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Handling Measurement Noise

Noise

* All measurements are influenced by extraneous factors that are unrelated to the specific quantity being

measured
Analog Signal Digital Signal
Noise Noise
LU AT TR TR ) TP T Ao ST Y
Analog Signal + Noise Digital Signal + Noise

AVAVAVAVAVERRRRVARQURNRS




Handling Measurement Noise

Noise

* Signal noise refers to time-dependent fluctuations in the instrument’s output that occur randomly
(or near-randomly) and are not attributable to the analyte’s presence or response
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Noise

* Assessing the magnitude of noise relative to the magnitude of the signal is essential for evaluating measurement
accuracy and establishing the minimum detectable signal level, known as the detection limit

Analog Signal Digital Signal
Noise Noise
LU AT TR TR ) TP T Ao ST Y
Analog Signal + Noise Digital Signal + Noise

AVAVAVAVAVERRRRVARQURNRS




Handling Measurement Noise

Noise

* Noise arises from many sources, and it can be treated as 51
a sine wave, or the sum of multiple/infinite sine waves

~Fourier theory -
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Noise

* Peak-to-peak amplitude
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Noise

* Peak-to-peak amplitude for noise
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Noise

Average noise

However, if noise is truly random,

it is possible that Nayg = 0.

Therefore, Average Noise is not explicitly
useful.

If Navg # 0, then another (constant) noise

parameter is present, which can be identified,
measured, and eliminated (DC constant).
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Noise

*  Why Nayg can become zero?
e Equally possible and similar amplitude positive and negative values

e Solution?
* Squaring the signal - Root Mean Square (RMS)

for sine wave

1 (T 1
Nrus = 711_{{)10 \/_j [N(t)]> dt -2 Nrus = Z_ﬁNp—p K4 Nrms = 0.35 Np—p
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Noise

* Signal-to-noise ratio

NRMS —_ 035 Np_p —_ 07

S/N=5/0.7=7.14
Vems = Vp—p/2 =5 / /
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Noise

* We wish for the S/N to be high enough in order to identify correct stimulus
* Arule of thumb is for the S/N to be at least 3
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Noise

* The probability distribution of noise can be measured and modeled

Uniform Noise
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Handling Noise

* Knowing the noise distribution yields some interesting properties for improving the accuracy of our measurements
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Handling Noise

* How many measurements should | take?  Answer: how certain do | need to be?
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Handling Noise

* How many measurements should | take?

Annex:

The variance of a random variable X is the expected value of the squared deviation from the mean of

X, u=E[X]:
Var(X) = E[X — u?]
Discrete random variable Absolutely continuous random variable Properties
= 2 Var(X) = | x?*f(x)dx — u?
Var(X) = Zpl(xl 2 (&) jR 10 H e Var(X + a) = Var(X)
« Var(aX) = a*Var(X)
u=E[X]= Eplxl u=E[X]= j xf(x)dx
R




Handling Measurement Noise

Handling Noise

* How many measurements should | take?  Answer: how certain do | need to be?
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Handling Noise

* How many measurements should | take?  Answer: how certain do | need to be?
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Handling Noise

* How many measurements should | take?
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Answer: how certain do | need to be?
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RANSAC

* Suppose that we have the following measurements, and we know that our model is a linear function: F(x) = ax + b
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RANSAC:: RANdom SAmple Consensus

* Suppose that we have the following measurements, and we know that our model is a linear function: F(x) = ax + b

RANSAC steps:

1. Randomly select n number of samples.
n being the degrees of freedom for our model. 2 in our example.

2. Fit our model into these samples.

3. Measure the number of inliers given a tolerance distance d.
This is our assumption’s score.

4. Repeat steps 1 through 3 for a different set of n samples.

Our best hypothesis is the assumption with the most inliers.

Trial and error
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RANSAC:: RANdom SAmple Consensus

* Suppose that we have the following measurements, and we know that our model is a linear function: F(x) = ax + b

RANSAC steps:

Assump. 1

2 inliers

1. Randomly select n number of samples.
n being the degrees of freedom for our model. 2 in our example.

2. Fit our model into these samples.

3. Measure the number of inliers given a tolerance distance d.
This is our assumption’s score.

4. Repeat steps 1 through 3 for a different set of n samples.

Our best hypothesis is the assumption with the most inliers.
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* Suppose that we have the following measurements, and we know that our model is a linear function: F(x) = ax + b

Assump. 1

2 inliers

Assump. 2

RANSAC steps:
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* Suppose that we have the following measurements, and we know that our model is a linear function: F(x) = ax + b

Assump. 1

2 inliers

Assump. 2

3inliers

RANSAC steps:
1. Randomly select n number of samples.
n being the degrees of freedom for our model. 2 in our example.
2. Fit our model into these samples.
3. Measure the number of inliers given a tolerance distance d.

4.

This is our assumption’s score.

Repeat steps 1 through 3 for a different set of n samples.

Our best hypothesis is the assumption with the most inliers.
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 Suppose that we have the following measurements, and we know that our model is a linear function: F(x) = ax + b

RANSAC steps:

1. Randomly select n number of samples.
n being the degrees of freedom for our model. 2 in our example.

2. Fit our model into these samples.

3. Measure the number of inliers given a tolerance distance d.
This is our assumption’s score.

4. Repeat steps 1 through 3 for a different set of n samples.

Our best hypothesis is the assumption with the most inliers.

Assump. 1 2 inliers
Assump.2 3 inliers Through RANSAC we can also identify outliers. Values that
| Assump.3  7inliers | are so noisy or resulted from an external disturbance and
should not be considered for our model.
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 Suppose that we have the following measurements, and we know that our model is a linear function: F(x) = ax + b

Through RANSAC we can also identify outliers. Values that
are so noisy or resulted from an external disturbance and
should not be considered for our model.

How do we define d?
* Do we know the distribution of noise?

* Finduando

Assump.1 2 inliers * Define an acceptable noise tolerance with respect to o

Assump. 2 3 inliers e Set:d=kK-0
| Assump. 3 7 inliers |




Handling Measurement Noise

RANSAC:: RANdom SAmple Consensus

 Suppose that we have the following measurements, and we know that our model is a linear function: F(x) = ax + b

Through RANSAC we can also identify outliers. Values that
are so noisy or resulted from an external disturbance and
should not be considered for our model.

How do we define d?
* Do we know the distribution of noise?

* Finduando

Assump.1 2 inliers * Define an acceptable noise tolerance with respect to o

Assump. 2 3 inliers e Set:d=kK-0
| Assump. 3 7 inliers |




Handling Measurement Noise

RANSAC:: RANdom SAmple Consensus

 Suppose that we have the following measurements, and we know that our model is a linear function: F(x) = ax + b

How many iterations/assumptions to evaluate?

B log(1 —p)
~log(1— (1 —e)def)

p: probability succeeding in finding a proper solution after [ iterations
(finding a sample of inliers = dof)

e: outlier ratio (#outliers/#samples)

dof: degrees of freedom

Assump. 1 2 inliers

Assump. 2 3inliers

| Assump. 3 7 inliers |
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 Suppose that we have the following measurements, and we know that our model is a linear function: F(x) = ax + b

How many iterations/assumptions to evaluate?

B log(1 —p)
~log(1— (1 —e)def)

p: probability succeeding in finding a proper solution after [ iterations

(finding a sample of inliers = dof)
e: outlier ratio (#outliers/#samples)
dof: degrees of freedom

Prob. of succeeding (q)

Proof in a single sample attempt (one RANSAC iteration): /
Assump. 1 2 inliers * Prob. of drawing a single inlier: 1 — e
*  Prob. of drawing as many inliers as needed: (1 — e)%°f

* Prob. of not drawing only inliers: 1 — (1 — e)%°f —
* Prob. of failing: “ | Prob. offailing (1~ q)

(1-q)=1-(1-e)%

Assump. 2 3inliers

| Assump. 3 7 inliers
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 Suppose that we have the following measurements, and we know that our model is a linear function: F(x) = ax + b

How many iterations/assumptions to evaluate?

B log(1 —p)
~ log(1 — (1 — e)def)

p: probability succeeding in finding a proper solution after [ iterations
(finding a sample of inliers = dof)

e: outlier ratio (#outliers/#samples)

dof: degrees of freedom

Prob. of failing in a single sample attempt (one RANSAC iteration):
Assump. 1 2 inliers (1- q) =1—-(1- e)dof

Assump. 2 3inliers

Prob. of failing in I sample attempts (T RANSAC iteration):
I
1-p)=(1—-(1—e)%f
( P) o ( ) ) Prob. of succeeding (p)

| Assump. 3 7 inliers |
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Any kind of model
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