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Handling Measurement Noise

Noise

• All measurements are influenced by extraneous factors that are unrelated to the specific quantity being 
measured
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Noise

• Signal noise refers to time-dependent fluctuations in the instrument’s output that occur randomly 
(or near-randomly) and are not attributable to the analyte’s presence or response
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Noise

• Assessing the magnitude of noise relative to the magnitude of the signal is essential for evaluating measurement 
accuracy and establishing the minimum detectable signal level, known as the detection limit

Analog Signal
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Digital Signal

Noise
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Noise

• Noise arises from many sources, and it can be treated as
a sine wave, or the sum of multiple/infinite sine waves

~Fourier theory

S1

S2

S3

S1+S2+S3

𝑓 𝑡 = න

−∞

+∞

መ𝑓𝑠 𝜉 sin 2𝜋𝜉𝑡 𝑑𝜉 + න

−∞

+∞

መ𝑓𝑐 𝜉 cos 2𝜋𝜉𝑡 𝑑𝜉
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Noise

• Peak-to-peak amplitude 

V(peak−to−peak)

V(p−p)

or
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Noise

• Peak-to-peak amplitude for noise 

V(peak−to−peak)

V(p−p)

or
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Noise

• Average noise

• However, if noise is truly random, 
it is possible that Navg = 0.

Therefore, Average Noise is not explicitly
useful.

• If Navg ≠ 0, then another (constant) noise 

parameter is present, which can be identified, 
measured, and eliminated (DC constant).

Navg

Navg
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Noise

• Why Navg can become zero?

• Equally possible and similar amplitude positive and negative values

• Solution?
• Squaring the signal → Root Mean Square (RMS)

𝑁𝑅𝑀𝑆 = lim
𝑇→∞

1

2𝑇
න

−𝑇

𝑇

𝑁 𝑡 2 𝑑𝑡 →

for sine wave

𝑁𝑅𝑀𝑆 =
1

2 2
𝑁𝑝−𝑝 → 𝑁𝑅𝑀𝑆 ≈ 0.35 𝑁𝑝−𝑝
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Noise

• Signal-to-noise ratio

𝑉𝑝−𝑝 = 10

𝑁𝑝−𝑝 = 2

𝑁𝑅𝑀𝑆 = 0.35 𝑁𝑝−𝑝 = 0.7

𝑆/𝑁 = 5/0.7 ≈ 7.14
𝑉𝑅𝑀𝑆 = 𝑉𝑝−𝑝/2 = 5
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Noise

• We wish for the 𝑆/𝑁 to be high enough in order to identify correct stimulus
• A rule of thumb is for the 𝑆/𝑁 to be at least 3

𝑉𝑝−𝑝 = 10

𝑁𝑝−𝑝 = 2
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Noise

• The probability distribution of noise can be measured and modeled

Uniform Noise

𝑃(𝑛)

𝑛𝑎 𝑏

1

𝑏 − 𝑎

1

𝐸 𝑛 = 𝜇 =
𝑏 + 𝑎

2

𝑃(𝑛)  =

1

𝑏 − 𝑎
, 

0,

𝑓𝑜𝑟 𝑎 ≤ 𝑛 ≤ 𝑏

𝑓𝑜𝑟 𝑛 < 𝑎 𝑜𝑟 𝑛 > 𝑏

Gaussian Noise

𝑃(𝑛)

1

𝑃(𝑛)  =
1

2𝜋𝜎2
𝑒

−
(𝑛−𝜇)2

2𝜎2

𝐸 𝑛 = 𝜇

𝜇
𝜇 + 𝜎𝜇 − 𝜎

3
4

.1
%

3
4

.1
%

𝐸 (𝑛 − 𝜇)2 = 𝜎2 =
(𝑏 − 𝑎)2

12
𝐸 (𝑛 − 𝜇)2 = 𝜎2

Gamma Noise

𝑃(𝑛)

1

𝐸 𝑛 = 𝜇 =
𝑏

𝑎

𝐸 (𝑛 − 𝜇)2 = 𝜎2 =
𝑏

𝑎2

𝑃(𝑛)  =

𝑎𝑏𝑛𝑏−1

𝑏 − 1 !
𝑒−𝑎𝑛, 

0,

𝑓𝑜𝑟 𝑛 ≥ 0

𝑓𝑜𝑟 𝑛 < 0

(𝑏 − 1)/𝑎

Exponential Noise

𝑃(𝑛)

1

𝐸 𝑛 = 𝜇 =
1

𝑎

𝐸 (𝑛 − 𝜇)2 = 𝜎2 =
1

𝑎2

𝑃(𝑛)  = ቐ
𝑎𝑒−𝑎𝑛, 

0,

𝑓𝑜𝑟 𝑛 ≥ 0

𝑓𝑜𝑟 𝑛 < 0

𝑎
𝑎(𝑏 − 1)𝑏−1

𝑏 − 1 !
𝑒−(𝑏−1)

1

2𝜋𝜎
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Handling Noise

• Knowing the noise distribution yields some interesting properties for improving the accuracy of our measurements

𝜇𝑛 = 2, 𝜎𝑛 = 2

𝜇𝑚 = 22.1689

𝑆 = 𝜇𝑚 − 𝜇𝑛 = 20.1689
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Handling Noise

• How many measurements should I take?

𝜇𝑛 = 2, 𝜎𝑛 = 2

𝜇𝑚 = 22.1689

𝑆 = 𝜇𝑚 − 𝜇𝑛 = 20.1689

Answer: how certain do I need to be?
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Handling Noise

• How many measurements should I take?

Annex:

The variance of a random variable 𝑋 is the expected value of the squared deviation from the mean of 
𝑋, 𝜇 = 𝐸 𝑋 :

𝑉𝑎𝑟 𝑋 = 𝐸[𝑋 − 𝜇2]

Discrete random variable

𝑉𝑎𝑟 𝑋 = ෍

𝑖=1

𝑛

𝑝𝑖(𝑥𝑖 − 𝜇)2

𝜇 = 𝐸[𝑋] = ෍

𝑖=1

𝑛

𝑝𝑖𝑥𝑖

Absolutely continuous random variable

𝑉𝑎𝑟 𝑋 = න
ℝ

𝑥2𝑓(𝑥)𝑑𝑥 − 𝜇2

𝜇 = 𝐸[𝑋] = න
ℝ

𝑥𝑓(𝑥)𝑑𝑥

• 𝑉𝑎𝑟 𝑋 + 𝑎 = 𝑉𝑎𝑟 𝑋

• 𝑉𝑎𝑟 𝑎𝑋 = 𝑎2𝑉𝑎𝑟(𝑋)

Properties
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Handling Noise

• How many measurements should I take?

𝜇𝑛 = 2, 𝜎𝑛 = 2

𝜇𝑚 = 22.1689

𝑆 = 𝜇𝑚 − 𝜇𝑛 = 20.1689

Answer: how certain do I need to be?

Let 𝑋1, 𝑋2, … , 𝑋𝑁 be independent and identically 
distributed random variables, each with:
• 𝐸 𝑋𝑖 = 𝜇

• Var(𝑋𝑖)  = 𝜎𝑛𝑜𝑖𝑠𝑒
2

The sample mean ത𝑋 is:

ത𝑋 =
1

𝑁
෍

𝑖=1

𝑁

𝑋𝑖

The mean value calculated from the sample will have an 
associated standard error on the mean:

𝜎𝑚𝑒𝑎𝑛
2 = Var ത𝑋 = 𝑉𝑎𝑟

1

𝑁
෍

𝑖=1

𝑁

𝑋𝑖 =
1

𝑁2
𝑉𝑎𝑟 ෍

𝑖=1

𝑁

𝑋𝑖
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Handling Noise

• How many measurements should I take?

𝜇𝑛 = 2, 𝜎𝑛 = 2

𝜇𝑚 = 22.1689

𝑆 = 𝜇𝑚 − 𝜇𝑛 = 20.1689

Answer: how certain do I need to be?

Since the 𝑋𝑖  are independent, the variance of the 
sum is the sum of the variances:

𝑉𝑎𝑟 ෍

𝑖=1

𝑁

𝑋𝑖 = ෍

𝑖=1

𝑁

𝑉𝑎𝑟(𝑋𝑖) = 𝑁𝜎𝑛𝑜𝑖𝑠𝑒
2

Thus,

Var ത𝑋 =
1

𝑁2
𝑁𝜎𝑛𝑜𝑖𝑠𝑒

2 =
𝜎𝑛𝑜𝑖𝑠𝑒

2

𝑁
Finally,

𝜎𝑚𝑒𝑎𝑛 = Var ത𝑋 =
𝜎𝑛𝑜𝑖𝑠𝑒

𝑁

𝐸 𝑋𝑖 = 𝜇

Var(𝑋𝑖)  = 𝜎𝑛𝑜𝑖𝑠𝑒
2

Var ത𝑋 =
1

𝑁2
𝑉𝑎𝑟 ෍

𝑖=1

𝑁

𝑋𝑖

Handling Measurement Noise



Handling Noise

• How many measurements should I take?

𝜇𝑛 = 2, 𝜎𝑛 = 2

𝜇𝑚 = 22.1689

𝑆 = 𝜇𝑚 − 𝜇𝑛 = 20.1689

Answer: how certain do I need to be?

𝜎𝑚𝑒𝑎𝑛 =
𝜎𝑛𝑜𝑖𝑠𝑒

𝑁

For a standard error of no more than ε:

𝑁 =
𝜎𝑛𝑜𝑖𝑠𝑒

𝜀

2

E.g.,: 
For 𝜀 = 0.1 (final guess to be accurate to within ±0.1)

𝑁 =
𝜎𝑛𝑜𝑖𝑠𝑒

𝜀

2

=
2

0.1

2

= 400
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RANSAC

• Suppose that we have the following measurements, and we know that our model is a linear function: 𝐹 𝑥 = 𝑎𝑥 + 𝑏
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RANSAC:: RANdom SAmple Consensus

• Suppose that we have the following measurements, and we know that our model is a linear function: 𝐹 𝑥 = 𝑎𝑥 + 𝑏

RANSAC steps:

1. Randomly select 𝑛 number of samples.
𝑛 being the degrees of freedom for our model. 2 in our example.

2. Fit our model into these samples.

3. Measure the number of inliers given a tolerance distance 𝑑.
This is our assumption’s score.

4. Repeat steps 1 through 3 for a different set of 𝑛 samples.

Our best hypothesis is the assumption with the most inliers.

Trial and error
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RANSAC:: RANdom SAmple Consensus

• Suppose that we have the following measurements, and we know that our model is a linear function: 𝐹 𝑥 = 𝑎𝑥 + 𝑏

RANSAC steps:

1. Randomly select 𝑛 number of samples.
𝑛 being the degrees of freedom for our model. 2 in our example.

2. Fit our model into these samples.

3. Measure the number of inliers given a tolerance distance 𝑑.
This is our assumption’s score.

4. Repeat steps 1 through 3 for a different set of 𝑛 samples.

Our best hypothesis is the assumption with the most inliers.
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RANSAC:: RANdom SAmple Consensus

• Suppose that we have the following measurements, and we know that our model is a linear function: 𝐹 𝑥 = 𝑎𝑥 + 𝑏

RANSAC steps:

1. Randomly select 𝑛 number of samples.
𝑛 being the degrees of freedom for our model. 2 in our example.
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RANSAC:: RANdom SAmple Consensus

• Suppose that we have the following measurements, and we know that our model is a linear function: 𝐹 𝑥 = 𝑎𝑥 + 𝑏

RANSAC steps:

1. Randomly select 𝑛 number of samples.
𝑛 being the degrees of freedom for our model. 2 in our example.

2. Fit our model into these samples.

3. Measure the number of inliers given a tolerance distance 𝑑.
This is our assumption’s score.

4. Repeat steps 1 through 3 for a different set of 𝑛 samples.

Our best hypothesis is the assumption with the most inliers.

𝑑

𝑑
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RANSAC:: RANdom SAmple Consensus

• Suppose that we have the following measurements, and we know that our model is a linear function: 𝐹 𝑥 = 𝑎𝑥 + 𝑏

RANSAC steps:

1. Randomly select 𝑛 number of samples.
𝑛 being the degrees of freedom for our model. 2 in our example.

2. Fit our model into these samples.

3. Measure the number of inliers given a tolerance distance 𝑑.
This is our assumption’s score.

4. Repeat steps 1 through 3 for a different set of 𝑛 samples.

Our best hypothesis is the assumption with the most inliers.

𝑑

𝑑

Assump. 1 2 inliers
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RANSAC:: RANdom SAmple Consensus

• Suppose that we have the following measurements, and we know that our model is a linear function: 𝐹 𝑥 = 𝑎𝑥 + 𝑏

RANSAC steps:

1. Randomly select 𝑛 number of samples.
𝑛 being the degrees of freedom for our model. 2 in our example.

2. Fit our model into these samples.

3. Measure the number of inliers given a tolerance distance 𝑑.
This is our assumption’s score.

4. Repeat steps 1 through 3 for a different set of 𝑛 samples.

Our best hypothesis is the assumption with the most inliers.
Assump. 1 2 inliers

Assump. 2
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RANSAC:: RANdom SAmple Consensus

• Suppose that we have the following measurements, and we know that our model is a linear function: 𝐹 𝑥 = 𝑎𝑥 + 𝑏

RANSAC steps:

1. Randomly select 𝑛 number of samples.
𝑛 being the degrees of freedom for our model. 2 in our example.

2. Fit our model into these samples.

3. Measure the number of inliers given a tolerance distance 𝑑.
This is our assumption’s score.

4. Repeat steps 1 through 3 for a different set of 𝑛 samples.

Our best hypothesis is the assumption with the most inliers.
Assump. 1 2 inliers

Assump. 2
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RANSAC:: RANdom SAmple Consensus

• Suppose that we have the following measurements, and we know that our model is a linear function: 𝐹 𝑥 = 𝑎𝑥 + 𝑏

RANSAC steps:

1. Randomly select 𝑛 number of samples.
𝑛 being the degrees of freedom for our model. 2 in our example.

2. Fit our model into these samples.

3. Measure the number of inliers given a tolerance distance 𝑑.
This is our assumption’s score.

4. Repeat steps 1 through 3 for a different set of 𝑛 samples.

Our best hypothesis is the assumption with the most inliers.

𝑑 𝑑

Assump. 1 2 inliers

Assump. 2 3 inliers
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RANSAC:: RANdom SAmple Consensus

• Suppose that we have the following measurements, and we know that our model is a linear function: 𝐹 𝑥 = 𝑎𝑥 + 𝑏

RANSAC steps:

1. Randomly select 𝑛 number of samples.
𝑛 being the degrees of freedom for our model. 2 in our example.

2. Fit our model into these samples.

3. Measure the number of inliers given a tolerance distance 𝑑.
This is our assumption’s score.

4. Repeat steps 1 through 3 for a different set of 𝑛 samples.

Our best hypothesis is the assumption with the most inliers.
Assump. 1 2 inliers

Assump. 2 3 inliers

Assump. 3
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RANSAC:: RANdom SAmple Consensus

• Suppose that we have the following measurements, and we know that our model is a linear function: 𝐹 𝑥 = 𝑎𝑥 + 𝑏

RANSAC steps:

1. Randomly select 𝑛 number of samples.
𝑛 being the degrees of freedom for our model. 2 in our example.

2. Fit our model into these samples.

3. Measure the number of inliers given a tolerance distance 𝑑.
This is our assumption’s score.

4. Repeat steps 1 through 3 for a different set of 𝑛 samples.

Our best hypothesis is the assumption with the most inliers.
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Assump. 3
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RANSAC:: RANdom SAmple Consensus

• Suppose that we have the following measurements, and we know that our model is a linear function: 𝐹 𝑥 = 𝑎𝑥 + 𝑏

RANSAC steps:

1. Randomly select 𝑛 number of samples.
𝑛 being the degrees of freedom for our model. 2 in our example.

2. Fit our model into these samples.

3. Measure the number of inliers given a tolerance distance 𝑑.
This is our assumption’s score.

4. Repeat steps 1 through 3 for a different set of 𝑛 samples.

Our best hypothesis is the assumption with the most inliers.
Assump. 1 2 inliers

Assump. 2 3 inliers

Assump. 3 7 inliers

𝑑

𝑑
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RANSAC:: RANdom SAmple Consensus

• Suppose that we have the following measurements, and we know that our model is a linear function: 𝐹 𝑥 = 𝑎𝑥 + 𝑏

RANSAC steps:

1. Randomly select 𝑛 number of samples.
𝑛 being the degrees of freedom for our model. 2 in our example.

2. Fit our model into these samples.

3. Measure the number of inliers given a tolerance distance 𝑑.
This is our assumption’s score.

4. Repeat steps 1 through 3 for a different set of 𝑛 samples.

Our best hypothesis is the assumption with the most inliers.
Assump. 1 2 inliers

Assump. 2 3 inliers

Assump. 3 7 inliers

… …

𝑑

𝑑
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RANSAC:: RANdom SAmple Consensus

• Suppose that we have the following measurements, and we know that our model is a linear function: 𝐹 𝑥 = 𝑎𝑥 + 𝑏

RANSAC steps:

1. Randomly select 𝑛 number of samples.
𝑛 being the degrees of freedom for our model. 2 in our example.

2. Fit our model into these samples.

3. Measure the number of inliers given a tolerance distance 𝑑.
This is our assumption’s score.

4. Repeat steps 1 through 3 for a different set of 𝑛 samples.

Our best hypothesis is the assumption with the most inliers.
Assump. 1 2 inliers

Assump. 2 3 inliers

Assump. 3 7 inliers

… …

𝑑

𝑑

Handling Measurement Noise



RANSAC:: RANdom SAmple Consensus

• Suppose that we have the following measurements, and we know that our model is a linear function: 𝐹 𝑥 = 𝑎𝑥 + 𝑏

RANSAC steps:

1. Randomly select 𝑛 number of samples.
𝑛 being the degrees of freedom for our model. 2 in our example.

2. Fit our model into these samples.

3. Measure the number of inliers given a tolerance distance 𝑑.
This is our assumption’s score.

4. Repeat steps 1 through 3 for a different set of 𝑛 samples.

Our best hypothesis is the assumption with the most inliers.
Assump. 1 2 inliers

Assump. 2 3 inliers

Assump. 3 7 inliers

… …

𝑑

𝑑

Through RANSAC we can also identify outliers. Values that 
are so noisy or resulted from an external disturbance and 

should not be considered for our model.
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RANSAC:: RANdom SAmple Consensus

• Suppose that we have the following measurements, and we know that our model is a linear function: 𝐹 𝑥 = 𝑎𝑥 + 𝑏

Assump. 1 2 inliers

Assump. 2 3 inliers

Assump. 3 7 inliers

… …

𝑑

𝑑
Through RANSAC we can also identify outliers. Values that 
are so noisy or resulted from an external disturbance and 

should not be considered for our model.

How do we define 𝑑?

• Do we know the distribution of noise?

• Find 𝜇 and 𝜎

• Define an acceptable noise tolerance with respect to 𝜎

• Set: 𝑑 = 𝜅 ∙ 𝜎
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RANSAC:: RANdom SAmple Consensus

• Suppose that we have the following measurements, and we know that our model is a linear function: 𝐹 𝑥 = 𝑎𝑥 + 𝑏

Assump. 1 2 inliers

Assump. 2 3 inliers

Assump. 3 7 inliers

… …

𝑑

𝑑
Through RANSAC we can also identify outliers. Values that 
are so noisy or resulted from an external disturbance and 

should not be considered for our model.

How do we define 𝑑?

• Do we know the distribution of noise?

• Find 𝜇 and 𝜎

• Define an acceptable noise tolerance with respect to 𝜎

• Set: 𝑑 = 𝜅 ∙ 𝜎
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RANSAC:: RANdom SAmple Consensus

• Suppose that we have the following measurements, and we know that our model is a linear function: 𝐹 𝑥 = 𝑎𝑥 + 𝑏

Assump. 1 2 inliers

Assump. 2 3 inliers

Assump. 3 7 inliers

… …

𝑑

𝑑
How many iterations/assumptions to evaluate?

𝐼 =
log(1 − 𝑝)

log(1 − 1 − 𝑒 𝑑𝑜𝑓)

𝑝: probability succeeding in finding a proper solution after 𝐼 iterations 
     (finding a sample of inliers = 𝑑𝑜𝑓)
𝑒: outlier ratio (#outliers/#samples)
𝑑𝑜𝑓: degrees of freedom
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RANSAC:: RANdom SAmple Consensus

• Suppose that we have the following measurements, and we know that our model is a linear function: 𝐹 𝑥 = 𝑎𝑥 + 𝑏

Assump. 1 2 inliers

Assump. 2 3 inliers

Assump. 3 7 inliers

… …

𝑑

𝑑
How many iterations/assumptions to evaluate?

𝐼 =
log(1 − 𝑝)

log(1 − 1 − 𝑒 𝑑𝑜𝑓)

𝑝: probability succeeding in finding a proper solution after 𝐼 iterations 
     (finding a sample of inliers = 𝑑𝑜𝑓)
𝑒: outlier ratio (#outliers/#samples)
𝑑𝑜𝑓: degrees of freedom

Proof in a single sample attempt (one RANSAC iteration):
• Prob. of drawing a single inlier: 1 − 𝑒
• Prob. of drawing as many inliers as needed: 1 − 𝑒 𝑑𝑜𝑓

• Prob. of not drawing only inliers: 1 − 1 − 𝑒 𝑑𝑜𝑓

• Prob. of failing:

Prob. of succeeding (𝑞)

Prob. of failing (1 − 𝑞)

1 − 𝑞 = 1 − 1 − 𝑒 𝑑𝑜𝑓
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RANSAC:: RANdom SAmple Consensus

• Suppose that we have the following measurements, and we know that our model is a linear function: 𝐹 𝑥 = 𝑎𝑥 + 𝑏

Assump. 1 2 inliers

Assump. 2 3 inliers

Assump. 3 7 inliers

… …

𝑑

𝑑
How many iterations/assumptions to evaluate?

𝑝: probability succeeding in finding a proper solution after 𝐼 iterations 
     (finding a sample of inliers = 𝑑𝑜𝑓)
𝑒: outlier ratio (#outliers/#samples)
𝑑𝑜𝑓: degrees of freedom

Prob. of failing in a single sample attempt (one RANSAC iteration):

1 − 𝑞 = 1 − 1 − 𝑒 𝑑𝑜𝑓

Prob. of failing in 𝐼 sample attempts (𝑇 RANSAC iteration):

𝐼 =
log(1 − 𝑝)

log(1 − 1 − 𝑒 𝑑𝑜𝑓)

1 − 𝑝 = 1 − 1 − 𝑒 𝑑𝑜𝑓 𝐼

Prob. of succeeding (𝑝)

Handling Measurement Noise



RANSAC:: RANdom SAmple Consensus

• Any kind of model

Handling Measurement Noise
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