybean plant with improved drought 
tolerance (Cai et al. 2021).

All these successful examples of GM crops highlight 
the potential of CRISPR/Cas9 technology to develop crops 
that can withstand environmental stressors such as drought, 
which could contribute to ensuring global food security 
in the face of climate change (Munaweera et al. 2022). 
While genetic modification can play an important role in 
developing such drought-tolerant crops, it is important to 
consider the potential environmental and social impacts of 
such crops and to ensure that they are developed and used 
responsibly and ethically (Cai et al. 2021).

 Heat tolerance

Drought tolerance (DT) refers to a plant’s ability to 
maintain physiological activity even in severe drought 
conditions. It involves the regulation of numerous genes 
and metabolic pathways that help mitigate the damage 
caused by drought stress (Fang and Xiong 2015). The 
adoption of biotech crops, including those with drought 
tolerance traits, has been observed in 29 countries, with 
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Table 1  Case studies of successful application of genetic modification in agriculture to tackle climate change impacts

Crops Gene added Effect or improved traits Reference

Alfalfa AVP1 gene from Arabidopsis thaliana Improved salt and drought tolerance and 
photosynthetic rate

Bao et al. (2009)

Rice AtHSP101 gene from Arabidopsis thaliana Improved heat tolerance, better growth in 
recovery phase, no adverse effects on 
growth and development

Katiyar-Agarwal et al. (2003)

Soybean GmHSFA1 gene from Glycine max Enhanced thermotolerance, no abnormality 
in the development and growth

Zhu et al. (2006)

Cotton AsHSP70 gene from Agave sisalana Improved heat tolerance and boll production, 
higher chlorophyll, proline, and soluble 
sugar contents

Batcho et al. (2021)

Tomato LeAN2 gene from Lycopersicum esculentum Improved heat tolerance, high photosynthetic 
rate, fresh weight and antioxidant activity, 
lower ROS

Meng et al. (2015)

Tobacco EcDREB2A gene from Eleusine coracana Enhanced thermotolerance, seed germina-
tion, fresh and dry weight, and increased 
stomatal conductance

Singh et al. (2021)

Creeping bentgrass OsSIZ1 gene from Oryza sativa Enhanced thermotolerance, water retention 
and cell membrane integrity, photosynthe-
sis, and growth

Shiferaw et al. (2013)

Wheat BADH gene from Atriplex hortensis Enhanced heat and drought tolerance, 
higher photosynthetic rates under heat and 
drought stress, increased membrane stabil-
ity under heat stress

He et al. (2008)

Canola AtNHX1 gene from Arabidopsis thaliana Improved salt tolerance up to 200 mM NaCl; 
seed yield and seed oil quality were not 
affected by salt stress

Zhang et al. (2001)

Eggplant TaNHX2 gene from Triticum aestivum Improved salt tolerance and growth, higher 
RWC and chlorophyll content, reduced 
MDA and ROS

Yarra and Kirti (2019)

Apple MdNHX1 gene from Malus × domestica 
Borkh

Improved salt tolerance, high K+ /Na+ ratio 
in the leaves

Li et al. (2010)

Soybean GmCLC1 gene from Glycine max Enhanced salt tolerance, lower relative elec-
trolyte leakage

Wei et al. (2016)

Maize ZmbZIP4 gene from wild Zea mays Enhanced salt, drought, and osmotic stress 
tolerance

Ma et al. (2018)

Potato P5Cs gene from Arabidopsis thaliana Increased salt tolerance and proline content, 
less altered tuber yield and weight

Hmida-Sayari et al. (2005)

Peanut AVP1 gene from Arabidopsis thaliana Improved salt and drought tolerance, biomass, 
and photosynthetic rate and higher yields

Wijewardene et al. (2020)

Sugarcane AVP1 gene from Arabidopsis thaliana Enhanced salt and drought stresses and 
robust root system

Kumar et al. (2020)

Grapevine VaNCED1 gene from Vitis amurensis Improved drought tolerance, higher growth, 
lower leaf stomatal density, and lower 
photosynthesis rate

He et al. (2018)

Rapeseed NCED3/ABAR/CBF3/LOS5/ICE1 Enhanced heat, salinity, osmotic stress, and 
cold tolerance, greater yield, biomass, 
spikelet number, and grain number

Wang et al. (2018)

Rice OVP1 gene from species of Oryza sativa Enhanced salt tolerance and membrane sta-
bility and higher chlorophyll content

Kim et al. (2020)

Rice OsbZIP46CA1/SAPK6 Improved drought, heat, and cold tolerance, 
higher yield, biomass, spikelet number, and 
grain number

Chang et al. (2017)
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approximately 15.4 million farmers involved (ISAAA 
2019). Notably, countries like the USA, Brazil, and South 
Africa have already commercialized drought-tolerant 
maize and soybean varieties (Clive 2008). CRISPR/
Cas9 technology has demonstrated potential in enhancing 
drought resilience in crops. In rice, editing the OsDREB 
and ARGOS8 genes resulted in inheritable mutations that 
improved drought tolerance and grain yield, respectively 
(Hoang et al. 2016; Shi et al. 2017). Similarly, editing 
the OsERF109 gene in rice enhanced tolerance to salt 
and drought stress (Mishra et al. 2018). In tomato plants, 
modifying the CBF4 gene through CRISPR/Cas9 editing 
improved drought tolerance and increased yields (Lin 
et al. 2020). Drought-tolerant maize has been genetically 
engineered to express the PPDK enzyme, which enhances 
water conservation and photosynthesis under drought 
conditions, leading to improved productivity (Cummins 
et al. 2019). Using CRISPR/Cas9, researchers identified 
a gene in maize that controls the plant’s response to 
drought stress, resulting in improved drought tolerance 
and increased yield (Liu et al. 2019). The identification 
and modification of genes associated with water stress 
response are ongoing research efforts aimed at developing 
drought-tolerant crops (Ha et al. 2021; Cai et al. 2021).

These successful examples of genetically modified (GM) 
crops highlight the potential of CRISPR/Cas9 technology 
in developing drought-tolerant crops, which can contribute 
to global food security amidst climate change (Munaweera 
et al. 2022). However, it is crucial to consider the potential 
environmental and social impacts of GM crops and ensure 
their responsible and ethical development and use (Cai et al. 
2021).

 Cold tolerance

Cold stress refers to the detrimental effects of exposure to 
chilling temperatures below 20°C and freezing temperatures 
below 0°C on plant growth and development. It directly 
inhibits metabolic reactions and indirectly induces osmotic, 
oxidative, and other stresses, limiting the expression of 
plants’ genetic potential (Chinnusamy et  al. 2007). To 
enhance plants’ ability to withstand freezing temperatures, 
researchers have introduced genes encoding antifreeze 
proteins or transcription factors involved in cold acclimation 
into plants (Hightower et al. 1991). Genetically modified 
(GM) plants with improved cold tolerance have been 
developed, including GM tobacco (Yang et al. 2022), GM 
tomato (Shah et al. 2016) and GM potato (Muringai et al. 
2020).

In 2018, a study used CRISPR/Cas9 technology to create 
mutants of the C-repeat binding factor 1 (CBF1) gene in 

tomato plants. The study revealed the role of CBF1 in 
protecting against cold and chilling injuries. The CBF1 
mutants exhibited increased levels of indole acetic acid and 
hydrogen peroxide, resulting in improved cold tolerance. 
Additionally, CBF1 was found to prevent electrolyte leakage, 
indicating its potential for enhancing cold tolerance in crops 
(Li et al. 2018). In rice, the modification of the OsMYB30 
gene in 2016 resulted in improved cold tolerance. The 
edited plants exhibited enhanced cold tolerance compared 
to the unedited plants (Zhu et al. 2016). Furthermore, in 
2017, editing the SAPK2 gene and modifying the OsANN3 
gene in rice improved cold tolerance. The SAPK2-edited 
plants showed enhanced resistance to cold stress, while 
modification of the OsANN3 gene led to improved cold 
tolerance as indicated by reduced relative electrical 
conductivity. These advancements can contribute to food 
security in regions with low temperatures where traditional 
crops struggle to thrive (Lou et al. 2017; Shen et al. 2017).

 Salinity tolerance

Salinity tolerance in plants refers to their ability to grow 
and survive in soils or water with high salt concentrations. 
This trait is crucial for crops cultivated in areas with saline 
soils or irrigation water, as it ensures yield stability and 
food security (Bressan et al. 2008). While there have been 
successful examples of genetically engineering plants 
for improved salt tolerance, there are still challenges to 
overcome before widespread adoption of this technology 
in agriculture (Fita et al. 2015). One notable application 
of CRISPR/Cas9 technology was demonstrated in a 2017 
study where researchers generated mutants in Arabidopsis 
thaliana that overexpressed the SOS1 gene, responsible 
for encoding a plasma membrane Na+/H+ antiporter. The 
mutants exhibited enhanced salt tolerance and increased 
biomass production under saline conditions (Wang 
et al. 2017). Another successful example is reported that 
CtCYP82G24 overexpression plays a crucial regulatory 
role in polyethylene glycol-induced osmotic stress tolerance 
and enhancement of flavonoid accumulation in transgenic 
Arabidopsis, indicating its significance in plant growth, 
development, and response to abiotic stresses (Ahmad et al. 
2019).

In 2018, scientists used genomic editing to modify 
genes in rice, including the OsNHX1 gene, which led 
to improved salt tolerance. Additionally, in 2020, they 
modified the OsHKT1 gene, resulting in higher yields and 
enhanced salt tolerance under saline conditions (Wang 
et  al. 2020; Zhang et  al. 2018). These advancements 
contribute to the development of salt-tolerant crops, 
but further research is needed to address the remaining 
challenges in this field.
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 Increase tolerance to biotic stress

Disease‑resistant crops and genetic modification 
for climate change adaptation

The impact of global warming on crop pests and diseases 
poses a significant threat to food security (Shrestha 2019; 
Skendžić et al. 2021). Rising temperatures can accelerate 
the growth and reproduction rates of pests like aphids and 
spider mites, leading to increased infestations and crop 
damage (Mafongoya et al. 2019; Reddy 2013). Longer 
growing seasons due to warmer temperatures provide 
more time for pests and diseases to spread, resulting 
in higher pressure on crops and increased yield losses. 
Changes in precipitation patterns associated with climate 
change can also create favorable conditions for pests and 
diseases, such as promoting the growth of fungal diseases 
in increased rainfall or humidity, or weakening plants in 
drought conditions (Walther et  al. 2009; Peace 2020; 
Roos et al. 2011).

Climate change disrupts the ecological balance in 
agricultural systems by impacting interactions between 
pests, diseases, and their natural enemies (Chaplin-Kramer 
and Kremen 2012; Romo and Tylianakis 2013). The 
effectiveness of beneficial insects and predators that control 
pest populations can be reduced due to higher temperatures, 
leading to an increase in pests and crop damage (Lehmann 
et  al. 2020). Additionally, climate change can cause 
mismatches in the timing of pest and natural enemy activity, 
further disturbing agricultural ecosystems (Skendžić et al. 
2021). These changes in pest and disease dynamics already 
have significant impacts on crop production and global food 
systems. To address these challenges, one strategy is the 
development of pest and disease resistant crops. Genetic 
modification techniques can be employed to enhance the 
resistance of crops, thereby increasing their adaptability to 
climate change (Andualem and Seid 2021). One approach 
involves introducing genes from other organisms that 
possess natural resistance to certain diseases (Borrelli et al. 
2018). For instance, genes from Bacillus thuringiensis, a 
soil bacterium producing a protein toxic to insect pests, 
have been incorporated into crops like cotton and corn 
through genetic modification techniques (Verma et al. 2011; 
Sanahuja et al. 2011). As a result, these genetically modified 
crops exhibit resistance to pests, reducing the reliance on 
pesticides and enhancing yields (Mathesius et al. 2020).

Another strategy to enhance disease resistance in crops 
is to augment the plant’s natural defense mechanisms 
against pests and diseases. The gene editing technique 
CRISPR-Cas9 has been utilized by researchers to 
modify the expression of genes involved in the plant’s 
defense response (Borrelli et al. 2018). By increasing the 

expression of these genes, the plant’s immune response 
is strengthened, resulting in improved resistance to pests 
and diseases (Ahmad et  al. 2012). The development of 
disease-resistant crops is particularly crucial in the context 
of climate change, as rising temperatures and changing 
weather patterns are expected to intensify pest and disease 
pressures (Chakraborty and Newton 2011; Juroszek and 
Von Tiedemann 2011). Cultivating crops that are resilient 
to these pressures can help farmers enhance their resilience 
to the impacts of climate change (Maffioli et al. 2017).

 Improving nutritional content and yield potential

The impact of climate change on global food production is 
expected to be significant, and one potential solution is to develop 
crops that are nutritionally enhanced and of higher quality (Datta 
2013). Scientists at Cold Spring Harbor Laboratory (CSHL) 
utilized CRISPR/Cas9 technology to precisely engineer genes 
in tomatoes. By modifying the promoter regions of genes 
responsible for controlling quantitative traits such as fruit shape, 
size, and flowering timing, they were able to manipulate plant 
architecture (Rodríguez-Leal et al. 2017). In rice, researchers 
mutated three genes (GW2, GW5, TGW6) responsible for 
negatively regulating seed size, resulting in a significant 
increase in seed size (up to 30% in triple mutants) (Xu et al. 
2016). Enhancing the nutritional quality and yield potential of 
crops through genetic modification has the potential to promote 
a more sustainable and equitable food system. However, it is 
crucial to maintain a balance between the potential benefits of 
genetically modified crops and the necessity to ensure safety, 
transparency, and ethical practices.

 Technical, social, and financial challenges 
and concerns

Genetically modified (GM) crops offer potential benefits 
such as mitigating global warming, increasing crop yield, 
improving nutrition, and providing resistance against pests 
and diseases. However, concerns have been raised regarding 
unintended impacts on non-target organisms, development 
of herbicide-resistant weeds, and the potential for gene 
flow to wild relatives (Kumar et  al. 2020). Addressing 
these concerns, scientific evidence dispels urban myths 
related to GMOs, highlighting the difficulty in finding valid 
scientific reasons for the lack of universal acceptance of 
GM technology. Nonetheless, recent research articles have 
identified unintended impacts of GMOs. Public perception 
remains a challenge, despite refuting objections related 
to monarch butterflies, allergen introduction, and other 
perceived risks (Cui and Shoemaker 2018).

Another concern is the ecological impact and 
development of resistance in pests, even though 
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first-generation commercially available transgenic plants 
have reduced crop yield loss and pesticide use (Fontes 
et al. 2002; Lu 2008). The potential environmental impact 
and human health risks associated with GM crops have 
been investigated extensively. Hybridization with wild 
relatives and subsequent invasiveness is a concern (Allison 
Ann Snow et al. 2005), as well as the long-term effects 
on human health that remain uncertain (Key et al. 2008; 
Domingo and Bordonaba 2011; Domingo 2016). Regulatory 
challenges further complicate the GM crop landscape, with 
varying regulations across countries. Some countries have 
strict regulations in place, while others have more relaxed 
policies  (Liu and Zhang 2022). For example, Russia 
prohibits the commercial use of transgenic crops, while 
Korea imports genetically modified soybeans, corn, and 
canola, with ongoing research on other GM plants (Chokheli 
et al. 2021; Choi et al. 2023; B. Ghimire et al. 2020).

Globally, the discussion about the safety and regulation of 
GM crops continues to be a source of disagreement, leading 
to opposition and regulatory challenges in various nations. 
There are concerns related to the reduction of biodiversity 
and the technical complexities in genetic engineering, 
specifically in the creation of stable transgenicplants   
(Carpenter 2011; Fesenko and Edwards 2014; Espinoza 
Cancino et al. 2013; Wahid et al. 2007; Koźmińska et al. 
2018). Scientific studies have highlighted the need for 
comprehensive risk assessments of GMOs, transparency 
in regulation, and public engagement in decision-making 
processes. Technical challenges, including identifying 
suitable target genes and optimizing gene expression, must 
also be overcome in developing stress-tolerant GMOs (De 
Santis et al. 2018; Pallis 2021).

In conclusion, while GM crops hold promise for 
addressing agricultural challenges, their adoption and 
acceptance require thorough consideration of scientific and 
social factors (Sustek-Sánchez et al. 2023). It is essential 
to address environmental, health, regulatory, and technical 
challenges to ensure the responsible development and 
utilization of genetically modified crops.

Ethical and social considerations in the use 
of genetic modification in agriculture

Alternative technologies, such as cisgenesis and genome 
editing, may address many issues related to genetically 
engineered crop varieties with multiple favorable traits. 
These technologies may help to reduce some of the ethical 
and social concerns associated with traditional genetic 
engineering methods. Some potential ethical and social 
considerations related to genetic modification in agriculture 
include concerns about the safety of genetically modified 
crops for human consumption (Delaney et al. 2018) and 

the environment (Ferry and Gatehouse 2009), potential 
impacts on biodiversity, (Tiedje et al. 1989), and access 
to technology by small-scale farmers (Azadi et al. 2016). 
These issues are complex and require careful consideration 
by stakeholders from various sectors, including scientists, 
policymakers, farmers, consumers, and civil society 
organizations (Bruetschy 2019).

Concerns about the safety of genetically modified crops 
for human consumption have been a subject of debate and 
scrutiny in recent years (Al Anouti 2014). To address these 
concerns and avoid readers losing the train of thought, it 
is essential to acknowledge some of the studies that have 
contributed to this apprehension. Several studies have 
examined the potential allergenicity and unintended effects 
of genetic modifications on crop plants (Huang and Huang 
2017), while long-term studies assessing the impact of 
genetically modified organisms (GMOs) on human health 
are also vital (Dona and Arvanitoyannis 2009).

To further strengthen the discussion, it is important 
to consider additional concerns regarding potential 
environmental impacts. These impacts include unintended 
effects on non-target species (Devos et al. 2016) or the 
development of herbicide-resistant weeds (Kuiper et al. 
2000) and development of antibiotic resistance (Goldstein 
et al. 2005) making potential health risks to humans or 
animals consuming GMOs (Bakshi 2003). Furthermore, 
there are concerns about corporate control over seed 
production (Walters 2004) and intellectual property rights 
(Wong and Chan 2016), which may limit access to these 
technologies for small-scale farmers or lead to increased 
dependence on agribusinesses (Azadi et al. 2016). The 
alarming rise in global temperatures is an undeniable 
testament to the urgent need for collective action against 
climate change (Huang and Huang 2017). As extreme 
weather events become more frequent and devastating, 
it is evident that the consequences of inaction will be 
dire for both the planet and its inhabitants (Buhaug et al. 
2008). The time for complacency has long passed, and 
the responsibility to protect our environment for future 
generations falls upon all of us ((Giddens 1999). By 
adopting sustainable practices, transitioning to renewable 
energy sources (Paris et  al. 2022), and implementing 
effective policies (Antle et al. 2003), we can still steer 
the course towards a more sustainable and resilient 
future, where the beauty and diversity of our natural 
world can thrive once more (Drost et al. 1996), (Crist 
2013). On the other hand, proponents of GMOs argue 
that they have the potential to increase crop yields and 
productivity (Kavhiza et al. 2022), reduce pesticide use 
(Phipps and Park 2002), and improve nutritional content 
in crops (Yan and Kerr 2002). They also point out that 
genetic modification is just one tool in a larger toolbox of 
agricultural technologies that can be used to address global 
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food security challenges (Kavhiza et  al. 2022). Social 
considerations include issues related to food security, 
access to technology, and cultural practices (Maghari and 
Ardekani 2011). For example, some people may object 
to GM crops on religious or cultural grounds (Thompson 
1997). Additionally, there are concerns that GM crops may 
exacerbate existing inequalities in access to resources and 
technology between developed and developing countries 
(Otsuka 2003). Overall, it is important to consider both 
the potential benefits and risks associated with genetic 
modification in agriculture and engage in open dialogue 
with stakeholders from diverse backgrounds to ensure 
that these technologies are used responsibly and ethically 
(Kennedy 1999). Consumer choice is also a big problem as 
there are concerns about the right of consumers to choose 
whether or not to consume GM foods and the need for 
clear labeling and information about the presence of GM 
ingredients in food products (Sleenhoff and Osseweijer 
2013). Another ethical concern is the potential for 
genetic modification to exacerbate existing inequalities in 
access to food and resources. For example, if only large 
agribusinesses can afford to develop and patent genetically 
modified crops, this could lead to increased concentration 
of power in the food system and limit access to these crops 
for small farmers or developing countries (Pechlaner and 
Otero 2008).

Public concerns surrounding GMOs include worries 
about long-term health effects (Butler et  al. 1999), 
environmental impact (e.g. cross-contamination and 
herbicide resistance), and ethical issues with corporate 
control over seed production and patents (Bawa and 
Anilakumar 2013), (Raman 2017), (Myskja and Myhr 
2020). Understanding these specific concerns is essential 
for informed discussions on GMO safety and regulation 
(Irwin 2001). Mainly revolving around their safety for 
human consumption, potential environmental impact, 
and ethical considerations (Gaskell et al. 2004), public 
concerns about GMOs also involve skepticism and 
opposition due to safety and environmental impact worries 
(Krimsky 2019). This can create challenges for companies 
seeking regulatory approval or market acceptance for 
their products. Addressing these concerns requires 
transparent communication, rigorous safety assessments, 
and comprehensive regulations to promote greater 
acceptance of genetically modified organisms. Overall, 
it is important for stakeholders involved in genetic 
modification in agriculture to consider these ethical and 
social considerations and engage in transparent dialogue 
with consumers, regulators, and other stakeholders 
(Costa-Font et al. 2008; Doh and Guay 2006). This can 
help ensure that the benefits of genetic modification are 
realized while minimizing any potential negative impacts. 
However, it is important to note that the use of genetic 

modification in agriculture is a controversial topic that 
raises many ethical and social concerns.

Some people argue that genetically modified crops could 
have negative impacts on people’s health and the ecosystem, 
while others believe that they are necessary to feed a 
growing population. It is important to consider the potential 
benefits and risks of genetic modification in agriculture, 
as well as the broader social and ethical implications of 
its use (Pellegrino et al. 2018). Policymakers, scientists, 
and the public should engage in open and transparent 
discussions about the potential benefits and risks of genetic 
modification in agriculture to make informed decisions. By 
fostering dialogue and understanding, we can navigate the 
complexities of GMOs and work towards responsible and 
sustainable practices in the field of genetic modification.

In crux, public concerns surrounding genetically 
modified organisms (GMOs) encompass worries about 
long-term health effects, environmental impact, and ethical 
considerations. Understanding these specific concerns 
is crucial for informed discussions on GMO safety and 
regulation. Policymakers, scientists, and the public should 
engage in open and transparent dialogue to address these 
complex issues responsibly and foster sustainable practices 
in the field of genetic modification. By considering the 
potential benefits and risks while being mindful of broader 
social and ethical implications, we can navigate the 
complexities of GMOs and work towards a more sustainable 
future in agriculture.

Conclusion

Considering the ever-increasing global warming and 
climate change concerns, it is imperative to prioritize 
the enhancement of plant resilience to abiotic stresses. 
The adverse effects of climate change on agricultural 
systems necessitate the development of crops with 
improved tolerance to drought, salinity, heat, and cold. 
Genetic modification techniques offer promising avenues 
for achieving this goal. Transgenic technology has been 
employed as a powerful tool to enhance plant resilience 
in the face of abiotic stresses. These strategies encompass 
the introduction of stress-responsive genes, transcription 
factors, and regulatory elements to enhance stress signaling 
pathways. Additionally, the manipulation of hormone 
signaling pathways, osmoprotectant accumulation, and 
antioxidant defense mechanisms is explored. Furthermore, 
the use of genome editing tools, particularly CRISPR-
Cas9, for precise modification of target genes is associated 
with stress tolerance. This technology opens up new 
possibilities for improving crop resilience by facilitating 
targeted genetic modifications. The challenges associated 
with genetic modification for abiotic stress tolerance 
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are acknowledged, and future prospects in this field are 
highlighted. It is crucial to address regulatory, safety, and 
ethical considerations while continuing to advance genetic 
modification strategies for crop improvement. Overall, 
understanding and harnessing the potential of genetic 
modification techniques can contribute significantly to 
the development of resilient crop varieties capable of 
withstanding adverse environmental conditions caused 
by climate change. By ensuring sustainable agricultural 
productivity and food security, these advancements can play 
a vital role in mitigating the challenges posed by climate 
change to global food systems.
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