CHAPTER

3

Elementary Quantum Physics

The triumph of modern physics is the triumph of quantum mechanics. Even the sim-
plest experimental observation that the resistivity of a metal depends linearly on the
temperature can only be explained by quantum physics, simply because we must take
the mean speed of the conduction electrons to be nearly independent of temperature.
The modern definitions of voltage and ohm, adopted in January 1990 and now part of
the IEEE standards, are based on Josephson and quantum Hall effects, both of which
are quantum mechanical phenomena.

One of the most important discoveries in physics has been the wave—particle
duality of nature. The electron, which we have so far considered to be a particle and
hence to be obeying Newton’s second law (F = ma), can also exhibit wave-like prop-
erties quite contrary to our intuition. An electron beam can give rise to diffraction
patterns and interference fringes, just like a light wave. Interference and diffraction
phenomena displayed by light can only be explained by treating light as an electro-
magnetic wave. But light can also exhibit particle-like properties in which it behaves
as if it were a stream of discrete entities (“photons’’), each carrying a linear momen-
tum and each interacting discretely with electrons in matter (just like a particle collid-
ing with another particle).

3.1 PHOTONS

3.1.1 LIGHT AS A WAVE

In introductory physics courses, light is considered to be a wave. Indeed, such phe-
nomena as interference, diffraction, refraction, and reflection can all be explained
by the theory of waves. In all these phenomena, a ray of light is considered to be an
electromagnetic (EM) wave with a given frequency, as depicted in Figure 3.1. The
electric and magnetic fields, E, and B, of this wave are perpendicular to each other and
to the direction of propagation x. The electric field E, at position x at time ¢ may be
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Figure 3.1 The classical view of light as an electromagnetic wave.
An electromagnelic wave is a traveling wave with time-varying electric and magnetic fields that
are perpendicular to each other and to the direction of propagation.
described by
Ey(x,t) = E,sin(kx — wt) [3.1]

where k is the wavenumber (propagation constant) related to the wavelength A by
k =2m /A, and w is the angular frequency of the wave (or 2w v, where v is the fre-
quency). A similar equation describes the variation of the magnetic field B, (directed
along z) with x at any time ¢. Equation 3.1 represents a traveling wave in the x direc-
tion, which, in the present example, is a sinusoidally varying function (Figure 3.1). The
velocity of the wave (strictly the phase velocity) is

= VA

o
I
=|e

where v is the frequency. The intensity I, that is, the energy flowing per unit area per
second, of the wave represented by Equation 3.1 is given by

1 2

o
where ¢, is the absolute permittivity.

Understanding the wave nature of light is fundamental to understanding interfer-
ence and diffraction, two phenomena that we experience with sound waves almost on
a daily basis. Figure 3.2 illustrates how the interference of secondary waves from the
two slits S; and S, gives rise to the dark and bright fringes (called Young’s fringes)
on a screen placed at some distance from the slits. At point P on the screen, the waves
emanating from S; and S, interfere constructively, if they are in phase. This is the
case if the path difference between the two rays is an integer multiple of the wave-
length A, or

S1P - S2P = nA

where n is an integer. If the two waves are out of phase by a path difference of A /2, or

1
SiP - 5P = (n+ E)A
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Figure 3.2 Schematic illustration of Young’s double-slit experiment.
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Figure 3.3 Diffraction patterns obtained by passing X-rays through crystals can only be explained by using ideas based
on the interference of waves.

(o) Diffraction of X-rays from a single crystal gives a diffraction pattern of bright spots on a photographic film.

(b) Diffraction of X-rays from a powdered crystalline material or a polycrystalline material gives a diffraction pattern of
bright rings on a photographic film.

cattered X-rays

"’ Single crystal

{c) X-ray diffraction involves the constructive interference of waves being “reflected” by various atomic planes in the crystal.

then the waves interfere destructively and the intensity at point P vanishes. Thus, in the
y direction, the observer sees a pattern of bright and dark fringes.

When X-rays are incident on a crystalline material, they give rise to typical dif-
fraction patterns on a photographic plate, as shown in Figure 3.3a and b, which can
only be explained by using wave concepts. For simplicity, consider two waves, / and
2, in an X-ray beam. The waves are initially in phase, as shown in Figure 3.3c. Sup-
pose that wave ! is “reflected” from the first plane of atoms in the crystal, whereas
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wave 2 is “reflected’’ from the second plane:.l After reflection, wave 2 has traveled an
additional distance equivalent to 2d sin 6 before reaching wave 1. The path difference
between the two waves is 2d sin 6, where d is the separation of the atomic planes. For
constructive interference, this must be nA, where n is an integer. Otherwise, waves /
and 2 will interfere destructively and will cancel each other. Waves reflected from ad-
jacent atomic planes interfere constructively to constitute a diffracted beam only when
the path difference between the waves is an integer multiple of the wavelength, and
this will only be the case for certain directions. Therefore the condition for the
existence of a diffracted beam is

2dsin@ = n\ n=1,2,3,... [3.3]

The condition expressed in Equation 3.3, for observing a diffracted beam, forms
the whole basis for identifying and studying various crystal structures (the science of
crystallography). The equation is referred to as Bragg’s law, and arises from the con-
structive interference of waves.

Aside from exhibiting wave-like properties, light can behave like a stream of “par-
ticles” of zero rest-mass. As it turns out, the only way to explain a vast number of
experiments is to view light as a stream of discrete entities or energy packets called
photons, each carrying a quantum of energy Av, and momentum 4 /A, where 4 is a uni-
versal constant that can be determined experimentally, and v is the frequency of light.
This photonic view of light is drastically different than the simple wave picture and
must be examined closely to understand its origin.

3.1.2 THE PHOTOELECTRIC EFFECT

Consider a quartz glass vacuum tube with two metal electrodes, a photocathode and an
anode, which are connected externally to a voltage supply V (variable and reversible)
via an ammeter, as schematically illustrated in Figure 3.4. When the cathode is illumi-
nated with light, if the frequency v of the light is greater than a certain critical value vy,
the ammeter registers a current /, even when the anode voltage is zero (i.e., the supply
is bypassed). When light strikes the cathode, electrons are emitted with sufficient ki-
netic energy to reach the opposite electrode. Applying a positive voltage to the anode
helps to collect more of the electrons and thus increases the current, until it saturates
because all the photoemitted electrons have been collected. The current, then, is lim-
ited by the rate of supply of photoemitted electrons. If, on the other hand, we apply a
negative voltage to the anode, we can “push’ back the photoemitted electrons and
hence reduce the current /. Figure 3.5a shows the dependence of the photocurrent on
the anode voltage, for one particular frequency of light.

Recall that when an electron traverses a voltage difference V, its potential energy
changes by eV (potential difference is defined as work done per unit charge). When a
negative voltage is applied to the anode, the electron has to do work to get to this elec-
trode, and this work comes from its kinetic energy just after photoemission. When the
negative anode voltage V is equal to Vj, which just “extinguishes’ the current I, we

! Strictly, one must consider the scattering of waves from the electrons in individual atoms (e.g., atoms A and B in
Figure 3.3c) and examine the constructive interference of these scattered waves, which leads to the same condition
as that derived in Equation 3.3.
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Figure 3.4 The photoelectric effect.
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(a) Photoelectric current versus voltage when
the cathode is illuminated with light of

identical wavelength but different intensities
(1). The saturation current is proportional to the
light intensity.

Figure 3.5 Results from the photoelectric experiment.
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(b) The stopping voltage and therefore the
maximum kinetic energy of the emitted
electron increases with the frequency of light,
v. (The light intensity is not the same; it is
adjusted to keep the saturation current the
same.)

know that the potential energy “gained” by the electron is just the kinetic energy lost

by the electron, or

1 2
eVp = Emev = KE,,

where v is the velocity and KE,, is the kinetic energy of the electron just after photo-
emission. Therefore, we can conveniently measure the maximum kinetic energy KE,,

of the ¢mitted electrons.

For a given frequency of light, increasing the intensity of light I requires the same

voltage V; to extinguish the current; that is, the KE,,

of emitted electrons is indepen-

dent of the light intensity I. This is quite surprising. However, increasing the intensity
does increase the saturation current. Both of these effects are noted in the -V results

shown in Figure 3.5a.
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Figure 3.6 The effect of varying the frequency of light e
and the cathode material in the photoelectric experiment. Re
The lines for the different materials have the same slope h ~®4
but different intercepts.
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Since the magnitude of the saturation photocurrent depends on the light intensity
I, whereas the KFE of the emitted electron is independent of I, we are forced to con-
clude that only the number of electrons ejected depends on the light intensity. Further-
more, if we plot KE,, (from the V| value) against the light frequency v for different
electrode metals for the cathode, we find the typical behavior shown in Figure 3.6.
This shows that the KE of the emitted electron depends on the frequency of light. The
experimental results shown in Figure 3.6 can be summarized by a statement that relates
the KE,, of the electron to the frequency of light and the electrode metal, as follows:

KE,, = hv — hy, [3.4]

where £ is the slope of the straight line and is independent of the type of metal, whereas
vy depends on the electrode material for the photocathode (e.g., vo1, voz, etc.). Equa-
tion 3.4 is essentially a succinct statement of the experimental observations of the photo-
electric effect as exhibited in Figure 3.6. The constant 4 is called Planck’s constant,
which, from the slope of the straight lines in Figure 3.6, can be shown to be about
6.6 x 10734 J 5. This was beautifully demonstrated by Millikan in 1915, in an excellent
series of photoelectric experiments using different photocathode materials.

The successful interpretation of the photoelectric effect was first given in 1905
by Einstein, who proposed that light consists of “energy packets,” each of which has
the magnitude Av. We can call these energy quanta photons. When one photon strikes
an electron, its energy is transferred to the electron. The whole photon becomes ab-
sorbed by the electron. Yet, an electron in a metal is in a lower state of potential energy
(PE) than in vacuum, by an amount ®, which we call the work function of the metal,
as illustrated in Figure 3.7. The lower PE is what keeps the electron in the metal;
otherwise, it would “drop out.”
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This lower PE is a result of the Coulombic attraction interaction between the elec-
tron and the positive metal ions. Some of the photon energy hv therefore goes toward
overcoming this PE barrier. The energy that is left (hv — &) gives the electron its KE.
The work function ® changes from one metal to another. Photoemission only occurs
when hv is greater than ®. This is clearly borne out by experiment, since a critical fre-
quency vy is needed to register a photocurrent. When v is less than vy, even if we use
an extremely intense light, no current exists because no photoemission occurs, as
demonstrated by the experimental results in Figure 3.6. Inasmuch as ® depends on the
metal, so does vy. Therefore, in Einstein’s interpretation Avy = ®. In fact, the mea-
surement of vy constitutes one method of determining the work function of the metal.

This explanation for the photoelectric effect is further supported by the fact that the
work function ® from hvj is in good agreement with that from thermionic emission ex-
periments. There is an apparent similarity between the I~V characteristics of the photo-
tube and that of the vacuum tube used in early radios. The only difference is that in the
vacuum tube, the emission of electrons from the cathode is achieved by heating the cath-
ode. Thermal energy ejects some electrons over the PE barrier ®. The measurement of
¢ by this thermionic emission process agrees with that from photoemission experiments.

In the photonic interpretation of light, we still have to resolve the meaning of the
intensity of light, because the classical intensity in Equation 3.2

I= %csoﬂg

is obviously not acceptable. Increasing the intensity of illumination in the photoelec-
tric experiment increases the saturation current, which means that more electrons are

Classical
light intensity
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Figure 3.8 Intuitive visualization of
light consisting of a stream of photons

(not to be taken too literally).
SOURCE: R. Serway, C. J. Moses, and
C. A. Moyer, Modern Physics, Saunders c
College Publishing, 1989, p. 56,
figure 2.16(b).

emitted per unit time. We therefore infer that the cathode must be receiving more pho-
tons per unit time at higher intensities. By definition, “intensity” refers to the amount
of energy flowing through a unit area per unit time. If the number of photons crossing
a unit area per unit time is the photon flux, denoted by I',p, then the flow of energy
through a unit area per unit time, the light intensity, is the product of this photon flux
and the energy per photon, that is,

Light
where
AN
Photon flux Tpn = AAph [3.6]
t

in which A Ny, is the net number of photons crossing an area A in time Az. With the
energy of a photon given as hv and the intensity of light defined as I'pyhv, the ex-
planation for the photoelectric effect becomes self-consistent. The interpretation of
light as a stream of photons can perhaps be intuitively imagined as depicted in
Figure 3.8.

m ENERGY OF A BLUE PHOTON What is the energy of a blue photon that has a wavelength of
450 nm?

SOLUTION

The energy of the photon is given by

he (6.6 x 1073 7J5)(3 x 108 ms~!)

E ::h = —— = =44 10—19J
ph = AV = 450 x 10-°m %

Generally, with such small energy values, we prefer electron—volts (eV), so the energy of
the photon is
4.4 x 1071%]

=2.75¢eV
1.6 x 1019 J/eV
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THE PHOTOELECTRIC EXPERIMENT In the photoelectric experiment, green light, with a wave-
length of 522 nm, is the longest-wavelength radiation that can cause the photoemission of elec-
trons from a clean sodium surface.

a. What is the work function of sodium, in electron—volts?

b. If UV (ultraviolet) radiation of wavelength 250 nm is incident to the sodium surface, what
will be the kinetic energy of the photoemitted electrons, in electron—volts?

c. Suppose that the UV light of wavelength 250 nm has an intensity of 20 mW cm™2. If the
emitted electrons are collected by applying a positive bias to the opposite electrode, what
will be the photoelectric current density?

SOLUTION

a. At threshold, the photon energy just causes photoemissions; that is, the electron just over-
comes the potential barrier ®. Thus, hc/Ay = e®, where ® is the work function in eV,
and A, is the longest wavelength.

he (6.626 x 1073 Js)(3 x 103 ms™!)

o= e _ =238 eV
eho (1.6 x 10-P J/eV)(522 x 10-°m) ©

b. The energy of the incoming photon E; is (hc/A), so the excess energy over e® goes to the
kinetic energy of the electron. Thus,
hc _ (6.626 x 1073#75)(3 x 108 ms™!)

KE=— - =
er (1.6 x 1019 J/eV)(250 x 10~ m)

—2.38 eV = 2.58 eV

c. The light intensity (defined as energy flux) is given by I = 'y, (hc/A), where T'py, is the
number of photons arriving per unit area per unit time; that is, photon flux and (hc/)) is
the energy per photon. Thus, if each photon releases one electron, the electron flux will be
equal to the photon flux, and the current density, which is the charge flux, will be

eI (1.6 x 107 C)(20 x 1073 x 10*Js™' m2)(250 x 10~* m)

he (6.626 x 10-34Js)(3 x 108 ms~!)

=40.3 Am™2 or 4.0 mA cm™?

J =eI"ph =

EXAMPLE 3.2

3.1.3 COMPTON SCATTERING

When an X-ray strikes an electron, it is deflected, or “scattered.” In addition, the elec-
tron moves away after the interaction, as depicted in Figure 3.9. The wavelength of the
incoming and scattered X-rays can readily be measured. The frequency v’ of the scat-
tered X-ray is less than the frequency v of the incoming X-ray. When the KE of the
electron is determined, we find that

KE = hv — b/

Since the electron now also has a momentum p,, then from the conservation of linear mo-
mentum law, we are forced to accept that the X-ray also has a momentum. The Compton
effect experiments showed that the momentum of the photon is related to its wavelength by

h

= - 7
p Y (3.7]

Momentum of
a photon
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Figure 3.9 Scattering of an X-ray
photon by a “free” electron in a
conductor. X c

We see that a photon not only has an energy Av, but also a momentum p, and it
interacts as if it were a discrete entity like a particle. Therefore, when discussing the
properties of a photon, we must consider its energy and momentum as if it were a
particle.

We should mention that the description of the Compton effect shown in Figure 3.9
is, in fact, the inference from a more practical experiment involving the scattering of
X-rays from a metal target. A collimated monochromatic beam of X-rays of wave-
length A, strikes a conducting target, such as graphite, as illustrated in Figure 3.10a.
A conducting target contains a large number of nearly “free’’ electrons (conduction
electrons), which can scatter the X-rays. The scattered X-rays are detected at various
angles 6 with respect to the original direction, and their wavelength A’ is measured.
The result of the experiment is therefore the scattered wavelength A’ measured at var-
ious scattering angles 6, as shown in Figure 3.10b. It turns out that the A’ versus 6
results agree with the conservation of linear momentum law applied to an X-ray pho-
ton colliding with an electron with the momentum of the photon given precisely by
Equation 3.7.

The photoelectric experiment and the Compton effect are just two convincing
experiments in modern physics that force us to accept that light can have particle-like
properties. We already know that it can also exhibit wave-like properties, in such
experiments as Young’s interference fringes. We are then faced with what is known as
the wave—particle dilemma. How do we know whether light is going to behave like a
wave or a particle? The properties exhibited by light depend very much on the nature
of the experiment. Some experiments will require the wave model, whereas others may
use the particulate interpretation of light. We should perhaps view the two interpreta-
tions as two complementary ways of modeling the behavior of light when it interacts
with matter, accepting the fact that light has a dual nature. Both models are needed for
a full description of the behavior of light.

The expressions for the energy and momentum of the photon, £ = hv and
p = h/A, can also be written in terms of the angular frequency w(= 27 v) and the
wave number k, defined as k = 27 /A. If we define h = h/2n, then

h

E=hv=ho and p=I=hk [3.8]
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(b) Results from the Compton experiment

Figure 3.10 The Compton experiment and its results.

X-RAY PHOTON ENERGY AND MOMENTUM X-rays are photons with very short wave-
lengths that can penetrate or pass through objects, hence their use in medical imaging, security
scans at airports, and many other applications including X-ray diffraction studies of crystal
structures. Typical X-rays used in mammography (medical imaging of breasts) have a wave-
length of about 0.6 angstrom (1 A = 107'° m). Calculate the energy and momentum of an
X-ray photon with this wavelength, and the velocity of a corresponding electron that has the
same momentum.

SOLUTION

The photon energy E,;, is given by

he (6.6 x 107*#Js)(3 x 108 ms™) eV J!
Ep=hv=—= X
A 0.6 x 10~19m 1.6 x 10-1°

= 2.06 x 10* eV or 20.6 keV

The momentum p of this X-ray photon is

_h 6.6 1073 7Js
p—k— 0.6 x 10-9m

=11x102 kgms™!

ll
EXAMPLE 3.3
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A corresponding electron with the same momentum, 7, Vejecron = P, Would have a velocity

p _11x1072kgms™!
m, 9.1 x10-3kg

Velectron = =12x 10" ms™!

This is much greater than the average speed of conduction (free) electrons whizzing around in-
side a metal, which is ~10® ms~!.

Hot body

3.14 BLACK BODY RADIATION

Experiments indicate that all objects emit and absorb energy in the form of radiation,
and the intensity of this radiation depends on the radiation wavelength and temperature
of the object. This radiation is frequently termed thermal radiation. When the object
is in thermal equilibrium with its surroundings, that is, at the same temperature, the
object absorbs as much radiation energy as it emits. On the other hand, when the tem-
perature of the object is above the temperature of its surroundings, there is a net emis-
sion of radiation energy. The maximum amount of radiation energy that can be emitted
by an object is called the black body radiation. Although, in general, the intensity of
the radiated energy depends on the material’s surface, the radiation emitted from a cav-
ity with a small aperture is independent of the material of the cavity and corresponds
very closely to black body radiation.

The intensity of the emitted radiation has the spectrum (i.e., intensity vs. wave-
length characteristic), and the temperature dependence illustrated in Figure 3.11. It is
useful to define a spectral irradiance I, as the emitted radiation intensity (power per
unit area) per unit wavelength, so that I, §A is the intensity in a small range of wave-
lengths 5A. Figure 3.11 shows the typical I, versus A behavior of black body radiation
at two temperatures. We assume that the characteristics of the radiation emerging from
the aperture represent those of the radiation within the cavity.

Escaping black body
radiation

=
\

Spectral irradiance

Small hole acts as a black body

Figure 3.11 Schematic illustration of black body radiation and its characteristics.

Spectral irradiance versus wavelength at two temperatures (3000 K is about the temperature of the incandescent
tungsten filament in a light bulb).
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Classical physics predicts that the acceleration and deceleration of the charges
due to various thermal vibrations, oscillations, or motions of the atoms in the surface
region of the cavity material result in electromagnetic waves of the emissions. These
waves then interfere with each other, giving rise to many types of standing electro-
magnetic waves with different wavelengths in the cavity. Each wave contributes an
energy k7 to the emitted intensity. If we calculate the number of standing waves within
a small range of wavelength, the classical prediction leads to the Rayleigh—Jeans law
in which I, o« 1/A* and I, o« T, which are not in agreement with the experiment,
especially in the short-wavelength range (see Figure 3.11).

Max Planck (1900) was able to show that the experimental results can be
explained if we assume that the radiation within the cavity involves the emission and
absorption of discrete amounts of light energy by the oscillation of the molecules of
the cavity material. He assumed that oscillating molecules emit and absorb a quan-
tity of energy that is an integer multiple of a discrete energy quantum that is deter-
mined by the frequency v of the radiation and given by Av. This is what we now call
a photon. He then considered the energy distribution (the statistics) in the molecular
oscillations and took the probability of an oscillator possessing an energy nhv
(where n is an integer) to be proportional to the Boltzmann factor, exp(—nhv/kT).
He eventually derived the mathematical form of the black body radiation character-
istics in Figure 3.11. Planck’s black body radiation formula for I, is generally ex-
pressed as

21 hc?
h
#lon(557) 1]
AT

where £ is the Boltzmann constant. Planck’s radiation law based on the emission and
absorption.of photons is in excellent agreement with all observed black body radiation
characteristics as depicted in Figure 3.11.

Planck’s radiation law is undoubtedly one of the major successes of modern
physics. We can take Equation 3.9 one step further and derive Stefan’s black body ra-
diation law that was used in Chapter 2 to calculate the rate of radiation energy emitted
from the hot filament of a light bulb. If we integrate I, over all wavelengths,? we will
obtain the total radiative power Pg emitted by a black body per unit surface area at a
temperature T,

I, = [3.9]

fore] 277.'5’(4 4 4
Ps = I, d\ = T = osT 3.10]
S /0 " (15c2h3) s [
27°k? -8 -2 4
where os = =5670x10°Wm K [3.11]
15¢2h3

2The integration of Equation 3.9 can be done by looking up definite integral tables in math handbooks—we only
need the result of the mathematics, which is Equation 3.10. The Ps in Equation 3.10 is sometimes called the radiant
emittance. Stefan’s law is also known as the Stefan-Boltzmann law.
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Equation 3.10 in which Ps = osT* is Stefan’s law for black body radiation, and the o
in Equation 3.11 is the Stefan constant with a value of approximately 5.67 x
1078 W m~2 K™*. Stefan’s law was known before Planck used quantum physics to derive
his black body radiation law embedded in /,. A complete explanation of Stefan’s law
and the value for os however had to wait for Planck’s law. The 4 in Equation 3.10 or
3.11 is a clear pointer that the origin of Stefan’s law lies in quantum physics.

EXAMPLE 3.4

Stefan’s law
for a real
surface

STEFAN'S LAW AND THE LIGHT BULB  Stefan’s law as stated in Equation 3.10 applies to a per-
fect black body that is emitting radiation into its environment which is at absolute zero. If the
environment or the surroundings of the black body is at a finite temperature 7,, than the sur-
roundings would also be emitting radiation. The same black body will then also absorb radia-
tion from its environment. By definition, a black body is not only a perfect emitter of radiation
but also a perfect absorber of radiation. The rate of radiation absorbed from the environment
per unit surface is again given by Equation 3.10 but with T, instead of T since it is the surround-
ings that are emitting the radiation. Thus, 057} is the absorbed radiation rate from the sur-
roundings, so

Net rate of radiative power emission per unit surface = o5T* — 05T

Further, not all surfaces are perfect black bodies. Black body emission is the maximum possi-
ble emission from a surface at a given temperature. A real surface emits less than a black body.
Emissivity ¢ of a surface measures the efficiency of a surface in terms of a black body emitter;
it is the ratio of the emitted radiation from a real surface to that emitted from a black body at a
given temperature and over the same wavelength range. The total net rate of radiative power
emission becomes

Pradiation = S80’s (T4 - T04) [3.]2]

where S is the surface area that is emitting the radiation. Consider the tungsten filament of a
100 W light bulb in a lamp. When we switch the lamp on, the current through the filament gen-
erates heat which quickly heats up the filament to an operating temperature T;. At this tempera-
ture, the electric energy that is input into the bulb is radiated away from the filament as radiation
energy. A typical 100 W bulb filament has a length of 57.9 cm and a diameter of 63.5 pm. Its
surface area is then

S = 7 (63.5 x 107° m)(0.579 m) = 1.155 x 10~* m?

The emissivity ¢ of tungsten is about 0.35. Assuming that under steady-state operation all the
electric power that is input into the bulb’s filament is radiated away,

100 W = Prygiaion = Seos(T} — T))
= (1.155 x 107* m?)(0.35)(5.67 x 10~ W m~> K™*)(T} — 300%)
Solving we find,
T =2570K  or  2297°C

which is well below the melting temperature of tungsten which is 3422 °C. The second term that
has T} has very little effect on the calculation as radiation absorption from the environment is
practically nil compared with the emitted radiation at 7.

The shift in the spectral intensity emitted from a black body with temperature is of partic-
ular interest to many photoinstrumention engineers. The peak spectral intensity in Figure 3.11
occurs at a wavelength A, , which, by virtue of Equation 3.9, depends on the temperature of
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the black body. By substituting a new variable x = hc/(kT A) into Equation 3.9 and differenti-
ating it, or plotting it against x, we can show that the peak occurs when

Amax T =~ 2.89 x 107 m K

which is known as Wien’s displacement law. The peak emission shifts to lower wavelengths as
the temperature increases. We can calculate the wavelength A,,x corresponding to the peak in the
spectral distribution of emitted radiation from our 100 W lamp: Anpe = (2.89 x 1073 m K)/
(2570 K) = 1.13 pm (in the infrared).

Wien’s dis-
placement
law
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3.2.1 DE BROGLIE RELATIONSHIP

It is apparent from the photoelectric and Compton effects that light, which we thought
was a wave, can behave as if it were a stream of particulate-like entities called photons.
Can electrons exhibit wave-like properties? Again, this depends on the experiment and
on the energy of the electrons.

When the interference and diffraction experiments in Figures 3.2 and 3.3 are
repeated with an electron beam, very similar results are found to those obtainable with
light and X-rays. When we use an electron beam in Young’s double-slit experiment,
we observe high- and low-intensity regions (i.e., Young’s fringes), as illustrated in
Figure 3.12. The interference pattern is viewed on a fluorescent TV screen. When an
energetic electron beam hits an Al polycrystalline sample, it produces diffraction
rings on a fluorescent screen (Figure 3.13), just like X-rays do on a photographic

Fluorescent screen

50kV
—1 Two slits

o

Filament > —> — el @

Elec®

Vacuum

L -

Electron diffraction fringes on
the screen

Figure 3.12 Young's double-slit experiment with electrons involves an electron
gun and two slits in a cathode ray tube (CRT) (hence, in vacuum).

Electrons from the filament are accelerated by a 50 kV anode voltage to produce a
beam that is made to pass through the slits. The electrons then produce a visible
pattern when they strike a fluorescent screen (e.g., a TV screen), and the resulting
visual pattern is photographed.

SOURCE: Pattern from C. Jénsson, D. Brandt, and S. Hirschi, Am. J. Physics, 42, 1974, p. 9,
figure 8. Used with permission.
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Cathode rays:
electrons

(a) Thomson diffracted electrons by using a thin gold
foil and produced a diffraction pattern on the screen of
his apparatus in (b). The foil was polycrystalline, so
the diffraction pattern was circular rings.

(c) Electron diffraction
pattern obtained by G. P.
Thomson using a gold foil
target.

(d) Composite photograph showing diffraction
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Photographic plate
(retractable)
= Pump
Capillary tube
D / (0.23 mm dia.)
E 25 cm B =
e 7V
Foil Cathode
= Gas

Fluorescent viewing screen

(b) In Thomson's electron diffraction apparatus a beam of
electrons is generated in tube A, passed through collimating
tube B, and made to impinge on a thin gold foil C. The
transmitted electrons impinge on the fluorescent screen E,
or a photographic plate D, which could be lowered into

the path. The entire apparatus was evacuated during

the experiment.

patterns produced with an aluminum foil by
X-rays and electrons of similar wavelength.
Left: X-rays of A = 0.071 nm. Right: Electrons
of energy 600 eV.

() Diffraction pattern produced by
40 keV electrons passing through zinc
oxide powder. The distortion of the
pattern was produced by a small
magnet placed between the sample
and the photographic plate. An X-ray
diffraction pattern would not be
affected by a magnetic field.

Figure 3.13 The diffraction of electrons by crystals gives typical diffraction patterns that would be expected if waves

were being diffracted, as in X-ray diffraction with crystals.

SOURCE: (b} from G. P. Thomson, Proceedings of the Royal Society, A117, no. 600, 1928; (c} and (d) from A. P. French and
F. Taylor, An Introduction to Quantum Mechanics, Norton, New York, 1978, p. 75; (e} from R. B. Leighton, Principles of Modern

Physics, New York: McGraw-Hill, 1959, p. 84.
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plate. The diffraction pattern obtained with an electron beam (Figure 3.13) means that
the electrons are obeying the Bragg diffraction condition 24 sin 6 = nA just as much as
the X-ray waves.

Since we know the interatomic spacing d and we can measure the angle of diffrac-
tion 26, we can readily evaluate the wavelength A associated with the wave-like behav-
ior of the electrons. Furthermore, from the accelerating voltage V in the electron tube,
we can also determine the momentum of the electrons, because the kinetic energy
gained by the electrons, (p?/2m,), is equal to eV. Simply by adjusting the accelerating
voltage V, we can therefore study how the wavelength of the electron depends on the
momentum.

As a result of such studies and other similar experiments, it has been found that an
electron traveling with a momentum p behaves like a wave of wavelength A given by

A= — [3.13]
p

This is just the reverse of the equation for the momentum of a photon given its
wavelength. The same equation therefore relates wave-like and particle-like properties
to and from each other. Thus,

> s

h
A= — or p=
p

is an equation that exposes the wave—particle duality of nature. It was first hypothe-
sized by De Broglie in 1924. As an example, we can calculate the wavelengths of a
number of particle-like objects:

a. AS50 gram golf ball traveling at a velocity of 20 m s™.
The wavelength is
h 6.63 x 1077

A= — = = 6.63 x 107*
mv (50 x 10~3kg)(20m 1) 8 "

The wavelength is so small that this golf ball will not exhibit any wave effects.
Firing a stream of golf balls at a wall will not result in “diffraction rings’’ of golf balls.

b. Aproton traveling at 2200 m s~ .

Using m, = 1.67 x 107 kg, we have A = (h/mv) ~ 0.18 nm. This is only
slightly smaller than the interatomic distance in crystals, so firing protons at a
crystal can result in diffraction. (Recall that to get a diffraction peak, we must sat-
isfy the Bragg condition, 2d sin & = nA.) Protons, however, are charged, so they
can penetrate only a small distance into the crystal. Hence, they are not used in
crystal diffraction studies.

c. Electron accelerated by 100 V.
This voltage accelerates the electron to a KE equal to eV. From KE =
p*/2m.=eV, we can calculate p and hence A =h/p. The result is
A = 0.123 nm. Since this is comparable to typical interatomic distances in solids,
we would see a diffraction pattern when an electron beam strikes a crystal. The
actual pattern is determined by the Bragg diffraction condition.

207

Wavelength of
the electron

De Broglie
relations



208

CHAPTER 3 ¢ ELEMENTARY QUANTUM PHYSICS

3.2.2 TIME-INDEPENDENT SCHRODINGER EQUATION

The experiments in which electrons exhibit interference and diffraction phenomena
show quite clearly that, under certain conditions, the electron can behave as a wave; in
other words, it can exhibit wave-like properties. There is a general equation that
describes this wave-like behavior and, with the appropriate potential energy and
boundary conditions, will predict the results of the experiments. The equation is called
the Schrodinger equation and it forms the foundations of quantum theory. Its funda-
mental nature is analogous to the classical physics assertion of Newton’s second law,
F = ma, which of course cannot be proved. As a fundamental equation, Schrédinger’s
has been found to successfully predict every observable physical phenomenon at the
atomic scale. Without this equation, we will not be able to understand the properties of
electronic materials and the principles of operation of many semiconductor devices.
We introduce the equation through an analogy.

A traveling electromagnetic wave resulting from sinusoidal current oscillations, or
the traveling voltage wave on a long transmission line, can generally be described by
a traveling-wave equation of the form

E(x, t) =E,exp jkx — wt) = E(x) exp(—jowt) [3.14]

where E(x) = Egexp(jkx) represents the spatial dependence, which is separate from
the time variation. We assume that no transients exist to upset this perfect sinusoidal
propagation. We note that the time dependence is harmonic and therefore predictable.
For this reason, in ac circuits we put aside the exp(—jwt) term until we need the
instantaneous magnitude of the voltage.

The average intensity I,, = %ce,,fEf, depends on the square of the amplitude. In
Young’s double-slit experiment, the intensity varies along the y direction, which means
that Z2 for the resultant wave depends on y. In the electron version of this experiment
in Figure 3.12, what changes in the y direction is the probability of observing elec-
trons; that is, there are peaks and troughs in the probability of finding electrons along
y, just like the E2 variation along y. We should therefore attach some probability inter-
pretation to the wave description of the electron.

In 1926, Max Born suggested a probability wave interpretation for the wave-like
behavior of the electron.

E(x,t) = E,sin(kx — wt)

is a plane traveling wavefunction for an electric field; experimentally, we measure and
interpret the intensity of a wave, namely |E(x, t)|. There may be a similar wave func-
tion for the electron, which we can represent by a function ¥ (x, ¢). According to Born,
the significance of W (x, t) is that its amplitude squared represents the probability of
finding the electron per unit distance. Thus, in three dimensions, if ¥ (x, y, z, t) repre-
sents the wave property of the electron, it must have one of the following interpretations:

|W(x, y, z, t)|? is the probability of finding the electron per unit volume at
x,y,zattimet.

|W (x, y, z, t)|* dx dy dz is the probability of finding the electron in a small
elemental volume dx dydz atx, y, z at time ¢.
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If we are just considering one dimension, then the wavefunction is W (x, t), and
|W(x, t)|% dx is the probability of finding the electron between x and (x + dx) at time 7.

We should note that since only |¥|? has meaning, not W, the latter function need
not be real; it can be a complex function with real and imaginary parts. For this reason,
we tend to use W* W, where W* is the complex conjugate of ¥, instead of |¥|?, to rep-
resent the probability per unit volume.

To obtain the wavefunction W (x, ¢) for the electron, we need to know how the
electron interacts with its environment. This is embodied in its potential energy func-
tion V = V (x, t), because the net force the electron experiences is given by

F=—dV/dx.

For example, if the electron is attracted by a positive charge (e.g., the proton in a
hydrogen atom), then it clearly has an electrostatic potential energy given by

‘ 2
V() =—

4rre,r

where r = /x2 + y2 + z2 is the distance between the electron and the proton.

If the PE of the electron is time independent, which means that V = V (x) in one
dimension, then the spatial and time dependences of W (x, #) can be separated, just as
in Equation 3.14, and the total wavefunction WV (x, 7) of the electron can be written as

jEt
W(x,t) =y¥(x) CXP(—T) [3.15]
where ¥ (x) is the electron wavefunction that describes only the spatial behavior, and E
is the energy of the electron. The temporal behavior is simply harmonic, by virtue of
exp(—Jj Et/h), which corresponds to exp(— jwt) with an angular frequency @ = E /h.
The fundamental equation that describes the electron’s behavior by determining v (x) is
called the time-independent Schrodinger equation. It is given by the famous equation
d* 2m
7t E-VIv =0 [3.16a]
where m is the mass of the electron.

This is a second-order differential equation. It should be reemphasized that the
potential energy V in Equation 3.16a depends only on x. If the potential energy of the
electron depends on time as well, that is, if V = V(x, t), then in general V¥ (x, ¢) can-
not be written as ¥ (x) exp(—jEt/h). Instead, we must use the full version of the
Schrodinger equation, which is discussed in more advanced textbooks.

In three dimensions, there will be derivatives of ¢ with respect to x, y, and z. We
use the calculus notation (dy/dx), differentiating v (x, y, z) with respect to x but
keeping y and z constant. Similar notations 3y /3y and 3y /3dz are used for derivatives
with respect to y alone and with respect to z alone, respectively. In three dimensions,
Equation 3.16a becomes

%y 3%y 3%y  2m
%2 Ty iy (E=V)Y =0 [3.16b]

where V = V(x,y,z) and ¥ = ¥ (x, y, 2).
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Equation 3.16b is a fundamental equation, called the time-independent Schrodinger
equation, the solution of which gives the steady-state behavior of the electron in a
time-independent potential energy environment described by V = V(x, y, z). By
solving Equation 3.16b, we will know the probability distribution and the energy of the
electron. Once v (x, y, z) has been determined, the total wavefunction for the electron
is given by Equation 3.15 so that

W (x,y,z,)* = ¥ (x, y, )

which means that the steady-state probability distribution of the electron is simply
1Y (x, y, 2)I%.

The time-independent Schrodinger equation can be viewed as a “mathematical
crank.” We input the potential energy of the electron and the boundary conditions, turn
the crank, and get the probability distribution and the energy of the electron under
steady-state conditions.

Two important boundary conditions are often used to solve the Schrédinger equa-
tion. First, as an analogy, when we stretch a string between two fixed points and put it
into a steady-state vibration, there are no discontinuities or kinks along the string. We
can therefore intelligently guess that because ¥ (x) represents wave-like behavior, it
must be a smooth function without any discontinuities.

The first boundary condition is that ¥ must be continuous, and the second is that
dV /dx must be continuous. In the steady state, these two conditions translate directly
to ¥ and dy/dx being continuous. Since the probability of finding the electron is
represented by ||, this function must be single-valued and smooth, without any
discontinuities, as illustrated in Figure 3.14. The enforcement of these boundary
conditions results in strict requirements on the wavefunction i (x), as a result of
which only certain wavefunctions are acceptable. These wavefunctions are called the
eigenfunctions (characteristic functions) of the system, and they determine the be-
havior and energy of the electron under steady-state conditions. The eigenfunctions
¥ (x) are also called stationary states, inasmuch as we are only considering steady-
state behavior.

It is important to note that the Schrodinger equation is generally applicable to all
matter, not just the electron. For example, the equation can also be used to describe
the behavior of a proton, if the appropriate potential energy V (x, y, z) and mass
(mproton) are used. Wavefunctions associated with particles are frequently called
matter waves.

Y w(x) not continuous ¥ %;/-,not continuous Y(x)  w(x) not single-valued

A)
N -
/ N LT W

—> x > x > x

Figure 3.14 Unacceptable forms of ¥ (x).
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THE FREE ELECTRON  Solve the Schrodinger equation for a free electron whose energy is E. J381U1dUI%E)
What is the uncertainty in the position of the electron and the uncertainty in the momentum of
the electron?

SOLUTION

Since the electron is free, its potential energy is zero, V = 0. In the Schrédinger equation, this
leads to

d*y + 2m Ey =0
dx? h? B
We can write this as

a*y
— + kY =0
dx? Ty
where we defined k> = (2m/h*)E. Solving the differential equation, we get
¥(x) = Aexp(jkx) or B exp(—jkx)

The total wavefunction is obtained by multiplying v (x) by exp(—j Et/h). We can define
a fictitious frequency for the electron by w = E /A and multiply ¥ (x) by exp(— jw?):

W(x,t) = Aexp jlkx — wt) or B exp j(—kx — wt)

Each of these is a traveling wave. The first solution is a traveling wave in the +x direction,
and the second one is in the —x direction. Thus, the free electron has a traveling wave solution
with a wavenumber k = 27 /A, that can have any value. The energy E of the electron is simply
KE, so

(hk)?
2m

KE = FE =

When we compare this with the classical physics expression KE = (p?/2m), we see that
the momentum is given by

= hk = —
p o p=7
This is the de Broglie relationship. The latter therefore results naturally from the
Schrodinger equation for a free electron.
The probability distribution for the electron is

[ (x)|> = |A exp j(kx)|* = A?

which is constant over the entire space. Thus, the electron can be anywhere between x = —oo
and x = +o00. The uncertainty Ax in its position is infinite. Since the electron has a well-
defined wavenumber k, its momentum p is also well-defined by virtue of p = hk. The uncer-
tainty Ap in its momentum is thus zero.

WAVELENGTH OF AN ELECTRON BEAM Electrons are accelerated through a 100 V potential
difference to strike a polycrystalline aluminum sample. The diffraction pattern obtained indi-
cates that the highest intensity and smallest angle diffraction, corresponding to diffraction from
the (111) planes, has a diffraction angle of 30.4°. From X-ray studies, the separation of the (111)
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planes is 0.234 nm. What is the wavelength of the electron and how does it compare with that
from the de Broglie relationship?

SOLUTION

Since we know the angle of diffraction 26 (= 30.4°) and the interplanar separation d (= 0.234 nm),
we can readily calculate the wavelength of the electron from the Bragg condition for diffraction,
2dsinf = nA. Withn =1,

A = 2dsin 6 = 2(0.234 nm) sin(15.2°) = 0.1227 nm

This is the wavelength of the electron.

When an electron is accelerated through a voltage V, it gains KE equal to eV, so p?/2m =
eV and p = (2meV)!/2, This is the momentum imparted by the potential difference V. From the
de Broglie relationship, the wavelength should be

h  h

P (2meV)»

2 1/2
= (mew)
2meV

Substituting for e, /4, and m, we obtain

_ 1.226 nm
- V12

A=

or

The experiment uses 100 V, so the de Broglie wavelength is

) = 1.226 nm _ 1.226 nm — 0.1226
= Tyiz T Tqeoiz L oeemm

which is in excellent agreement with that determined from the Bragg condition.

3.3 INFINITE POTENTIAL WELL:
A CONFINED ELECTRON

Consider the behavior of the electron when it is confined to a certain region,
0 <x <a. Its PE is zero inside that region and infinite outside, as shown in
Figure 3.15. The electron cannot escape, because it would need an infinite PE. Clearly
the probability |y|? of finding the electron per unit volume is zero outside 0 < x < a.
Thus, ¥ = 0 whenx < 0 and x > a, and ¢ is determined by the Schrédinger equation
in0 < x < a with V = 0. Therefore, in the region0 < x < a

d*y 2m

Ex_2+—h—2_E¢, =0 [3.17]

This is a second-order linear differential equation. As a general solution, we can take

¥(x) = Aexp(jkx) + Bexp(—jkx)
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Figure 3.15 Electron in a one-dimensional infinite PE well.

The energy of the electron is quantized. Possible wavefunctions and the probability distributions for the electron
are shown.

where k is some constant (to be determined) and substitute this in Equation 3.17 to
find k. We first note that ¢ (0) = 0; therefore, B = — A, so that

¥(x) = Alexp(jkx) — exp(—jkx)] = 2Aj sinkx [3.18]

We now substitute this into the Schrodinger Equation 3.17 to relate the energy E
to k. Thus, Equation 3.17 becomes

c1 2, 2m . .
—2Ajk“(sinkx) + h—2 EQRAjsinkx) =0
which can be rearranged to obtain the energy of the electron:
h2k?

= — 3.19
om [3.19]
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Since the electron has no PE within the well, its total energy E is kinetic energy KE,
and we can write
2
E=KE= 2%
2m
where p, is its momentum. Comparing this with Equation 3.19, we see that the momen-
tum of the electron must be

px = Lhk [3.20]

The momentum p, may be in the +x direction or the —x direction (which is the
reason for %), so the average momentum is actually zero, p,, = 0.

We have already seen this relationship, when we defined k as 27 /A (wavenumber)
for a free traveling wave. So the constant k here is a wavenumber-type quantity even
though there is no distinct traveling wave. Its value is determined by the boundary
condition at x = a where v = 0, or

Y(a) =2Ajsinka =0

The solution to sin ka = 0 is simply ka = n7, where n = 1, 2, 3, ... is an integer.
We exclude n = 0 because it will result in ¥ = 0 everywhere (no electron at all).

We notice immediately that k, and therefore the energy of the electron, can only
have certain values; they are quantized by virtue of n being an integer. Here, n is
called a quantum number. For each n, there is a special wavefunction

X

Ya(x) = 2Aj sin(n—) [3.21]
a

which is called an eigenfunction.3 All ¥, forn =1, 2,3... constitute the eigenfunc-
tions of the system. Each eigenfunction identifies a possible state for the electron. For
each n, there is one special k value, k, = nm/a, and hence a special energy value E,,
since

h2k?

2m

that is,

h2 2 h2 2
E, = (7tn) __h'n

oma . 8ma? (3.22]
The energies E, defined by Equation 3.22 withn = 1, 2, 3. .. are called eigenenergies
of the system.

We still have not completely solved the problem, because A has yet to be deter-
mined. To find A, we use what is called the normalization condition. The total prob-
ability of finding the electron in the whole region 0 < x < a is unity, because we know
the electron is somewhere in this region. Thus, | |?> dx summed between x = 0 and

| 3 From the German meaning “characteristic function.”
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x = a must be unity, or

x=a x=a 2
f Iy (x) |2 dx =/ 2Ajsin(@>
x=0 x=0 a

Carrying out the simple integration, we find

1 1/2
A=|—
(2a)

The resulting wavefunction for the electron is thus

2\? nmx
Wn(JC) = ](;) sm(—;—) [3.23]

We can now summarize the behavior of an electron in a one-dimensional PE well.
Its wavefunction and energy, shown in Figure 3.15, are given by Equations 3.23 and
3.22, respectively. Both depend on the quantum number n. The energy of the electron
increases with n2, so the minimum energy of the electron corresponds to n = 1. This is
called the ground state, and the energy of the ground state is the lowest energy the
electron can possess. Note also that the energy of the electron in this potential well
cannot be zero, even though the PFE is zero. Thus, the electron always has KE, even
when it is in the ground state.

The node of a wavefunction is defined as the point where ¥ = 0 inside the well.
It is apparent from Figure 3.15 that the ground wavefunction v, with the lowest energy
has no nodes, ¥, has one node, 3 has two nodes, and so on. Thus, the energy increases
as the number of nodes increases in a wavefunction.

It may seem surprising that the energy of the electron is quantized; that is, that it
can only have finite values, given by Equation 3.22. The electron cannot be made to
take on any value of energy, as in the classical case. If the electron behaved like a par-
ticle, then an applied force F could impart any value of energy to it, because
F = dp/dt (Newton’s second law), or p = [ Fdt. By applying a force F for a time ¢,
we can give the electron a KE of

-2 =) ]

However, Equation 3.22 tells us that, in the microscopic world, the energy can only
have quantized values. The two conflicting views can be reconciled if we consider the
energy difference between two consecutive energy levels, as follows:

h*2n +1
AE = E, - E, = 22+ 1

dx =1

8ma?

As a increases to macroscopic dimensions, a — 0o, the electron is completely
freeand AE — 0. Since A E = 0, the energy of a completely free electron (@ = 00) is
continuous. The energy of a confined electron, however, is quantized, and A E depends
on the dimension (or size) of the potential well confining the electron.

In general, an electron will be “contained” in a spatial region of three dimensions,
within which the PE will be lower (hence the confinement). We must then solve the
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Schrodinger equation in three dimensions. The result is three quantum numbers that
characterize the behavior of the electron.

Examination of the wavefunctions ¥, in Figure 3.15 shows that these are either
symmetric or antisymmetric with respect to the center of the well at x = %a. The sym-
metry of a wavefunction is called its parity. Whenever the potential energy function
V(x) exhibits symmetry about a certain point C, for example, about x = %a in
Figure 3.15, then the wavefunctions have either even parity (such as ¥, ¥, ... that

are symmetric) or have odd parity (such as ¥, ¥4, . . . that are antisymmetric).

EXAMPLE 3.7

ELECTRON CONFINED WITHIN ATOMIC DIMENSIONS Consider an electron in an infinite po-
tential well of size 0.1 nm (typical size of an atom). What is the ground energy of the electron?
What is the energy required to put the electron at the third energy level? How can this energy be
provided?

SOLUTION
The electron is confined in an infinite potential well, so its energy is given by
h%n?
E, =
8ma?

We use n = 1 for the ground level and a = 0.1 nm. Therefore,

(6.6 x 10734 T 5)2(1)?

= —_ —18
~ 8(9.1 x 10~ kg)(0.1 x 109 m)2 6.025 x 1077J ~ or  37.6eV

E,

The frequency of the electron associated with this energy is

E 6.025 x 1018
w=—= X =5.71 x 10" rad s! or v =9.092 x 10 57!
) 1.055 x 1073 Js

The third energy level E; is
E; = E\n* = (37.6 eV)(3)* = 338.4 eV

The energy required to take the electron from 37.6 eV to 338.4 eV is 300.8 eV. This can be pro-
vided by a photon of exactly that energy; no less, and no more. Since the photon energy is
E =hv=nhc/A, or

(6.6 x 1073 s)(3 x 108 m )
300.8eV x 1.6 x 10~ C

=4.12 nm

hc
A= — =
E

which is an X-ray photon.

EXAMPLE 3.8

ENERGY OF AN APPLE IN A CRATE Consider a macroscopic object of mass 100 grams (say,
an apple) confined to move between two rigid walls separated by 1 m (say, a typical size of a
large apple crate). What is the minimum speed of the object? What should the quantum number
n be if the object is moving with a speed 1 m s~!? What is the separation of the energy levels of
the object moving with that speed?

|
1
|
!
!
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SOLUTION
Since the object is within rigid walls, we take the PE outside the walls as infinite and use
h?n?
E, =
8ma?

to find the ground-level energy. Withn = 1,a = 1 m, m = 0.1 kg, we have

(6.6 x 10734 J 5)%(1)? &7 _ag
E = =545x10""J=34x10"% eV
"= 7801 kg)(1 m)? 8 * e

Since this is kinetic energy, %mvf = E, so the minimum speed is

[2E 2(5.45 x 10-97 ]
v = —!— = ( X ) =33 x 10—33 m S—‘
m 0.1 kg

This speed cannot be measured by any instrument; therefore, for all practical purposes, the
apple is at rest in the crate (a relief for the fruit grocer). The time required for the object to
move a distance of 1 mm is 3 x 10* s or 10?! years, which is more than the present age of the
universe!

When the object is moving with a speed 1 ms~!,

1, 1 —1y2
KE = -2-mv = 5(0.1 kg)(1ms ") =0.05]

This must be equal to E,, = h%n?/8ma? for some value of n

(SmazE,,)'/z [8(0.1 kg)(1 m)2(0.05 J)
n = =
h2 (6.6 x 10-34 J )2

172
] = 3.03 x 103

which is an enormous number. The separation between two energy levels corresponds to a
change in n from 3.03 x 10%? to 3.03 x 10 + 1. This is such a negligibly small change in n
that for all practical purposes, the energy levels form a continuum. Thus,
h*(2n + 1
AE=E,,+,—E,,=—£—P—+—)
8ma?
[(6.6 x 107** J 5)*(2 x 3.03 x 10* + 1)]
[8(0.1 kg)(1 m)?]

=330 x 107%) or 2.06 x 1075 eV

This energy separation is not detectable by any instrument. So for all practical purposes, the en-
ergy of the object changes continuously. "

We see from this example that in the limit of large quantum numbers, quantum predictions
agree with the classical results. This is the essence of Bohr’s correspondence principle.
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34 HEISENBERG’S UNCERTAINTY PRINCIPLE

The wavefunction of a free electron corresponds to a traveling wave with a single
wavelength A, as shown in Example 3.5. The traveling wave extends over all space,
along all x, with the same amplitude, so the probability distribution function is uniform
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Werner Heisenberg {1901-1976) received the Nobel prize in
physics in 1932 for the uncertainty principle. This photo was
apparently taken in 1936, while he was lecturing on quantum
mechanics. “An expert is someone who knows some of the
worst mistakes that can be made in his subject, and how to
avoid them.” W. Heisenberg.

| SOURCE: AIP Emilio Segré Visual Archives.
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-throughout the whole of space. The uncertainty Ax in the position of the electron is

therefore infinite. Yet, the uncertainty Ap, in the momentum of the electron is zero,
because A is well-defined, which means that we know p, exactly from the de Broglie
relationship, p, = h/A.

For an electron trapped in a one-dimensional infinite PE well, the wavefunction
extends from x = 0 to x = a, so the uncertainty in the position of the electron is a. We
know that the electron is within the well, but we cannot pinpoint with certainty exactly
where it is. The momentum of the electron is either p, = Ak in the +x direction or —hk
in the —x direction. The uncertainty Ap, in the momentum is therefore 2hk; that is,
Ap, = 2hk. For the ground-state wavefunction, which corresponds to n = 1, we have
ka = n. Thus, Ap, = 2hn/a. Taking the product of the uncertainties in x and p, we get

2hm
(Ax)(Apy) = (a)(—a—) =h

In other words, the product of the position and momentum uncertainties is sim-
ply A. This relationship is fundamental; and it constitutes a limit to our knowledge of
the behavior of a system. We cannot exactly and simultaneously know both the position
and momentum of a particle along a given coordinate. In general, if Ax and Ap, are
the respective uncertainties in the simultaneous measurement of the position and
momentum of a particle along a particular coordinate (such as x), the Heisenberg
uncertainty principle states that*

Ax Ap, 2 h [3.24]

We are therefore forced to conclude that as previously stated, because of the wave
nature of quantum mechanics, we are unable to determine exactly and simultaneously
the position and momentum of a particle along a given coordinate. There will be an
uncertainty Ax in the position and an uncertainty Ap, in the momentum of the particle

4 The Heisenberg uncertainty principle is normally written in terms of /1 rather than h. Further, in some physics texts,
# in Equation 3.24 has a factor 3 multiplying it.
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and these uncertainties will be related by Heisenberg’s uncertainty relationship in
Equation 3.24.

These uncertainties are not in any way a consequence of the accuracy of a mea-
surement or the precision of an instrument. Rather, they are the theoretical limits to
what we can determine about a system. They are part of the quantum nature of the uni-
verse. In other words, even if we build the most perfectly engineered instrument to
measure the position and momentum of a particle at one instant, we will still be faced
with position and momentum uncertainties Ax and Ap, such that Ax Ap, > h.

There is a similar uncertainty relationship between the uncertainty AE in the
energy E (or angular frequency w) of the particle and the time duration At during
which it possesses the energy (or during which its energy is measured). We know that
the kx part of the wave leads to the uncertainty relation Ax Ap, > # or Ax Ak > 1.
By analogy we should expect a similar relationship for the wt part, or Aw Az > 1. This
hypothesis is true, and since E = Aw, we have the uncertainty relation for the particle
energy and time:

AEAtZh [3.25]

Note that the uncertainty relationships in Equations 3.24 and 3.25 have been
written in terms of #, rather than A, as implied by the electron in an infinite potential
energy well (Ax Ap, > h). In general there is also a numerical factor of % multiplying
h in Equations 3.24 and 3.25 which comes about when we consider a Gaussian spread
for all possible position and momentum values. The proof is not presented here, but
can be found in advanced quantum mechanics books.

It is important to note that the uncertainty relationship applies only when the
position and momentum are measured in the same direction (such as the x direction).
On the other hand, the exact momentum, along, say, the y direction and the exact
position, along, say, the x direction can be determined exactly, since Ax Ap, need not
satisfy the Heisenberg uncertainty relationship (in other words, Ax Ap, can be zero).
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THE MEASUREMENT TIME AND THE FREQUENCY OF WAVES: AN ANALOGY WITH AE At>h
Consider the measurement of the frequency of a sinusoidal wave of frequency 1000 Hz (or
cycles/s). Suppose we can only measure the number of cycles to an accuracy of 1 cycle, because
we need to receive a whole cycle to record it as one complete cycle. Then, in a time interval of
At = 1 s, we will register 1000 £ 1 cycles. The uncertainty A f in the frequency is 1 cycle/1 s
or 1 Hz. If At is 2 s, we will measure 2000 £ 1 cycles, and the uncertainty A f will be 1 cycle/
2sor 5 cycle/s or 2 Hz. Thus, Af decreases with Az.

Suppose that in a time interval Az, we measure N *+ 1 cycles. Since the uncertainty is
1 cycle in a time interval A¢, the uncertainty in f will be

1 1 1
Af = (ﬂe_) —_ e HZ
At At
Since w = 27 f, we have
Aw At =21

In quantum mechanics, under steady-state conditions, an object has a time-oscillating
wavefunction with a frequency w which is related to its energy E by w = E/h (see Equation 3.15).

EXAMPLE 3.9
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Substituting this into the previous relationship gives
AE At =h

The uncertainty in the energy of a quantum object is therefore related, in a fundamental
way, to the time duration during which the energy is observed. Notice that we again have A, as
for Ax Ap, = h, though the quantum mechanical uncertainty relationship in Equation 3.25
has #.

EXAMPLE 3.10

THE UNCERTAINTY PRINCIPLE ON THE ATOMIC SCALE Consider an electron confined to a
region of size 0.1 nm, which is the typical dimension of an atom. What will be the uncertainty
in its momentum and hence its kinetic energy?

SOLUTION
We apply the Heisenberg uncertainty relationship, Ax Ap, = h, or

A h 1.055 x 10_34JS 1.055 10_24 Kk -1
LR — = = 1.055 x ms
Py Ny T T01x10m g

The uncertainty in the velocity is therefore

Ap, _ 1.055 x 107> kgms™'
m. 9.1 x 103 kg

Av = =1.16 x 10®ms™!

We can take this uncertainty to represent the order of magnitude of the actual speed. The

kinetic energy associated with this momentum is

_Ap?  (1.055 x 107 * kgms™')?
T 2m,  2(9.1 x 10731 kg)

=6.11 x 10777 or 3.82 eV

KE

EXAMPLE 3.11

THE UNCERTAINTY PRINCIPLE WITH MACROSCOPIC OBJECTS Estimate the minimum velocity
of an apple of mass 100 g confined to a crate of size 1 m.

SOLUTION

Taking the uncertainty in the position of the apple as 1 m, the apple is somewhere in the crate,

Ap, ~ h 1.05x 107*7Js

N — = =1.05 x 107 *kgms™!
Ax 1m

So the minimum uncertainty in the velocity is

A 1.05 x 10~** kgms™!
Av, = 2P _ g =1.05x 10 P ms™!
m 0.1kg

The quantum nature of the universe implies that the apple in the crate is moving with a ve-
locity on the order of 10733 m s~!. This cannot be measured by any instrument; indeed, it would
take the apple ~10'" years to move an atomic distance of 0.1 nm.
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3.5 TUNNELING PHENOMENON: QUANTUM LEAK

To understand the tunneling phenomenon, let us examine the thrilling events experi-
enced by the roller coaster shown in Figure 3.16a. Consider what the roller coaster can
do when released from rest at a height A. The conservation of energy means that the
carriage can reach B and at most C, but certainly not beyond C and definitely not D and
E. Classically, there is no possible way the carriage will reach E at the other side of the
potential barrier D. An extra energy corresponding to the height difference, D — A, is
needed. Anyone standing at E will be quite safe. Ignoring frictional losses, the roller
coaster will go back and forth between A and C.

Now, consider an analogous event on an atomic scale. An electron moves with an
energy E in aregion x < 0 where the potential energy PE is zero; therefore, E is solely
kinetic energy. The electron then encounters a potential barrier of “height” V,, which

Start here from rest

(a)

V(x)
) 4
Figure 3.16

(a) The roller coaster released from A can at most make it to C, but not to E. Its PE at A is
less than the PE at D. When the car is at the bottom, its energy is totally KE. CD is the
energy barrier that prevents the car from making it to E. In quantum theory, on the other
hand, there is a chance that the car could tunnel {leak) through the potential energy barrier
between C and E and emerge on the other side of the hill at E.

(b) The wavefunction for the electron incident on a potential energy barrier (V,). The
incident and reflected waves interfere to give y(x). There is no reflected wave in region ll.
In region II, the wavefunction decays with x because E < V.,
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is greater than E at x = 0. The extent (width) of the potential barrier is a. On the other
side of the potential barrier, x > a, the PE is again zero. What will the electron do?
Classically, just like the roller coaster, the electron should bounce back and thus be
confined to the region x < 0, because its total energy E is less than V,. In the quantum
world, however, there is a distinct possibility that the electron will “tunnel” through
the potential barrier and appear on the other side; it will leak through.

To show this, we need to solve the Schrédinger equation for the present choice of
V (x). Remember that the only way the Schrodinger equation will have the solution
¥ (x) = 0 is if the PE is infinite, that is, V = oo. Therefore, within any zero or finite
PE region, there will always be a solution ¥ (x) and there always will be some proba-
bility of finding the electron.

We can divide the electron’s space into three regions, I, II, and III, as indicated in
Figure 3.16b. We can then solve the Schrédinger equation for each region, to obtain
three wavefunctions ¥(x), ¥n(x), and ¥y (x). In regions I and III, v (x) must be trav-
eling waves, as there is no PE (the electron is free and moving with a kinetic en-
ergy E). In zone II, however, E — V, is negative, so the general solution of the
Schrddinger equation is the sum of an exponentially decaying function and an expo-
nentially increasing function. In other words,

Yi(x) = Ajexp(jkx) + Az exp(—jkx) [3.26d]
Y(x) = Byexp(ax) + Byexp(—ax) [3.26b]
Y(x) = Cyexp(jkx) + Coexp(—jkx) [3.26¢]

are the wavefunctions in which

5 2mkE
K= [3.27]
and
2m((V, — E
a’ = 2m(Vo — E) [3.28]

hz

Both k% and o2, and hence k and «, in Equations 3.26a to ¢ are positive numbers.
This means that exp(jkx) and exp(— jkx) represent traveling waves in opposite di-
rections, and exp(—ax) and exp(ax) represent an exponential decay and rise, respec-
tively. We see that in region I, ¥(x) consists of the incident wave A; exp(jkx) in the
+x direction, and a reflected wave A, exp(—jkx), in the —x direction. Furthermore,
because the electron is traveling toward the right in region III, there is no reflected
wave, so C, = 0.

We must now apply the boundary conditions and the normalization condition to
determine the various constants A;, A,, B;, By, and C;. In other words, we must match
the three waveforms in Equations 3.26a to c at their boundaries (x = 0 and x = a) so
that they form a continuous single-valued wavefunction. With the boundary conditions
enforced onto the wavefunctions ¥(x), ¥(x), and ¥ (x), all the constants can be
determined in terms of the amplitude A, of the incoming wave. The relative probability
that the electron will tunnel from region I through to III is defined as the transmission
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coefficient T, and this depends very strongly on both the relative PE barrier height
(V, — E) and the width a of the barrier. The final result that comes out from a tedious
application of the boundary conditions is

2 C? 1
L (€l =1 — [3.29]
|1 (incident ) |2 2 1+ Dsinh*(aa)
where
V2
D= ——2%—— [3.30]
4E(V, — E)

and « is the rate of decay of y¥y(x) as expressed in Equation 3.28. For a wide or high
barrier, using @a > 1 in Equation 3.29 and sinh(xa) = % exp(aa), we can deduce

T =T, exp(—2ca) [3.31]
where
16E(V, - E)
T, = V2 [3.32]

By contrast, the relative probability of reflection is determined by the ratio of the
square of the amplitude of the reflected wave to that of the incident wave. This quan-
tity is the reflection coefficient R, which is given by

2
R = =1-T [3.33]

We can now summarize the entire tunneling affair as follows. When an electron
encounters a potential energy barrier of height V, greater than its energy E, there is a
finite probability that it will leak through that barrier. This probability depends sensi-
tively on the energy and width of the barrier. For a wide potential barrier, the proba-
bility of tunneling is proportional to exp(—2aa), as in Equation 3.31. The wider or
higher the potential barrier, the smaller the chance of the electron tunneling.

One of the most remarkable technological uses of the tunneling effect is in the
scanning tunneling microscope (STM), which elegantly maps out the surfaces of
solids. A conducting probe is brought so close to the surface of a solid that electrons
can tunnel from the surface of the solid to the probe, as illustrated in Figure 3.17. When
the probe is far removed, the wavefunction of an electron decays exponentially outside
the material, by virtue of the potential energy barrier being finite (the work function is
~10 eV). When the probe is brought very close to the surface, the wavefunction pen-
etrates into the probe and, as a result, the electron can tunnel from the material into the
probe. Without an applied voltage, there will be as many electrons tunneling from
the material to the probe as there are going in the opposite direction from the probe to
the material, so the net current will be zero.

On the other hand, if a positive bias is applied to the probe with respect to the ma-
terial, as shown in Figure 3.17, an electron tunneling from the material to the probe
will see a lower potential barrier than one tunneling from the probe to the material.
Consequently, there will be a net current from the probe to the material and this current
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Vacuum
Metal Vacuum

Second metal

AN

VA P Vo) A ; Vo
E<V, :, ﬂ
I > X : > X

(a) The wavefunction decays exponenﬁally_as we move  (b) Iif we bring a second metal close to the first metal, then
away from the surface because the PE outside the metal  the wavefunction can penetrate into the second metal. The
is V, and the energy of the electron, E< V,, electron can tunnel from the first metal to the second.

1
Probe @nnel
Material
surface
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tunnel
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(c) The principle of the scanning tunneling microscope. The tunneling current
depends on exp(-2aa) where a is the distance of the probe from the surface
of the specimen and « is a constant.

Figure 3.17

will depend very sensitively on the separation a of the probe from the surface, by
virtue of Equation 3.31.

Because the tunneling current is extremely sensitive to the width of the potential
barrier, the tunneling current is essentially dominated by electrons tunneling to the
probe atom nearest to the surface. Thus, the probe tip has an atomic dimension. By
scanning the surface of the material with the probe and recording the tunneling current
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Figure 3.18 Scanning tunneling
microscope (STM] image of a graphite
surface where contours represent electron
concentrations within the surface, and carbon
rings are clearly visible. The scale is in 2 A.

’ SOURCE: Courtesy of Veeco Instruments,
Metrology Division, Santa Barbara, CA.

the user can map out the surface topology of the material with a resolution compara-
ble to the atomic dimension. The probe motion along the surface, and also perpendic-
ular to the surface, is controlled by piezoelectric transducers to provide sufficiently
small and smooth displacements. Figure 3.18 shows an STM image of a graphite sur-
face, on which the hexagonal carbon rings can be clearly seen. Notice that the scale is
0.2 nm (2 A). The contours in the image actually represent electron concentrations
within the surface since it is the electrons that tunnel from the graphite surface to the
probe tip. The astute reader will notice that not all the carbon atoms in a hexagonal
ring are at the same height; three are higher and three are lower. The reason is that the
exact electron concentration on the surface is also influenced by the second layer of
atoms underneath the top layer. The overall effect makes the electron concentration

STM's inventors Gerd Binning (right) and Heinrich Rohrer (lef), An STM image of a Ni (110) surface.
at IBM Zurich Research Laboratory with one of their early | SOURCE: Courtesy of IBM.
devices. They won the 1986 Nobel prize for the STM.

I SOURCE: Courtesy of IBM Zurich Research Laboratory.
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change (alternate) from one atomic site to a neighboring site within the hexagonal
rings. STM was invented by Gerd Binning and Heinrich Rohrer at the IBM Research
Laboratory in Zurich, for which they were awarded the 1986 Nobel prize.’

TUNNELING CONDUCTION THROUGH METAL-TO-METAL CONTACTS Consider two copper
wires separated only by their surface oxide layer (CuO). Classically, since the oxide layer is an
insulator, no current should be possible through the two copper wires. Suppose that for the con-
duction (“free’”) electrons in copper, the surface oxide layer looks like a square potential energy
barrier of height 10 eV. Consider an oxide layer thickness of 5 nm and evaluate the transmission
coefficient for conduction electrons in copper, which have a kinetic energy of about 7 eV. What
will be the transmission coefficient if the oxide barrier is 1 nm?

SOLUTION

We can calculate o from

[2m(v,, ~ E)]”2

a = ——h2
_ [2(9.1 x 10 kg)(10eV — 7eV)(1.6 x 107" J/e\f)]”2
- (1.05 x 10=3J5)2

=89 x10°m™!
so that -
aa = (8.9 x 10°m™1)(5 x 107" m) = 44.50

Since this is greater than unity, we use the wide-barrier transmission coefficient in Equa-

tion 3.31.
Now,
16E(V, — V)(10eV — 7eV
I, = (V, — E) _ 16(7eV)(10eV — 7eV) — 336
V2 (10 eV)?
Thus,

T =T, exp(—2aa)
= 3.36 exp[—2(8.9 x 10° m~!)(5 x 10~ m)] = 3.36 exp(—89)
~ 7.4 x 107%

an incredibly small number.
Witha = 1 nm,

T = 3.36 exp[—2(8.9 x 10°m~")(1 x 107° m)]
= 3.36 exp(—17.8) ~ 6.2 x 107*

Notice that reducing the layer thickness by five times increases the transmission probability by
10*'! Small changes in the barrier width lead to enormous changes in the transmission

5 The IBM Research Laboratory in Zurich, Switzerland, received both the 1986 and the 1987 Nobel prizes. The first
was for the scanning tunneling microscope by Gerd Binning and Heinrich Rohrer. The second was awarded to Georg
Bednorz and Alex Miiller for the discovery of high+emperature superconductors which we will examine in Chapter 8.
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probability. We should note that when a voltage is applied across the two wires, the potential en-
ergy height is altered (PE = charge x voltage), which results in a large increase in the trans-
mission probability and hence results in a current.
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SIGNIFICANCE OF A SMALL h Estimate the probability that a roller coaster carriage that
weighs 100 kg released from point A in Figure 3.16a from a height at 10 m can reach point E

over a hump that is 15 m high and 10 m wide. What will this probability be in a universe where
h & 10 kJ s?

SOLUTION
The total energy of the carriage at height A is
E = PE = mg(height) = (100 kg)(10ms~?)(10 m) = 10*J

Suppose that as a first approximation, we can approximate the hump as a square hill of
height 15 m and width 10 m. The PE required to reach the peak would be

V, = mg(height) = (100 kg)(10ms~2)(15m) = 1.5 x 10*J
Applying this, we have
2 _ 2m(V, — E) _ 2(100kg)(1.5 x 1047 — 104J)

=9.07 x 10° m™?
) (1.05 x 10-%J 5)? *Bm

o

i

g‘
s .
e

tunneling surprises.

EXAMPLE 3.13

“Just like the good old ghost of the middle ages.” In a
world where h is of the order of unity, one can expect

SOURCE: George Gamow, Mr. Tompkins in
Paperback, Cambridge, England, University Press,
1965, p. 96. Used with permission.
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and so
a=9.52x10*m™!
Witha = 10 m, we have a¢a > 1, so we can use the wide-barrier tunneling equation,
T =T, exp(—2aa)

where

16[E(V, — E)]

T, = 73 =3.56
Thus,

T = 3.56 exp[—2(9.52 x 10** m~')(10 m)] = 3.56 exp(—1.9 x 10%)

which is a fantastically small number, indicating that it is impossible for the carriage to tunnel
through the hump.
Suppose that # ~ 10 kJ s. Then

»_ 2m(V,—E)  2(100kg)(1.5 x 10*J — 10*J)
B n? - (104 Js)2

so that @ = 0.1 m~"'. Clearly, @a = 1, so we must use

T = (1 + D sinh?*(xa)]™

o = 0.01m™?

where
V2
D= ——°% —1.125
[4E(V, — E)]
Thus,
T =[1+ 1.125sinh?(1)]™! = 0.39

Thus, after three goes, the carriage would tunnel to the other side (giving the person standing at
E the shock of his life).

Schrodinger
equation in
three
dimensions

3.6 POTENTIAL BOX: THREE QUANTUM NUMBERS

To examine the properties of a particle confined to a region of space, we take a three-
dimensional space with a volume marked by a, b, ¢ along the x, y, z axes. The PE
is zero (V = 0) inside the space and is infinite on the outside, as illustrated in
Figure 3.19. This is a three-dimensional potential energy well. The electron essen-
tially lives in the “box.”” What will the behavior of the electron be in this box? In
this case we need to solve the three-dimensional version of the Schrodinger equa-
tion,® which is

%y 3%y %y  2m
+ —(E -V =0 3.34]
0x2 ayz + azz + hz( )w [

6 The term dy/ax simply means differentiating ¥(x, y, z) with respect to x while keeping y and z constant, just like
dvr/dx in one dimension.
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4
A V=oo
C
V = oo Figure 3.19 Electron confined in three
V=0 - dimensions by a three-dimensional infinite PE
V= - >y o
= 0 b Everywhere inside the box, V= 0, but outside,
V = 0. The electron cannot escape from the
a V=00 box.

withV =0in0 < x <a,0 <y < b,and 0 < z < ¢, and V infinite outside. We can
try to solve this by separating the variables via ¥ (x, y, z) = ¥x(x) ¥y (y) ¥.(2).
Substituting this back into Equation 3.34, we can obtain three ordinary differential
equations, each just like the one for the one-dimensional potential well. Having
found ¢, (x), ¥,(y), and ¥,(z) we know that the total wavefunction is simply the
product,

¥(x,y, z) = Asin(k,x) sin(k,y) sin(k,z) [3.35]

where k,, ky, k., and A are constants to be determined. We can then apply the bound-
ary conditions at x = a, y = b, and z = ¢ to determine the constants k,, k,, and k. in
the same way we found k for the one-dimensional potential well. If ¥ (x, y, z) = 0 at
x = a, then k, will be quantized via

k.a =nmm

where n; is a quantum number, n; = 1,2, 3, .... Similarly, if y(x, y,z) =0aty =b
and z = c, then k, and k, will be quantized, so that, overall, we will have

mrm n2 nj
ky = — k= — k= — 3.36
a Y b ¢ c 13.36]

where ny, n,, and n3 are quantum numbers, each of which can be any integer except
zero.
We notice immediately that in three dimensions, we have three quantum numbers

ni, na, and n3 associated with ¥, (x), ¥,(y), and ¥, (z). The eigenfunctions of the elec-
tron, denoted by the quantum numbers 7, n;, and n3, are now given by

C(nymx\ . [ nam C (n3mz
Wulnzng(x-)’az)zASlﬂ( la )Sln( 2b }7) sm( 3C ) [3.37]

Notice that these consist of the products of infinite one-dimensional PE well-type
wavefunctions, one for each dimension, and each has its own quantum number n. Each
possible eigenfunction can be labeled a state for the electron. Thus, ¥1;; and ¥z, are
two possible states.

To find the constant A in Equation 3.37, we need to use the normalization con-
dition that |, n.n, (x, ¥, z)|? integrated over the volume of the box must be unity,

Electron
wavefunction
in infinite PE
well
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since the electron is somewhere in the box. The result for a square box is
A = (2/a)’2.

We can find the energy of the electron by substituting the wavefunction in Equa-
tion 3.35 into the Schrédinger Equation 3.34. The energy as a function of k,, k,, k, is
then found to be

h2
E = Etke, ky, k) = o~ (K2 + & + &)

which is quantized by virtue of k,, k,, and k, being quantized. We can write this energy
in terms of n?, n2, and n3 by using Equation 3.36, as follows:

h* (n? n3 n?
En1n2n3='é_n'; —‘+'—+;—2'

For a square box for which a = b = ¢, the energy is

h%(n? + n3 + n3) _ hiN?

8ma? 8ma?

En1n2n3 -

[3.38]

where N? = (n? + n3 + n}), which can only have certain integer values. It is apparent
that the energy now depends on three quantum numbers. Our conclusion is that in three
dimensions, we have three quantum numbers, each one arising from boundary condi-
tions along one of the coordinates. They quantize the energy of the electron via Equa-
tion 3.38 and its momentum in a particular direction, such as, px = thk, =
+(hn,/2a), though the average momentum is zero.

The lowest energy for the electron is obviously equal to E;, not zero. The next
energy level corresponds to E,;q, which is the same as E;; and E|;3, so there are three
states (i.e., Y211, Y121, ¥112) for this energy. The number of states that have the same
energy is termed the degeneracy of that energy level. The second energy level Ey; is
thus three-fold degenerate.

EXAMPLE 3.14

NUMBER OF STATES WITH THE SAME ENERGY How many states (eigenfunctions) are there at

energy level E 43 for a square potential energy box?

SOLUTION
This energy level corresponds ton; = 4, n, = 4, and n3 = 3, but the energy depends on
Ni=nl+nl+ni=4+4*+32=41

via Equation 3.38. As long as N2 = 41 for any choice of (n,, n,, n3), not just (4, 4, 3), the energy
will be the same.

The value N? = 41 can be obtained from (4, 4, 3), (4, 3, 4), and (3, 4, 4) as well as (6, 2, 1),
6,1,2),2,6,1),(2,1,6), (1,6, 2), and (1, 2, 6). There are thus three states from (4, 4, 3)
combinations and six from (6, 2, 1) combinations, giving nine possible states, each with a
distinct wavefunction, ¥, .,n,. However, all these v, .,,, for the electron have the same
energy Eu;.




