Robust Mechatronics

Sensors and Actuators

Dr Loukas Bampis, Assistant Professor Mechatronics & Systems Automation Lab

<u>Sensor</u>

• A device that detects a change in a physical stimulus and responds to it by producing an electrical signal, which can be measured or recorded.

<u>Sensor</u>

• A device that detects a change in a physical stimulus and responds to it by producing an electrical signal, which can be measured or recorded.

<u>Passive</u>

- They generate an electrical signal in response to a stimulus without requiring additional electrical power, converting the energy of the incoming stimulus into the form of the outgoing electrical signal Example:
 - Thermocouple

<u>Active</u>

- In order to produce the output signal, they require power consumption that comes from an external source Example:
 - LM335

<u>Analog</u>

- Sensors that measure physical quantities and deliver analog output signals
 - Temperature
 - Luminosity
 - Humidity
 - Ph
 - ...

<u>Digital</u>

- Sensors whose data is converted and transmitted in digital form
 - Temperature
 - Luminosity
 - Humidity
 - Ph
 - ...

01001100 01111000 00110010

Timely measurements

Time Continuous

- A system that determines the value of the measurable quantity in real time by producing a continuous signal.
 Example:
 - Light Dependent Resistor LDR

<u>Time Discrete</u>

- A system that determines the value of the measurable quantity at regular intervals by producing a discrete signal.
 Example:
 - Measure ambient brightness every five minutes
 - Camera

Transfer Function

Linear ٠

•

- $S(x) = \alpha + b x$ $S(x) = \alpha + b \ln(x)$ $S(x) = \alpha e^{k x}$ Logarithmic
- Exponential ٠
- Polynomial •

Sensitivity

Whether the output of the sensor varies per unit of change of its input ٠

Accuracy

• The deviation of the mean value of a group of sensor measurements from the point where it was intended to be in the same stimulus.

Repeatability

• The size of the dispersion of a group of measurements of the sensor at the same stimulus.

Accuracy

• The deviation of the mean value of a group of sensor measurements from the point where it was intended to be in the same stimulus.

Repeatability

• The size of the dispersion of a group of measurements of the sensor at the same stimulus.

Linearity

• The ability of a sensor to assign values in a linear region.

The correction can be carried out through:

- Drawing a straight line to connect the two ends of the nonlinear curve
- Drawing a nonlinear line by the least squares method

Local linearity

• In many cases, a nonlinear function can be considered linear within a limited range of values

Examples of sensors

Example

The temperature sensor LM35 exhibits linear behavior. Design an experiment to find its transfer function.

Vin: 4 to 30Volt

Example

The temperature sensor LM35 exhibits linear behavior. Design an experiment to find its transfer function.

Example

The temperature sensor LM35 exhibits linear behavior. Design an experiment to find its transfer function.

Example experimental protocol ?

Example

The temperature sensor LM35 exhibits linear behavior. Design an experiment to find its transfer function.

Example experimental protocol

Example

The temperature sensor LM35 exhibits linear behavior. Design an experiment to find its transfer function.

Example experimental protocol

Example

The temperature sensor LM35 exhibits linear behavior. Design an experiment to find its transfer function.

Example

Design an experiment to find the transfer function of the LM35 temperature sensor.

There are two main approaches to control an Actuator:

• Digital to Analog Converter (DAC)

• Pulse Width Modulation (PWM)

Digital to Analog Converters (DAC)

00001111 Digital to Analog Converter Analogue signal

0 0 0 0 1 1 1

Register

PWM:: Using average voltage as analog equivalent

Signal Modulation

 Process by which one or more characteristics of a periodic waveform (Carrier Signal) are changed according to another fluctuating signal (Modulation Signal)

- Examples:
 - Amplitude Modulation AM
 - Frequency Modulation FM

Pulse Width Modulation

- It is a method for controlling the average power provided by a digital signal.
- The average voltage (and amperage) is controlled by turning the power supply on and off at a specific rate.
- It is used
 - for producing approximate analog voltage values
 - Load control through digital outputs

Pulse Width Modulation

- **Period** T: The time required for a full cycle. It is the inverse of frequency $T = \frac{1}{f}$
- Ton (on time) : The time the signal remains in a high state within a period
- Toff (off time): The time the signal remains in a low state within a period
- **Duty Cycle** *D* : The percentage of time the signal is in a **high** state within a period

Pulse Width Modulation:: Applications

Pulse Width Modulation through 555 Circuit

Pulse Width Modulation through 555 Circuit

Pulse Width Modulation algorithmic production

٠

•

