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Preface

The history of technology development is epitomized in Moore’s law. Industrial
deep-submicron and laboratorial nanometer process technologies have already been
fabricating electronic and optical components containing only a few active electrons,
and the geometrical sizes of these components are comparable with the character-
istic wavelength of the electrons. However, the advanced multimedia infrastructure
and service in the future demand further developments in the chip’s capability.

Photonic integrated circuits (PICs) are currently orders of magnitude larger in
physical dimensions than their microelectronic counterparts. Field-effect-type tran-
sistors have reached lengths on the order of 50 nm, while in contrast, passive optical
devices, also those based on photonic crystals, have sizes on the order of one pho-
ton wavelength. The sizes of active devices are even larger, essentially depending
on the matrix element of the interaction. In order to pursue the steady increase in
integration density in photonics such that it rivals the microelectronic footprint size,
nanostructure-based high index of refraction and metallic behavior (negative ep-
silon) are two mostly studied fundamental issues to shrink optical component sizes
and to tackle the sub-wavelength limit.

Nanotechnology has been named as one of the most important areas of forthcom-
ing technology because they promise to form the basis of future generations of elec-
tronic and optoelectronic devices. From the point view of technical physics, all these
developments greatly reduce the geometric sizes of devices, and thus the number of
active electrons in the system. Quantum mechanical considerations about electronic
states, electron transports and various scattering processes including light-matter in-
teraction, are thus crucial. However, the theoretical study is extremely difficult. My
first numerical simulation work about a three-dimensional energy band structure
calculation in 1995 took more than 6 months to complete for one bias-configuration
of a nanoscale metal-oxide-semiconductor field-effect transistor (MOSFET). With
today’s computation workstations the CPU time is reduced to be less than 24 hours.

In general, today’s experimental and theoretical works are very much separated.
The laboratory works are still largely based on try-and-error, while the theoretical
models are over simplified as compared with the complexity of real devices. Ideally
to be cost effective, experimental and theoretical works are to be coordinated in
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such a complementary way that we try to analyze and understand the experimental
results, then use the understanding to guide further experimental works, which in
their turn serve as the feedback to modify and improve the theoretical model. By
this, we expect an optimized device and a valid as well as effective theoretical device
model.

The main purpose of the book is to discuss electrons and photons in and through
nanostructures by the first-principles quantum mechanical theories and fundamen-
tal concepts (a unified coverage of nanostructured electronic and optical compo-
nents) behind nano-electronics and optoelectronics, the material basis, physical phe-
nomena, device physics, as well as designs and applications. The combination of
viewpoints presented within the book can help to foster further research and cross-
disciplinary interaction needed to surmount the barriers facing future generations of
technology design.

Many specific technologies are presented, including quantum electronic devices,
resonant tunneling devices, single electron devices, heterostructure bipolar transis-
tors (HBTs) and high electron mobility transistors (HEMTs), detectors, and infrared
sensors, lasers, optical modulators. It contains essential and detailed information
about the state-of-the-art theories, methodologies, the way of working and real case
studies, helping students and researchers to appreciate the current status and future
potential of nanotechnology as applied to the electronics and optoelectronics indus-
try.

In nanophotonics we will concentrate on local electromagnetic interactions be-
tween nanometric objects and optical fields (non-linear optics in nano- and mi-
crostructured photonic crystals) at the level of systems of nanostructures, into larger
density on interfaces, which in turn leads to intriguing collective effects, such as
plasmonics or multiple reflection and refraction phenomena.

The major task here is that the system at working condition is no longer static.
Rather, it can only properly be described by including dynamic Maxwell and time-
dependent Schrodinger equations. Furthermore, because the numbers of atoms and
electrons in the real devices are huge, while the quantum mechanical Monte Carlo
simulation requires too much computer memory and computer time, we will intro-
duce top-down and bottom-up numerical ways that fundamentally we emphasize
the quantum mechanical Monte Carlo simulation, while at the same time, we apply
the large-system (cluster) tight-binding numerical method to study the device per-
formance property (where the input parameters in the tight-binding method come
from the study of bridging nano to micro scales).

Finally we will examine the processing—structure relationship. The state of
nanostructures during the period that one monolayer exists—before being buried
in the next layer—determines the ultimate structure of the nanostructure, and thus
its properties. This part of the book takes into consideration the following poten-
tial influencing factors in solid-state growth techniques such as metalorganic vapour
phase epitaxy (MOVPE): crystal defects, void structure, grain structure, interface
structure in epitaxial films, reaction-induced structure, strain-induced self-formed
quantum dot structures, through the use of MOVPE to produce quantum structured
semiconductors.
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This book provides a solid foundation for the understanding, design, and sim-
ulation of nano-electronic and optoelectronics devices. It will be of interest to re-
searchers and specialists in the field of solid state technology, electronics and opto-
electronics. It can also serve as a textbook for graduate students and new entrants
in the exciting field. This book takes the reader from the introductory stage to the
advanced level of the construction, principles of operation, and application of these
devices, and puts readers immediately in a position to take their first steps in the
field of computational nano-engineering and design. Results and conclusions of de-
tailed nano-engineering studies are presented in an instructive style. Numerous ref-
erences, illustrations, basic computation subroutines provide further support in this
fast-emerging field. This book is designed as a self-contained introduction to both
the understanding and solution of theoretical and practical design problems in nano
devices.

Stockholm, Sweden Ying Fu
May 2013
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Chapter 1
Semiconductor Materials

Abstract In this chapter we present a brief introduction and description of elec-
trons in semiconductor materials of which devices are made. The chapter starts with
the basic electronic energy band structure of a single atom, the modifications of the
energy band structure when more atoms are brought together to form bulk materi-
als, i.e., solid states, which is the basis for understanding the electronic and optical
properties of semiconductor materials. We then focus on the theoretical descrip-
tions of electron states at the conduction and valence bandedges of both bulk and
heterostructure materials. Key contents: Bloch theorem and Schrodinger equation
for the envelope function of electrons in solids.

Semiconductors are materials that have moderately good conductivity, which is
higher than that of insulators and lower than that of metals. The conductivity of suf-
ficiently pure semiconductors decays by orders of magnitude when they are cooled
down from room temperature to liquid helium temperature (at absolute zero tem-
perature, the conductivity almost vanishes). A semiconductor in a very pure state
resembles an insulator, whereas in a highly polluted state it acts like a metal. Fur-
thermore, irradiation with light can transform the semiconductor from insulator-like
behavior to metal-like behavior. The optical absorption spectra of semiconductors
normally exhibit a threshold. Below the threshold frequency, light can pass through
with practically no losses, whereas above it the light is strongly absorbed.

All these macroscopic properties of a semiconductor can be traced back to a
common microscopic origin: its energy band structure and the electron distribu-
tion in the energy bands. The energy band structure of a semiconductor consists of
energy bands separated by bandgaps. At absolute zero temperature, a pure semicon-
ductor is characterized by having only completely occupied and completely empty
energy bands. It is this common microscopic feature that underlies the totality of
macroscopic material properties that uniquely define a semiconductor.

The first reference to a characteristic semiconductor property dates back to Fara-
day, who in 1833 observed an increase of the electric conductivity of silver sulfide
with increasing temperature. The term “semiconductor” was introduced in 1911 by
Konigsberg and Weiss subsequent to a similar term used in a similar context em-
ployed by Ebert in 1789 and Bromme in 1851.

Y. Fu, Physical Models of Semiconductor Quantum Devices, 1
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In 1874, Braun discovered that contacts between certain metal sulfides and metal
tips exhibited different electrical resistance upon reversal of the polarity of the ap-
plied voltage. Such point contact structures were used as rectifiers in radio receivers
at the beginning of the 20th century. Similar rectifying action was also found for
selenium and copper oxide. Copper oxide was used in 1926 by Grondahle as a rec-
tifier, followed by rectifiers using selenium. The first practical application of copper
oxide in photocells was accomplished in 1932 by Lang.

The decisive events for the entire future development of semiconductor physics
were the invention of the germanium-based bipolar transistor in 1949 and realization
of the field-effect transistor, with the help of silicon at the end of the 1950s. With
the introduction of silicon, the development of semiconductor microelectronics be-
gan. Later, a similar role was played by compounds involving elements of III-V
groups in the periodic table, such as GaAs for the development of semiconductor
optoelectronics.

Today’s advanced information technology is mainly attributed to the electronic
representation and processing of information in a low-cost, high-speed, very com-
pact, and highly reliable fashion. The quest for and accomplishment of continual
miniaturization and integration of solid-state electronics have been the key to the
success of the computer industry and computer applications.

As the number of transistors integrated in a circuit continues to increase, dis-
crete device dimensions have begun to reach the nanometer regime. Such a down-
scaling progress of individual device components has been tremendous over the
last 30 years: a 1.0-um gate length metal-oxide-semiconductor field-effect transis-
tor (MOSFET) was reported in 1974 by Dennard et al. [1]; 0.1-um gate length by
Sai-Halasz et al. [2] in 1987, 70-nm gate length by Hashimoto et al. [3] in 1992,
40-nm gate length by Ono et al. [4] in 1995, 30-nm gate length in 1998 by Kawaura
et al. [5]. Vertical p-MOS transistors also have been extensively investigated, and
transistors with channel lengths of 130 and 100 nm based on Si as well as GaAs
have been fabricated [6—11].

However, the advanced multimedia infrastructure and service in the future de-
mand further reduction in the chip size. Chip density, represented by memory tech-
nology, has followed Moore’s law and roughly doubled every other year. The trend
remains strong and definite. For example, a 0.15-um process technology was imple-
mented in the first 4-Gb dynamic random access memory (DRAM) in 1997 and the
feature size of DRAM transistors is projected to be 0.18 pm (1 Gb) in 2001, 0.13 um
(4 Gb) in 2004, 0.10 um (16 Gb) in 2007, and 0.07 pm (64 Gb) in 2010 [12, 13].

When the size of a system becomes comparable to the electron wavelength, quan-
tum effects become dominant [14]. This occurs when transistors are down-scaled
and their characteristic dimensions reach the nanometer regime, leading to various
new phenomena, for example, electron interference [15], additive parallel conduc-
tance in the absence of magnetic field [16-18], conductance oscillation [19, 20]
and abrupt period changes of conductance oscillation with applied magnetic field
[21, 22], as well as novel electronic and optoelectronic devices such as resonant
tunneling diodes [23, 24] and quantum well infrared photodetectors [25, 26], based
on quantum mechanisms.
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For nanoelectronics to become a reality, it is essential that new devices and cir-
cuits be fabricated with nanometer precision, and that devices and circuits can be
to designed accurately. Nanofabrication technology [27, 28] has made impressive
advances by producing artificial semiconductor structures using molecular-beam
epitaxy (MBE), metal-organic chemical vapor deposition (MOCVD), and chemical-
beam epitaxy. Accurately controlled feature sizes as small as monolayers of atoms in
the growth direction for dissimilar semiconductor materials, or heterostructure sys-
tems, have been achieved. Nanoscale lithography and patterning by electron-beam
lithography have also been highly developed in the direction perpendicular to the
growth direction. Soft lithography [29] can be used to make devices smaller than
100 nm and can pattern curved surfaces and functional materials other than pho-
toresists. It can also fabricate three-dimensional structures and chemically modify
surfaces.

The advances in nanofabrication technology have brought quantum effect device
concepts to reality and have presented a great challenge for device physicists in the
theoretical analysis of nanoelectronic devices [30-32]. In this chapter, we present
quantum mechanical descriptions about electron states in both bulk and heterostruc-
ture semiconductor materials.

1.1 Atoms and Solids

In 1913 Niels Bohr presented a model of the hydrogen atom, which has one electron.
Bohr stated two postulates.
1. The electron moves only in certain circular orbits, called stationary states.
Figure 1.1 shows an electron of mass mg and charge —e, moving at speed v in
a stable circular orbit of radius r, around a nucleus of charge +e. The centripetal
force is provided by the Coulombic attraction

&2

4megr?

between the electron and the nucleus, where € is the permittivity of free space.
From Newton’s second law we have

nmo v2 62
= (1.1)
r 4 egr?
and then the total energy of the electron is
| &2 e*
E=—-mv° — =— (1.2)
2 dmegr 8megr

2. Radiation occurs only when the electron goes from one allowed orbit to an-
other of lower energy. The energy of the radiation is hw = E,, — E,,, where E,, and
E, are the energies of two allowed electron orbits.
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Fig. 1.1 Bohr model of the

hydrogen atom. The e
negatively charged electron

e~ isin a circular orbit of

radius r around the +
positively-charged proton p™ '

-
O-

To restrict the allowed values of the orbital radius, we need the “third” postulate:
3. The angular momentum of the electron is restricted to integer n multiples of h:

movr =nh (1.3)

When v = nh/mor from the above equation is equated to

22
V= —_—
dmegmor

of Eq. (1.1), we find the radius of the nth orbit is

4 eghitn? 2
Ipn=———>—=n"qo (1.4)
moe
where
47 egh o
ap = 5 = 0.529 A (1.5)
moe

is the Bohr radius. The energy of the nth orbit is

4
moe Ry
En=m————=—— 1.6
" 322812 n? (10
where
R.— m0€4 _ ﬁz
YT 302812 2mpad

=13.6eV

is the Rydberg constant.

Bohr’s theory may be applied to other single electron systems such as He™’ or
Li™, provided the nuclear charge is replaced by Ze, where Z is the atomic number.
And the energy of the nth state is

R,Z?

Ey=——1

(1.7)

n

The energy state diagram for hydrogen (Z = 1) is shown in Fig. 1.2. Each state
is characterized by the integer n, which is called the principal quantum number.
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Fig. 1.2 The energy state 4 EleV]
diagram of the hydrogen -0.38 n=6
atom. Light is emitted or -0.54 - / nfg
absorbed when an electron -(1)2? C 1] Z;S
makes a transition between I Paschen
two states E

-3.40 n=2

- Balmer
-13.6 |- n=1
Lyman

When the atom is unexcited, the electron is in the ground state with n = 1. The
electron may be raised to a higher level, normally referred to as an excited state, by
a collision with another electron or by absorbing a photon. Note that at steady state,
the photon energy must correspond exactly to the energy difference between the two
states involved in the transition. The electron may return from an excited state to the
ground state in one step or via intermediate levels. A photon with a single frequency
is emitted in the first case, there are two or more frequencies in the second case.
Lyman’s series corresponds to transitions from higher levels to n = 1, transitions to
level n = 2 form the Balmer series; those to n = 3 form the Paschen series.

The hydrogen atom is described rigorously by the Schrodinger equation in its
time-independent form

AV Ze?
Y(r)=E¥(r) (1.8)
2mg  4dmegr
Because of the spherical symmetry of the potential energy, the wave function can be
expressed as

Yo (r, 0, 0) = Rue(r)Yem (0, d) (1.9)

in spherical polar coordinate. Yy, (6, ¢) are the angular momentum eigen functions.
The first few normalized spherical harmonics Y, (0, ¢) (m = —£, —¢ +1,..., L —
1,¢) are

1
Yoo = —
ar

3

— sinBe'?
8

Yii=—
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3
Yi0=,/ —cosb
T
15
Yy = T sin? 9e'2?
15
Y21 = —,/ — sinf cosHe'?
i (1.10)
/5
Yoo = EG cos2 6 — 1)
35
Y33 = — m Sin3 963l¢
105
Y3 = sin @ cos He*'?
327
Y 2! 0(5cos?0 — 1)e'?
=— sinf(5cos“ 6 —
3 oar
Y30 =,/ L(Scos39 —3cosf)
i 167
The radial Schrodinger equation is
d2R,(r)  2dR,(r) £(L+1) 2my Ze?
o = R+ T (B 2 R =
(1.1D)

By introducing the Bohr radius ag, see Eq. (1.5), the first few normalized radial
wave functions are

7\ 3/2
Rio(r) =2<—> e
ao

1 [ Z\? Zr
R = - —Zr/2ag
()= f(a) (1-2)°

z\"zr
R21(r) (a_> r 7Zr/2a0

ZN\? (o 2zr | 27%7
Z ( V+ ’;)le/f;ao
ag 3ag 27a;

(1.12)
R3o(r) =

8 [zZ\? Zr\ Z
R31(r)=—<—> (1 r) " e=2r/3a
274/6 \ a0 6aq

3/2 2.2
<£>/ 277 —zr/3a

a a(Q)'

4
R3o(r) =
2T 8130
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Table 1.1 Shell structure of

atomic states of electrons n Shell ¢ Subshell
1 K 0 s (sharp)
2 L 1 p (principal)
3 M 2 d (diffuse)
4 N 3 f (fundamental)
5 (0] 4 g
6 P 5 h

The energy of each state depends only on the principal quantum number 7, which
varies from 1 to oo, as shown by Eq. (1.7). The magnitude of the orbital angular
momentum, L, of a state is determined by the orbit quantum number ¢,

L={{L+1)h (1.13)

where the maximum value of ¢ is restricted by the value of n: £=0,1,2,...,(n —
1). In order to specify the direction of the angular momentum vector, we need to set
up a preferred axis, say, the z axis. The component of the orbit angular momentum
along this axis is also quantized

L. =mh (1.14)

where the values of the orbital magnetic quantum number m, are restricted to m =
0,+£1,%2,...,£L.

All states with a given value of n are said to form a shell. All these states are
referred as degenerate since they have the same energy value. And it is easy to
see that the degeneracy of these states is n2. States with a given value of £ form
a subshell. The designations are listed in Table 1.1. The first four letters for the
subshells are historical (sharp, principal, diffuse, and fundamental).

In addition, the electron has an intrinsic property called spin that manifests itself
according to the following rules. The magnitude of the spin angular momentum, S,
of the electron is determined by its spin quantum number, s = 1/2:

S:ds(s—l—l)h:?h (1.15)

In a magnetic field, the z component of the spin can assume only two values
S, =mgh (1.16)

where the spin magnetic quantum number, m; = 1/2. The introduction of spin
doubles the number of states allowed for each value of n.

Now, four quantum numbers, n, £, my, and m; may be used to classify the states
of electrons in all atoms, although the energy associated with a given set of values
depends on the atom. The question naturally arises as to why all electrons in an
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Fig. 1.3 A simple, but

approximate, mnemonic for s
the filling of sublevels .2s 2p
,3s 3p 3d
A4S 4p 4d 4f
5s 5p 5d 5f 5g
,6s 6p 6d
s
Fig. 1.4 (a) As two atoms A
are brought closer together, (@)
a single atomic level splits i
into two states with different
energies. (b) A single atomic two atoms
level splits into five when five > o
atoms are in close proximity. g (b)
(c) In a crystal each atomic g
level splits into an essentially o
continuous band of energies g five atoms
w
A
(c)
bulk material

Interatomic separation

atom do not fall to the ground state. A study of the classification of spectral lines
led W. Pauli in 1925 to make an important statement, now called the Pauli exclusion
principle:

No two electrons in an atom can have the same four quantum numbers n, £, my,
and my.

With the aid of the exclusion principle one can see how electrons fill shells ()
and subshells (¢). For each value of £ there are (2¢ + 1) values of m, and each
subshell can accommodate 2(2¢ + 1). A simple useful, but approximate, mnemonic
that tells us the order in which the subshells are first filled is shown in Fig. 1.3.

The ground-state electron configurations are indicated in the periodic table by
the number of electrons in a subshell as a superscript. For example, 2 p> means that
there are three electrons in subshell £ = 1.

In isolated atoms the energy levels are sharply defined. Now suppose that two
atoms are brought close to each other so that their electron wave functions overlap.
As aresult of the interaction between the electrons, it turns out that each single state
of the isolated atom splits into two states with different energies. As Fig. 1.4 shows,
the degree of splitting increases as the interatomic separation decreases. Similarly,
if five atoms are placed in close proximity, each original energy level splits into
five new levels. The same process occurs in a solid, where there are roughly 10?8
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Table 1.2 Electron configurations of typical elements making up common semiconductors

Group IV
Core electrons Valence electrons
C 152 2522 p?
Si 1522522 p 3523 p?
Ge 1522522 p63523 p©3410 4524 p?
Group III Group V
Core electrons Valence electrons Core electrons Valence electrons
N 1s? 25%2p3
Al 1522522p® 3523 p! P 1s22522p° 3s%3p3
Ga 1522522p®3523p93410 4524 p! As  1522522p®3525p03d10 4524 p3
In  [Kr] 44" 5525p! Sb  [Kr] 4d'0 5525p3
Group II Group VI
Core electrons Valence electrons Core electrons Valence electrons
152 2522p*
S 1s22522p° 3523 p*
Zn  1522522p03523p03410 452 Se  1s522522p°®3523p03410 4524 p*
Cd [Kr] 4d'0 552 Te [Kr]4d'? 5525p*
Hg [Xe] 4f14540 652

atoms/m>: The energy levels associated with each state of the isolated atom spread
into essentially continuous energy bands separated from each other by energy gaps.

Before further examining the various properties of semiconductors it is extremely
useful to examine the electron configurations of some of the elements which make
up the various semiconductors as listed in Table 1.2.

A very important conclusion can be drawn about the elements making up the
semiconductors: The outmost valence electrons are made up of electrons in either
the s- or p-type orbitals. While this conclusion is strictly true for elements in the
atomic form, it turns out that even in the crystalline semiconductors the electrons
in the valence and conduction bands retain this s- or p-type character. The core
electrons are usually not of interest, except of some special characterization-type
experiments.

Here we have assumed that solids are composed of ion cores, i.e., nuclei, and
those core electrons so strongly bound as to be negligibly perturbed from their
atomic configuration by their environment in the solid, and valence electrons, i.e.,
those electrons whose configuration in the solid may differ significantly from that
in the isolated atom. However, it is to be remembered that the distinction between
core and valence electrons in Table 1.2 is one of convenience. For example, the en-



10 1 Semiconductor Materials

(a) Nearest-neighbour bonds (b) Regular tetrahedron

Fig. 1.5 (a) Si atom interacts with four neighboring Si atoms positioned at the vertices of (b) a reg-
ular tetrahedron by sharing its four valence electrons (3523 p?) with the four neighboring Si atoms

ergy of 3d states is lower than 4p according to Fig. 1.3 so that, instead of being
core electrons in Table 1.2, electrons at 3d1° in Ge should be categorized as valence
electrons. This is one of major reasons that the energy band structure of Ge is much
more complicated than Si.

In general it is found that when atoms exchange or share valence electrons so
that the complement of quantum states is completed, they have a lower electrostatic
energy for their combined electron patterns than when they are separate. For exam-
ple, Si has four valence electrons grouped in two closely spaced energy levels (3s
and 3p, see Table 1.2), they can combine with themselves by sharing four valence
electrons with four surrounding Si atoms in an endless array. The four nearest neigh-
boring Si atoms around any one Si atom are positioned at the vertices of a regular
tetrahedron, forming four tetrahedral bonds with the central atom, see Fig. 1.5. This
creates the diamond crystal structure.

The intrinsic property of a crystal is that the environment around a given atom
or a group of atoms is exactly the same as the environment around another atom
or a similar group of atoms. To understand and to define the crystal structure, two
important concepts are introduced, i.e., the Bravais lattice and the basis.

The Bravais lattice represents a set of points in the space which form a periodic
structure. Each point sees exactly the same environment. A building block of atoms,
called the basis, is then attached to each lattice point, yielding a crystal structure.

An important property of a Bravais lattice is the ability to define three vectors,
a1, ay, and a3, such that any lattice point R’ can be obtained from any other lattice
point R by a translation

R/=R+m1a1 +moar + msas (1.17)

where m1, my, and m3 range through all integral values (negative, zero, as well
as positive). The translation vectors, a1, a», and a3 are called primitive vectors that
generate the Bravais lattice (which will be simply referred to as the lattice, or crystal
lattice).

There are 14 types of lattices in the three dimensional space. We shall focus on
the cubic lattice which is the structure taken by commonly used semiconductors.
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Xo

(a) Simple cubic

—— o —»

(b) Body-centered cubic (c) Face-centered cubic

Fig. 1.6 (a) Simple cubic, (b) body-centered cubic, and (c) face-centered cubic lattices. a is the
lattice constant

There are three kinds of cubic lattices: simple cubic, body-centered cubic and face-
centered cubic, see Fig. 1.6. The simple cubic lattice, see Fig. 1.6(a), is generated
by the primitive vectors of

a; =axo, a=ay, asz =azo (1.18)

where x¢, yo, and zo are the three unit vectors of a normal rectangular Cartesian
coordinate, a is the lattice constant.

The body-centered cubic (bcc) lattice is formed by adding to the simple cubic
lattice an additional lattice point at the center of the simple cube, see Fig. 1.6(b).
A symmetric set of primitive vectors for the bcc lattice is

a1=%(yo+z0—m), az=%(z0+xo—yo), a3=%()€o+yo—z0)
(1.19)
The face-centered cubic lattice (fcc), see Fig. 1.6(c): To construct the fcc lattice
we add to the simple cubic lattice an additional lattice point in the center of each
square face. The fcc lattice is of great importance, since an enormous variety of
solids crystallize in this form with an atom (or ion) at each lattice site. A symmetric
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@)

@)

Fig. 1.7 Face-centered cubic lattice with two-atom basis forming either the so-called diamond
(when the two atoms are identical) or the zincblende (when the two atoms in the basis are different)
structure

set of primitive vectors for the fcc lattice is

a=So+20),  @m=3@+x).  a=3G+y) (120
Essentially all semiconductors of interest for electronics and optoelectronics have
the fcc structure. However, they have two atoms per basis. The coordinates of the
two basis atoms are (000) (the grey atom) and (a/4)(111) (white), indicated in
Fig. 1.7 by two tilted arrows. If the two atoms of the basis are identical, the structure
is called the diamond structure. Semiconductors such as silicon, germanium and
carbon (also refer to Fig. 1.5) fall into this category. If the two atoms are different,
for example, GaAs, AlAs, CdS, the structure is called zincblende. The structure can
be viewed as a stack, left side of Fig. 1.7, of four regular tetrahedrons shown in
Fig. 1.5.

Semiconductors with the diamond structure are often called elemental semicon-
ductors, while the zincblende semiconductors are usually called compound semi-
conductors. The compound semiconductors are also denoted by the positions of the
atoms in the periodic table, for example, GaAs, AlAs and InP are called I1I-V semi-
conductors while CdS, CdSe and CdTe are called II-VI semiconductors.

Many of the properties of crystals and many of the theoretical techniques used to
describe crystals derive from the periodicity of crystalline structures. This suggests
the use of Fourier analysis as an analytical tool. In the analysis of periodic time
varying fields (for example, the acoustic signal analysis and radio signal analysis)
we often do much of the analytical work in the frequency domain rather than in the
time domain. In analogy with the time-frequency duality, there is a corresponding
real space-reciprocal space or wave vector space duality for crystal-related discus-
sions. Many concepts are best understood in terms of functions of the wave vector.
We describe a plane wave with wavelength A equivalently as a plane wave with
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wave vector k of magnitude 277 /A and propagation direction perpendicular to the
wave front. The space of the wave vectors is called the reciprocal space, the ana-
logue of the frequency domain for the time problem.

A simple transformation is carried out to map the real space lattice into the re-
ciprocal space (k-space)

aj X as b2:2n’ a3z X aj ’ b3:2n’ alp xXap
ai-ax xas ai-az xas

(1.21)

b1=271 ,
ay-ap Xas

by which it is easy to find that the simple cubic Bravais lattice, with cubic primi-
tive cell of lattice constant a, and primitive vectors Eq. (1.18), has a simple cubic
reciprocal lattice

a) =axo, ar=ay, asz =azo (1.22)

has a simple cubic reciprocal lattice with cubic primitive cell of side 27 /a, and
primitive vectors

2 2 2
by = —xo, by =—1y,, by =—zp (1.23)
a a a
Similarly, the primitive vectors of the reciprocal lattice of the fcc Bravais lattice with
primitive vectors Eq. (1.20) are

2 2 2
b1=7(yo+zo—xo), b2=7(10+x0—y0)7 b3=7(xo+yo—10)
(1.24)
A general vector
G =m’1b1 +m/2b2+m’3b3 (1.25)

is called a reciprocal lattice vector, where the m’l, m’2 and m’3 are three integers
(either positive or negative).
It is easy to see that by Eq. (1.21),

b,' caj = 27’[3,'./' (1.26)
which resulting in the following special relationship
e

iG-R _ ei2n(m’]m1+m’2m2+m’3m3) -1 (1.27)

where R is a lattice vector in Eq. (1.17) which is often called the direct lattice vector
to distinguish it from the reciprocal lattice vector G.
Because of the above relationship, two wave vectors k and k’ satisfying

K=k+G (1.28)
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Fig. 1.8 First Brillouin zones for simple cubic lattice (left) and fcc (right) lattice. Points and lines
of symmetry are indicated

are said to be equivalent. This implies that we only need to focus on those k points
that lie within or on the so-called Brillouin zone, which has the property that no
two interior k points are equivalent. From here and throughout, we consider only
the first Brillouin zone which is the region in the reciprocal space that is closer to
the center of the reciprocal space than to any other reciprocal lattice point. The first
Brillouin zones for the simple cubic and fcc lattices are shown in Fig. 1.8.

Most importantly we consider XR-RI'-I'X-XM in the k-space (in unit of 27 /a)

I'=(0,0,0) X—100 R—111 M—IO1
- L) ’ - 27 ’ - 29 27 2 ’ - 27 ’ 2
(1.29)
for the simple cubic lattice. For the fcc lattice, such as the diamond as well as

zincblende structures (fcc lattices with bases), we mostly consider XU-UL-LT'-I"X-
XW-WK in the k-space (in unit of 27 /a),

111 1
['=1(0,0,0), X=(1,0,0), L=|5.5.5) W=1{103
222 2

11 33
U=(-,-,1), K=(2,02 (1.30)
4’4 44

1.2 Bulk and Epitaxial Crystal Growth

So far we have discussed crystal structures that are present in natural semiconduc-
tors. These structures are the lowest free energy configuration of the solid state of
the atoms. Since the electrical and optical properties of the semiconductors are com-
pletely determined by the crystal structures, artificial structures, e.g., hetero mate-
rials (among them the well-known superlattices have been fabricating ever since
mid-1970s inspired by the pioneering work of Esaki and Tsu at IBM) grown by
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Fig. 1.9 Schematic of
Czochralski-style crystal
grower used to produce
substrate ingots. The
approach is widely used for
Si, GaAs and InP
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heteroepitaxial crystal growth techniques such as molecular beam epitaxy (MBE)
and metal-organic chemical vapor deposition (MOCVD) have made a tremendous
impact on the semiconductor physics, the semiconductor technology and the semi-
conductor electronic and optoelectronic device industry.

Bulk crystal growth techniques are used mainly to produce substrates on which
devices are eventually fabricated. While for some semiconductors like silicon and
GaAs (to some extent for InP) the bulk crystal growth techniques are highly ma-
tured; for most other semiconductors it is difficult to obtain high quality, large area
substrate. The aim of the bulk crystal growth techniques is to produce single crys-
tal boules with as large a diameter as possible and with as few defects as possible.
For silicon the boule diameters have reached 30 cm with boule lengths approaching
100 cm. Large size substrates ensure low cost device production.

Any material that will crystallize can be crystallized by slow cooling from a
molten mass, or by cooling a supersaturated solution of the material. The classic
home experiment is that of cooling a supersaturated solution of copper sulphate in
water; crystal platelets will readily form as the liquor cools. A much larger crystal
can be grown if a seed crystal of copper sulphate is suspended in the solution as
it cools, the growth is then onto the seed crystal. One important technique is the
Czochralski (CZ) technique. In the CZ technique shown in Fig. 1.9, the melt of the
charge (i.e., the high quality polycrystalline material) is held in a vertical crucible.
The top surface of the melt is just barely above the melting temperature. A seed
crystal is then lowered into the melt and slowly withdrawn. As the heat from the melt
flows up the seed, the melt surface cools and the crystal begins to grow. The seed is
rotated about its axis to produce a roughly circular cross-section crystal. The rotation
inhibits the natural tendency of the crystal to grow along certain orientations to
produce a faceted crystal. The resulting crystal is called a boule and may be several
centimeters in diameter and a good fraction of a meter in length. Some materials, for
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example GaAs, must be used very carefully. Arsenic is likely to boil off the melt,
which has to be kept under pressure of an inert gas to prevent this; one may also
have a layer of suitable molten glass over the melt as a further protection. Material
grown by this process is referred to as bulk grown.

The CZ technique is widely employed for silicon, GaAs, and InP and produces
long ingots (boules) with very good circular cross-sections. For silicon up to 100
kg ingots can be obtained. In the case of GaAs and InP the CZ technique has to
face problems arising from the very high pressures of As and P at the melting tem-
peratures of the compounds. Not only does the chamber have to withstand such
pressures, also the As and P leave the melt and condense on the side walls. To avoid
the second problem one can seal the melt by covering it with a molten layer of a
second material (e.g., boron oxide) which floats on the surface. The technique is
then referred as liquid encapsulated Czochralski, or the LEC technique.

A second bulk crystal growth technique involves a charge of material loaded in a
quartz container. The charge may be composed of either high quality polycrystalline
material or carefully measured quantities of elements which make up a compound
crystal. The container called a “boat” is heated till the charge melts and wets the
seed crystal. The seed is then used to crystallize the melt by slowly lowering the
boat temperature starting from the seed end. In the gradient-freeze approach the
boat is pushed into a furnace (to melt the charge) and slowly pulled out. In the
Bridgement approach, the boat is kept stationary while the furnace temperature is
temporally varied to form the crystal.

The easiest approach for the boat technique is to use a horizontal boat. However,
the shape of the boule that is produced has a D-shaped form. To produce circular
cross-sections vertical configurations have now been developed for GaAs and InP.

In addition to produce high-purity bulk crystals, the techniques discussed above
are also responsible for producing crystals with specified electrical properties. This
may involve high-resistivity materials along with n- or p-type materials. In silicon
it is difficult to produce high resistivity substrate by bulk crystal growth and resis-
tivities are usually less than 10* € - cm. However, in compound semiconductors
carrier trapping impurities such as chromium and iron can be used to produce ma-
terials with resistivities of about 108 € - cm. The high resistivity or semi-insulating
substrates are extremely useful in device isolation and for high-speed devices. For
n- or p-type dopings carefully measured dopants are added in the melt.

The availability of high quality substrates is essential to any device technology.
Other than the three materials of Si, GaAs, and InP, the substrate fabrication of
semiconductors is still in its infancy. Since epitaxial growth techniques used for
devices require close lattice matching between the substrate and the overlayer, non-
availability of substrates can seriously hinder the progress of a material technology.
This is, for example, one of the reasons of slow progress in large bandgap semicon-
ductor technology necessary for high-power and high-temperature electronic de-
vices and short-wavelength semiconductor lasers.

The epitaxial growth techniques have a very slow growth rate (as low as a mono-
layer per second for some techniques) which allow one to control very accurately
the dimensions in the growth direction. In fact, in techniques like molecular beam
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Fig. 1.10 Principle of the MBE growth system. In situ monitoring capabilities are often standard
components of the system

epitaxy and metal organic chemical vapor deposition, one can achieve monolayer
(about 3 A) control in the growth direction. This level of control is essential for the
variety of heterostructure devices that have been beginning to be used in electronics
and optoelectronics. The epitaxial techniques are also very useful for precise doping
profiles that can be achieved.

Molecular beam epitaxy (MBE) is one of the most important epitaxial techniques
as far as heterostructure physics and devices are concerned. MBE is a high vac-
uum technique (about 10~!" torr vacuum when fully pumped down) in which cru-
cibles containing a variety of elemental charges are placed in the growth chamber
(Fig. 1.10). The elements contained in the crucibles make up the components of the
crystal to be grown as well as the dopants that may be used. When a crucible is
heated, atoms or molecules of the charge are evaporated and these travel in straight
lines to impinge on a heated substrate.

The growth rate in MBE is about 0.1 monolayer per second and this slow rate
coupled with shutters placed in front of the crucibles allow one to switch the compo-
sition of the growing crystal with monolayer control. However, to do so, the growth
conditions have to be adjusted so that growth occurs in the monolayer by mono-
layer mode rather than by three dimensional island formation. This requires that
atoms impinging on the substrate have enough kinetics to reach an atomically flat
profile. Thus the substrate temperature has to be maintained at a point where it is
high enough to provide enough surface migration to the incorporating atoms, but
not so high as to cause entropy controlled defects.

Since MBE allows one to grow crystal structures with atomic control, one can
change the periodicity of the crystals. This leads to the concept of superlattices
where two (or even more) semiconductors A and B are grown alternately with thick-
ness d4 and dp respectively along the growth direction. The periodicity of the su-
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Fig. 1.11 Schematic diagram
illustrating the MBE growth
of an AlGaAs/GaAs
superlattice sample.
Deposition of (a) (Al, Ga)As,
(b) GaAs

perlattice in the growth direction is then d4 + dp. An AlGaAs/GaAs superlattice
grown by MBE is illustrated in Fig. 1.11.

Because of the different sizes of atoms that compose the semiconductor materi-
als, different semiconductor materials have different lattice constants a. For exam-
ple, agaas = 5.65 A, aalas = 5.66 A, Aamas = 6.06 A (see more later in Table 1.4).
Superlattices can then be placed in three general categories: (i) lattice matched such
as AlGaAs/GaAs, (ii) lattice strained (InAs/GaAs), and (iii) lattice strained with
intermediate substrate. We shall discuss lattice strain in hetero materials more ex-
tensively later.

Since no chemical reactions occur in MBE, the growth is the simplest of all
epitaxial techniques and is quite controllable. However, since the growth involves
high vacuum, leaks can be a major problem. The growth chamber walls are usually
cooled by liquid N> to ensure high vacuum and to prevent atoms/molecules to come
off from the chamber walls.

The low background pressure in MBE allows one to use electron beams to mon-
itor the growing crystal. The reflection high-energy electron diffraction (RHEED)
technique relies on electron diffraction to monitor both the quality of the growth
substrate and the layer-by-layer growth mode. As each monolayer gets filled up,
one can see this reflected in the RHEED intensity by the naked eye!

While MBE is a simple and elegant growth technique, it cannot be used con-
veniently for all semiconductors. For example, phosphides are often not grown by
MBE due to the danger in handling elemental phosphorus. Also elements with very
low vapor pressures are difficult to use since it is not easy to heat the crucibles
beyond 1500 K. Silicon epitaxy in MBE, for example, requires an electron-beam
evaporation where an electron beam is used to knock off Si atoms for growth.

In general, MBE is a relatively safe technique and has become the technique of
choice for the testing of almost all new ideas on heterostructure physics.

Metal organic chemical vapor deposition (MOCVD) is another important growth
technique widely used for heteroepitaxy. Like MBE, it is also capable of producing
monolayer-sharp interfaces between semiconductors. Unlike in MBE, the gases that
are used in MOCVD are not made of single elements, but are complex molecules
which contain elements like Ga or As to form the crystal. Thus the growth depends



1.3 Bloch Theorem of Electrons in Solids 19

upon the chemical reactions occurring at the heated substrate surface. For example,
in the growth of GaAs one often uses Triethyl Gallium and Arsine and the crystal
growth depends upon the following reaction

Ga(CH3)3 + AsHs = GaAs + 3CH, (1.31)

One advantage of the growth occurring via a chemical reaction is that one can use
lateral temperature control to carry out local area growth. Laser assisted local area
growth is also possible for some materials and can be used to produce new kinds of
device structures. Such local area growth is difficult in MBE.

There are several varieties of MOCVD reactors. In the atmospheric MOCVD the
growth chamber is essentially at atmospheric pressure. One needs a large amount of
gases for growth in this case, although one does not have the problems associated
with vacuum generation. In the low-pressure MOCVD the growth chamber pressure
is kept low. The growth rate is then slow as in the MBE.

The use of the MOCVD equipment requires very serious safety precautions. The
gases used are highly toxic and a great many safety features have to be incorporated
to avoid any deadly accidents.

In addition to MBE and MOCVD one has hybrid epitaxial techniques often
called MOMBE (metal organic MBE) which try to combine the best of MBE and
MOCVD. In MBE one has to open the chamber to load the charge for the materials
to be grown while this is avoided in MOCVD where gas bottles can be easily re-
placed from outside. Additionally, in MBE one has occasional spiting of material in
which small clumps of atoms are evaporated off on to the substrate. This is avoided
in MOCVD and MOMBE.

1.3 Bloch Theorem of Electrons in Solids

We now study the properties of electrons in solids. We start with the real-space
Schrddinger equation for an electron in a periodic lattice structure

22

2my

Ho(r)¥ (r) = |: + V(r)]lll(r) =EW¥(r) (1.32)
where the first term represents the kinetic energy of the electron and V(r) is the
potential energy of the lattice

Vir+R)=V(r) (1.33)

where R is any lattice vector defined by Eq. (1.17). my is the free electron mass.
The Bloch theorem states that the solutions of the Schrodinger equation of

Eq. (1.32) with periodic condition of Eq. (1.33), denoted by quantum numbers n

and k, have the following properties

ik-r

1
Yk (r) = ﬁunk(")e
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Unk(r) = unk(r + R) (1.34)

[ W (Mg (r)dr =1
cell

and E = E, (k) is the energy dispersion relationship. Here N is the total number of
unit cells in the crystal. The unit cell is defined by the primitive vectors of the lattice.
n is the energy band index and Ak is the quasi-momentum of the electron. The
rigorous derivation of the Bloch theorem can be found in many solid state textbooks,
while a brief understanding can be formulated as follows.

Because of the periodic condition, the physical properties at r are expected to be
identical to the ones at 7 + R for which we can write

Wk ()| = Wi (r + B (1.35)

Note that the wave function itself is not directly physical from the quantum mechan-
ical point of view, while the amplitude of the wave function represents the spatial
distribution of the electron, thus resulting in the above equation due to the periodic
condition. The above equation can be fulfilled when the wave function is decom-
posed into a part which has the periodicity as the crystal and a phase factor. The
expression for the phase factor in Eq. (1.34), i.e., ¢k, becomes the most natural
choice when we recall Eq. (1.17), i.e., R = mja; + maa, + mzasz, where my, mj
and m3 are integers, a1, a; and a3 are primitive vectors of the lattice.

We now see that the solution of the Schrodinger equation of Eq. (1.32) is to be
characterized by k. Furthermore, there must be many electron states because of the
large numbers of electrons in the crystal for which we introduce a quantum number
n to distinguish them so that the total wave function of an electron state nk in the
crystal is expressed as

Wk (r) = Buyi (r)e'* "
(1.36)
unk(r) = unk(r + R)

with an eigen value E,(k). This is almost identical to the Bloch theorem of
Eq. (1.34) except a parameter B which is to be obtained by normalizing the wave
function

/ Wi (r)[Pdr =1 (1.37)
Q
where £2 denotes the volume of the crystal. Insert Eq. (1.36) into the above equation,
2 2
/|l1/,,k(r)| dr=|B|2/ |t ()| "dr =1 (1.38)
Q 2
Because of the periodicity of the crystal, we only need to focus on the spatial region

in one unit cell in the crystal, say unit cell 1. All other unit cells, denoted as i =
2,3,..., N, in the crystal can be expressed by displacing unit cell 1 by the lattice
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vector R; — Ry, see Eq. (1.17). Here N is the total number of unit cells in the crystal
volume £2. Thus,

N
[ o) Par =188 [ Jue)ar =188 Y [ i,
2 2 i=1 cell
N
=|B|ZZ/ Junic(r1 + Ri — Rp)|*dry
i=1 cell

N
=|B|22f e (r) Pdry = 1 (1.39)
i—=1 cell

We have inserted the second equation of Eqgs. (1.36) to obtain the fourth equality.
Using the third equation of Egs. (1.34), i.e., u,x(r) is normalized in the unit cell,
we readily obtain B = 1/+/N, and thus the Bloch theorem of Egs. (1.34).

There are very important consequences of the Bloch theorem about the proper-
ties of electrons in solids. One of them is the acceleration theorem, which will be
studied in Sect. 2.4. When applying an external force F, e.g., due to an external
electromagnetic field (E, B) on the electrons in the solid,

10E,%

hk=F = —e(E B), =_
e(E 4+ vy, x B) Unk h ok

(1.40)

Here —e is the electron charge and v, is the electron group velocity. ik is therefore
commonly referred to as the quasi-momentum of the electron in the crystal.
Moreover, as a consequences of time reversal symmetry, for a crystal of

HWyp(r) = Ep (k) Wi (r)
the following relationship exists
En(k) = En(—k) (1.41)

regardless of the spatial symmetry of the system, i.e., the energy of state with a wave
vector k is the same as —k. This is known as Kramers’ theorem [33].

1.4 sp3s* Tight-Binding Model

In this and the following sections we introduce two most applied energy band struc-
ture models to calculate Eq. (1.32), namely, tight-binding model and k - p model.
As the atoms of the elements making up the semiconductors are brought together
to form the crystal, the valence electronic states are perturbed by the presence of
neighboring atoms. While the original atomic functions describing the valence elec-
trons are, of course, no longer eigenstates of the problem, they can be used as a
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good approximate set of basis states to describe the “crystalline” electrons. This
motivates the tight-binding method. For most semiconductor materials of interest,
the atomic functions |«, j) (centered at atom j) required to describe the outermost
valence electrons are the s, py, py, and p, types, see Table 1.2. Moreover, since
there are more than one atom per unit cell, the Bloch function is in the form of

U(r)=Y > Y Coj®)la, j.r —rj— Ri)e* R (1.42)
Ri « j

where the sum over R; runs over all unit cells, « is the index of the different atomic
functions |e, j) used in the basis, and r; denotes the spatial position of atom j in
unit cell R;.

Once the expansion set for the crystal states has been chosen, the coefficients
Cy,;j remain to be determined. To this end, the Schrddinger equation is in the form
of a secular determinant

(. j',r —rj — Ry|H — E|¥(r))| =0 (1.43)

where H is the Hamiltonian of the system under investigation.

In theory, one can calculate the matrix elements in the secular determinant,
Eq. (1.43), by first determining the crystal potential. This however is very diffi-
cult because of the complexity of the problem. Slater and Koster were the first to
advocate the use of the tight-binding method as an empirical technique. In their
formalism, the matrix elements of the secular determinant are treated as disposable
constants. Energy levels in the band structure can be obtained and fitted with the
measurement data by adjusting the disposable constants.

In 1983 Vogl, Hjalmarson and Dow published their results of a sp3s* nearest-
neighbor semi-empirical tight-binding theory of energy bands in zincblende and
diamond structure materials [34]. The theory was developed from the sp? tight-
binding model of Harrison [35]. Here we introduce five Lowdin orbitals, |s), | py),
[py), |pz), and |s*), at each atomic site R;. The Hamiltonian matrix element is
denoted as h(af,ij) between the ath orbital on the ith atomic site |«, i) and the
Bth orbital on jth atomic site |8, j), where either i = j or i is a nearest neighbor
of j. The values of these matrix elements are listed in Table 1.3 for crystal Si, C, Ge,
AlAs, InAs, and GaAs [34]. In Table 1.3 the diagonal elements are denoted as E (or-
bital energies), and the off-diagonal elements are V (interaction energies). For both
orbital and interaction energies, s, p and s* denote s, p and s* orbitals, a denotes
atomic site anion, and c the cation. V (x, x) represents V (pxa, pxc), V(pya, pyc)
and V(p;a, p;c). V(x,y) represents V(pya, pyc), while other parameters can be
derived from the ones listed in Table 1.3 after proper considerations of orbital sym-
metries.

Figure 1.12 shows the energy band structures of bulk silicon and carbon calcu-
lated by the sp>s* tight-binding model. As schematically shown in Fig. 1.4, because
of the large number of atoms in the bulk material, energy levels form bands. Mathe-
matically, the second equation in Eq. (1.34) actually implies N — oo. Inreality, N is
always finite in which case the second equation in Eq. (1.34) assumes that the effects
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Table 1.3 Energy band structure parameters [eV] for sp3s* tight-binding band calculation [34]

Si C Ge AlAs InAs GaAs
E(s,a) —4.2000 —4.5450 —5.8800 —7.5273 —9.5381 —8.3431
E(p,a) 1.7150 3.8400 1.6100 0.9833 0.9099 1.0414
E(s*,a) 6.6850 11.3700 6.3900 7.4833 7.4099 8.5914
E(s,c) —4.2000 —4.5450 —5.8800 —1.1627 —2.7219 —2.6569
E(p,c) 1.7150 3.8400 1.6100 3.5867 3.7201 3.6686
E(s*, ¢) 6.6850 11.3700 6.3900 6.7267 6.7401 6.7386
V(s,s) —8.3000 —22.7250 —6.7800 —6.6642 —5.6052 —6.4513
Vi(x,x) 1.7150 3.8400 1.6100 1.8780 1.8398 1.9546
Vix,y) 4.5750 11.6700 4.900 4.2919 4.4693 5.0779
V(sa, pc) 5.7292 15.2206 5.4649 5.1106 3.0354 4.4800
V(sc, pa) 5.7292 15.2206 5.4649 5.4965 5.4389 5.7839
V(s*a, pc) 5.3749 8.2109 5.2191 4.5216 3.3744 4.8422
V(pa,s*c) 5.3749 8.2109 5.2191 4.9950 3.9097 4.8077
AE, 2.63 0.0 0.4 0.1 0.0
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Fig. 1.12 Energy band structures of diamond-structure (a) silicon and (b) carbon calculated by the
sp3s* tight-binding model. The horizontal dashed line marked as E 7 is referred to as the Fermi
level for pure material at zero temperature

of the real boundaries of the solids with a finite number of unit cells on the electron
states under investigation in the solid is negligibly small since N is very large.
Knowing the energy band structure, we then fill the energy levels by the available
valence electrons in the solid. At zero temperature and for pure semiconductor, all
energy levels below the horizontal dashed line E ¢ in Fig. 1.12 are fully occupied,
Energy levels above E y are completely empty. E ¢ is known as the Fermi level. The
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highest occupied energy band is the valence band, and the lowest unoccupied band
is the conduction band. For almost all semiconductor materials of interest, the top
of the valence band locates at k = 0 (I" point). The lowest conduction band states in
Si and C locate somewhere between I" and X points, see Fig. 1.12. Because of the
different k values of the valence and conduction band optimal points (the materials
are referred as indirect-band materials), the optical properties of Si and C are rather
bad. However, the lowest conduction band states of III-V materials locate at the I
points so that the optical properties of III-V materials are extremely good. We will
discuss the optical properties of semiconductor materials late.

Now we apply the sps* tight-binding theory to study Sij_,C, alloy as a means
to further elaborate the tight-binding theory. The realization of many kinds of elec-
tronic and optoelectronic devices in strained layer Sij_yGe,/Si heterostructures has
stimulated a great interest in investigating IV-1V binary and ternary alloys [36, 37].
However, the strained epitaxial Sij_,Ge, layers without misfit dislocations can be
grown on a Si substrate only by a low-temperature growth technique [36]. Moreover,
the application of Sij_,Ge,/Si materials is restricted by the strain in the epitaxial
layers. To compensate the strain, C atoms with an atomic diameter smaller than
the ones of both Si and Ge atoms are introduced into the Si-Ge system to form
Sij—x—yGe,C, alloys. The substitutional C atoms in Si;—,C, and related alloys
also offer an additional parameter for tailoring the energy band structure [37]. The
investigation on Si; _,C, and related alloys is thus of great importance to understand
the bandgap engineering for Si-based semiconductor materials.

In Ref. [34], the top of the valence band, Ffs = 0 is referred as the reference
energy for every individual material. Referring to the energy band of C, an energy
band offset between C and Si, AE,(Si) = I'5(Si) — I'{5(C) is to be added to the
Si orbital energies, see Fig. 1.12. From available values of the electron affinity (the
electron affinity of silicon is 4.05 eV, whereas for diamond it is much substrate-
orientation-dependent [38], a value of 2.2 eV is obtained for (001)-orientation) it is
easy to obtain the absolute positions of valence bandedges (I'{5) below the vacuum
level: 5.17 eV for Si and 7.8 eV for C. Thus, AE,(Si) =2.63 eV.

For Si;_C, alloy, the interaction elements are obtained by the well-known d -2
scaling rule [35], where d is the spatial distance between the interacting atoms.

The eigen function of the system is expressed by

> Clanile. i)

The coefficients in the above linear combination satisfy the eigenvalue equation

Zh(aﬂ,ij)C(ﬂ,j) =EC(a,i) (1.44)
B.J

For crystal system with translational system (i.e., unit cells are periodically posi-
tioned in space), we apply the Fourier transformation

Cla, k) = \/Lﬁ Z C(a,i)ekr
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(1.45)
1 .
H kq) = — h ij i(keri—q-rj)
(@B, kq) = ij (@p.ij)e
so that Eq. (1.44) reduces to
> H(aB. kq)C(B.q) = E(k)C(a. k) (1.46)
B.q
Here N is the number of unit cells in the system.
Because of the translational symmetry, h(af,ij) =h(aB,r; —rj),
H(ap, kq) =8k g H (@B, k) =8kq y_h(ap,ij)e* =77
ij
(1.47)

Y H(@B, k)C(B, k) = E(k)C(a, k)
B

In a Siy—C, alloy, h(af,ij) is not invariant with respect to lattice translations,
Eqgs. (1.47) are thus not valid. However, let us approximate h(«f,ij) by its mean
value in the limit of long wavelength (small |k| and |g|). In this case, the term
¢! k=0)7j in Eq. (1.45)

ei(k~ri—q~rj) — eik~(r,'—rj)ei(k—q)~rj (1.48)

can be approximated as constant over a large area of the structure (which is normally
known as the effective medium approximation). Let

Zmn h(aﬂ’ mn)arm_rn»ri_rj

W (aB,ij) = (1.49)
Zmn srm_rnari_rj
which is invariant under lattice translations, we then have
1 ,
H'(op. k) ~ 3 3 @p, i) e (1.50)
ij
and
H'(aB. kq) =Sk g H'(@B. k) =5k g Y W (@p.ij)e*"i=rD
ij
(1.51)

Y H'(aB,k)C(B. k) = E()C (e, k)
B

The above equations are mathematically identical to Eqgs. (1.47). It must be re-
minded that the above solutions are valid only when |k| and |q| are small. The
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Fig. 1.13 The energy dispersion relations of relaxed and strained Si; —,C,, alloys. y =0, 0.25,0.5,
0.75, 1.0 (Y. Fu, M. Willander, P. Han, T. Matsuura, and J. Murota, Si-C atomic bond and electronic
band structure of a cubic Si;—,C, alloy, Phys. Rev. B, vol. 58, pp. 7717-7722, 1998)

approximation is generally acceptable for the valence band top at I'{. For the con-
duction band of an indirect bandgap material like Si and C, a similar but modified
scheme can be performed for conduction band states close to the bandedge. Let kg
be the wave vector of the conduction bandedge state, the interaction in Eq. (1.45)
between two conduction band states close to ko, i.e., k + kg and ¢ + ko, where |k|
and |q| are small, can be expressed as

1 X .
H(Ol,B, k +k07 q +k0) — N E h(Ol,B, ij)elk()'(ri—rj)el(k-ri—q-rj) (152)
ij

Writing h(aB, ij)e o' "i=7i) as the new h(ef, ij), we are then able to use the above
numerical approximation.

Figure 1.13 shows the energy dispersion relations of relaxed and strained
Sij_,C, alloys as functions of the C mole fraction y, where arrows indicate the
increase of the C mole fraction from 0 to 1.0. Note that the complete dispersion re-
lations are not monotonous functions of the C mole fraction, only parts with arrows
in Fig. 1.13 are. Here we consider two cases. When the Si;_,C, alloy is grown on
a Si substrate, it is strained when the layer is thin. The atomic bond length is uni-
form and fixed by the substrate Si; The atomic bonds become relaxed when the layer
becomes thicker. In the effective medium approximation, the lattice constant of the
relaxed Si;—,C, alloy is obtained by linear interpolation between bond lengths of
C and SiC when y > 0.5, it is obtained from SiC and Si when y < 0.5.

For strained Si;—,C, alloy, both the valence and conduction bands are vertically
shifted along the energy axis following the increase of the C mole fraction. The
bandgap is indirect and increases monotonically with the C mole fraction. On the
other hand, the valence band of a relaxed Si;—,C, alloy is not much affected by
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the C mole fraction. The bandgap of relaxed Si;—,C, alloy is indirect and increases
with increasing y when y < 0.35. However it becomes a direct-bandgap material
when y > 0.35. The energy bandgap increases with increasing y from 0 to 0.35,
then decreases when increasing y from 0.35 to 0.5. After that, the energy bandgap
increases again with y.

Let us check the validity of the conclusion that the energy bandgap increases with
increasing but small y. It is easy to see that Eq. (1.49) can be rewritten as

h' = (1 — y)hsi + yhsic (1.53)

for small y value, where hsg; and Agjc are interaction elements in crystal Si and SiC,
respectively. Since the energy bandgap is proportional to the interaction elements,
the above equation indicate an increasing energy bandgap of Si;_,C, as a function
of the C content (the bandgaps of C and SiC are wider than the Si one). It is thus
observed that the conclusion of increasing bandgap with y is very general, even we
are working with the relatively simple sps* tight binding model.

1.5 Bandedge States

Our goal is essentially to solve the Schrodinger equation to get the eigenenergies and
their associated eigenvectors, i.e., wave functions. The wave functions usually have
too high frequencies to be feasible to calculate explicitly using numerical methods
on computers as an inordinately high number of grid points would be necessary to
capture an acceptable numerical representation of the wave functions. A solution
is to separate the wave functions into an oscillatory part at unit cell scale and a
modulating part which is of the same scale as the solid. This is the basic idea of
the envelope function approximation—the modulating part is called the envelope
function. We write the envelope function as a Bloch function:

W (r) = e * T up (r) (1.54)

where n is the state index and k is the wave vector, see Eq. (1.34). The Schrédinger
equation for this wave function is simply

2

|:p_ + V("):| Ui (r) = En (k) Wk (r) (1.55)
2mg

Substituting the factorization into the equation requires some care in evaluating the
product of the momentum operator p and the two parts of the wave function. With
p = —ihV and knowing from vector calculus that Ve'*” = jke'*” | the product of
the momentum operator and the wave function becomes

—ihV[e* T U (r)] = —ihe™ " (V + ik uni (r) = %7 (p + HOuui (r)  (1.56)



28 1 Semiconductor Materials

Applying the momentum operator a second time gives !X (p 4+ hk)%un (r), so the
Schrodinger equation can be written in the following way that the oscillatory part
will cancel out:

eik»r |: (p + hk)z

+ V("):|Mnk(") =" B (k)i (r) (1.57)
2my

Expanding the (p + hk)? term gives

2 hk - h2k2
[2”— +v+—L2 4 —]unkm = Ey ()i (r) (1.58)
mo mo 2my

The first two terms are identical to the original Hamiltonian, so if the two other
terms are treated as two small perturbations the Hamiltonian can be expressed as

(Ho + Hy + Hp)uug (r) = Ep (k) (r) (1.59)
where
I h2k?
H =—k-p, Hy = —
mo 2mg

are the first-order and second-order perturbations, respectively.

If the equation is solved for k = 0 with only Hy remaining nonzero, the result is
a set of eigenvectors u,o(r), typically at the optimal points such as the I" point of
the valence band structures of Si and C bulk materials in Fig. 1.12.

An expression of the Hamiltonian similar to Eq. (1.59) can be formulated for
the electron states in the vicinity of the conduction bandedges of Si and C which
do not locate at I but with a finite kg. For this, we express the wave vector of
the modulation envelope function in terms of ko, i.e., k + ko so that |k| is small.
Equation (1.58) becomes

(p + hko)? hk - (p + hky)  h2k2
[”270+V(r)+ D Lt kg () = En (k- ko)t kg ()

mo mo 2my
(1.60)

For the following discussion we express the eigenfunction using Dirac notation
as |m), and eigenvalues E,,. The eigenfunction for a given k, |nk), is a linear com-
bination of the basis functions:

unk(r) =Y cum (k) |m) (1.61)

so the objective is now to find the coefficients c,,, (k) that form our envelope parts
together with the basis functions at I".
If we insert this linear combination into the Schrodinger equation, we get

HY " com(k)im) ="y Hlm)cum (k) = Ey(k) Y cam (k)|m) (1.62)
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Multiply this on the left with the conjugate of any, say |£), of the basis functions,
we obtain

> (CH m) i () = En(k) > com () (€lm) = Ey (k) e (k) (1.63)

m

The right-hand part is the result of wave function’s orthonormal property (£|m) =
Sem.-
Inserting the expanded Hamiltonian equation (1.59), multiplying with the conju-
gate and integrating over an unit cell, give
h2k? h
En(K)ene (k) = | Ee+ — Jene (k) + > —(tlk - plm)cam(k) — (1.64)
2my — mo
We first set ¢,,¢ (k) = 8¢ on the right side of the above Eq. (1.64), thus to neglect
the wave function corrections from which we obtain the first-order correction to the
energy of state |nk)

k> h
E,(k)chn (k) = | Eq + 2— + —(nlk- pln) |cun (k) (1.65)
my  mo
which is
h2k?
Zmo

since (n|p|n) = 0. This is normally referred to as the first-order approximation.
Similarly, for £ # n, Eq. (1.64)

h2k? h
Ey(k)cye(k) = (Ez + 2—>cnz(k) + —(Llk - p|n) (1.67)
mo mo
so that the first-order correction to the wave function is
h (Llk - p|n)
ky=———"— 1.68
an( ) mo En — Eg ( )

by using Eq. (1.66). Note that in Eq. (1.67) we have implicitly assumed that both
h{lk - plm)/mg and cp;,, (m # n) are small so that their products on the right side
are neglected, so that only the product of A{€|k - p|n)/mg and c,;, (cp, = 1) remains.

By inserting the above expression back into Eq. (1.64), we have obtained the
energy of state u,x (r) at the second-order approximation

Pk*>  h €|k - pln)|?
E,(k)=FE _— _ 1.69
o (k) n+2m0+m0£§ EE (1.69)

The result can be expressed in terms of an effective mass m™:

h2
E (k) = E, +kaik1~ (1.70)
— m;

1
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where i, j = x, y, z, and

mo g 2 Z (n|pil€){Lpjln)
==y
f Mo o En—Ey

(1.71)

Note here that the effective mass can be anisotropic which can be utilized for optical
coupling in quantum well photodetection [39].

It can be easily seen that a narrow bandgap, which leads to two states being close
to each other, i.e., E,, — E, is small in the above equation, gives a small effective
mass. This agrees very well with the experimental data which indicates that InSb
has both the smallest bandgap and the lowest effective mass.

For semiconductors of device application interest, we concentrate on the con-
duction and valence bands of cubic semiconductors with both diamond (silicon and
germanium) and zincblende symmetries (III-V group).

Refer to Fig. 1.12, the conduction band generally consists of three sets of band
minima located at the I'js-point at k = 0, the L-points at k = (w/a,w/a, w/a),
and along the A lines from (0,0, 0) to (7 /a,0,0), from (0,0, 0) to (0, 7/a,0),
and from (0, 0,0) to (0,0, w/a), where a is the lattice constant. The valence band
tops are located at I']5. Two bands are normally degenerate at this point, which are
heavy-hole and light-hole bands; the third one is the spin-split-off band due to the
spin-orbital interaction.

In close proximity to an energy minimum at kg in the conduction band, the en-
ergy dispersion relationship Ej can be expressed as

JE (k)

E(k) = E(ko) + ) = (ki — ko.j)
i i lk=ko
32 E (k)
ki —ko.i)(kj — ko i)+ - 1.72
7 Okiok; k:ko(l o)k — ko) + (1.72)

where i, j = x, y, z. The linear terms vanish because of the spatial invariance under
translation of k — —k. In the region around ko where the higher orders can be
neglected, the energy dispersion E (k) is approximated by a quadratic function of k:

R o1
Ede) = Eko) + ) | ——(ki — ko) (k; — ko, j)
ij ij

(1.73)
1 1 3%Ey

m¥ "~ 12 okiok;

k=ko

Here 1/m;“j is equivalent to the definition of Eq. (1.71). [l/m;‘j] fori, j=(x,y,2)
forms a so-called inverse effective-mass tensor w, which will have a profound effect
on the optical properties of semiconductor materials to be discussed in Sect. 5.2.
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Two typical band structures are:

1. Spherical band:

E(k) = E (ko) +

21 1\2
Wk = ko)” (kz ko) (1.74)

m *
The conduction bands of III-V materials are well described by the above expres-

sion, see Table 1.4.
2. Ellipsoidal band:

E(k) = E (ko) + — "

*
2 my mj

2 _ 2 — 2
i [(k@ koo | (K ko,r)] (1.75)

where k; and k; are longitudinal and transverse components of wave vector k,
m7 and m; are longitudinal and transverse effective masses. The conduction band
of Si consists of six ellipsoids described by a longitudinal effective mass mj =
0.9163 and a transverse effective mass m; = 0.1905 expressed in the unit of free
electron mass mg [40]. The six ellipsoids become divided into groups. (1) m} =
my, my =my =mj,degeneracy g =2;(2)m; =m;,my =mj,my =my, g =2.
(3) mZ =my, my =mj, my=my, g =2. Here m}, m} and m? are the effective
masses in the x, y and z directions, respectively.

There are many different effective-mass concepts defined by various physical
properties. When a wave is subjected to an external force F, the acceleration is

given by
dv; d[103E 1 3%Ex -
Vi _ 2 (2 =y i; 1.76
dr dr(hak,-> jhakiak,-f (1.76)

where i, j = x, y, z. The above equation can be written as

dv,- 1
— = —F; 1.77
dr ;ml*j I ( )

by Eq. (1.40). Here the effective mass m* is defined as the acceleration effective
mass. The inverse effective-mass tensor by Eq. (1.73) is the one evaluated at the
band minimal points.

The conductivity effective mass, m?, is defined as the ratio of the electron mo-
mentum to its group velocity

nk = 19Ek (1.78)
mk h 0k
For a parabolic band, m} = m*, and for an ellipsoidal band,
3 = ! + 2 (1.79)

3 * *
mg mz my;

where mj and m;} are longitudinal and transverse effective masses.
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Each electronic state E (k), characterized by k, can be occupied by two electrons,
one spin up and the other spin down. The occupation probability of state E (k) is
given by Fermi distribution function f[E(k), E ], where E ¢ is the Fermi energy.
The electron density » is given by

2dk

where the integration is restricted within the first Brillouin zone. See more discus-
sions below in Sect. 1.9 about the density of states. For a simple band of Eq. (1.74),

n:/ f(E,Ef)N3(E)dE (1.81)
E(ko)

where N3(E) is the three-dimensional density of states

1 [ 2m*\*?
N3(E)=F(F) Vv E — E(ko) (1.82)

For a complicated band, Eq. (1.81) can still hold with a more elaborate expres-
sion for N3(E), where the density-of-states effective mass m; is defined in place
of m*. Note that mfl can depend on E. For a parabolic band, m; =m®*, and for an
ellipsoidal band,

w5 = [mi(m?)’]"? (1.83)

For simple band of Eq. (1.74) with a density of state N3(E) in Eq. (1.82), the
electron density at temperature T is

1 (2m*\*? E'2dE L84
"‘F(?) /1+exp[(E—Ef)/kBT] (1.84)

where kp is the Boltzmann constant, from which the carrier-concentration effective
mass m,. can be introduced for complicated energy bands so that the above equation
remains intact

1 32 p1/24F
(mz)"? = o) (1.85)
(kpT)32Fi2(Ef/kgT) ) 1+exp[(E — Ef)/kpT]
where
1/2d
F1/2(X)=/L (1.86)
I +exp(x —y)

is called Fermi integral of order 1/2.
For more complicated non-parabolic conduction band, a simple analytical way is
usually applied

ER)[1+aEMk)] =y k) (1.87)
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where y (k) is given by one of the right-hand sides of Eqs. (1.74) and (1.75). ¢ is a
nonparabolicity parameter, which in some cases can be used as a fitting parameter in
the interpretation of the electron transport data. The group velocity associated with
state k and the conductivity effective mass are proven to be

19E(K) hk

v = ok T il T 2aE )]

(1.88)
mi=m*[14+aE k)]

We can easily conclude from the above equations that the non-parabolicity effect
is to reduce the group velocity and to increase the density of states (larger effective
mass). Since the scattering rate is proportional to the density of states, the second ef-
fect enhances the scattering rate. In other words, it reduces the mobility of electrons
at high temperature and high fields when high-energy states are occupied.

For valence bands, non-parabolicity cannot be parameterized in this simple form
because of the correlation among the heavy hole, light hole and spin-split-off band.
The following k - p model is thus essential when quantitative descriptions of the
valence band states are required.

1.6 Eight-Band k - p Model

The well-established eight-band k - p model for III-V semiconductor materials was
derived rigorously for bulk materials [41-45]. And by a series of experiments the
parameters for the k - p Hamiltonian can be determined, and the final result is a
matrix with many material-dependent parameters and no arbitrary parameters to
adjust. The model has been extensively applied to many low-dimensional systems,
e.g., see Ref. [46], and the review of Ref. [47], as it gives a good approximation
of the states close to the I' point (k = 0), which is the most relevant region for
many device applications. The approximation is given with good accuracy, while
in many nanostructure calculations, this is the only feasible numerical model that
can be implemented (even though it is still much restricted due to the computational
capability).

For the k - p model, a common approach of choosing the basis functions |n) at
the T" point is to follow Kane [44] and define a set of eight states, |m), i.e., u,k(r)
in Eq. (1.54) at " (k =0),

Im) = (IS M), IX 1) 1Y DL AZ ) IS VL IX UL 1Y 1), 1Z 1))
(1.89)
Hplm) = Ey|m)

where the arrows indicate spin up and down. |X), |Y) and |Z) denote degenerate
valence bands while |S) denotes the conduction band. Other remote bands are not
included unless specifically required.
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By following the notation and phase conventions used by Enders et al. [45], the
Hamiltonian of the eight-band k - p model is written explicitly as

H=Hy+ Hs, + D+ H| + H, (1.90)

Hj represents the energies of the basis states, H, the spin-orbit interaction, D
the deformation potential, and H; and H, the k - p interactions of first and second
order, respectively:

[E, 0 0 0 0 0 0 0
0 -4, 0 0 0 0 0 0
0 0 -4, 0 0 0 0 0

o o 0 -Ay, 0 0 0 0

Ho=|o o 0 0 E;, O 0 0 (1.91)

0 0 0 0 0 -4, 0 0
0 0 0 0 0 0 -4A, 0

L0 0 0 0 0 0 0 —al ]

E, is the fundamental bandgap of the unstrained material and Al = Ago/3, Ago 18
the spin-orbit interaction energy.

Ooo0 o O 0 O 0 o
00 — 0 0 0 0 1
oi¢i O O O 0 0 —i
100 0 0 O -1 i O
Hso = Ao 00 o0 O o0 O 0 o (1.92)
00 0 -1 0 0 ¢ O
00 0 — 0 — 0 O
10 1 0 0 0 0 0 |
The Hamilton matrix of the deformation potential interaction reads
ac(Exx+6yy+€zz) 0 0 0
0 H’ 0 0
D= 1.
0 0 aclexx +€yy+e) O (1.93)
0 0 0 H’
where
€xx €xy €xz
€yx  €yy €y (1.94)

is the strain tensor (see more discussions in the following section). H' is the 3 x 3
matrix in the following expression

Lexy +m(eyy + €z7) Néyy Néy;
H = néyy Leyy +m(ez; + €xy) ney; (1.95)
Nnéy neézy les; +m(exy + €yy)
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parameters ¢, m, and n are defined by the deformation potential parameters a,, b,
and d as:

£+2 £ —
P e L S S L (1.96)
3 3 V3
H 0
_ 1
H, _|: 0 Hl/:| (1.97)
with
0  iPkee iPkye iPkg
! __ _ikag 0 O 0
Bi=\_irk,e o0 0 0 (1.98)
—iPk,e 0 0 0
where
h
P=2P = (SIiAVLIX) (1.99)
2m0
For zincblende lattices
px = py = (SIihV,|Y) = p, = (S|ihV,|Z) (1.100)

so that in the above expression, P is not direction-dependent.

Note that in the eight-band k - p model, |X), |Y) and |Z) denote degenerate
valence bands while |S) denotes the conduction band, p., = (px, py, p;) is actually
the optical transition matrix between the conduction band and the valence band.

Back to the expression (1.98),

koe =ka — Y €apkp (1.101)
p=x.y.2

where ky, ky and k, are wave vector components in x, y and z directions. The free-
electron and second-order k - p interaction contributions are contained in the matrix

AKZ 0 0

0
| 0 Stke) 0 0
H=| 00 A2 o (1.102)
0 0 0  S(ke)
where k2 = k2, + k%e + k2. S(k¢) is the Shockley matrix of Eq. (1.103)
Hi,  03x3
S(ke) = ¢
(ke) |:03x3 Hg,
(1.103)
Lk2 + ngz Nkyk,y Nkyk,
Hy, =| Nkyky  Lkj+Mk2,  Nkyk;

Nk ky Nk k, LK? + Mk,
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where kizj = kl.2 + ka, 03x3 is the 3 x 3 zero matrix, L, M, N are band parameters
given by

_h2 —h2 _h2
L=—01+4n), M =—(y1 —2y2), N =—(6y3) (1.104)
mo mo mo

where y1, ¥2 and y3 are Luttinger parameters.
In Eq. (1.102), A = h? /2m}, where m’ is normally referred to as the effective
mass of electrons in the conduction band given by
Ep(Eqg + 34,
@=1+2F+M (1.105)
m} Eq(Eg + Aso)
In the above equation, E, = pgv/ 2my is the energy parameter related to the mo-
mentum matrix p_,, F is the Kane parameter.
It is important to account for the temperature dependence of the bandgap energies
through the Varshni approximation

aT?
T+p

where o and B are the empirical Varshni parameters and 7 is the absolute tempera-
ture.

To determine the confinement potential we can apply the method where the top
of the valence band of every binary III-V compound is measured with respect to a
common reference energy level through a valence band offset (VBO) value [48]. The
VBO values of the ternary alloys are obtained from the binaries using expressions
similar to Eq. (1.110).

Principal band structure parameters of the common binary compounds are listed
in Table 1.4 [47]. The permittivities ¢ are obtained from Ref. [49] (which will be
used in studying quantum devices). Moreover, the permittivity of InN is derived
from its refractive index of 2.56 listed in Ref. [49]. Parameters for relaxed bulk
ternary and quaternary alloys are obtained by interpolations similar to Eq. (1.110).
Bowing effects are included whenever the values of the bowing parameters are avail-
able in Ref. [47] and references therein.

As mentioned before, Table 1.4 lists principal band structure parameters of binary
compounds, whereas ternary alloys of these binary compounds are commonly used
for energy band structure engineering, as alloying of two materials is one of the
oldest techniques to modify properties of materials. When two semiconductors A
and B are mixed via an appropriate growth technique, one must have the following
information regarding the structure of the alloy:

Eg(T) = E4(0) —

(1.106)

1. The crystalline structure of the alloy lattice.
2. The ordering of atoms. If an alloy of A, Bj_y is formed, where x is the mole
fraction of material A,

e All of A atoms are localized in one region while B atoms localized in another
region. Such alloys are called phase separated.
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Table 1.4 Band structure parameters for zinc-blende GaAs, InP, InAs, GaN, AIN, and InN [47, 49]

Parameters GaAs InP InAs GaN AIN InN
a[A] 5.65325 5.8697 6.0583 4.50 4.38 4.98
E}; [eV] 1.519 1.4236 0.417 3.299 4.9 1.94
a(I") [meV/K] 0.5405 0.363 0.276 0.593 0.593 0.245
B(T) [K] 204 162 93 600 600 624
Ago [eV] 0.341 0.108 0.39 0.017 0.019 0.006
mp} 0.067 0.0795 0.026 0.15 0.25 0.12
Y1 6.98 5.08 20.0 2.67 1.92 3.72
V2 2.06 1.60 8.5 0.75 0.47 1.26
V3 2.93 2.10 9.2 1.10 0.85 1.63
F —1.94 —1.31 —-2.90 -0.92 0.76 —-0.92
VBO [eV] —0.80 —0.94 —0.59 —2.64 —3.44 —2.38
ac [eV] —7.17 —-6.0 —5.08 2.2 —-6.0 —1.85
ay [eV] 1.16 0.6 1.0 —-5.2 —-34 —1.5

b [eV] -2.0 -2.0 —1.8 2.2 -1.9 —-1.2

d [eV] —4.8 -5.0 -3.6 —-34 —-10 -93
Cy1 [GPa] 1221 1011 832.9 293 304 187
C1y [GPa] 566 561 452.6 159 160 125

E, [eV] 28.8 20.7 21.5 25.0 27.1 25.0

€ [49] 12.40 12.5 15.15 10.4 9.14 6.55

e The probability that an atom next to an A-type atom is A is x and the proba-
bility that it is B is (1 — x). Such are called random alloys.

e The A and B atoms form a well-ordered periodic structure, leading to a super-
lattice.

Most semiconductor alloys used in the electronics and optoelectronics industry
are grown with the intention of marking perfectly random alloys. Usually, deviations
from this randomness lead to deterioration in the device performance.

For materials having the same lattice structure, the lattice constant of an alloy
obeys Vegard’s law

Aalloy = xaa + (1 — x)ap (1.107)

where aanoy, a4 and ap are lattice constants of the alloy, material A and B, respec-
tively. In the virtual crystal approximation the random-alloy potential is replaced by
an average periodic potential

Valloy (r) = xVa(r) + (1 = x)Vp(r) (1.108)

where V4 (r) and Vg (r) are periodic potential energies of material A and B, in the
term of Eq. (1.32).
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For example, an implementation of this approach in the tight-binding method
involves taking the weighted average of the matrix elements. For direct-bandgap
materials,

Eg,alloy = XEg,A +1 - x)Eg,B

(1.109)
1 X 1—x

* * *
m alloy 4 mpg

where Ej is the energy bandgap.

When calculating the bandgap energies of the constituent ternaries we need to ac-
count for the bandgap bowing effect. The bandgap energy of a relaxed In, Gaj_, As
alloy is given by:

E;(InyGaj_xAs) = xEg(InAs) + (1 — x) E;(GaAs) — x(1 — x)CyGaas (1.110)

where C is the bowing parameter. The recommended value for Crpgaas is 0.477 eV
[47]. Similar expressions are used for the other relaxed ternary alloys with Ciygan =
2.2 eV for Iny,Ga;_,N when x = 0.36 [50], Cganas = 20 eV for GaN,Asi_, when
x=0.01 and 11 eV when x = 0.03 [47, 51], and for InN, As;_,, the reccommended
bowing factor (CinNas) is 4.22 eV [47, 52].

We have thus far discussed mostly III-V materials. Si and Ge are indirect
bandgap materials where the lowest conduction bandedges are not located at the
I" points where the top valence bandedges locate. Therefore, the conduction-band
electron states and valence-band hole states can well be separately described. For
example, the conduction band of Si consists of six ellipsoids described by a longitu-
dinal effective mass mj = 0.9163 and a transverse effective mass m; = 0.1905 ex-
pressed in the unit of free electron mass mq [40], see Eq. (1.75). When we consider
a Si thin film embedded in SiO, which is extended in the xy plane, the translational
symmetry is broken down along the z direction so that the six ellipsoids become
divided into groups. (1) m} =mj, m} = m’y‘ =mj, degeneracy g = 2; (2) m} =mj,
v =mj, g =4. Here m}, mj and m7 are the effective masses in the x, y

and z directi())ns, respectively. In the Schrodinger equation, V. is the potential energy
for the conduction band electron. For undoped Si thin film embedded in SiO», V is
zero in Si and about 3.5 eV in SiO,, which is the conduction-band offset between Si
and SiO; [53]. Coulombic potential of conduction-band electrons and dopants will
be added when the sample becomes doped (see more discussions late).

The valence bands of Si and Ge are described by the 6-band k - p perturbation
Hamiltonians, and the values of band parameters are listed in Table 1.5 [41, 42].

Equation (1.103) includes only terms in k;k ;. For high hole energy states (high k
values), terms of higher order in k; must be included. In the first order approximation

we assume that E¢¢ = Q is independent of |) and EZ‘:M =0ifi, j,m and n are

k0 k
my=m;,m
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Table 1.5 Valence band parameters of the 6-band k - p theory for Si and Ge

Parameters Unit Si Ge

L eV-A2 —25.51 —143.32
M eV-A2 -15.17 —22.90
N eV-A2 —38.10 —161.22
0 eV.A4 —125.0 [54]

A eV 60.044 0.282
a eV 2.1 2.0

b Y —-1.5 -22

d eV —3.4 —4.4
ao A 5.4309 5.6561
Ci 10'! dyn/cm? 16.56 12.853
Cis 10'! dyn/cm? 6.39 4.826

not the same so that

LK? + MK2, + Qk} Nkyky Nkyk,
H(k) = Nkyky Lk} + MkZ, + Qk} Nkyk,
Nk kg Nkky LkZ 4+ MKZ, + Qk?

(1.111)
The value of Q for Si was obtained by fitting the calculated Fermi levels at different
doping levels with measurement data [54].

Figure 1.14 shows the valence band structures of bulk Si and Sig7Geg 3 alloys
grown, respectively on Si and Sip7Geq 3 substrates. Here we have taken the valence
bandedges of the alloy materials as zero energy reference (excluding the spin-orbital
interaction). In the unstrained Sip 7Geg 3 and Si materials, the heavy-hole and light-
hole bands are degenerate at k, = 0. However, in the tensile (compressional) strained
Si (Sip.7Gey 3) the light-hole band moves upwards (downwards), whereas the heavy-
hole band is not much affected by the strain.

As discussed earlier, a valence band offset is expected at a heterostructure inter-
face. Considering the (001) orientation and referring A E,, as the discontinuity in the
top of the valence bands at 1"'1’5, van de Walle and Martin showed that AE, varies
almost linearly with the lattice constant a,, [55]

AE, =0.84 —2.41(ayy —5.43) (1.112)

for a heterostructure of Sij_,Ge, grown on (001) Si, where ayy is in A and AE,
ineV.
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Fig. 1.14 Si and Sip7Ge 3 valence band structures. Solid lines: unstrained materials. Dotted lines:
Si grown on Sip 7Geg 3 substrate and Sip.7Geg 3 on Si

1.7 Strain Field in Nanostructures

The proposal and realization of the concept “semiconductor heterostructures” was
revolutionary in electronics and optoelectronics and paved the way to the fast devel-
opment of information and communication technology [56]. The epitaxy methods
of heterostructures, i.e., molecular beam epitaxy (MBE) and metal-organic vapor
phase epitaxy (MOVPE), have already become a common technology for semicon-
ductor industry. A critical issue is the lattice mismatch between the epitaxial layer
and the substrate. When a thin epitaxial layer is grown onto a substrate with a dif-
ferent lattice constant, the atoms in the epitaxial layer will be forced to align with
the atoms in the substrate so that the epitaxial layer is strained. The strain force will
gradually accumulate during epitaxial growth, it will eventually start to relieving
by forming three-dimensional (3D) islands on the growth surface, and/or misfit dis-
locations inside the crystal. Strain relaxation often generates lattice defects which
degrade device performances, it can also be utilized. The most significant example
is the self-assembled quantum dots formed by nucleation and coalescence of the 3D
islands via the Stranski-Krastanov growth mode [57].

As discussed in the previous section, strain also affect the energy band structure
of the epitaxial layer, and thus provides a means to tailor the energy band structure
and carrier transport. In this section, we discuss the theories of the elasticity and
microscopic strain field.

Refer to Fig. 1.15, we first discuss the strain in terms of displacements in two
dimensions induced by tensional stresses P, P>, and shear stress S3. We suppose
that a naturally plane body (or sheet) is strained in such a way that all the particles
remain of the body in one plane after the strain. It is necessary to refer all the dis-
placements to a pair of axes fixed relatively to some particles of the body. Let the
origin O be situated at one of the particles of the body, and if that particle moves
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Fig. 1.15 Displacements, strain, stress, and external forces

O is supposed to move with it; and let the axis OX always pass through one other
given particle of the body. The axis OY is always perpendicular to OX and in the
plane of the particles.

Let the particle which was at (x, y) before strain be situated at (x + u, y + v)
after strain. Both u and v are functions of x and y since each will vary with both x
and y. We have to investigate the change of size and shape of an element, which, in
the natural state, is a rectangle with sides §x and Jy.

The rectangle CDKH, Fig. 1.15(a) is displaced relatively to the axes into the
position C'D’K’H’. The displacement of C has components « and v. Now suppose

u=f(x,y) (1.113)

Then, denoting the displacement of D parallel to OX by (u + §u), we get, since the
coordinates of D are (x + dx, y),

u—+ou=f(x+4x,y) (1.114)
Therefore
) 0
Su= Fx+6x,y)— fry) = TED s o ws)
0x dax

But Su is the displacement of D’ relative to C’ and is therefore the excess of C'N over
CD. Now the length of CD is éx, and the horizontal projection of C'D’ is greater
than CD by g—)’ﬁ&c. Hence the extensional strain in the direction of OX is

CN-CD  5x  du
CD  6x  x
Likewise the extensional strain in the direction of OY is dv/dy.

The shear strain for the lines C'D’ and C'H’ is, by definition, the whole change
of angle at C’; that is, the shear strain is (¢ + ¢2). But

(1.116)

b~ ND'  dv (1.117)
'"TONT ax '
and ¢ = du/dy. Therefore the shear strain is

v du

—+ — 1.118
dx  dy ( )
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In three dimensions, we add tensional stress P3 along the z axis and shear stresses
S1 and $; in the yz and xz planes. Let a particle originally at (x, y,z) move to
(x +u,y+v,z+ w). It follows then that the three dimensional strains are du/dx,
dv/dy, and dw/dz. Likewise the three component shear strains are

v n Jw ow n u ou n ov (1.119)
9z dy )’ ox  0z)’ dy  Ox '

We shall denote the extensional strains by «, 8, y, respectively, and the shear
strains by a, b, c, respectively, that is

u 5 v ow
a:—’ = —, = -,
ox dy Y 0z
(1.120)
8v+8w b 8w+8u 8u+8v
a=_— a0 = P C=_— a.
dz  dy ox 0z dy  0x

In contemporary physics, o = exy, B = &yy, ¥ = &4z, /2 = €xy, b/2 = &y,
¢/2 =6z, P =0xx, P, =0yy, P3 =0y, §3 =04y, $2 =0y, and S = 0y, where
[0i;]1s denoted as the three-dimensional Cauchy stress tensor and [¢;; ] the Cauchy’s
infinitesimal strain tensor.

When working with a three-dimensional stress state, a fourth order tensor [A; k]
containing 81 elastic coefficients must be defined to link the stress tensor and the
strain tensor

0ij =) _ hijkeeke (1.121)
24

i,j,k,£ =x,y,z. Due to the symmetry of the stress, strain and stiffness ten-
sors, only 21 elastic coefficients are independent. In crystals with cubic symme-
try, there are only three linearly independent constants: Ayyyx = C11, Axxyy = C12,
Axyxy = Caq4. For wurtzite structure, there are five linearly independent elastic con-
stant: Ayxxx = C11, Azzzz = €33, Axxyy = C12, Axxzz = C13, Axzxz = Caq [47].

Figure 1.16 shows the schematic Stranski-Krastanov growth mode of InAs QDs
on GaAs substrate. Denote agaas is the lattice constant of substrate GaAs, and aas
is the lattice constant of the bulk InAs material. As the InAs atoms in the first epitax-
ial layer will align with the GaAs atoms in the xy plane so that the lattice constants
of the thin wetting layer are the same as agaas, the displacements of InAs atoms in
the xy plane are

U =V = dlnAs — AGaAs
and the wetting layer is therefore biaxially strained in the xy-plane by an amount:

AInAs

Exx =Eyy = —1 (1.122)

AaGaAs
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Fig. 1.16 Schematic self-assembled InAs QD by Stranski-Krastanov growth mode

where we have assumed du/0x = u/agaas is constant. By minimizing the strain
energy, the epitaxial layer is uniaxially strained in the z direction by an amount:

2C12
- 1.123
Ci Exx ( )

&z =

where C| and Cq are elastic constants of InAs. Other strain elements are zero, i.e.,
gij =01if i # j. Note that we will discuss more carefully the above two equations
at the end of this section.

The calculation of the strain in the three dimensional InAs QD of Fig. 1.16(b)
is complicated. The geometric shape of the QD is determined by many factors in-
cluding growth conditions and inter-diffusion between QD material and background
material. By a hybrid computational approach that combines continuum calculations
of strain energy with first-principles results, relatively small effects associated with
surface stress were obtained for InAs/GaAs system [58], while it was theoretically
demonstrated to be an important factor in Ge/Si QD formation [59]. Wise et al.
demonstrated the evolution of the QD formation under the strong influence of sur-
face energy by cubic elastic equilibrium equations [60]. Kinetic Monte Carlo study
of metal organic chemical vapor deposition (MOCVD) growth mechanism of GaSb
QDs in GaAs showed that the strain induced by the lattice mismatch between the
epitaxial material and the substrate is directly responsible for the QD formation and
the transition from two-dimensional to three-dimensional growth mode [61].

In the following we introduce the short-range valence-force-field (VFF) approach
to describe inter-atomic forces in the QD systems in terms of bond stretching and
bending [62, 63]. The model is microscopic and has been widely applied in bulk and
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Fig. 1.17 Microscopic strain (a)
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alloys [64-69], as well as low-dimensional systems [70—72]. In the VFF model, the
deformation of a lattice structure is completely specified when the location of every
atom in the system is given [62], and the elastic energy of a bond is minimal in its
three-dimensional relaxed bulk lattice structure.

Refer to Fig. 1.17 for the bond configuration in the zincblende crystal lattice
structure, the bond between two atoms is denoted by its bond length ;¢ and spatial
orientation £2;o at equilibrium, where i is the bond index. When the spatial posi-
tions of the atoms change, so change the relevant bond parameters to (r;, £2;). The
elastic energy of this bond (by setting the elastic energy at equilibrium as the zero
reference) can be written in the harmonic form

6 6
Ei=Kior] + Kigriy »_(1—cos 2ij) + Kipri Y 6, (1.124)
j=1 j=1

with j =1, 2... denotes the nearest-neighbor bonds. Note that there are six nearest-
neighbor bonds in zincblende structure, see Fig. 1.17(b). 8r; is the variation of the
length of bond 7, and £2;; is the variation of the angle between the ith and the jth
bond. The total elastic energy is the sum of all bond energies

Eetasiic = ) _ Ei (1.125)
i

The numerical values of K’s for VFF bonds of zincblende bulk materials are eas-
ily obtained from elastic coefficients C11, C12, and Caq listed in [47]. We consider
a bulk semiconductor under a hydrostatic pressure and a sheer stress along the x di-
rection. The bulk semiconductor is composed of N unit cells in x, y and z direction
so that its lengths are all Na and volume (Na)3. Under a hydrostatic pressure, the
lengths are modified by &, 8, and &, so that

(1.126)
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Table 1.6 Lattice constant a, elastic coefficients C’s [47, 49, 73] and K’s of zincblende InAs, InP,
GaAs, Si, and Ge bulk materials at 100 K

InAs InP GaAs Ge Si
a[A] 6.05 5.86 5.65 5.657 5.432
C11 [GPa] 83.29 101.1 122.1 128.9 165.7
C12 [GPa] 45.26 56.1 56.6 483 63.9
Cy4 [GPa] 39.59 45.6 60.0 67.1 79.6
K, [GPa A] 170.13 198.57 215.09 212.4 256.1
Kg [GPaA] 9.59 10.99 15.41 18.9 23.1
K, [GPa A] 59.32 71.14 74.85 73.2 93.2
_du 8 5y 8
€xx—£—m» Eyy—mv 822-@

For zinc blende structures,

Oxx = C118xx + C125yy + Ci¢;
oyy = Ca18xx + Cr18yy + C128; (1.127)

07; = Co16xx + C128yy + Cri&z

Other components of ¢ and o are zero. The strain energy is

Eelastic = %[Cll (Eix + Siy + ng) +2C12(exxyy + Exxézz + Syyszz)](Na)S
(1.128)
For the sheer stress along the x direction of Fig. 1.17(b), u = ztan8, v = 0 and
w =0, so that

1 1
Exz = Etané, Oy; = §C44 tan 6
(1.129)
Eetusic = ~Cag tan 0(Na)?
elastic = 3 44tan” 0 (Na)

We can further consider another sheer stress along the y direction so that we totally
have three independent linear equations for K;,, K;, and K;,.. Note that K values
depend on the temperature of the material due to the temperature dependence of the
lattice constant. The dependence, however, is found to be very weak. The K values
listed in Table 1.6 are obtained for bulk materials at 100 K.

The local lattice structure of the InAs QD is determined by adjusting spatial co-
ordinates of lattice sites in order to minimize the total strain energy. The adjustment
of the lattice sites can be performed by a Monte Carlo scheme in such a way that we
generate one set of random walkings for all lattice sites, check the total elastic en-
ergy. If the total elastic energy is reduced, the set of the random walkings is allowed
and the lattice sites are then upgraded.
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Fig. 1.18 Spatial distributions of strain energies around InAs QDs (volume = 91.3 nm?) in GaAs
matrices. y = 0. Linear scale applies and values associated with contour lines are in the unit of
meV. (a) Uncapped hemisphere and (b) piramid InAs QDs on GaAs substrates, (¢) hemisphere and
(d) pyramid InAs QDs buried in GaAs matrices (X.-F. Yang, K. Fu, W. Lu, W.-L. Xu, and Y. Fu,
Strain effect in determining the geometric shape of self-assembled quantum dot, J. Phys. D: Appl.
Phys., vol. 42, p. 125414(8), 2009)

Spatial distributions of the strain energies around InAs/GaAs QDs are presented
in Fig. 1.18. Two QDs are considered here, one is a hemisphere with a base diameter
of 12 nm and a height 1.5 nm, the other QD is a pyramid with a base size 8 nm and
a height 4 nm. The strain energy of the QD pyramid is significantly small when
the QD is uncapped due to the lattice relaxation at the QD surface, whereas atoms
in the QD hemisphere are not able to relax much since all of them are very close
to the substrate and therefore are significantly strained. This demonstrates clearly
the general understanding of the strain-driven self-assembling formation of QDs
that the lattice-mismatch-induced strain is largely released when the QD forms on a
substrate.

The strain field distribution is readily calculated which are presented in Fig. 1.19.
The strain fields of the QD hemisphere can be very well approximated by
Egs. (1.122), (1.123) since the horizontal dimension (diameter = 12 nm) is much
larger than the vertical one (height = 1.5 nm). The strain field distribution in the
GaAs background is also very significant, especially perpendicular to the substrate
surface. The strain distribution in the QD pyramid is rather complicated. We ob-
serve significant strain relaxation inside the QD in the top vicinity. The surrounding
background material becomes also largely strained. The major reason is the ratio
between the numbers of the surface and total QD atoms. In other words, the main
difference between the hemisphere and pyramid QDs under discussion is the aspect
ratio. For the hemisphere QD with a small aspect ratio, surface atoms dominate
which are either very close to or in direct contact with the GaAs substrate, whereas
atoms in the pyramid QD can be well catalogued into strained surface atoms and
much-relaxed bulk ones.

Now we discuss a bit further about the strain field distribution of Egs. (1.122) and
(1.123). It can be noticed that the two equations have been also applied to quantum
well structures formed by alloys such as Al,Gaj_,As quantum well embedded in
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Fig. 1.19 Strain field distributions around InAs QDs embedded in GaAs matrices. y = 0. Linear
scale from white (—0.04) to black (0.04) applies. (a—c) Hemisphere QD, (d—f) pyramid QD (X.-F.
Yang, K. Fu, W. Lu, W.-L. Xu, and Y. Fu, Strain effect in determining the geometric shape of
self-assembled quantum dot, J. Phys. D: Appl. Phys., vol. 42, p. 125414(8), 2009)

AlAs, or InAs,P1_y quantum well in InP. In the latter case, the strain fields in the
InAs,P;_, quantum well are described as

a 2C
fax =gy = Py g o T (1.130)
amp Cu
where we apply Vegard’s law, Eq. (1.107) to obtain the lattice constant of an alloy,
and similar relationships for elastic constants

AInAs,P;_, = XamnAs + (1 — X)amp
Ci12 =xCi2,1mas + (1 = x)Ci2,1mp (1.131)
Ci2 =xCi1,mas + (1 = x)Cr1,mp

To validate the strain fields of Eq. (1.130), let us do two simulations about a
[001] InAs,Pj_, quantum well grown on an InP substrate. We denote [001] as the
z direction. The first simulation is to use the VFF model in the following way. The
quantum well growth starts at the surface of the InP substrate which is denoted
as z =0. For z > 0, In atoms deposit to the cation sites of the lattice, while As
and P atoms deposit to anion sites according to the mole fraction x of As atoms.
The growth mode is two dimensional, i.e., atomic layer-by-layer growth along the z
direction. For each growing atomic layer, we allow the atoms on the growing layer
as well as atoms in three atomic layers beneath the growing layer to adjust their
spatial positions in order to minimize the strain energy. Strain energy per atom, i.e.,
the strain energy density, along the z direction, thus obtained, is denoted as VFF
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and plotted in Fig. 1.20. In the second simulation, the lattice constants in the x and
y directions of the atoms in the InAs,P;_, quantum well assume the value of InP,
while the lattice constant along the z direction is obtained from Egs. (1.130), which
is denoted as the effective medium approximation (EM). The strain energy density
thus calculated is plotted in Fig. 1.20 for comparison with the VFF results. Here it is
observed that the VFF result is smaller than the EM model. Only when the As mole
fraction reaches close to 1.0 give the two models the same strain energy.

By performing similar simulations for x ranging from 0.0 to 1.0, we calculate the
ratio between the VFF and EM strain energy density, which is shown in Fig. 1.21.
For all x smaller than 1.0, the VFF strain energy is always lower than the EM ap-
proximation. The reason is rather straightforward: As and P atoms in InAs,Pj_,
can adjust their spatial positions locally so that the local strain energies, and thus

K- i
N /*/* ¥| 1.0 ¥
EM Xk / /
/ hag ¥
2 * / 0.8 /
@ / w hie
$ 3 * / e
3 / Al 0.6 *
> 64
o * /s::» ;-
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@ T /* 0.2
/sﬁr
» (a) InAs P, /InP (b) VFF/EM
0L—, : : , - 0.0l — , , , ,
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InAs mole fraction x

Fig. 1.21 Strain energy density (strain energy per atom) along the direction perpendicular to the
two-dimensional [001] InAs,Pj_; quantum well embedded in InP. (a) Strain energy densities
obtained by VFF and EM models, (b) ratio between VFF and EM strain energy densities
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the total strain energy, become small. For large x, especially InAs on InP, the free-
dom for the local spatial position adjustments is small, so that the results of the VFF
and the EM approximation converge.

It is thus concluded that the microscopic structures are critically important in
determining the macroscopic properties of semiconductor nanostructures.

1.8 Heterostructure Material and Envelope Function

Among all possible combinations of semiconductors, the lattice-matched (or at least
closely matched) combinations have attracted most interest. The reason is, of course,
the possibility of ideal heterointerfaces if the lattice constants of the constituents are
the same. It is interesting to note that perfect lattice match does not guarantee an
ideal interface, as can be seen from the results for the GaAs-Ge system [74]. In
addition to the lattice match condition, we also have to require that both systems
be binary (or ternary, quaternary) in order to avoid, for instant, the site allocation
problem [75].

A picture of the effects of the heterojunctions on the band structure can be ob-
tained by employing the effective-mass theorem. The simplest approach is to view
the semiconductor as homogeneous with an additional potential superimposed on
the crystal potential. Then the effective-mass theory tells us that for electrons at
band minima or maxima we can replace the Hamiltonian

—h?V?
+ Vo(r) + V(r) (1.132)
2mg
by
_hZVz
+ V(r) (1.133)
2m*

and therefore transform away the periodic crystal potential Vo (r), provided that
V(r) and its Fourier components fulfill certain conditions. In other words we have
reduced the heterojunction problem to a well-defined potential [V (r)] problem for
a quasi-free electron with effective mass m™.

To complete the effective-mass theory we need to know the potential V (r). Al-
though it is difficult to determine V (r) with respect to the vacuum level, a calcu-
lation of V(r) relative to the bandedge of one component of the heterostructures
seems to be easier. Harrison et al. proposed [35] that V (r) can be determined by the
linear-combination-of-atomic-orbitals method which gives the valence bandedge E,

as
E,+E E, + E, 172
EU: a;_ : _[< a_Q"_ L)_'_szx] (1-134)

where E, (E.) are the p-orbital energies of the anion (cation) atoms, and V,, is
the interatomic matrix element of the crystal Hamiltonian between p-orbitals of
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adjacent atoms. The valence band offset AE, for hole of, e.g. an AlAs-GaAs het-
erojunction is therefore

AE, = E,(AlAs) — E,(GaAs) (1.135)
and the conduction band discontinuity AE, is
AE. = E4(AlAs) — Eo(GaAs) — AE, (1.136)

Here E; is the energy bandgap of AlAs or GaAs. A comparison of these values
with experimental results has been given by Margaritondo et al. [76], who found an
overall agreement between theory and experiments.

We now seek to solve the wave equation

[Ho+ V(r)]¥ =EW (1.137)
where
2
Ho=L— + Vo(r)
Zm()

is the Hamiltonian of a perfect crystal, V (r) is a perturbing potential due to hetero-
junctions in the heterostructure system. my is the free electron mass.
For the perfect crystal, the Bloch theorem says

Hounxe'* ™ = E,(K)unge*" (1.138)

where u,x (r) = un,x(r + R;), R; is the position of unitcelli.n =1,2, ..., u is the
band index.

When we investigate a crystal whose component composition is not uniform, it
is more suitable to use the Wannier function

1 (R,
an(r = R)) = — D i (r — Ry)e'* R (1.139)
k

Here we assume that the Bloch functions are normalized for a volume £2 containing
N unit cells.

Before we move on, let us study the characteristics of the above Wannier func-
tion.

{an(r — R)|an(r — R}))
1

=2 / W (r — R)ung (r — Rj)e™* = ROHEC=RDgr (1.140)
kq

It is easy to see that the integration over r
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A= / W (r = Ri)itng (r — Rp)eFT=ROHaC-R) gy
= ¢! (k-Ri=q'R;) / Wi (r — R)ung(r — Rpe =0 7dr  (1.141)

Because u,(r — R;) and u,q(r — R ;) are periodic with respect to the unit cell,
so becomes uzk(r — Rj)uuq(r — Rj). The above integration can therefore be
performed by integrating u);, (r — R;)unq(r — R ;) over one unit cell, then sum-
ming over all unit cells by which we obtain that A is nonzero only when ¢ = k.
The summation over k in Eq. (1.140) is nonzero when R; = R ;. In other words,
(an(r —R})|a,(r — R;)) = §;j,1.e., Wannier function a, (r — R;) is localized around
the ith unit cell.

We now express the perturbed wave function of Eq. (1.137) using Wannier func-
tions in the form of

W= "Yu(Ri)an(r — R;) (1.142)
i,n
In order to obtain the equations for v, (R;) we substitute the wave function given
by Eq. (1.142) into Eq. (1.137), multiply by a,(r — R;) and integrate over the
volume £2. In this way we obtain the following equations

Z[hn’(Rj — Ri)8un + Virnji |n(Ri) = EY (R ) (1.143)

in
where
hw (R j = Ri)8yn = aw (r — R )| Holan(r — R))

because of the orthogonal property of wave functions from different bands and pe-
riodic property of the operator Hy,

Vinji = (aw (r — Rj)|V(r)|an(r — Ry)) (1.144)

Virnji will be appreciable when there is considerable overlap between a, (r —
R;) and a,(r — R;). This will be so when |R; — R;| is small. If V() is a slowly
varying function we may regard it as constant over the region where the product
(ap (r — Rj)|a,(r — R;)) is appreciable and take it outside the integral for V,,,;;,
which is equal to zero when i # j. Thus,

Vn’nji ~ n’n(Rj)(Sji (1.145)

V(r) may not be a slowly varying function in situations like interfaces between
two different materials when regarding individual atomic potentials. But as a con-
sequence of the surface kinetic processes, a certain degree of intermixing of the two
materials is inevitable. Such intermixing is clearly indicated in the GaAs/AlGaAs
superlattice by the fine structure emission lines in the photoluminescence spectra
corresponding well to that calculated for one monolayer change in the well width.
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Therefore, it takes several atomic layers for the averaged atomic potential to change
from one material over to the other. Since the Wannier function is quite localized,
especially when the electronic states under investigation are close to the bandedges,
the approximation of V,;,,;; & V,,,, (R ;)3 ; is reasonable.

Equation (1.143) is thus reduced to the form

> b (R)Yw (R — R+ Vi (R)Yu(R)) = E(R))  (1.146)

On the other hand, writing the energy E, (k) as
Eyy (k) = (™" | Holuyy €™") (1.147)

and substituting the Bloch functions in terms of Wannier functions, we obtain
1 —ik-(R:—R: —ik-R:
En) = Zjhn/(R,- — Ry TR = S bRy (1149
l

Replacing k by —iV then applying to v,/ (R ;)

Ey(=iV)Y (Rj) =Y hw(R)e™  Riypy(R)) =Y hy (R)Yw (R — Ry)

(1.149)
where we have used the relation
eV iy (r) = Y (r — Rp) (1.150)
Equation (1.146) can thus be re-formatted as
Ey(=iV)Yy (R)) + Z Vin(Rj)Yn(Rj) = Ey (R ) (1.151)
n

By approximating R; by r, the equation

[Ew (=iV) = E]w (r) + Z Varn (F) ¥ (r) =0 (1.152)
n

is therefore seen to be equivalent to Eq. (1.146). Equation (1.152) is the differential
equation for envelope function ¥,,.
To understand ¥, (r) more clearly, let us write the total wave function given by

Eq. (1.142) as
U= an
n

then expand ¥, in terms of Bloch functions, i.e., insert Eq. (1.139) into Eq. (1.142),
1

v, = % Z ij Vn(Ri)e ™ Riu g (r)e*r = N

D Gyl u(r) (1.153)
k
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where
1 .
Gn k - " Ri —lk‘R,'
(k) ﬁ;w (R)e

Replacing R; by r,
G,(k)= —1 /1//,,(7‘)6 ik dr
VN

we see that G, (k) is the Fourier transform of v, (r).
Assuming that u, (r) does not vary much with k, Eq. (1.153) becomes

v, ~ ﬁun(i‘) Xk: Gn(k)e'™ " = u, (N ¥ (r) (1.154)

where u,, is the Bloch function at the optimum point of interest. The function v, (r)
therefore acts as a modulation function for the function u,, which may vary rapidly
in a single cell, and is usually called the envelope function.

We now apply the envelope function theory to study the conduction band of a
heterostructure composed of material A and B which are described by energy dis-
persion relations of E, (k) in the form of

Wky,  hK?
Ei(k)=Eio+ s+ 5
Zmi’[ Zmi’e

(1.155)

where ml* , and mj , are transverse and longitudinal effective masses in the xy plane
and along the z axis, respectively. E;o is the conduction bandedge of material i
(i = A and B). Replacing k by —iV, we immediately come up to the well-known
effective mass approximation from Eq. (1.152)

K2 d? d? n a2
[ ( + ) +Eio(r>]z/f<r>=Ew<r> (1.156)

2mf, ) \dx? T dy?) 2mi(r) d22

where we have neglected the coupling of the conduction band with other bands
(most importantly the valence bands) in the above equation, i.e., V,, = 0 in
Eq. (1.152), which is valid for many applications.

More explicitly let us concentrate on a one-dimensional heterostructure AB
grown along the z direction with the heterointerface at z = 0. Assume z < 0 is
material A and z > 0 material B. Moreover, E 49 < Epo, i.€., material A is the
quantum well and B is the barrier, and take E 49 as the energy reference. For energy
0<E<AE.=Epo— Eao,

A G & o d?
[_( + )-——+v<r)]w(r)=E1/f(r> (1.157)

Com \dx2 T dy2) 2mY, d22
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where V(r) = AE. for z > 0 and V (r) = 0 otherwise. Since V(r) = V(z) is xy-
independent,

Y (r) =ePkoy(z)
h2k2

E=E ahd 1.158
.+ 2, ( )

n? g2
[— — + V(z)}w(z) =E.¥(2)

2m dz?

where p = (x, y). Note that the total wave function is ¥ (r)u(r), where u(r) is the
Bloch function.

In Eq. (1.157), for 0 < E < AE, the effective mass of composite material A,
mj’ ¢ applies across the whole system, including the spatial region of material B,
since the effective mass of material B, m’g‘ ‘ is only defined for £ > AE..

For E > AE,, the effective mass is spatial-position dependent, m™*(z) = m}; ‘
for z > 0 and m*(z) = mz’ ;- Extended discussions about the effective mass ap-
proximation were reported [77-83] when the effective mass m™ is spatial-position
dependent. It is generally accepted that

{_h—zi[—l i]+v< )}w)—Ew() (1.159)
2 dz | m*(z) dz ¢ “= ¢ '
is the most reasonable choice, where
1 dy(2)
¥(z) and o A (1.160)

are continuous across the system.

Conventionally the III-V heterostructure is referred as type-I as the quantum
wells for both conduction-band electrons and valence-band holes locate at the same
spatial regions, as schematically illustrated in Fig. 1.22. A band-offset coefficient is
generally defined as

AE.  AE,
AE.+ AE, AE,

(1.161)
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where
AE, = E,(Al,Ga;_,As) — E;(GaAs)

is the difference between energy bandgaps of Al,Gaj_,As and GaAs. For III-V
heterostructures, this coefficient is generally accepted as 0.65. The valence band
offset between GaAs and Al,Gaj_,As is therefore 0.35AE,. This expression is
normally valid for direct band-gap materials. It becomes complicated when indirect-
band-gap materials are involved.

We have presetned the concept of valence band offset when discussing the k - p
model in Sect. 1.6. Almost identical results are obtained using the two different band
offset schemes, as can be expected for III-V materials [47]. The energy values in
the following are all measured with respect to the top of the valence band of bulk
GaAs.

For GaAs/Al,Gaj_,As hetero materials, we have to consider the I'-X-mixing
effect when the Al mole fraction larger than 0.35 [84]. First of all, a valence band
offset of 0.5x eV was obtained by the sp>s* tight-binding model which fits very well
with experiments [85]. The band offset between I" bands of GaAs and Al,Gaj_yAs
is

1.247x +1.147(x — 0.45)2 —0.5x eV
when x > 0.45, since the I" bandgap of Al,Gaj_,As is [86]

1.424 + 1.247x + 1.147(x — 0.45)% eV

A good example of the one-dimensional heterostructure material is a GaAs/
AlGaAs asymmetrically-coupled quantum well system. Grown on the [001] ori-
ented semi-insulated GaAs substrate, the sample consists of a 500-nm-GaAs buffer
layer, a 50-nm-Alg 53Gag 47As barrier, a 3-nm-GaAs well, a 2-nm-AlAs barrier, a
7-nm-GaAs well, a 50-nm-Alg 53Gag 47As barrier, and finally a 20-nm-GaAs cap
layer.

Ion-implantations have been performed to enhance the inter-diffusion of Al
atoms and consequently modify the quantum potential energy for various electron-
ics and optoelectronics applications. After the ion-implantation, the quantum well
is changed from a square well to an error-function-like well. Taking the center of
the AlAs barrier (denoted as Aly,Gaj_y,As, x2 = 1.0) as z = 0, the AlAs barrier
width as 2h, the two heterointerfaces between GaAs quantum wells and the AlAs
barrier locate at z=—h and z =h, h =10 A. The other two heterointerfaces be-
tween GaAs quantum wells and Aly, Gaj_y, As barriers (x; = 0.53) locate then at
z1 = —40 A and 70 = 80 A. The degree of the Al diffusion across heterointerfaces
is given by the diffusion equation of [87-90]

X1 Z—121 7—24 X3 z+h z—h
x(z)—7|:2—erf< 7L >+erf( L >i|+?|:erf( 5T )—erf( 5T )i|

(1.162)




56 1 Semiconductor Materials
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where L is the diffusion length, and erf the error function. Here the same diffusion
length is assumed at the GaAs/AlGaAs and GaAs/AlAs heterointerfaces.

1 x(z) 1 —x(2)

= (1.163)
m*(z) mj\lAs mziiaAs
in the virtual crystal approximation and
V(z) =0.65 x 1.247x(z) eV (1.164)

taking the conduction bandedge of GaAs as zero reference energy. Figure 1.23
shows the envelope function and energy position of the ground sublevel in the con-
duction band. By the position-dependent-effective-mass equation of Eq. (1.163), the
ground sublevel in the conduction band is 59.1 meV when L = 0.1 A, it becomes
75.2 meV when L = 5.1 A. However, applying the effective mass of GaAs across
the heterostructure, the ground sublevel becomes 70.0 and 83.5 meV, respectively,
for L =0.1 and 5.1 A, whereas the envelope function is only slightly modified.

1.9 Dimensionality and Density of States

In bulk material, the wave functions of electron states in the conduction band and
hole states in the valence band can be expressed as:

Yi(r) =eik'ruk(r), up(r) =ur(r + Ry) (1.165)

due to the periodic lattice potential V (r) = V(r + R,,), where k is the wave vec-
tor and R is the spatial position of the nth lattice site in the crystal. Note that the
periodic Bloch function ug (r) depends on k.

The wave function is normalized in the spatial region §2 of the crystal. In the
case of the bulk material, we have

/ lP,f(r)lI/k(r)dr=/ ug (rug(r)dr (1.166)
2 2
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by using the first equation of Eqs. (1.165). Since ug(r) is periodic with respect to
the unit cell of the lattice, the above integration becomes

Z/ }uk(r—l—Rn)!zdr:Z/ ug(r)[Pdr = N (1.167)
n Jeell n Jeell

by using the second equation of Egs. (1.165), where f cepp denotes the spatial inte-
gration within a unit cell denoted by R,,, N is the number of unit cells in §2. Here
we assume that the Bloch function is normalized within the unit cell

/ |ug (r)[Pdr =1 (1.168)
cell

The above expression can also be expressed as (ug (r)|ug(r)) = 1. By Eq. (1.168),
we note that the physical unit of ug(r) is [meter] —3/2 in MKS. Note that within this
book, we adopt MKS unit.

The normalized total wave function of one electron state in a bulk material is thus

1 ik-r
Up(r)=—=e""ug(r) (1.169)
VN
as in many standard textbooks of solid state physics.

Now we consider the wave functions of electrons in nanostructures. The nanos-
tructures are characterized by the quantum confinements of electrons. In practice,
the size of the nanostructures can go down to tens of nanometers, in one (quan-
tum wells, QWs), two (quantum wires, QWRs), or three dimensions (quantum dots,
QDs), which actually is still very large in terms of the unit cells of common semi-
conductors with lattice constants of about 0.5 nm. The effective mass theory and
the envelope function approach apply very well, despite the fact that it is not strictly
derived both mathematically and physically. By the envelope function approach, the
wave functions of the electrons can be approximately expressed as

Yir(r) =i (rug(r) (1.170)

where y; (r) is called the envelope function, which is a slowly-varying function in
space r within one unit cell, while the spatial variation within the unit cell at atomic
level is accounted for by the Bloch function ug(r). Here i is the quantum number
(can be a set of quantum numbers, see more discussions below) that denotes the
state under investigation.

For a nanostructure which is confined along the z axis and extended in the xy
plan, such as QWs, the envelope function is in the form of

i (z)e Krrthoy) (1.171)

where v; (z) represents the quantum confinement along the z direction with a quan-
tum index i, and the extension in the xy plane is represented by wave numbers k,
and ky. The first expression of Eqgs. (1.165) is easily retrieved when the quantum
confinement along the z direction is lifted up so that v, (z) = ekt
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In general, ¥; (r) is normalized within the spatial extension 2 of the electron in
the nanostructure (equivalently, the spatial extension of the quantum confinement)
by the envelope-function Schrodinger equation, i.e.,

/ i (r)[Pdr =1 (1.172)
2

Under the circumstance, 1; (r) has the same physical unit as u (r), i.e., [meter] /2,

while /%7 in Egs. (1.165) is unit-less.

For the sake of continuous discussion and presentation, we adopt the normal-
ization of the Bloch function within one unit cell, i.e., Eq. (1.168), as well as the
normalization of the envelope function in the spatial extension §2 of the quantum
confinement, i.e., Eq. (1.172). We then need to find the normalization factor of the
total wave function of Eq. (1.170) by calculating the following integration

/ |Wixe(r)|dr =/ i () [P Juk(r) [Pdr (1.173)
2 2

As mentioned before, v; (r) varies slowly in space so that we can use its value at
R, as an average value for the whole unit cell centered at R,. Thus, the above
integration becomes

lei(Rn)f/ ll|uk(r)|2dr = || (1.174)

and the last equality comes from the normalization of Bloch function, i.e.,
Eq. (1.168). Here R,, € £2. Let $£2¢.1 be the volume of the unit cell,

2 1 2 1 / 2 1
i Rn i i Rn ch - - i d = 1175
XH:WI ( )| Scenl Xn]w ( )‘ ! Scenl .Q|w (r)’ " Qcenl ( )

The last equality comes from Eq. (1.172).
Thus, the normalized total wave function is in the form of

Yik(r) = v/ SLceni (r)ug(r) (1.176)
where
/ lug(r)[’dr =1 and / i (r)[Pdr =1 (1.177)
cell 2

Let us consider the following four cases.

Bulk material For bulk material, the envelope function v; (r) is in the form of a
plane wave, i.e., Y (r) = Ce'kr where C is the normalization factor

/}wk(r)\zdrzf |C|2dr:|C|2f dr=|C|*Q (1.178)
2 2 2
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so that C = 1/+/£2. Thus, the normalized envelope function in a bulk material is

Vi (r) = J%eik" (1.179)

By inserting this into Eq. (1.176), we retrieve Eq. (1.169), where £2/§2..1 = N.

Quantum well For a QW which is confined along the z direction by an effective
confinement length Lqgw, it is extended in the xy plane so that the envelope function
can be expressed as

Cipri(z)e Frr ) (1.180)

Here C is the normalization factor, and
/ ¥ (2))Pdz =1 (1.181)
LQW
see the second equation in Egs. (1.177). The normalization of Eq. (1.180) is
2
|C|2/ i (2)| dz/ dxdy = [C|*Aqw (1.182)
Low Xy

where Aqw is the extension area of the QW in the xy plane. Thus, C =1/,/Aqw
and the normalized envelope function in a QW is

Vik(r) = Wi (z)e! Kexthyy) (1.183)

1
,/AQW

Quantum wire Similarly we can discuss that the normalized envelope function
in a QWR, with a confinement area Aqwr in the xy plane and an extension length
Lgwr in the z direction, is

2 1 .
/ Wi, ) dxdy =1, Yip(r) = ——=vi(x,ye'™*  (1.184)
AQWR LQWR
Quantum dot For a QD confined three dimensionally within an effective volume
£20p

/Q i (r)[Pdr =1 (1.185)
QD

Now we discuss the density of states which is the number of available electronic
states per unit volume per unit energy at energy E. Quantum mechanically, each
electronic state can be occupied by two electrons (spin up and down). Here we ex-
clude the magnetic field. In a three-dimensional (3D) bulk material, each electronic
state is represented by its wave vector k (Bloch theorem):

3P (r) = ﬁunk(r)e"’” (1.186)

where 7 is the band index and u,,; (r) is the Bloch function.
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We consider a 3D lattice which extends along the x axis by a length of L,. It

also extends L, and L, along the y and z directions, respectively. We adopt the
following periodic boundary of the lattice,

WPy, ) =P+ L,y 2) =¥,y + Ly, 2) =W P (x, v, 2+ L)

(1.187)
which requires
oikili —
fori = x, y, z. We have the following expression for the wave vector k;
2 .
k= % (1.188)
L;

where m; is an integer. When L; is large, the spacing between adjacent allowed k
values, i.e., kj j; +1 — ki m; =2 /L; is very small so that we are able to discuss the
volume in the k space that each electronic state occupies

Qm)? @)}
LiL,L, £

(1.189)
where 2 = LyLyL; is the volume of the crystal. The total number of electronic
states within dk in the k space is

2dk  2%2dk

and the density of states per unit volume is thus given by

E+dE 2dk
N3(E)dE = /

’ P (1.191)

for a three-dimensionally-extended system.
For a spherical-parabolic conduction band described by

h2k?

E:EC+2m*

(1.192)

where E. is the conduction bandedge and m™ is the effective mass of the conduction-
band electron (we concentrate on the conduction band, whereas the extension to the
valence band is straightforward),

2dk 2 x 4wk*dk
2r)3 8m3

(1.193)
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Since k? = 2m*(E — E.) / h? by Eq. (1.192), the three-dimensional density of states
N3(E) is

h2
O (E) is the step function, i.e., 8(E) =1if E >0, 6(E) =0 when E < 0.
When the system becomes confined along, say the z axis, such as the one-
dimensional GaAs/AlGaAs quantum well in Fig. 1.23, the translational symmetry
in this direction is broken so that the corresponding wave vector k; is replaced by

the index i of discreet energy levels in this direction. The sublevel i is now described
by

N 3/2
N3(E)=g12<2m) VE — E.0(E — E,) (1.194)

Vil (0.2 = Yi(@)e*
(1.195)
R2k?
Ei(k)=E.+Ei+ -—
2m*
where k and p are wave vector and spatial coordinate in the xy plane. To make
the equations simple, here we have approximated the energy band structure of the
semiconductor as spherical and parabolic. The approach is valid when the energies
of states under discussion are close to the bandedges.
We assume that the system is extended by L, and Ly in the xy plane. It is easy
to obtain that the two-dimensional density of states N>(E) is

m*
No(E)= —5—0(E - E 1.196
2(B) = s 0(E — Eo) (1.196)
where L, is the effective width of the system in the quantum confinement direction
(it is reminded that the density of states is defined as per unit volume).
When the dimensionality of the system is further decreased in the y-direction,
we come up with a one dimensional system or a quantum wire,

1 2m* 1
278y, V W JE-E,

where Sy, is the effective area of the system in the yz plane.
Finally we have the “zero” dimensional system, either an artificial quantum dot
or a natural atom consisting of a set of discrete energy states E;,

Ni(E) = 0(E—-E.) (1.197)

NO(E)sz@)Z(S(E—Ei) (1.198)

where Q2qp is the effective volume of the quantum dot. Including the relaxation
processes, the § function is replaced by
r

S(E—E; —
R VA o

(1.199)

where I is the relaxation energy.
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Fig. 1.24 Dimensionality of energy density of electron states in the conduction band (we have
set E. = 0). (a) 3D extended: GaAs bulk material. (b) 2D extended: GaAs quantum well with a
well thickness 10 nm. (c¢) 1D extended: GaAs quantum wire with a rectangular cross section of
10 x 7.5 nm?. (d) OD extended: GaAs quantum dot of 10 x 7.5 x 5.0 nm?. ' =1 meV

Figure 1.24 shows the energy densities of conduction-band states of GaAs ma-
terials embedded in a barrier material with infinitely high barrier. We note that as
the dimensionality of the system changes, the energy dependence of the density
of states also changes. For a spherical-parabolic band, we have a +/E-dependence
for a three dimensionally extended system (E. = 0); for a two-dimensional sys-
tem, the density of states is constant; and for a one dimensional system we have an
1/+/E-dependence. And finally we have the §-function form for a zero-dimensional
system.
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Chapter 2
Electron Transport

Abstract We introduce basic quantum mechanical concepts of electron wave
packet transport, the scattering theory about electron transition from one steady state
to another that eventually form a net nonzero charge flow, i.e., current. Boltzmann
equation is discussed about carrier transport in terms of drift and diffusion versus
ballistic transport. Major scattering processes in semiconductors are introduced and
discussed.

2.1 Quantum Mechanical Wave Transport

In semiclassical transport theory the electrons are treated as classical point-like par-
ticles during free flights between scattering events. The scattering processes are
however treated quantum mechanically. During the free flights, two things must
be consistent with each other:

1. A wavepacket representing the point-like electron with well-defined position and
momentum;
2. The quantum uncertainty principle.

The semiclassical treatment of the electron transport driven by an external elec-
tric field E is normally referred to as the Drude drift model. Here it is assumed
that the electron speed v is zero after a collision with a scattering center. The elec-
tron will be driven by the external electric field. By the classical Newton mechanics
F =m™a, where F is the force asserted on the electron, and a the acceleration, we
have

—eE=m*"— 2.1
e mdt 2.1

Let t be the mean time between two successive collisions, we obtain the average
speed Vayerage and thereafter the mobility u are

—eT E et 29
Vaverage = o n= i (2.2)
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The mean free path £ = vayerageT. On the one hand, well-defined position and mo-
mentum indicate

Ap L p, Ax < ¢ (2.3)
while the quantum uncertainty principle states
2

he~ ApAx < pt=L1 2.4)
m*

Since at thermal equilibrium,
2
2m*

where kp is the Boltzmann constant and 7 the temperature, the validity of the semi-
classical approach is insured when

~kgT

h
T — 2.5
ipT (2.5)
Otherwise, quantum treatment of transport during the free flights is necessary where
the wave nature of electron dynamics is to be fully accounted for.
Quantum mechanically, we denote the solution of a Schrodinger equation as a
wave function ¥ (r, t), which in general is space r and time ¢ dependent

ow(r,t)
ot

ih =H(r,n)¥(r,t) (2.6)
When the Hamiltonian H (r, ¢) in the above Schrédinger equation describes an elec-
tron in an electron system, | (r, t)|?dr represents the probability to find the electron
in a space volume dr centered at r at time ¢.

In the previous chapter we have discussed the general features of electron eigen
states in semiconductor, which are characterized as Bloch states denoted by wave
functions ¥, and energies E, (k). Here n is the energy band index and k is the
wave vector of the Bloch state. For the devices discussed in this book, the magnetic
field is negligible so that the electron spin up and down states are degenerate. In
other words, each Bloch state actually consists of two states, one spin up and one
spin down.

Knowing the electron states in the semiconductor, we then fill these states by the
available electrons. At zero temperature, starting from the electron state of the low-
est energy we fill each electron state by two electrons (Pauli exclusion principle).
For intrinsic bulk semiconductor, all electron states up to the top of the valence band
are completed filled, and the electron states from the bottom of the conduction band
are totally empty. Same situation happens for insulators. Actually the only differ-
ence between intrinsic semiconductors and insulators is in their energy bandgaps
(energy separations between the valence band top and the conduction band bottom).
Insulators have much larger energy bandgaps than semiconductors. The filling of
the electron states in metals are rather different: the conduction bands of metals are
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partially filled by electrons. The different occupation features of energy bands of
semiconductors and metals are responsible for the different electric conductances of
the materials. We will discuss it shortly.

At finite temperature 7', the occupation of electron state with eigen value E; (for
Bloch state, i = nk) is given by the Fermi Dirac distribution

1

FEED = G @)
where E ¢ is called Fermi level which is determined by
1
N = Z SEERT I (2.8)

where N is the total number of electrons. Note that an energy state can contain
either O or 1 electron. The mean number of electrons in the energy state is therefore
numerically equal to the probability of its being occupied.

The spatial distribution of an electron occupying state denoted by ¥;(r,t) and
E;is |¥(r,0)|*f(Ei, E £, and the spatial distribution n(r, #) of the total electrons
is

n(r.0)= Y|, 0| f(Ei Ep) 2.9)

1

Note that in the above equation, the time-dependence is explicit. At steady state,
W (r,t) = e Eit/My; (r) and the carrier distribution 7 is time-independent. We will
return to this issue from time to time when we study electronic devices.

The motion of the electron is described by its probability flow density

h

Jr. = —[¥* . OV, ) —¥F, Ve (r, 1] (2.10)
2img

In the absence of a potential energy, the Hamiltonian of the electron consists of

only —h?V2/2myq and the solution of the corresponding Schrodinger equation is the
plane wave form W (r) = ¢'*" with a flow density

. Tk
=

@2.11)

by inserting ¥ (r) = ¢’*" into Eq. (2.10).
It is easy to show that the probability flow density j satisfies the continuity equa-
tion
I(W*w)
o

Let us have a look about the probability flow density of a steady-state Bloch
electron in the semiconductor. Inserting the Bloch wave function

—V.j 2.12)

W (r) = ——e* T up (r, 1)

-
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into Eq. (2.10)

j _ Tk h v Vu* 2.13
Jnk () = N—mou”kunk + 21'—n’t()(u"k Unk — Unk “nk) (2.13)
where N is the number of unit cells contained in the semiconductor.

We recall that the periodic Bloch function u,x(r, t) is periodic with respect to
unit cell, it is also normalized within one unit cell. The probability flow density of
the Bloch electron averaged in the semiconductor thus becomes

, hk o, .
(Ju ()= N—mounkunkdr~|— Zimo(unkVunk—unkVunk)dr (2.14)

Since
/ wyy Vitygdr =0 (2.15)
cell
we have
hk
1 = — 2.16
(Jnk () - (2.16)

This is very much alike the probability flow density of a free electron Eq. (2.11). It
indicates that a Bloch electron ¥, (r, t) can be viewed as a plane wave with a wave
vector k.

At equilibrium, the occupation of Bloch state ¥, is determined by its energy
E, (k). In other words, ¥, and ¥, _j, are equally occupied, since E, (k) = E,(—k),
i.e., Eq. (1.41). Since the two Bloch states have the same probability flow density
with opposite directions, there is no net electron flow at equilibrium.

We have thus far discussed the probability flow density of a Bloch electron, i.e.,
an eigen function of the electron Hamiltonian. In practice, the electron under inves-
tigation is injected into the device through contacts which is not initially an eigen
state of the electron Hamiltonian in the device. Let us denote the initial state of in-
jecting electron as ¥ (r, 0) at t = 0. The motion of the electron state is governed by
the time-dependent Schrodinger equation

ov(r,t)
ot

ih =HWY(r, 1) 2.17)

Discretizing the time ¢ by step §¢ so that + = ndt, where n is a positive integer.
The wave function of the electron becomes ¥ (r, nét) which is further denoted as
¥ (r), and the above time-dependent Schrodinger equation can be written as

L) ()
ih
8t

— HY"(r) —» w"(r) = (1 - %H)W”(r) (2.18)

This equation has an intuitive form such that a future wave function ¥”*! is given
explicitly in terms of its preceding wave function ¥", hence it is known as the
explicit forward-time-centered-space (FTCS) scheme [1]. However this solution is
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unstable due to boundless growth of errors through successive time integration. Al-
ternatively we can try the implicit form

|5t

%H)lI/"H(r) (2.19)

P (r) = (1 +
and though this form is stable, it is fairly inaccurate. Thus Goldberg, Schey, and
Schwartz have employed the Cayley form [2]

14 B et oy = (1= 2 g Y (2.20)
2h "= 2h 4 '

It was indicated [2] that unitarity is the characteristics of the original Schrédinger
equation which ensures that the normalization of the wave functions does not change
in time. When H is Hermitian, eX*$H/h gre clearly unitary, while their first-order
approximations 1 &£ i§t H/h are not unitary. On the other hand, the Cayley form
Eq. (2.20) is unitary, which has a further desirable property of being precise to order
812,

The value of é7 in Eq. (2.20) is determined in such a way that §¢ E < h in order
to convert the Schrodinger equation (2.17) into the Cayley form of Eq. (2.20).

In the Goldberg scheme, the initial wave packet is described by a single-
momentum Gaussian wave packet [2]

2\ 3/4
(0_) ik r=ro)=Ir—rol?/20° 2.21)
T

centered at ro, where k is the momentum and o describes the spatial extension
of the wave packet. As an example, let us study the wave packet transport of one
conduction-band electron with m} = 0.1905, m; =0.1905, and m} =0.9163, in a
Si quantum wire embedded in SiO; with a cross section (—Ly : Ly) X (=L, : Ly)
extended along the z axis. In the following numerical simulations, L, = L, =
2.7 nm, L; = (=500 : 500) nm. We assume that the potential barrier provided by
the surrounding SiO is infinitely high. Furthermore, we introduce a negative point
charge at the center of the quantum wire. The initial Gaussian wave packet can be
expressed as

0'2 1/4 : 2 2
Vik(r.0) =i (x.y) (—) e 2 (2.22)
b4
where 1;(x, y) is the ith eigen function in the xy plane. Let zo = —100 nm, ¢ =
10 nm, and
. + L . + L,
vilx,y) = sm[”(xZLx X)] sm[”(yzLy ”} (2.23)

which is the ground state in the xy plane. Denote E; = h%k?/ 2m7 as the kinetic
energy of the electron along the z axis, it is just straightforward to calculate the
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Fig. 2.1 Wave packet
transport a(z, t) initially
centered at z = —0.1 pm.

Er =150 meV. The red
curve is the wave packet
profile when the wave packet
center reaches z =0

/ = t [40 fs]

-0.2 -0.1 0.0 0.1 0.2
z axis [um]

wave packet transport ¥ (r, t) as a function of Ej by Eq. (2.20), the flow density
Jj(r,t) by Eq. (2.10). Physically, the current flow is nonzero only along the z axis,
so that we present the wave packet transport in the form of

a(z,t)://|w(r,t)|2dxdy (2.24)

Figure 2.1 shows the temporal development of a Gaussian wave packet initially
centered at z = —0.1 pm with a kinetic energy E; = 150 meV along the z axis. It
is easy to estimate that the speed of such a wave packet is 2.4 x 10° m/s (effective
mass m} = 0.9163) and the time to move from z = —0.1 ym to z =0 is 0.417 ps,
as marked by the red profile in Fig. 2.1. Here it is observed that the wave packet
splits into two by the negative point charge, one is reflected back (moves along the
—z axis) and the other tunnels through the potential barrier induced by the negative
point charge then transports further along the z axis.

In order to see the temporal development of the wave packet more clearly, we
split the current flow into two parts, one for z < 0 and the other z > 0

0
jleft(f)=/ [//j(r,t)dxdy]dz
jrigm(t)zfo [//j(r,t)dxdy]dz

Figure 2.2(a) shows the temporal developments of the above two current flows when
E; =150 meV. Here we see that after the wave packet reaches the point charge, the
tunneling part starts to emerge on the right side of the point charge, thus a gradual
increase of j o (f) (> 0, i.e., along the z axis), the reflected part move along the
—z axis, thus j.q(f) <O.

If we put two electrodes at z = £00, two currents, jio;(00) and jop(00), will
be eventually detected when ¢ — oo, which are shown in Fig. 2.2(b). For the sake
of comparison, the transport of the wave packet through a perfect Si quantum wire
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Fig. 2.2 (a) Current flows 0.4] |
jleft([) and jright(t) as ' J.Ieﬂ(t) j (infty)
functions of time ¢. 0.3 J 0
Er =150 meV. (b) ji(00)
and j . (00) as functions of £ 02 -
Ej. jo(00) denotes the 2 0.1 Jgm(infty)
current flow through a perfect g
Si quantum wire £00
© 0.1 i (t)
i jqinfty)
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(without the point charge at the quantum wire center), j,(00), is also presented
which is exactly the relationship of Eq. (2.16) as expected. Figure 2.2(b) shows that
the wave packet is easily scattered when its kinetic energy is small. When the kinetic
energy is larger than 200 meV, the wave packet overcomes the point charge so that
the scattering becomes negligible.

The wave packet transport is extremely important in nano-scale electronic and
photonic devices. See more in Chaps. 4 and 5.

2.2 Scattering Theory

By the above section we understand that at equilibrium, the electrons remain in
their initial states in the semiconductor and there will be no net carrier flow. Exter-
nal forces are therefore needed in order to obtain any responses from the electrons.
Before we formulate the electron transport theory as well as discuss all other prop-
erties of semiconductor materials and devices, we repeat here the basic quantum
mechanical description about the response of electrons under external perturbation.

We shall use the quantum theory in the following to discuss various transition
processes of electron. We first formulate the quantum perturbation theory in its sim-
plest form. The electron is described by the Hamiltonian Hy

Y (r,
ihm = Ho¥;(r,1)
ot
HoW;(r) = E;¥;(r) (2.26)

wi(r, 1) =e By ()

At ¢ =0 a perturbation V'e~"®! is switched on, where V" is time independent. The
wave function ¥ (r, t) of the new Schrodinger equation

W (r.t
AL

= (Ho+ Ve "W (r,1) (2.27)
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is expanded in the basis of {¥;, E;} in the form of

U(r,1)= Zai (OW; (r)e ' Eit/h (2.28)

so that

ih

da, (1) , (B — Byt
- =ZZ<wm<r>|vlwi<r>>e (En—Ei=holt/hg, (1) (2.29)

Suppose that before + = 0, the electron under investigation occupies state ¥,
ie., a,(t <0)=1andq;(t <0)=0ifi # n. By the first-order perturbation theory,

day, (1)
dr

ih = (@ (1) | V' |, (1) ) Em = En=heo)t /R (2.30)
It must be emphasized here that the above equation is actually valid for a very
short time duration of [z, ¢ 4 dt]. After dt, the occupations of all the electron states
will all be modified and eventually we need to work with Eq. (2.29) along the time
axis, which will be done in the next section. However, Eq. (2.30) itself is very rich
in physics if being treated carefully. The most important aspect to be taken into
account for is the fact that during the transition from ¥, to ¥, under the influence
of V'e~i®! | the occupation a,(¢) of the initial state ¥, will be gradually dissipated.
Let

(| V' #) = Vi

We introduce the dissipation process phenomenologically by the concept of a life-
time, i/ I, of the electron occupying state ¥, . In other words, due to the transitions
from ¥, to ¥,,, the occupation a,, gradually decreases. Hence, we can simulate that
the total wave function of the initial state ¥, is

lIIn (r)eiE,,t/h—I‘,,t/h
Equation (2.30) is now replaced by

ihda:lnt(t) — Vr:mei(Em—En—ﬁw)t/ﬁ—Fnl/ﬁ (231)

The transition probability is calculated by integrating from O to ¢

[1 — el (Em—En—ha)t/h=I;t/hy

1 [t , v,
am (t) — E / V,:mel(Em_E"_hw)t/h_F"t/hdl _ _mn - - T
0 m — £n — n
(2.32)

Lett — oo,
V:’H’l
00) = 2.33
m (00) E,—E,—ho+il}, ( )
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so that

|am (00)|* = Vil (2.34)
" (Em — En — how)? + T2 '
And the averaged transition probability per unit time, i.e., the transition rate, is ob-
tained by dividing |a,, (c0)|? by lifetime 4/ T, of occupation of state ¥,

lam (00)* |Vl L
h/ T, h (Ew—En—ho)2+ T2

DPm = (2.35)

In the following, we try to derive the scattering theory in a rigorous way which
will be the starting point of the principles of almost all semiconductor nanostruc-
tured devices to be discussed in this book.

By purely and formally writing

H=Hy+V (2.36)

where Hj represents the Hamiltonian operator of the electron at equilibrium, V' is
the interaction of the electron with an external field. By the Bloch theorem, the eigen
solution of Hy is

ihalpnk(r» t)
ot

Wy (r, 1) = e Bkt /Mg (r) (2.37)

HOlI/nk(r) = Enklpnk(r’ t)

= HoWyk(r,1)

where n is the band index and k the wave vector. In the following we use short
notations to simply mathematical expressions: k represents quantum numbers nk
for Bloch state, and |k) = W, (r, 1) = e ' Enk!/hg 4 (r). And between two states k
and g, (glk) = 84 k. i.e., the wave functions are orthogonal. Note that &4y = 0 if
q#k,and 6y =1if g =k.

Assume that the electron occupies state |k) before we switch on interaction V.
We like to solve the equation of

(Ho+ V')|¥) = Ex|¥) (2.38)

i.e., |¥) is a state of Hamiltonian Hp + V'. The above equation can be re-formatted
as (Ex — Hp)|W) = V'|¥), which is equivalent to

(Ex — Ho)|¥) = (Ex — Ho)|k) + V'|¥)

since (Ey — Hp)|k) = 0. We obtain the following equation by dividing the above
expression by (Ey — Hp)

1 /
@) = |k) + aom’ ¥ (2.39)
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We obtain the formal formula of scattering wave function by adding a correction i I”

1
U)y=k)+ ———=V'|W)=|k) + G V'|¥ 2.40
|>|)Ek—H0+iF|)|) KVI¥) (2.40)
which is known as the Lippmann-Schwinger equation. We will discuss I" more in
the next section. In the above equation,

G Z;:ZM (2.41)
M B —Ho+il — Ex—Eq+il" '

In the last equality, a representation of unity as a sum over eigenstates of Hy is
inserted to make the expression more explicitly.
We can write the solution of Eq. (2.40) as

1
U)y=——1|k 242
)= 1= (2.42)
and expand it
W) = k) + GV k) + G V'Gr V' k) + Gy V' GV G V' k) + - -+ (2.43)

The nth approximation, also known as the nth Born approximation, to the scattering
state |¥) consists of terminating the above expansion after n terms.
We define a transition matrix 7 as

T =V + VGV + VG V'GrV + VGV GV GV + - -

1
V4V Vid ... 2.44
YV —Horir T 244)

i.e., V/|W) = Ty |k), so that the scattering state can be written
|¥) = k) + GiTilk) (2.45)

The probability that the electron initially at state |k) ends up at state |g) is

1
(q1¥) = (qlk) + 7((q|v’k>+ <q|V’E

. V)
Ex—Eq+il’ r— Ho+iI'

1 1
=34 —((q|V'k Ve V') +---
q’k+Ek—Eq+iF<<q| )+ gl Er—Horir’ Mt )

(2.46)

We have thus far introduced the formal scattering theory about the probability of
an electron at initial state |k) being scattered to state |¢) due to an external pertur-
bation V’. Now we apply the theory to calculate transition amplitudes between the
relevant unperturbed eigenstates due to the appearance of the external perturbation
V' which is switched on at r = 0.
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Let Hy be time-independent and all solutions of the eigenvalue problem Hy|k) =
Eglk) are known, it is straightforward to construct the solution of the time-
dependent Schrodinger equation

W (1))
ot

ih

= Ho|¥ (1)) (2.47)

which coincides at t = 0 with a given initial state |¥ (0)). Under these circum-
stances, the state

@ (1)) = e Hol /2 (0)) = Z e B/ ) (k| W (0) (2.48)
k

represents the general solution of Eq. (2.47).
When the external perturbation V' is switched on at ¢ = 0, the Hamiltonian be-
comes Hy + V' and the Schrodinger equation becomes

(@)
ot

ih

— (Ho+ V') & (0)) (2.49)

The above expression is normally referred to as the Schrodinger equation in the
Schrodinger picture. We transform the above equation into the so-called interaction
picture by a time-dependent unitary operator

& (1)) = &/ Hot/P | (1) (2.50)
In the interaction picture, the Schrodinger equation becomes

A (1))
ot

where the new interaction operator is given by

ih

= V/(0)|¥ (1)) (2.51)

V/(t) = e Hot /Ty =i Hot /T (2.52)
Next we introduce the time development operator 7 (¢) such that
&) =T(0)|¥ ) (2.53)

Insert the above expression into the Schrodinger equation in the interaction picture,
ie., Eq. (2.51), we can see that the time development operator satisfies the integral
equation

; 1
T(t)y=1- lﬁ / V()T () de! (2.54)
0

A direct calculation of the above time development operator from eigenstate |k)
to |q) is

A | t A A
(al7 Ol =t =5 [ fal V()70 ke
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: t
—s0u= 5 2 [ al VO () jar
k/

: '
T 3 A LG gt
k/
(2.55)

On the other hand, when V' is small, Eq. (2.54) can be solved by a power series
in terms of V' such that the zero-order solution

TO@) =1 (2.56)

which is the solution when V’(¢’) = 0. The first-order solution is
~ i r, ~ i r,
T =1~ ﬁ/ V/(TO()dt =1 - ﬁ/ V'(')dr’ (2.57)
0 0

Iterating the mathematical process we obtain a formal solution to Eq. (2.54)

:opt t t
f(t):l—i/ ?’(z’)dt’—i/ V’(x’)[/ V’(t”)dt”:|dt/+~-~ (2.58)
h Jo h* Jo 0

When k # ¢q, the transition amplitude in the first-order perturbation theory is then
given by the simple and much-used formula

: t
(q|f"(1)(1)|k>=—% / el Ea=EW P g | v/ (1) [k)dt’ (2.59)
0

Notice that 7 = 0 is a time preceding the onset of the perturbation V'.
If V/ does not depend on the time, or

V/(l‘) — VO*Eiwt + Voe—ia)t

where Vj and w are time-independent, the time integration of Eq. (2.59) is trivial.
We first focus on the first case, i.e., V' is time-independent, while the second case
will be studied in the next section.

Starting with an initial state |k) at = 0, Eq. (2.59) shows that after a time interval
t, the electron will evolve from its initial state |k) into state |q) due to perturbation
V’ switched on at ¢ = 0. In other words, the probability that the electron will stay in
its initial state will be decreased. Let us now study the probability that the electron
dwells in its initial state. Back to Eq. (2.55) and note that V’ is weak and time-
independent,

: t
(a7 )] =~ {a|v'[K] /0 o/ CEOU M| (1) [k)ar (2.60)



2.2 Scattering Theory 79

for g # k. Here the transitions via intermediate states k’ # k are neglected since

under the first-order perturbation assumption, the possibility of a two-step process,

i.e., from k to k' (k' # k), then from k' to q (q # k), is expected to be very small.
By Eq. (2.55), the equation of motion for (k|T(t)|k) is, rigorously,

DARIF k)=~ L 3 M EE k] Vg g | 0] — Lk V)l 0 )
! q#k
(2.61)
If Eq. (2.60) is substituted into (2.61), we obtain a differential-integral equation
for the probability amplitude that the electron will dwell in the initial state |k) at

time ¢ after switching on V’ at time 0

8 ~ 1 2 4 A . _ ’_
O = 5 Y la VI [ (k] @) g B0
q#k
— |V’ |k)k | (0)[k) (2:62)
The solution of this equation demands care. We are interested in a long time which
implies rapid oscillations of the exponential factor in the integrand as a function of

the final state energy E,. The slowly varying amplitude (k|f"(t/ )|k) can therefore
be removed from the ¢’ integrand. The remaining integral can be evaluated

fl o1 (Eg—E @'/ _ P = e tEam BN (2.63)
A i(Eq — Ex)

which oscillates between 0 and —ih/(E4 — Ej) as a function of ¢. Moreover, it
becomes singular when E; = Ej. Such a result is not physical. One critical factor
we missed so far is that the transition process from initial state |k) to other state |q)
will diminish gradually the probability that the electron will stay at its initial state
|k). This is normally referred to as the lifetime of state |k) under perturbation V’.
In other words, |k), which is an eigen state of Hamiltonian Hy, is no long an eigen
state of Hamiltonian Hy + V.

We thus introduce a lifetime related parameter Iy to initial state |k), such that
the eigen value is now Ey + iI}. In other words, we now express the total wave
function of state |k) as

e EA T gy (1) (2.64)

in the presence of V', see Eq. (2.37). I';, will be obtained self-consistently shortly.
The self-consistency is more clear in Sect. 3.7 when we discuss the excitation of an
exciton in a quantum dot.
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Integration (2.63) now becomes

B[l — e—i(Eq—Ek—iFk)l/h]
i(Eg — Ex —il%)

t
/ ei(Eq—Ek—iFk)(t/—t)/ﬁdt/ —
0

h
2.65
" (B, —Ex—ilp (2.65)

when ¢t >> Iy /h. The resulting differential equation is

9, 4 i gV i ;

and the solution is

X B i gl VIR iy,

since (k|T(0)|k) = 1.
Just like (2.64), the above expression describes the exponential decay of the elec-
tron occupation in the initial state |k). Therefore,

(k| T ()| k) = exp (—Qr - iAE"z) (2.68)
h h
where
I = VP — 2.69
=X oV e 06

q7k

normally referred to as the relaxation energy of state |k) under the presence of V',
describes how long the electron will stay in its initial state |k). h/ I} is therefore
denoted as the lifetime. And the eigen value of state |k) is shifted, up to second
order in V’, by

Er—Eq

A=V + 3 llalV IR =t

q#k

(2.70)

Equation (2.69) shows that Iy is proportional to V', which is natural. Without
V', the electron will stay at its initial state forever. Switching on perturbation V'
makes |k) no longer an eigen state of the new Hamiltonian Hy + V' so that the
probability of finding the electron at |k) will decrease.

When perturbation (g|V’|k) is very small, I'; will also be very small. In this
case, we retrieve common textbook expressions about the relaxation energy Iy and
energy shift AEy
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re=Y lal VK (E - Ep

q#k

2.71)

[(qIV'|k)|?

AE, =k|V'|k _—

= v e)+ 3 N
g7k
since
. r

Ay gy = @7

We now understand the fundamental constrain about the validity of the above ex-
pressions: [y must be very small, which, however, is not always guaranteed by a
small {g|V’|k). We will discuss in more detail in the next section.

When Eq. (2.68) is substituted back into Eq. (2.60), the integration can be carried
out and we obtain

| — o= Tkt/hpi(Eq—Ex—AEp)t/h

(g|T @ |k)=(q|V'|k) E, — Er— AFx+iTx (2.73)

for ¢t > 0, and hence, the probability that the electron has evolved from its initial
state |k) into state |q) is
A 2
Pyei(n) = |{g|T(®)]k)]

21 —2eTt/Pcos [(Ey — Ex — AEx)t/h] + e~ 214/R
(Eq — Ex — AER)? + I

= (q[V'[K)|
(2.74)

After a time that is very long compared with the lifetime A/ that the electron
stays in eigenstate |k), i.e., t — 00, the probability that the electron will be found in
state |q) is

[(q|V'|k)?
(Eq — Ex — AER)? + I

Pyi(c0) = (2.75)

exhibiting the typical bell-shaped resonance behavior with a peak at E, = Ej +
AE} and a width Iy. And the transition rate, i.e., the transition probability per unit
time, is obtained by dividing Py . x(00) by lifetime i/ Iy

po ey — LAV T
1< h (Eq — Ex — AER)? + I

(2.76)

This is almost the same as we obtained before, see Eq. (2.35), where the lifetime
was introduced phenomenologically. Note that in deriving Eq. (2.35), the effect of
V' on the eigenvalue of state |k), i.e., AEy of Eq. (2.70), was neglected.
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Let us have a close look at I. By Eq. (2.71), and when {(g|V’|k) is constant in a
small energy range AE in the neighborhood of E,,

Te=n Y [la|V'[K)5(Eg ~ Er)
q#k

~llglV R [ 5, EoNbos EpEg
q7k

=7 |(qx| V/|k>|2NDOS(Eqk) 2.77)

Npos(Ey) is the density of states. Here |g;) is such a representative state that its
eigenvalue equals Ey, Npos(Eyg,) is the density of these states. Notice that |q;) #
|k)!

2.3 Time-Dependent Perturbation

We now discuss the scattering processes involving energy dissipation. The processes
include both the absorption and emission of energy by the electron to and from its
surrounding environment.

We consider an external perturbation in the form of

V(1) =2V cos (wt) = Vel + Ve it (2.78)

where V' and o are time-independent. Rather importantly, V' and w are physical
quantities so that they are real.
By Eq. (2.55), and for ¢ # k,

; t
(q|f(t)|k)= —%(q|V/|k)/0 [ei(Eq—Ek—hw)ﬂ/ﬁ +ei(E‘I_Ek+hw)t//h](k|f(t/)|k>dt/

(2.79)
And the probability that the electron remains in its initial state,

%(k|f‘(z)|k> = _% Z[ei(Ek—Eq—hw)t/h n ei(Ek_Eq+hw)t/h’](k|V’}q)<q|f”(t)|k>
q7#k

2i N
- Elcos () (k| V' |)k|T ()| k) (2.80)
By inserting Eq. (2.79) into the above equation and following the same consider-
ations when solving Eq. (2.62), we expect to have

1 h
i(Eq—Extho)(t'=0)/h g, S 2.81
fo ¢ i(Eq — Ex — i Tk * ho) 28D

which will be most significant when E4 — Ey & hw = 0. The physics is straightfor-
ward that the electron, initially occupying state |k), will transit to another state |q)
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after absorbing a quasi particle fiw of the perturbation field described by Eq. (2.78),
when E; — Ey — ho =0, whereas for E; — Ey + hw = 0, the electron will emit hw
while transiting from |k) to |g). The probabilities of other transition processes are
weak. There is another term

t
/ ¢ Ea=EOC=0/R oo [t + 1) ]de’ — 0 (2.82)
0

since (1) we now study the case of @ # 0 so that E; # Ej when expression (2.81)
is significant, and (2) cos [@ (¢’ + 1)] oscillates rapidly.

Furthermore, in practical systems and applications, the effective range of Aw is
at least in the order of eV (photodetections and light-emitting devices in the visible
optical range) so that 1/w is less than 10~'2 s, while the time scale of most first-
order perturbation processes is in the range of 10~ In other words, we consider
the time duration of wt — 0 so that cos (wt) = 1 in Eq. (2.80). Thus

P i g V'1K)I? 2y :
k[T @)]I) = _<E > E EeEho il v }k))(k\r(z)\k) (2.83)
q#k

which leads to the solution of

A I; i AE

(k|7 (0)] k) = exp [ =1 — =% (2.84)

h h

exactly the same as Eq. (2.68) but different parameters

2 Iy
Ne= ) |(a|V'|k)]
g;: (Ex — Eq £ ho)? + I}

(2.85)

2 Ep — Ey + ho
(Ex — Eq £ ho)> + I}

AE=(k|V'[k)+ > |(a|V'[K]]
q7k

It is easy to see that Egs. (2.69) and (2.70) are retrieved when w — 0. Note that
when @ = 0, the external perturbation expression of Eq. (2.78) is 2V’, while it is V'
for Egs. (2.69) and (2.70).

By Eq. (2.79),

1 — ¢i(Eq—Ex—AEgtho+ili)t/h

- _ 1
T Ok =gV T i (2.86)

so that when t — o0,

o (V' [K)
(g|7 (00) k) = Py (2.87)
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Finally we obtain the total transition probability

A > (qlV'Ik) 2
Pyi=|lqg|T(c0)|k)|” = 2.88
sk = |{a|T (o) k)] E, — Ex — AEx + ho+il% (2.88)
and the transition rate py« g = Pgr/(h/I%)
(g V1K) |? Ik
= 2.89
Pa—k W (Eq— Ex— AEg % hao)? + I} (289)

Equations (2.85) and (2.89) will be extensively used in this book. The “—” sign in
“+” in the above equation is normally referred as the absorption of a quasi particle
hw, and the “+” sign as the emission of hw.

2.4 Acceleration Theorems

We now take a close look at the properties of electrons transporting in a semicon-
ductor crystal. As we learned before, the state of an electron in a periodic crystal is
described the Bloch theorem. By substituting the Bloch solution of

W (r) = * " i (r) (2.90)
into the Hamiltonian
_ Zv2
HoW (r) = [ + V(r)]lll(r) = EW(r) (2.91)
2mg

for an electron in the periodic lattice potential
Vir+R)=V(r) (2.92)

where R is any lattice vector, we find that u,;(r) is determined by the following
eigenvalue equation

m (1 2
[2—<7V +k) + V(r)}unk(r) = Epgutnk (r) (2.93)
mo \ i
with boundary condition
Unk(r) = unk(r + R) (2.94)

For the sake of the following discussion, we define

2 1 2
Hy = —<7V +k> LV (2.95)
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Because of the periodic boundary condition we can regard Eq. (2.93) as an eigen-
value problem restricted to a single cell of the crystal.
We expand the energy dispersion relation E, k4 of the Bloch electron around k

el Enk Z 3 Euk

ok; 0k, QI‘IJ“FO( ) (2.96)

Enk+q = Enr + Z

On the other hand, since E x4 is the eigenvalue of Hy 4, we write

11 :

n? 1 fi2g?
g (bvan) 22
mo 1

2my
h2q2
=H,+V +— 2.97)
2mg
where
h? 1
V' = —q - (—,V + k) (2.98)
mo l

By the first-order perturbation theory, i.e., Eq. (2.70), we find that the energy
correction due to ¢ in the Hamiltonian Eq. (2.97) is

h? 1
(k| V' |un) :/uj;km—oq : (lfv +k)u,,kdr (2.99)

Here we have only kept the term linear in ¢, while the ¢>-term in Eq. (2.97) is related
to the effective mass (see Chap. 1). We expect that the above term is equivalent to
the second term on the right side of Eq. (2.96), i.e.,

IE i , 2 1
Xi: T =/unkm—0q- l—,v+k Uprdr (2.100)
It is easy to see that the above equation can be re-formatted as
IEu W 1
P _ m_ofu;k<l-,v+k>unkdr (2.101)

Expressing the above equation in terms of the Bloch functions ¥, (r), we have

1 9En ihv
- aIZ =—/w,;“km—0 edr (2.102)

Since —ihV /my is the velocity operator
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it is thus established by Eq. (2.102),

(2.103)

is the mean velocity of an electron in Bloch state ¥,,; (r). This is the first acceler-
ation theorem about the electron in a Bloch state. It indicates that an electron in a
Bloch state has a non-vanishing mean velocity, the electron moves forever without
degradation of its mean velocity, in spite of the interaction of the electron with the
fixed lattice of ions.

We now introduce the second acceleration theorem which states that in a steady
applied electric field, E, the acceleration of an electron in a periodic lattice V (r +
R) =V (r) is described by

hk = —¢E (2.104)
We write the total Hamiltonian of the electron as H = Hy + V'/(r), where

p2
Hy=—+V(@), V@E)=-F-r (2.105)

2mg
my is the free electron mass, Hy is the original Hamiltonian of the electron in the
lattice for which we have the Bloch solution

1 ..
HoWk(r) = EqgWuk (), Wi(r) = ﬁe’k " Uk (1)

where N is the number of unit cells. F = —eE is the force on an electron due
to the applied electric field E which induces V'(r) the extra potential energy in
the above equation. Note that E(r) = —VU(r) so that U(r) = —E - r when E
is constant. Here U (r) is the electric potential. The potential energy V'(r) of an
electron in an electric potential U (r) is —eU (r), resulting in the expression of V' (r)
in Egs. (2.105).
Since
Vi (r) = ire™ uu e (r) + ¢ Vi (r)

= iru(r) + e * TV [e T T ()] (2.106)
Multiple the above expression by i F,
iF Vil (r)=—F - r@u(r) +ie*" F . Ve "W, (r) (2.107)

ie.,
iF -Vi=—F -r+iek"F. Ve kT (2.108)

by which we rewrite the total Hamiltonian of the electron as

H=Hy+Hp+iF -V (2.109)
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where
Hp = —ie*"F . Ve i*r (2.110)

We first have a look at Hf by calculating the transition rate from an initial Bloch
state |nk) to another Bloch state |mq) using the perturbation theory in Sect. 2.2. By
Eq. (2.76), we first calculate the transition matrix

Amgnk = (mq|HF |nk) = <mq|—ieik'rF . Vke_ik'r‘nk>
i

= —N/e“"*q)"u;q(r)F-Vkunk(r)dr (2.111)

Since u,x (r) is periodic with respect to unit cells, Viu,x(r) is also periodic. The
integration over r in the above equation can therefore be separated into an integra-
tion over r within one unit cell and a summation over all unit cells involved in the
semiconductor

i .
Amgnke == D eikarke / py(Re+1)F - Vi (Re +r)dr - (2.112)
0 cell

where Ry is the lattice vector of unit cell £. A few further mathematical manipula-
tions lead to

i i (k—a)-
Apgnk = - Zez(k DRE .y, |:f u;q (r)unk(r)dri|
) cell

=——F -V [/ ufnq(r)unk(r)dr} > kR
N cell 7

=—iF .-V |:/ u;q(r)unk(r)dr:|8q,k (2.113)
cell

In other words, Hr does not mix electron states of different k. Furthermore, it is
easy to see that

/ W (P ung(rydr =1
cell

so that A, g,k is nonzero only when m # n, which indicates that Hr mixes only
states with the same k but from different bands. In other words, Hf induces inter-
band mixing.

Note that

/ Wy o (P (r)dr
cell

is k dependent when m # n. See optical properties of semiconductor materials in
late chapters.
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By Egs. (2.76), (2.77), the transition of an electron from its initial valence band
state (v) to a final conduction band state (c) induced by Hr

c n-region

I | Ackor|? Tk
o h (Eck — Evk — AE)* + T2

2.114)
Nk ~ JT/ |Ackok |28 (Eck — Evk) Npos (Eck)dE ek

Since the conduction band is separated from the valence band by the energy
bandgap, E.x — Evk # 0, I'yg — 0 and thus pegx =0.

The above conclusion is only valid for bulk semiconductor under weak electric
field, see Fig. 2.3(a). Things will be totally different when the applied field is very
strong. For example, the electric field can induce interband transitions in the deple-
tion region of a pn junction, see Fig. 2.3(b).

For semiconductor bulk materials, we can therefore neglect Hr and define a set
of functions &k (r, t) as solutions to the time-dependent Schrédinger equation of our
electron in electric field E

ihaék(r,t)

o =Ho+iF - V)& (r,t) (2.115)

We do a perturbation analysis by assuming a solution with & (r, t) confined to one
band, say band n, with a zero-order eigen energy E, i

Euk(r, 1) = e Pk e 4 (r) (2.116)
differentiate it with respect to ¢ then multiply with i

A& (r, ok
lh% = (Enk + lha 'vk>£:nk(r, t) (2‘1 17)

Comparing Eq. (2.115) with Eq. (2.117) we see
ok .
hazhkzF (2.118)

which is the second acceleration theorem. It is just what can be expected in classical
mechanics for a particle of charge —e and momentum hk.
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We note that the above discussion is performed in the absence of magnetic fields.
It is more difficult to treat rigorously the motion of a lattice electron in a magnetic
field. For electrons in non-degenerate bands and not-too-strong magnetic fields the
result of the detailed calculations is that the equation of motion may be generalized
to

F=—¢(E+vxB) (2.119)

where E and B are electric and magnetic fields.

We have discussed the energy band structure of the electrons in pure and bulk
semiconductor in Chap. 1 and understand that at zero temperature (no thermal ex-
citation. In reality, the temperature is not important in terms of thermal excitation
between valence band and conduction since under almost all device function tem-
perature, kpT is far less than the energy bandgap.) and in darkness (no optical ex-
citation) the energy bands up to the valence band are completely filled while the
energy bands from the conduction band are totally empty. An energy bandgap exists
between the valence band and the conduction band. A consequence of the accel-
eration theorems is that semiconductor in its pure and bulk form (in darkness) is
not conducting, for two major reasons. First, the interband transition induced by an
electric field is negligibly small, see Eqgs. (2.114) and Fig. 2.3(a). The change of the
electron in the valence band from one Bloch state to another, Eq. (2.118), is actu-
ally suppressed by the Pauli exclusion principle since all Bloch states in the valence
band are occupied. As discussed in Sect. 2.1, a complete occupied band does not
contribute any net carrier transport current.

Metals, on the other hand, are totally different. The conduction band of a metal
is partially filled. Electrons, especially those close to the Fermi level, can gain mo-
mentum from the electric field by Eq. (2.118) then transit to other unoccupied Bloch
states above the Fermi level, resulting in a conducting carrier transport current.

2.5 Impurities and Fermi Level of Doped Semiconductor

By Sect. 2.4 we know that pure semiconductors have rarely been used for device
applications by themselves. Semiconductors become useful when one uses the con-
cept of doping to alter, in a controllable manner, the density of carriers that can carry
current.

To increase the free carrier density, impurities known as dopants are introduced.
The dopants are chosen from the periodic table so that they either have an extra
electron in their outer shell compared to the host semiconductor, or have one less
electron. The resulting dopant is called a donor or acceptor. The impurities of key
interest in semiconductors are the point ones which create a local disturbance in the
crystal structure. The effect of this crystal disturbance can be of two kinds:

1. The disturbance may create a potential profile which differs from the periodic
lattice potential only over one or a few unit cells. This potential is deep and
localized and the impurity is called a deep-level impurity.
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2. The disturbance may create a long range potential disturbance which may extend
over tens or more unit cells. Such impurities are called shallow-level impurities.

If a slice of semiconductor (take silicon for example) is placed in a furnace with a
dense vapor of an impurity (e.g., boron), then it is found that the impurity atoms will
tend to diffuse into the solid slice. The movement of the impurity atoms is described
by Fick’s law, which gives the relationship between the concentration c(x), at a
spatial position x, with the flux of impurities (number crossing unit area per unit
time) F'(x) by

0
Fx)=—p2<™) (2.120)
ox
D is the diffusion coefficient which typically varies with temperature as
eV,
D =D — 2.121
o 22) 2

The significance of V, is that it represents an energy that is required to displace a
crystal atom by the impurity atom. For boron in silicon this energy appears to be
close to 5 eV so that, even though Dy ~ 103 m?2 /h, it still takes around ten hours for
boron to diffuse a few micrometers into silicon at 1100 °C [3].

It is common to deposit the impurities for a short interval, then “turn off” the
supply and continue the diffusion process to drive in the impurities.

By using oxide masking the process of diffusion can be carried out in selected
areas. Silicon dioxide will prevent many standard impurities from diffusing into
the semiconductor beneath. Thus SiO; masking can determine areas for diffusion.
However, the diffusion proceeds in general as far laterally under the oxide as it goes
down into the semiconductor.

When impurities are inserted into a layer of semiconductor by diffusion, the pro-
file (the change of impurity density with depth) is limited to a Gaussian or error func-
tion. It is difficult to make extremely abrupt changes of concentrations. A proton-
enhanced diffusion method fires energetic H" ions into the semiconductor which
damages the crystal lattice. It is found that this damage is closely confined to a well-
defined plane below the surface of the material and that the depth of this plane can
be controlled by the proton energy. In silicon, one needs about 100 keV for a depth
of 1 um and proportional accelerating voltages for other depths. The damage to the
lattice permits impurities already present in the material to diffuse at lower tem-
peratures than is usual (i.e., 800 °C for Si rather than above 1000 °C). Impurities
can be moved into relatively well-defined regions with negligible diffusion of the
conventional type occurring. More abrupt changes of concentration can be achieved
and other types of profiling may be possible. The damage done to the crystal lattice
by the proton beam has to be annealed out by heating for a short time-but not too
long enough to cause significant diffusion.

Ion implantation, depicted schematically in Fig. 2.4, is a technique (in a high-
vacuum system) closely linked to proton-enhanced diffusion but here the impurities
are fired into the semiconductor in the form of a stream of ionized atoms- an ion
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Fig. 2.4 Principle of an ion implanter

beam. This is formed by first creating a gas discharge which contains the required
impurity atoms. In the discharge the atoms are stripped of their valence electrons
(ionized), then drawn off from the gas discharge by suitable apertures and focusing
electrodes to form an ion beam. If a gas which contains the desired impurity atoms
cannot be found, one uses some inert gas in the discharge. The energetic ions in
this gas can then knock out, or sputter, the required impurity atoms from some solid
material which does contain them. The sputtered ions can be drawn off along with
other ions. The required impurity ions are selected by passing the beam through a
magnetic field which gives different curvatures in the trajectory of particles with dif-
ferent charge/mass ratios. The selected impurities can then pass through an aperture
or slit to be focused and accelerated into the semiconductor material.

The ions, when implanted, cease to be ions and become impurity atoms but they
are by no means necessarily correctly placed in substitutional sites. They usually
have created considerable damage to the crystal structure on their way into the crys-
tal. To activate the impurities in the desired substitutional sites and to reduce the
damage one anneals the crystal at certain temperatures. At these temperatures, neg-
ligible diffusion of the impurity atoms occurs, but the dislocations of the atoms and
the interstitial impurities can re-adjust under the action of thermal agitation. Anneal-
ing, like diffusion, may take several hours to achieve the desired result. In summary,
impurities can in principle be implanted at required depth by different acceleration
potentials. Special impurity profiles, especially shallow and sharp ones, can be made
and are likely to find commercial use in the manufacture of specialized devices.

Associated with the impurities are new electronic states that are called impurity
levels. The impurity levels can be produced in the regions of allowed bands (i.e.,
conduction or valence band) in which case their effects are minimal. However, the
new levels could be produced in the bandgap region (the so-called bandgap lev-
els) in which case they can greatly alter the electronic and optical properties of the
semiconductors.

The wave functions of bandgap levels are no longer in the Bloch form. In general,
the impurity level can be expressed in terms of the Bloch states. The deep level is
highly localized so that its wave function is made up of a large number of Bloch
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states. The wave function of a shallow long range impurity is extended in the real
space and is made up of only a few Bloch states arising from the bandedge states.

Normally, the deep level impurities are to be avoided as much as possible in
semiconductors, since an electron in such a level is “trapped” near the impurity. This
trapped electron cannot participate in current flow very easily. However, in the case
of indirect bandgap material, deep level impurities are often purposely introduced
to increase the optical response of the material.

We are now concerned with the theory of the shallow donor and acceptor states
associated with impurities in semiconductors. The ionization energies of these im-
purities are of the order of 40 meV in silicon, 10 meV in germanium and 6 meV in
GaAs. Such energies are much less than the energy bandgap; thus it is reasonable to
expect the impurity states to be formed from one-particle states of the appropriate
band.

We treat a simplified model of a substitutional impurity in the semiconductor
with a single spherical energy band by applying the envelope function theory, see
Sect. 1.8. Let us be more specific that we substitute a Ga atom in GaAs by a Si atom.
The single-particle Hamiltonian of the electron in such a system can be written
as Hy + V', where Hy is the single-particle Hamiltonian in perfect GaAs, and the
modification V' of the lattice potential due to the substitution is

Zs; ZGa 1

V'(ry= 2 - =
weglr — Ry| 4meglr — Re| 4meglr — Ry|

(2.122)

where Zs; = 4 and Zg, = 3 are the numbers of valence electrons in Si and Ga
atoms, respectively. Here we assume that the substitutional Si atom locates at unit
cell R,. The above equation is written down when neglecting other valence electrons
in the system. The correction to the above expression due to the valence electrons is
normally approached by introducing a relative dielectric constant €, so that

1

Virn=s— 2.123
) dmeger|r — Ry| ( )

By Eqs. (1.139) and (1.144),

V,;,nji = <a,,/ (r—R))

P — — R; 2.124
Areoe, |r — Ry| an(r l)> ( )

Since V' is most prominent in the proximity of r = R, while the Wannier function
a, (r — R;) is localized at unit cell R;, V}; mji is significant only when R; = R; =
R,. Furthermore, the integration of the Wannier functions at the same unit cell is
nonzero when the Wannier functions are from the same energy band. Finally,

, 1

n'nji

LN W I 2.125
drege,r — Re| "I (2129

Thus, by Eq. (1.152), we have the Schrodinger equation for the envelope function

1
[En(=iV) = E]Yn(r) + ——— ¥, (r) =0 (2.126)
4mege,|r|
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Consider a spherical conduction band

h2k? h*v?
Ex=E.+ 2m—*’ E(=iV)=E;— Im* (2.127)
Equation (2.126) becomes
h*v? e’
o o |V =(E - E)Y(r) (2.128)
2m* dmege,r

This is just a hydrogen-like Schrodinger equation (1.8), and a series of energy levels
are produced,

" 13.6 m*
E=E.—E,=E.——55—¢V (2.129)
n*e: mo
where n =1, 2, .... For silicon with ellipsoidal energy surface, the effective mass
in the above equation is to be replaced by
3 2 1

A (2.130)

where my and m, are longitudinal and transverse effective masses.

According to this simple picture of the donor impurity, the donor energy levels
depend only upon the host crystal and not on the nature of the dopant. This is ac-
tually due to the fact that Egs. (2.125), (2.126) are derived under the condition that
V' does not vary much within one unit cell. This is only true for shallow impurities.
More accurate theories for the donor levels must include the short-range correction
within one unit cell related to the dopant impurity atom for a better agreement with
the experiments.

Table 2.1 lists E g of shallow impurities (donors and acceptors) in common semi-
conductors. E ,l (n = 1) is normally referred to as the ionization or binding energy of
the impurity. Here we observe that the impurity states are hydrogen-like, and loosely
bound, largely because the dielectric constant of the semiconductor is high (about
10 for commonly used semiconductors). The small effective mass of carriers in the
semiconductor further reduces the binding energy.

We now discuss the distribution of the extra electrons (missing electrons or holes)
from donor (acceptor) impurities. As usual, the following assumptions are made:

1. Electrons in one state cannot be distinguished from one another.

2. Each state can be occupied by not more than two electrons with opposite spin,
i.e., the Pauli exclusion principle.

3. Each impurity state can be occupied by just one electron. Here we only consider
the donor impurities. Similar analysis can be made for the acceptor impurities.

Consider that we have n; electrons in a state e; whose density of states is g;
(j=1,2,...), the total number of distinguishable distributions W of these electrons
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Table 2.1 Shallow impurity

o 1 1
energy levels E l! [meV] in Material Donor E, Acceptor E,
semiconductors
GaAs Si 5.8 C 26
Ge 6.0 Be 28
S 6.0 Mg 28
Sn 6.0 Si 35
Si Li 33 B 45
Sb 39 Al 67
P 45 Ga 72
As 54 In 160
Ge Li 9.3 B 10
Sb 9.6 Al 10
P 12.0 Ga 11
As 13.0 In 11
is
W= L (2.131)

i njl(g; —nj)!

Now consider that the system contains Np donors, whose energy state is ep,
of which Npyx are occupied by one electron each. It is reminded here that a donor
can be occupied by only one electron. For these donors, we must know if they are
correlated or not in order to calculate the number of distinguishable distributions.
There are three different situations concerning the impurity correlation:

1. The density of impurities in the system is so low that the electron wave functions
of the impurity state ep are well localized around the donors and the overlappings
of the wave functions at different donor sites are negligible.

2. The density of impurities is increased so that wave functions of ep at different
donor sites overlap with each other, forming impurity band.

3. The impurity band is widened due to the increase of the impurity concentration
and eventually it merges with the conduction band (Mott transition).

Statistically however, the last two situations are equivalent. In other words, we
only need to know whether or not the wave functions of the impurity electrons are
localized. If the wave functions are localized, we can distinguish the electron at
donor site i from the one at j, even their state energies are the same. But if the
wave functions become delocalized, there is then no way to distinguish the electron
at donor i from the one at j because the electrons are identical and they are in the
same energy state.

First, let us assume that the electron wave functions of the Np impurities in
the system overlap with each other. Among Np impurities, Npx of them are neu-
tral (they are occupied by electrons). The corresponding number of distinguishable
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states, W,, is

Np!
W.=g¢g gDX
Npx!(Np — Npx)!
Here we add a subscript index e to the number of states indicating that the corre-

sponding impurity electron wave functions are “extended”.
The total number of distinguishable distributions of the system is given by

(2.132)

W, = W; W, (2.133)

By adopting the method of Lagrange undetermined multipliers and introducing
the donor state, ep, the sum

Y =W, +a<n — Npx — Zn]) +ﬂ(U — Npxep — anej> (2.134)
J J
has the following restrains to fulfill

0= dx _ dx
_dNDX _dnj

(2.135)

where n is the total number of electrons and U the total energy of the system, j =
1,2,....
It is easy to derive that

(2.136)

where E 7 is the Fermi level. From the restrains of Eq. (2.135) the Fermi distribution
function for the band electrons is obtained:

8
¢j—Er

njy=———7.
exp ( 1758 )+1

(2.137)

It must be emphasized that the differentiation, d(In N!)/dN, which appears in
Eq. (2.135), is approximated as
d(InNY)
dN

~InN (2.138)

in order to obtain Eq. (2.137). And Eq. (2.138) is valid only when N is a very large
number where statistical analysis is meaningful.

It is usually always valid by saying that Np and Npyx are large number so that
Eq. (2.138) remains true, it should be however very cautious to use Eq. (2.137), be-
cause these results depend very much on another condition: that the wave functions
of those electrons to neutralize impurities (impurity electrons) overlap with each
other.
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If the wave functions of the impurity electrons are localized and do not overlap
with each other, and if there are n,, electrons at impurity site m,m = 1,2, ..., Np,
the numbers of states of the neutral impurities and of the whole system become

we=[]ey.  Wi=wiw, (2.139)
m

where the subscript index ¢ indicating “localized”. For each impurity, n,, can be
either O or 1, as mentioned earlier. X', which is defined in Eq. (2.134), now becomes

YX=InW, +a(n — an — Zm) —G—,B(U — aneD — anej> (2.140)
m J m J
Since n ; are still large numbers, Eq. (2.140) still has the following restrains to fulfill

_dx

0=
dl’lj

(2.141)
so that Eq. (2.137) is obtained again. However, for n,, we can only calculate the
change of X following the change in n,, from 0 to 1 and from 1 to O:

Ef—ep
kpT

Ef—ep

AXps1=— kpT

, AX 0= (2.142)

Here the statistics tells us that if E ¢ is higher than ep, it is better to occupy the
impurity state, from n,, =0 to n,, = 1, while for E lower than ep, it is better to
empty the impurity state, from n,, = 1 to n,, =0 in order to minimize X.

We thus see that if the wave functions of the impurity electrons are localized and
well separated from each other spatially, the Fermi level of the system is completely
determined by the band electrons n;, Eq. (2.137). The occupation of the impurity
states depends then on the relative positions of the Fermi level E y and the impurity
state energy ep. For shallow impurities, we can determine the critical impurity con-
centration, N7, where the wave functions of the impurity electrons begin to overlap
with each other. By the hydrogen-like model, the effective Bohr radius of the shal-
low impurity state is

a=—"q (2.143)

m*/mo

where ag = 0.529 A is the Bohr radius. On the other hand, the averaged distance
between two adjacent impurity atoms is

1
ap=—73 (2.144)

N
For n-type GaAs, €, = 13.1 and m* = 0.067my, so that a = 10.34 nm. It is easy to
obtain the critical impurity concentration, Nj, = 9.05 x 10'7 cm=3 when a = ap.
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For n-type Si, €, = 11.9, m* = 0.43my, so that a = 1.46 nm and N, = 3.28 x
102 cm™3.

The treatment in the above consideration is of course over simplified. For exam-
ple, the hydrogen-like model may not apply to the n-type Si because the resulting
impurity Bohr radius is comparable with its lattice constant (0.543 nm).

2.6 Boltzmann Equation

Carrier transport can be characterized in terms of either classical or quantum
physics, while for most cases, the generalized classical approach described by the
Boltzmann transport equation is adequate enough.

In the formalism of the Boltzmann transport equations, the electron system is
described by the distribution function f,(r, k, t), which gives the occupation prob-
ability of a state characterized by a band index n, the k vector and the space vector r.
To calculate the distribution function f;,(r, k, t) in given external fields, we exam-
ine its temporal behavior. We consider a group of electrons in the volume element
drdk in the phase space. The total differential-quotient is caused by the scattering
of electrons from one state to the other and vice versa,

df _of ;. s v (3
dar ot Tk VS Vrf_<8t>coll @149

In the steady state the local differential quotient is zero and we are left with the usual
form of the Boltzmann transport equation for the electron system which allows the
distribution function to be calculated for given external fields and known scattering
mechanisms:

af

k-ka+i~-V,f=<§) (2.146)
coll

On the left side of Eq. (2.146),

R (2.147)
=-= )
is the external force by the acceleration theorem, here we only consider the transport
under the influence of an electric field E. And
o1
F= ﬁVkEnk (2.148)
is the group velocity of the Bloch electron, where E, is the energy dispersion of
the system under consideration.
If the scattering is induced by a quasi-particle, e.g., the phonon state, it is gener-
ally assumed that the quasi-particle system sets up an equilibrium state so quickly
that we can ignore disturbances in the quasi-particle system. In this approximation
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the form of the collision term on the right of Eq. (2.146) can be written in the simpler
form

af 2dgq
(5>cou= a3 | Pak[l = 0] @) = Peg[1 = f @] SO} (2.149)

where Py 4 is the probability of scattering from state k to ¢, see Eq. (2.88), and we
have applied the Pauli exclusion principle.
Furthermore, physically collisions cannot change fo which implies that

2d
/ (2;3 {P[1 = fotO] fo@) — Peg[l — fo@] o)} =0 (2.150)

It follows that

Py i1 — fol)] folg) = Prg[1 — fo(@)] folk) (2.151)

Py e kBT — py e~ EalksT (2.152)

For elastic scattering processes, e.g., alloy and impurity scatterings, so is the
acoustic phonon scattering because of the negligible acoustic phonon energy, the
electron does not lose or gain energy,

Prg="Pyi (2.153)
Therefore Eq. (2.149) becomes much simplified:

2dq

a
(a—{> L qu,k[f(q)_f(k)] (2.154)

Equation (2.154) looks quite odd at the first sight. At equilibrium, the principle
of detailed balance says

Py [ fol@) — fotk)] =0 (2.155)

which means that fo(q) = fo(k) if P4 # 0. However, we know that there is a
factor of 6[Ex — E4] in Py 4 (energy conservation) and fo(k) = fo(Ey). Therefore,
Eq. (2.155) and thus Eq. (2.154) are perfectly alright.

For the optical phonon scattering, Pr 4 and Py j are two different processes, one
is the phonon-absorption while the other emits a phonon:

Prqg=ANopd(Ex — Eg — hwo)

for emitting a phonon when transiting from state k to g, where A is a constant, Nop
is the phonon density of states, hwy is the phonon energy, and

Py .k = A(Nop + D)8(Eq — Ex + hawo)

to absorb a phonon from state g to k.
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Denoting s as the phonon wave vector and P_ = ANy, and P1 = A(Nop + 1),
Eq. (2.149) in full detail is now given by

af 2ds
- = | —={P-|1— f(k— k)+ Pyl — f(k k
QJMI Gy \P-[1= FU=9]f G+ Pe[1 = fk+9)] 1 h)

—P_[1—f)]fk+s)—Pi[l— fB)]fk—s)} (2.156)
Therefore Eqgs. (2.154)—(2.155) are derived again if we treat P_ and Py as two dif-
ferent scattering processes and Eq. (2.154) remains valid. Other inelastic processes
can be treated similarly.

By Eq. (2.154) we then see that if there are several principal scattering mecha-
nisms which are independent from each other, we can write

Prg= Z Pikq (2.157)
i

If we are only interested in the linear response to the external force, the collision
integral Eq. (2.149) can be approached by the relaxation-time approximation

(%) __f=0h (2.158)
coll

Jat T

where 7 is the relaxation time and fj is the distribution function at equilibrium. It
is easy to see that if Eq. (2.157) holds true, we obtain the well-known Mathiessen
rule:

1 1
—=) — (2.159)
T — T
14
where 7; is the relaxation time corresponding to scattering process P; i 4.
For weak external fields, the distribution function can be approximated by

f k)= folk) + f1(k) (2.160)

where fo(k) > f1(k). By substituting the above equation into Eq. (2.154) together
with Eq. (2.158) we obtain the relaxation-time expression:

fW = folk)

2d
= —/%Aﬁ@—ﬁwﬂ g

W (2.161)

As a first-order approximation we can neglect fj(q) in the right side of the above
equation to obtain the usual relaxation-time expression:

L _[p 244 (2.162)
HB‘/“HMP '

Equation (2.162) is the usual definition of the total scattering rate.
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2.7 Drift, Diffusion and Ballistic Transport

At a phenomenological level, electron transport is described by

jir) = —e[n(r)vdl ZD (2.163)

where i, j = x, y, z, n(r) and j are carrier density and current density, respectively,
D;; is the diffusion coefficient tensor. v, is the drift velocity induced by an electric
field.

For an dc electric field E,

0
Vv, f=0, S_J; =0 (2.164)
the Boltzmann transport equation becomes
E —
B G =t h (2.165)
h T
together Eq. (1.40), we obtain
eE -V,
f= ot SEVEI, (2.166)
The drift velocity is given as
1 2dk 1 eE -Vifo 2dk
=- —_—— = 2.167
vd n / v f @2n)3 n / Vk h t 2n)3 ( )
where
2dk
/ vk fo @)

since the group velocity of the system is zero at equilibrium. And

2dk
- / Jo Gy

is the carrier concentration.
We can also formulate the drift velocity into the concept of carrier mobility such

vai= Y wijE; (2.168)
i

where E = (Ey, Ey, E) is the electric field.
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1 / eE -ViE.x 9fo 2dk 1 / E afo 2dk
vy = — v T = - Vel - Vyp —7T
) YT 9E. 2n) n) Tk S Eg 21)3
(2.169)

see Eq. (1.40) about the expression of the group velocity v, of Bloch state nk.
More explicitly,

e

afy  2dk
Ud,x = ; /(U,zlk,xEx + Unk,xvnk,yEy + Unk,xvnk,zEz)

o 2 n170
aEg oy 1O

Similar expressions can be written down for vy, y and vy ;.
For common semiconductors, the integration OVer vy ; Unk, j is zero when i # j
(symmetry consideration). Thus,

eE,-/ ,  ofo  2dk

Vo, — T ——
Y (2m)3

Vg = 2.171)

Comparing with Eq. (2.168), we obtain the expression for calculating the mobil-
ity

ef 2 Ofo 2k 2.172)

p= — v . T
=2 ] Ui g, F 2n)3
For weak electric-fields, D and p are electric field independent and verify the
Einstein relation
ukgT

e

D=

(2.173)

At high electric fields, the Einstein relation fails and the diffusion coefficient be-
comes D;;(E).

Let us consider a material having a geometry of length L and a cross-section
w X w, see Fig. 2.5(a). When L and w are far larger than the mean free path ¢, it is
known by the Ohm’s law that the resistance of such a material is

R=—p (2.174)
w
where p is the resistivity. The electron transport is characterized as drift-diffusion.
Denote n as the density of the electrons in the electron system, the current density
J and the conductivity o are

n€2f n€2T

J = —Ne€Vaverage = —m* E, o= e

(2.175)

from which we can easily obtain the relationship between p and o.

Now we reduce the dimension of the material so that both L and w become much
smaller than £. In this case, the electron will not experience any scattering and its
transport is just a free flight. The situation is known as ballistic transport. Assume
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Fig. 2.5 Electron transport. (a)
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(b) Energy band diagram, z IW
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L > w and the external electric field applies along the x axis. Consider the electron
states within the material

ky = ky = —, k; = (2.176)
where ny, ny and n, are integers. And the energy of the state is

h2

2m*

E =

a2 /n2  n? p2
2,72 4 72\ _ x y z
(ks +ky k) = —— <ﬁ+ﬁ+ﬁ) (2.177)
which is plotted schematically in Fig. 2.5(b). Fill the system with electrons up to
the Fermi level E ¢. For simplicity we consider only the single band of ny, = n, =0.
The time that an electron with charge —e across length L at a speed of v is L/v,
resulting in a current of

e ev
- - (2.178)
L/v L
The total current of all electrons is
2ev  2e hk, 2meh
Left—right = Z T = f Z m* = W Z Nx
occupied ny >0 occupied ny>0 occupied ny>0

(2.179)
In the above equation, a factor of “2” is introduced to account for the spin degener-

acy.
Since L is relatively large so that we can convert the sum into integration by
inserting dn, =dn, =1

2meh
Dieft—right = 72 / nydny (2.180)
m*L= Joccupied
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Because of Eq. (2.177),

*

m
so that
2e
Ileftﬁright = _/ dE (2.182)
h occupied
where h =21 h.

The current from the right to the left can be similarly obtained. To induce a net
nonzero current along the x direction, an external bias V' is applied, which causes a
potential energy change eV. Assume that the left end is grounded and the right end
is biased V, the potential energy at the right end becomes —eV, and the net current

2e 2e 2¢?
Tiotal = m dEleft—right — | dEright—left | = F[Ef —(Ef —eV)] = TV
(2.183)
where E ¢ is the Fermi level. The resistance of the ballistic transport is

h
Rupaliistic = 302 = 12.5kQ (2.184)

which is a constant.

2.8 Carrier Scatterings

Finally we discuss three type of scattering mechanisms in the rest of this chapter,
namely, the phonon scattering where the electron interacts with the lattice; two elec-
trons interact with each other; and, an electron is scattered by an external force, e.g.,
a photon, or an impurity.

2.8.1 Phonon Scattering

When an ion in a compound semiconductor lattice structure, or an atom in an ele-
mental semiconductor, is displaced by an amount of @ from its lattice position R,

_ h + iq-r g
0= Xq: TV (ag +at,)e'""E (2.185)

a deformation potential is induced

9 h iq- -
H = ea—? =Y Vo (ag +a,)e' " ejqu 5, (2.186)
tj.q
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where p is the material density, w, is the frequency of the ion displacement and
q is the wave vector, & is the polarization of the ion displacement, € is a tensor
describing the shift of the electron band per unit deformation. a;' is the creation
operator of such a collective lattice displacement, which is called the phonon. ay is
the corresponding annihilation operator.

We consider a state which consists of one electron and the phonon background

in the form of
Y (k)P (Ng)

where 1/ (k) is the electron Bloch function and @ (Ny) is the phonon state of ¢, Ny
is the phonon density.
To calculate the transition probability from electron state k to state k', we need

to perform the integration

1 .

k—k'tq)-

Nu;;,u ke’ T
over the space, where N is the number of the unit cells. The integration can be
divided into a sum over the lattice vector R and an integration in the unit cell because
uy is translationally symmetric:

Zl i(k—k’:l:q)»RZ{l ifk—k+q=G

ﬁe 0 otherwise

R

p(k,k/)zf uy ugdr
cell

where G is the reciprocal lattice. The terms corresponding to G = 0 are called “nor-
mal” (“N”) terms, others are the “umklapp” (“U”) terms. p(k, k') is the so-called
overlap integral.

Since

(2.187)

4@ (Ng) = Ng@(Ng — 1), af®(Ng)=(Ng+ DO Ny +1)  (2.188)

which correspond to the emission and absorption of a phonon, the transition proba-
bility per unit time of one electron from k to state k' is

Pk,k/ =

mp2(k, k) <Nq +1 Y (2.189)

N >|€1j6]15j|2 T3
pVay q [2 £ wgl*+y7/4

Here /82 = E(k') — E (k). The upper and lower symbols refer to the phonon emis-
sion and absorption, respectively.

Let us discuss the multiple quantum well system grown along the z-direction. The
system is based on a semiconductor material with lattice constant a. The thickness
of the quantum well is ma, where m is the monolayer number of the well. The period
of the system is Na. It is easy to see then (N —m)a is the barrier thickness. Here we
concentrate on a lattice-matched heterostructure. The electron-phonon interaction is



2.8 Carrier Scatterings 105

a very complicated quantity, which depends strongly on the electron energy as well
as sample structure [4, 5]. Generally speaking, in a system whose lattice structure is
defined as R, the electron-phonon interaction Hamiltonian, H ’_can be written as

H'=%"0Q; VV(r—R)) (2.190)
j

where Q ; is the displacement of the atom placed at lattice site R ;, r is the electron
position, and V is the lattice potential. Let us consider the following phonon mode
whose wave vector is ¢. The imaginary part of ¢

k1zo when z > 0

Im(q) = { (2.191)

—kyzo otherwise

where z¢ is the unit vector in the z direction. Such a phonon mode is localized
along the z direction but is extended in the xy plane. Using the periodic boundary
condition in the region of (—Na/2, Na/2), where N is the number of the lattice
sites in one period (we assume that Na is considerably larger than the well width
ma so that the boundary conditions do not affect the phonon in the well), the lattice
displacement can be expressed by

N(l — €_kla) iq-R;
Qj ZA‘[ mel J (2192)

where A is a constant containing factors like the phonon polarization and normal-

ization in the xy plane.
N(1 — e~kia)
2 —2e¢—Nkia/2

is the normalization factor in the z direction. It is easy to see that

N(1 —ehiay

WA = (2.193)

when ki = 0, and Eq. (2.192) becomes the normal expression for the extended
phonon.
The initial and final electronic states are expressed similarly

aky aks ko
e LA Tl e 7o

where u is the Bloch function which is unit-cell periodic, and k; and k y are wave
vectors of the initial and final electronic states,

Im(k;) = k2zo, Im(k ) = k3zo
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when z > 0; and for z < 0,

(k) = —kozo,  Imky) = —k320
The difference between the normalization factors in Egs. (2.192), (2.194) is due to

the fact that the lattice vector R; is discrete while the electronic coordinate r is
continuous. The transition probability between states is

, Na2koks(1 — e—2kia)
P = (¢,|H |1/ff) = 8(1 _ e—Nkla/Z)(l _ e—Nkza)(l _ e—Nk3a)

x Zeiq'Rj / ej(ki—kf)"'lu|2A -VV(r—Rj)dr
- cell, j
J

(2.195)

For most applications, the doping levels in the electrodes of normal GaAs/
AlGaAs systems are about 5 x 10'7 ¢cm™3, the corresponding Fermi level is about
25 meV. The doping level in the quantum well, e.g., in a double barrier resonant
tunneling diode, is kept as low as possible so that the tunneling or other quantum
processes will not be interfered by impurity scattering. The wave length at the Fermi
level (5 x 10'7 cm™3 doping) is considerably large (> 500 A) in a GaAs/AlGaAs
system) compared with the lattice constant, e.g., 2.87 A for an (001) GaAs. For
those electronic states whose energies are lower than the Fermi level (these are the
states of interest because of the Fermi distribution factor), the wave lengths are even
larger. Therefore, exp[i(k; —ky)-r] can be replaced by exp[i(k; — k) - R;].
Since

/ ul?A-VV(r—Rj)dr=A (2.196)
cell, j

is the same for every unit cell, Eq. (2.195) becomes

Na2k2k3(l - e_2k1a) i _ .
= E : q+ki—k)R
b= A\/S(l — e—Nkla/z)(l _ e—Nkza)(l — e~ Nksay L e 7 (2.197)
J

Due to the translational symmetry in the xy plane, the above equation is actually
one-dimensional. Since

N/2

: 2
D el P (2.198)

2 2
n=—N/2 o +'8

and let ¢, k; and k; be real components of the wave vectors of the phonon, the
initial and the final electronic states, respectively, in the z direction, we finally come
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to a rather simple expression for the electron-phonon interaction:

P_A Nkoks(1 — e—2kia)
- = e—Nkla/Z)(l _ e‘Nk?a)(l _ e—Nk3a)
ki +k—k
y lk1 + ko — k| (2.199)
(q+ki —kp)?+ (ki +ky — k3)?
When k1 = k2 =k3 = 0,
lk1 + ko — k3|
=8(q+ki—k 2.200
Naltg + ki kP 1t ho k7] TR kD) (2:200)
so that Eq. (2.199) becomes
P=A5(q+ki— kf) (2.201)

which is exactly the expression of electron-phonon interaction for extended electron
and phonon states [6].

Let us now discuss the following two cases. First we assume that there is one
localized state involved.

By localization we mean the extension of the state ma = 2/k is much smaller
than Na. For the quantum well of the usual GaAs/AlGaAs double barrier resonant
tunneling system, m is about 20 so that ma is about 50 A. We have mentioned early
that when the doping level in the electrodes is about 5 x 10'7 cm 3, the correspond-
ing Fermi level is about 25 meV and 1/k (either k; or k) is longer than 500 A.On
the other hand, the most active phonons are the optical ones whose wave vector ¢ is
very small. Therefore (¢ + k; — k r) can be neglected when particles are localized.

Let k1 =2/ma and ky = k3 = 0. (It can be shown that the following conclusions
remain intact if the values of k1, k> and k3 are interchanged.) Since

1 —e Nk = Nka

when k is small, Eq. (2.199) becomes

A 1 — e—2ka
P=u IN(1 — e Nka/2) (2.202)

where we have dropped off the subscripts from k. When k =2/ma,

1 _ e—Zka ~

SRS

for large m and

1 _e—Nka/Z — 1 _ e—N/m ~ 1
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when N /m is much larger than 1. Hence we obtain

[m
PxA,l— (2.203)
N

The k’s are not exactly the same as 2/ma, they depend on the state energy. When
considering the electronic state, k decreases when the state energy increases (the
state with higher energy penetrates more into the barrier region). Together with other
constant from mathematical operation, the relation of proportionality (o) instead of
equality (=) is used in Eq. (2.203) and later in Egs. (2.205), (2.206).

It is concluded from Eq. (2.203) that when one state (either the phonon, or the
initial or the final electronic state) is localized, the electron-phonon interaction is
reduced when the extension of the localization, ma, is reduced. It was shown that
the electron-phonon interaction is also reduced when one of the electronic states is
evanescent [7]. The evanescent state is different from the localized one. It is only
bounded at one end while the other end is free.

When the state becomes de-localized, i.e., when m becomes much large and is
comparable with N, (g 4+ k; — k) cannot be neglected. By simple mathematical
manipulation it is easy to see

PxA (2.204)

Now we consider the situation when two or three states are localized. By similar
mathematics as we used to discuss the case when one state is localized, we obtain
for the case when two states are localized

A for |k1 + ky — k 0
o |k . 2 — k3| # (2.205)
A+ otherwise
For the case that all of the three states are localized, we obtain
A2 for |ky + Ky — k3] #£0
N3/ ) (2.206)
AG) /2 otherwise

Quite different from the case when there is only one state localized,
Egs. (2.205), (2.206) show that the electron-phonon interaction is enhanced when
more than one interacting states become localized. The strength of the electron-
phonon interaction also increases when the extension of the localization is reduced.

The reader is reminded that the localization defined here is only along the z
direction. The effect of two or three dimensional localization on the electron-phonon
interaction can be discussed in a similar way. Such an effect could be very important
for the novel quantum wire and quantum dot system. It can be expected from the
above one-dimensional localization discussions that the dependence of the electron-
phonon interaction on the localization extension can be much stronger.
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2.8.2 Carrier-Carrier Interaction

Two main contributions to the carrier-carrier scattering can be easily identified:

e the individual carrier-carrier interaction via the screened Coulombic potential in
the form of

62

vV = e P (2.207)
dmer

which accounts for two-body short-range interaction;
e the electron-plasmon interaction, which accounts for the collective long-range
behavior of the electron gas.

Screened Carrier-Carrier Interaction The scattering probability of two elec-
trons from state (ky, ky) to (k3, k4) is

VE oy
—_—— (2.208)
2 224y2/4
where
h§2 = E(ky) + E(k2) — E(k3) — E(ky) (2.209)
The transition matrix element is
2
)
’V/’2 _ e ky+ko,k3+k3 (2.210)

"€ ki — k32 + B2

The overlap integral is omitted here.

Electron-Plasmon Interaction The squared matrix element is calculated

VP = W2k q+4q°)°

8ewgq?m?
Nqy (N + Dy 2211
X N+ — 2 2/4 Q- 2 274 ( ' )
( a)q) +ve/ ( +wq) +y</

where
h2t =E(k+q)— E(k)
h2™ =E(k—q) — E(k)
q is the wave vector of the plasmon, Ny is the equilibrium distribution population
of the plasmon, w, is the plasmon frequency.
In the above equation, it is clear to see the term when an electron at state k

absorbs/emits a plasmon of state ¢ with an energy exchange hw, and a wave vector
change ¢q.
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2.8.3 Impurity Scattering

e Conwell and Weisskopf approach (CW)

Ze?
b
Vi) =] e T 2212)
0 r>>b

where b = (3/4mn;)'/3 is the mean distance between impurities, n; the impurity
concentration. Z is the number of charge units of the impurity.
e Brooks and Herring approach (BH):

e P (2.213)

where ! is the screening length, € the dielectric constant. The scattering prob-
ability of BH approach is
P 27 Z%n;e* p*(k, k') y
CET R B+ Ik - K P2 [EK) - EMP/R +y2/4

(2.214)
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Chapter 3
Optical Properties of Semiconductors

Abstract We first introduce the Maxwell’s equations about the electromagnetic
field and the Hamiltonian of electron in the electromagnetic field from which we
obtain the formula for light-matter interaction which forms the base for the optical
electronics. We discuss the general absorption and emission spectra of nanostruc-
ture materials. Major focus of the rest of the chapter is about electron-hole pair,
i.e., exciton in nanostructures which is the base for the fast developing nanophoton-
ics.

3.1 Electromagnetic Field

Electromagnetic wave is associated with a combination of electric and magnetic
fields that can be characterized by a wave function which varies as ¢/ 7 ~s) where

ws =2nf

is the angular frequency, f is the radiation frequency, s (|s| = s = w/c) is the wave
vector, and c is the phase velocity, which in general differs from the group veloc-
ity

dwg
T ds
The range of the electromagnetic wave frequency spans immensely, from very-
long-wavelength radio waves around 100 Hz to extremely high energy y rays from
space (around 10?3 Hz). With the exception of the visible part of the electromag-
netic spectrum shown in Fig. 3.1, the boundaries between the classifications are
not sharp, which are based roughly on how the waves are generated and/or de-
tected.

The electromagnetic wave, described in general by the Maxwell’s equations in
differential form

Cg

oD
VxH=J+—
at
oB
VxE=—— 3.1)
at
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Fig. 3.1
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by MKS units (meter-kilogram-second), where H is the magnetic field intensity,
J the conduction current density, D the electric flux density, E the electric field
intensity vector, B the magnetic flux density, p the charge density.

These are the basics of electromagnetic theory, which were formulated in the
early nineteenth century and combined by Maxwell in 1864 into such a consis-
tent set of equations. To the best of our knowledge, Maxwell’s equations correctly
describe the large-scale (macroscopic) electromagnetic phenomena that occur in na-
ture. Ample experimental evidence is available to support this view, including the
classical experiments of Coulomb, Ampére, and Faraday, which provided the origi-
nal motivation for Maxwell to postulate the concept of the “electromagnetic theory”.

In linear, isotropic nondispersive materials (i.e., materials having field-independ-
ent, direction-independent, and frequency-independent electric and magnetic prop-
erties), we can relate B to H and D to E using simple proportions:

B=uH, D=cE (3.2)

Here v is the magnetic permeability and € is the electric permittivity. In the normal
molecular, bio and semiconductor materials, we assume @ = g, where ug is the
free-space permeability. In free space, € = ¢ is the free-space permittivity, while in
various materials, € = €,€p, where €, is referred to be the relative permittivity, or
simply dielectric constant. Now, permitting the possibility of electric losses that can
dissipate electromagnetic fields in materials, we define an electric current to account
for the electric loss mechanisms:

J=0E (3.3)
where o is the electric conductivity. Between J and the charge density p,

__ %
VoJ=—o (3.4)
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due to the charge conservation law, see Eq. (2.12). This relationship is also implicit
in the Maxwell equations. With these material properties, the Maxwell equations
reduce to

VxE oH (3.5)
X = —uU— .
Moo
IE
v.E=" 3.7)
€
V.-H=0 (3.8)

By introducing a vector potential, A, and a scalar potential, ¢, the electric and
magnetic fields can be obtained from the relations of

E=-V¢——
(3.9)

B=V x A

The first and last Maxwell equations are automatically satisfied by the above
definitions. By the relation of

Vx(VxA)=V(V-A) — VA
and in the Lorentz gauge of

1 3
1y at g (3.10)
7 ot

we have the following equations for the vector and scalar potentials

va—eMaz—A:—W (3.11)
ot2

v2¢—euaz—¢=—3 (3.12)
ot? €

Let us examine the electric properties of the common semiconductor materials
as compared with metals. Typically the free electron density of elemental metals is
10?2 cm™3, whereas it is about 10! cm™3 for heavily doped semiconductors. The
resistivity of gold is 2.01 x 107 Q- m at room temperature. For silicon at 300 K,
the resistivity is about 4 x 107> € - m when the silicon is n-type doped at 10'°
cm™3. The resistivity of Si increases drastically to 4 x 1073 € - m when the dop-
ing level becomes 10'® ¢cm=3 [1]. For common molecular and bio materials, the
charge and current densities are even smaller. We can thus neglect the effects of the
carrier concentration and current density on the electromagnetic field, i.e., J =0
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and ¢ = 0 when discussing electromagnetic fields in semiconductor materials (even
highly doped). In this case, the time-dependent solution for the vector potential be-
comes

A(r,0) = Ao +cc] (3.13)

13

with s> = ¢ nos. “c.c.” in the above equation stands for “complex conjugate”. Note
that in the MKS units, egug = 1/c(2), where ¢ is the velocity of light in the vac-
uum. By the Lorentz gauge, it is observed that a constant scalar potential implies
V - A =0, indicating Ap - s = 0, i.e., the vector potential is perpendicular to the
propagation direction of the electromagnetic wave.

It must be noticed that the scalar potential ¢ here is devoted solely for the elec-
tromagnetic field of an optical radiation. The scalar potential exists in the electron
system due to the charge distribution, the ac and/or dc biases applied on the electron
system. In almost all device applications, the frequencies of ac biases are very low
as compared with the frequency of the optical field, so that the vector field as well
as the time-dependence of the scalar field can be neglected, with which the second
equation of Egs. (3.11) reduces to the standard steady-state Poisson equation.

The Poynting vector S representing the optical power of the electromagnetic field
is
4es?|Agl?sin? (s - r — a)st)s

I

where c is the velocity of light in the medium, ¢ = 1/,/€, and s is a unit vector
in the direction of s. In the linear, homogeneous and isotropic medium, the phase
velocity equals the group velocity, i.e., ¢ = c,.

It is easy to obtain that the time-averaged value of the optical power is

S=Ex H= 0 (3.14)

(S); = 2cew?| Ao|%s0 (3.15)

and the optical energy density is

S
[S)] = 2ew?|Ag|? (3.16)
c
Here we have used the energy dispersion relation of the light:
s= 2 (3.17)
c

We now discuss the energy dissipation of the electromagnetic field. Going back
to the Maxwell equations and noting J = o E, we obtain the wave equation for the
electric field

2
% + G,u% (3.18)
This represents a wave propagating with dissipation. The general solution can be
chosen as

V’E =€n

E = Ege! =) (3.19)
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so that the amplitude of the wave vector, s = |s| is given by

52 = Euwf +iopnwy (3.20)
as compared with the energy dispersion, Eq. (3.17), in the non-conductive space
(0 =0).

A complex refractive index, 7, is normally defined by dividing ¢ by the phase
velocity in the medium which can be written in terms of its real and imaginary parts
so that

~@ N
s:n—sz(n—i—m)—s (3.21)
(o)) )
where n is often called the refractive index in connection with Snells’ law of refrac-
tion, and « is known as the extinction coefficient. Inserting the above relation into
Eq. (3.19), the solution of the electric field wave equation now becomes

E = Eoeiws(nz/co—t)e—lcwsz/co (3.22)

Here we assume that the electromagnetic field propagates along the z axis. The ve-
locity of the electromagnetic field is reduced from ¢ in vacuum by 7n to co/n in
the medium and its amplitude is damped exponentially. The damping of the electro-
magnetic field is associated with the absorption of the electromagnetic energy. The
absorption coefficient « is defined by the energy intensity (o< | E|?) decrease by a
factor of e =2.718282 so that

2K wg
o=

(3.23)
o
We now discuss the energy dissipation of the electromagnetic field in terms of
the complex dielectric constant €’ 4+ ie” while neglecting o, since this is more com-
mon for semiconductor materials. The wave equation for the electric field E and its
solution now become

3’E
VZE = (E/ —+ l'E//)/,L()W
. (3.24)
E— TOei(s~r7wst) +cc., §2 = (6/ + ié”)Mowf

for monochromatic light with a frequency wy, an amplitude Ej for its E field. Poynt-
ing’s theorem describing conservation of energy is

oD oB
/J-Edr:—/[V-(ExH)—i—E-W—i-H-E}dr (3.25)
As discussed before, we can neglect the effects of conducting current and charge
density of the semiconductor materials on the electromagnetic field so that the above
equation simplifies to

aD IB
fExH.dAz—/(E-—JrH-—)dr (3.26)
3t ar
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where S denotes the surface and §2 the volume.
Write

E
D=(c'+ ie”)TO +cc.
it is easy to obtain

oD E2

<E . —> = —wye”" 2 (3.27)
ot [, 2

where (...); denotes time average operation. The time average of Poynting’s theo-

rem in Eq. (3.26) gives

?&E x H),-dS = / wse” EZdQ2 (3.28)
Assume surface S encloses a small volume d§2 = AS2, the dissipated optical power
is

%(E x H),-dS = wse"E; AR (3.29)

On the other hand, consider a thin slab of material with thickness Az and normal
surface area S for which A2 = SAz, and a plane wave traveling in the z direc-
tion with complex wave number s = s’ + is”. The time average Poynting vector,
assuming a single traveling wave, is

2 *
(E x H), = zo[%e—%”1< /i) +c.c.:| (3.30)

where z( is the unit vector of the z direction.

The closed surface integral of the Poynting vector, i.e., the optical power dissi-
pated in A2 = SAz, the energy flow into the volume at one surface (z = 0) minus
the energy flow out from the other surface (z = Az) is thus

Eg ~25"A <\
yg(ExH),-dS:S—[(l—e s Z)( —) +c.c.i| (3.31)
2 Ho

Assuming Az very small so that e AT 1,

2
7§<E x H); -dS = szjz_o [25" Az(Ve)* +c.c.] (3.32)

Since s = wg/ (€’ +i€”) o, see Eq. (3.24),

s"(Je)* +cc.= = wg /o€’ (3.33)
o,
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so that
f(E x H),-dS = Swse" E3 Az = wge EJ AR (3.34)

as Eq. (3.29). Therefore, the energy and Poynting vector descriptions for dissipation
are in agreement, as they must be from Eq. (3.26). We will apply the above expres-
sion late to derive the effective dielectric constant of exciton polariton in a quantum
dot.

We now briefly introduce the concept of second quantization of the electromag-
netic field, i.e., the photons. Photons are quantum mechanical particles associated
with an electromagnetic radiation. They are bosons with zero mass; in free space
they carry momentum £s and energy fiwg. Unlike electrons, photons do not obey
the Pauli exclusion principle: one can have as many photons with the same energy
and wave vector as one can generate.

Now, taken the density of photons as 7y, the optical energy density is

nghwy

together with Eq. (3.16) we obtain the amplitude of the vector potential

ngh

Ao)? =
[Ao] e

(3.35)

The photon density ng is a physically measurable quantity which according to this
relation tells us the strength of the vector potential A.

Let b and b be creation and annihilation operators satisfying the usual Bose
commutation relations. In the momentum representation, the electromagnetic field
is characterized by photon occupation number Nj

bs+|Ns>:\/Ns+]|Ns+1), bs|Ns>=\/Ns|Ns_1> (3-36)

The important physical operators for a system of free photons are the total energy,
the total momentum and the total number of photons

hawgb by, hsb{ by, b bs (3.37)

We have neglected the zero-point energy of ) " fiws /2.

Together with Eq. (3.13), and denoting e as the unit vector of vector potential A,
which is normally known as the polarization of the electromagnetic field, the vector
potential operator of the electromagnetic field can be expressed as

| : .
A,y =[5 [bee TN b eI e (3.38)
A

where £2 is the spatial volume where the wave function of the photon in the coordi-
nate representation is normalized as /"~ /\/Q. And N,/ = ng.
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3.2 Electron in Electromagnetic Field

We first discuss the matrix element of the velocity operator

dr
v="=l (3.39)
dr mo
of a conduction-band Bloch electron. In the presence of an electromagnetic field,
the wave function of the electron can be expressed by the following general form

Wi(r) =Y FaWe(r) (3.40)
k

where W, (r) is the conduction-band Bloch function with wave vector k.

We consider the matrix element of the velocity operator in the effective mass
approximation. Intuitively we would expect that in this approximation the mean
velocity of the Bloch electron given by crystal momentum p = hk is

L (3.41)

m*

where m™* is the effective mass of the conduction-band electron and the envelope
wave function is

Fi(r)=)_ Fige'*” (3.42)
k
In this case the velocity matrix element of two conduction-band states is given by
« —ihV
(Fi(m|o|Fj)= | F*(r)——F(r)dr (3.43)
m

where we have written p = —ihV.
Rigorously, the velocity matrix element between state ¥; (r) and state ¥;(r) of
Eq. (3.40) is given by

—ihV
(@) |o|wj(r) = Zﬂ";chq / wc*;(r);—owcq(r)dr (3.44)
k.q

where the momentum operator is p/mg. Since

10E —ihv
- 8;" = / Vi) =, =Wk (r)dr (3.45)

i.e., Eq. (2.102), we obtain Eq. (3.41) for a parabolic conduction band of E x =
12k? /2m*, which is exactly the starting point of the effective mass approximation.

The Hamiltonian describing an electron with an electronic charge —e in the elec-
tromagnetic field of (A, ¢) is

1
——(p—eA)* —ep + Vo(r)
2mg
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P’ ieh e 2
———e¢>+Vo(r)——A p—i——V A+—A (3.46)
2mo 2mo 2mo
where V(r) is the potential energy of the electron system in the darkness, my is the
free electron mass, and p = —ihV is the electron momentum.
Since the scalar potential ¢ is negligible for an electromagnetic field (see last
section) which results in V - A = 0 in the Lorentz gauge, four terms remain on the
right side of Eq. (3.46). Consider the following ratios

_ 2e|A| eA-p

e2A? .
p '

2my

_elA]
=2

_ 2
cA-p ‘ : 'p— (3.47)

mo | |2mg

mo

The average optical power from the Sun is about 120 W/m?2. Let us consider an
optical power of § = 10> W/m?, i.e., ten times the optical power from the Sun, the
photon density g of an optical beam in vacuum is

S

ng = =21x 108 m™3 (3.48)
cohwg

when hwg = 1.0 eV (the corresponding wavelength is 1.24 um). By Eq. (3.35),

ngh
2€ewg

e|lA|l=e

2.1 x 1013 x 1.054592 x 1068
2 x 8.8541853 x 10712 x 1.60219 x 10—19

=1.60219 x 10719 x \/

=4.6x 1072 kg - m/s (3.49)

Consider the electron speed v corresponding to the average thermal energy kg7 in
a semiconductor. At room temperature (kp7 = 25 meV) and for a conduction-band
electron in GaAs (m* ~ 0.1m), one finds

2kpT 2 x25x 1073 x 1.60219 x 10~19 5
m* 0.1 x 9.1096 x 103!

p=m*v=0.1x9.1096 x 1073 x3x 10°=2.7 x 107° kg - m/s

(3.50)

and finally

elA| 4.6 x 10
p  2.7x10°26

=17x107° (3.51)

Thus, even for an optical beam carrying 10° W/m2 (i.e., 107 times of the Sun),
the value of e|A|/p = 1.7 x 1073 is still small enough so that only the term linear
in A is significant in Eq. (3.46). We can think about optical power from the latest
femtosecond laser pulse, where the typical output power is about 0.1 W and the
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pulse duration about 100 fs and pulse repetition rate 100 MHz, the peak optical
power is 10° W. By focusing such an optical beam to an area of 10 x 10 um?, we
reach an optical power of 10'® W/m? (i.e., 10'> W/cm?) for which the A? must be
taken into account under this circumstance. In some cases, e.g., when the linear-A
induced transitions are forbidden, the term in A has to be included. We neglect the
A? in the following discussion.

The time-dependent Schrodinger equation for the electron is now written as

v
ih—— = (Ho+V')w (3.52)
where
2 ieh
Ho=2L—+vor), v=""av (3.53)
2mg mo

where A(r,1) is given by Eq. (3.38). V' is normally referred as the light-matter
interaction.

Equation (3.52) actually describes an open system, where the electromagnetic
field, i.e., the photons, is treated as an external environment. The discussion of the
electron dynamics in the electromagnetic field is simpler when the photons are in-
cluded. In this case, the total Hamiltonian of the composite system composed of
both the electron and photons is

jeh 1
Hy(r) + iA(r, t)-V+4 wa)s <b:_bs + —> (3.54)
mo P 2

where Hj is the Hamiltonian of the electron in darkness. b;L and by are creation and
annihilation operators of the boson field.

The form of the above Hamiltonian can be used to describe other potential fields
in the form of V'(r, 1) = V'(r) cos (wst) which can be quantized also as quasi boson
particle systems. The quasi particle has an energy of hwg and the density of the quasi
particles is proportional to 4/ V' (r). Typical examples of such field quantization are
lattice vibration (phonon), and the electromagnetic field (photon), which was just
discussed.

The electron is scattered from an initial state to a final one by gaining or losing
energy, a boson is annihilated or created at the same time. Notice, however, that the
total energy of the composite system, including the electron and the boson particles,
is conserved. For simplicity, we consider only one type quasi particles so that

Hy t<0

, , 3.55
Ho + [V{T(r)e' ™ b + V{(r)e ' *'bs] + hosbi by t >0 (5:59)

and the state of the composite system as |kNg), where |k) is the electron wave
function while Ny denotes the number of the boson particles associated with |k).
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Table 3.1 Temporal development of Eq. (3.57)

<0 0<t<ét St <t <28 28t <t <36t
N-3 k3
N-=-2 ks k;
N -1 ky ki ki, k3
N ko ko ko, k> ko, k>
N+1 ki ky ki, k3
N+2 k> )
N+3 k3

By Eq. (2.54), we obtain the transition matrix element between two eigenstates
of the composite system

(¢ N |T ([ kNg)

= 38q.k8N, . Ny
; t
=3 [ LV R B R TR N 17 )
14 0

+ (q| V" |k )e! EamEw—heat /b /N Ny —1|T (1) [kNk)]de (3.56)
And in its differential form

d ~
a(qN,,|T(t)|ka)
:__Z |V|k/ 1(E,, Ep+hog)t/h /N ¥ (k/Nq+1|T(l‘)|ka>

+ (q|V’+|k’)e"<Eq—Ek’—h‘“s)f/ " /NG Ny — 1|T (1) |k N )] (3.57)

We can follow the temporal development of Eq. (3.57) as in Table 3.1, where
8t is the time interval of creating or annihilating a boson. Starting from an initial
composite state |[koN), the electron is scattered into state |k) after 5¢. At the same
time, the boson field is modified by either creating or annihilating a boson. 2§¢
later, |koN) — |[k1N £ 1), |kyN £ 1) — |[koN + 2), |koN) and |k, N — 2). Nat-
urally the time development is a multiple-channel process, as reflected by » ",/ in
Eq. (3.57), whereas we have followed only one channel of |ko) — |k1), |k1) — |k2)
and |ky) — |k3) in Table 3.1.

It is noticed that the transition rate from energy level Ey to E, is determined
by V'. The wave vector of a photon is negligibly small, so is the one of the op-
tical phonon, which results in (g|V'|k’) = (q|V'*|k’) by setting s = 0. However,
for acoustic phonon field, (g|V’|k’) can be significantly different from (q|V'T|k’).
Furthermore, the creation and annihilation of a boson particle are progressive.
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Thus far, we have not made any approximations. Equation (3.57) can be solved
numerically by the standard iteration method. In order to elucidate more clearly the
temporal development of the composite system, here we follow our early approxi-
mation by assuming the dominance of one-step process so that for |q) # |k),

(g Nq|T @) [JeNi)
; t
-3 f [la| V" [feje’ FaErthen /b /Ny 3 1{kNg + 1| (1) [k N)
0

+(q|V'F|k)e! EamExmheo)'/h /N (RN, —1|T () [kNe)]de (3.58)

By inserting the above equation into Eq. (3.57), we obtain four terms:

V(NE + D(Ni + 2)(k|V|q){g| V' |k)e! Ea=ER @ =0/ Prtios '+
x (kN +2|T (') |k N)

(Vi + DI{k] V'] 2/ Fa PP /g (1) e

Nil (k| V| q) "/ Fa=Eicthesd =0 N | 7(1') [N

ﬁvk(Nk — 1)<k| V/+|q>(q| V/+|k>ei(Eq—Ek)(t/_t)/ﬁ—iw(z’+z)<ka _ 2|f(t/) |ka>

We keep only the one-step process by neglecting (kNy + 2|f’(t’)|ka) and
(kNy —2|T (t')|kNy) so that

%(kaﬁ"(tﬂka)
= O [ e 7)o

q
x [(Nk + 1)ei(Eq—Ek—ﬁws)(t’—t)/ﬁ + Nkei(Eq—Ek+hws)(t/—t)/ﬁ]dt/

(3.59)

At steady state, i.e., (ka|f"(t)|ka) is constant over the time scale ¢, we obtain
d A A
a(kzvk|T(t)|ka) = —(kNk|T (1) |kN)

TV P

- [(Nk + D8(Eq — Ex — ho)

q
+ Nk8(Eq — Ex + o) | (3.60)
In the above equation, the sum over |¢q) includes the term of |q) = |k). However,

the corresponding process is automatically switched off when wj is finite due to the
& functions, so that there is no energy level shift, i.e., AEy = 0 in Eq. (2.70). The



3.2 Electron in Electromagnetic Field 123

first (second) term in the above equation indicates the transition from state |q) to |k)
by emitting (absorbing) a boson.
By denoting

27 |{q|V'|k)[?
e W[(Nk + 1)8(Eq — Ex — hwy) + NkS(Eq — Ex + o) |
q
(3.61)
we obtain

(kNE| T (1) |k Nig) = e~ "M 12 (3.62)
Then, for t — oo,
(q|V'*|k)/ Ny + 18N, Np+1 (q1V'k)/NkSN, Ne—1
Eq — Ep — hos +ilyn, Eq — Ep + hog +ilyp,
(3.63)

(qNg|T (+00) [k Ny) =

where Iy, = hwin, /2.
For a finite Awg, we can write explicitly that for E;, > Ey,

- (qIV'T|k)/Ni + 1
(@ Nk + 1]T (+00) |k Nk )| £, > £, = F— By — o +iTkn (3.64)
q s k

In other words, only the process involving the absorption of a boson is significant
when E; > Ej. Similarly,

)| _ (q|V'lk)/Ni
Eq<Ej Eq—Ek—I-ﬁws—i-iFka

(g Nk — 1|7 (+00) |k Nk (3.65)

which is an emission of a boson. And the relevant transition rates of the two pro-
cesses are

(g V'* |k)|? (N + DIn,
h (Eq — Ex — ho)? + Iy,

PgN, kN |Eg>E, =
(3.66)
(g |V'lk)I? NiTin
h (Eq — Ex + hog)? + r,ka

PgN, kN |Eg<E, =

They are identical to Egs. (2.85), (2.87) and (2.88) in Chap. 2, where we have as-
sumed, implicitly, that the boson field is a reservoir N > 1 (and N is included
in V’). We have neglected possible phase difference between V and VT, which is
valid here since the electron momentum £k is rather large compared with the photon
momentum As.

Equations (3.66) describe the absorption and emission processes of one boson
during the transition of electron from state |k) to |q). This is in accordance with what
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we have assumed the one-step process of |k) — |q) by neglecting |k) — |k') — |q),
where |k') # |k).

We now study multiple-boson processes for which we have to go beyond the one-
step approximation by solving Eq. (3.57) directly in the numerical ways. Instead of
studying the time development operator, here we discuss the multiple-boson process
in the Schrodinger picture defined by the total Hamiltonian of the electron-boson
composite system Eq. (3.55). By denoting the wave function of the total system
(including the electron and the quasi particles) as

W(r.1)=>Y Cyn,()|gN)exp[—i(Eq + Nshws)t/h] (3.67)
qNs

where |Ng) denotes the boson field having N bosons, Cy y, (¢) is the probability that
the electron state |g) is associated with a boson field having Ny bosons at time ¢.
See Table 3.1.
By inserting the above expression into the time-dependent Schrodinger equation
ov (r,t)

ihT =H@, )¥(r,t) (3.68)

it is easy to obtain the following equation for the wave function coefficient

in SO S Gy, g |V R e B
k

+ Cing410)(q| V' [k)e! Ea=Exthedt/h [N 1] (3.69)

where the first terms on the right side of the equation describe the electron transi-
tion from state k to ¢ accompanied by absorbing a boson, i.e., Ex + hwg — Eg,
while the second terms are about emitting a boson, Ex — hws — E . Let us discuss
the electron transition induced by an electromagnetic field of Eq. (3.38). We again
neglect the wave vector of the photon so that (g|V'|k) = (q|V'*|k). Moreover, we
assume that the electron is initially at electron state |k), thus Cy = 1. A light hwy is
switched on at =0 and Ny >> 1. By including [} and integrating from r = 0 to oo,
the first-order result of the above equation is

Cq= \/ﬁs(q|v’|k)< : + 1 ) (3.70)

E,— Ex —hos+ il Eg— Ex + hos + il

which has a peak when E; — E — hows =0 or Eq — E + hwg = 0. In other words, if
the energy of the initial electron state |k) is lower than the energy of the final electron
state |q), Cgq is significant only when a photon is absorbed. On the other hand, when
Ej > Eg4, a photon will be emitted by the electron when it transits from |k) to |q).
Figure 3.2(a) and (b) show the schematic represents of the electron transition from
|k) to |g) by absorbing or emitting one photon. This is exactly the same as what
we have obtained via the scattering theory Egs. (3.64) and (3.65). Note that we
phenomenologically introduced Iy when solving Eq. (3.69) while Iy is automatic
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Fig. 3.2 Schematic (a) (b) (c)

represents of electron transit ¢ E e

from electron state |k) to |q) a k E,

by (a) absorbing one photon hwg

hws and (b) emitting one T, B VAV

photon hwy, and (c) electron §

transition |k) — |k’ — |q) A VAV Be

by absorbing two photons hwy

hws and hawy AVAV::
E,—O— E,— E, —O—

Absorption Emission Two-photon absorption

in the scattering theory. Furthermore, the physical pictures of Figs. 3.2(a) and (b)
about the photon absorption and emission are valid when ¢ — co.

Let us discuss the situation when several photon beams are present. For simplic-
ity, we assume Ey < E,4 so that we only consider the photon absorption case

dCy (1)
dr

ik :ZCk(t)m(q‘V/+|k>el(Eq_Ek_th)t/h_Fk[/h (371)
ks

We write Cg = Céo) + C,;l) +C ,52) to obtain the first-order and second-order results

N (0)
C(l)(t) — Z Ns <q|V/|k>Ck [1 _ ei(quEkfhws)t/hfrkt/h]
4 Eq — Ex — hog + i T

ks
=y YN (V1K) K 1V k) C [1 _ ¢i(Eg—By—hoot/h=Tyt/h
¢ v o By —Ex—ho+il Eg— Ep — hos +ily

(3.72)

1— ei(Eq—Ek—hwt—hws)t/h—(l“k/+1"k)t/h:|

Eq — Ef — hws — hoy +i(Ty + Ty)

When t — o0,

Ny (q|V'[k)C?
C;l)(00)=2 VNs(q|V'|k) k

~ Eq — Ex — hos + ik

"1’ / / 0)
CP0)= Y VNsNe(qIV'|k) (K'|V !k>ck 1 |
q Epy — Ep —hoy + il Eq— Ep — hos + il
(3.73)

ksk't

1
 E, — Ex — ho —hw,+i(Fk+Fk/)]

C;])(oo) in the above equations is no more than the electron transition from |k)
to |q) via one-photon absorption. C;z)(oo) is the most interesting part: it will be
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significant when Ey — Ep — hoy =0, Eq — Ep = hoy, and Eq — Ef — hog —
hwy = 0. The process is depicted in Fig. 3.2(c), which is a two-photon absorption
process when the electron transits from |k) — |k') — |q).

The concept of multiphoton optical process has been widely applied to a variety
of fields after the pioneer work of Goeppert-Mayer [2—5]. The multiphoton process
has largely been treated theoretically by steady-state perturbation approaches, e.g.,
the scaling rules of multiphoton absorption by Wherrett [6] and the analysis of two-
photon excitation spectroscopy of CdSe quantum dots by Schmidt et al. [7]. Here
we see that Eq. (3.69) actually contains all these multiphoton processes, which will
be discussed more carefully late.

3.3 Optical Spectrum of Nanostructure

After the general discussions about the energy dissipation processes, we discuss in
the following sections of the chapter two special optical processes, namely, opti-
cal absorption and emission. We now know by Egs. (3.66) that when the optical
excitation is relatively low (only linear A-term is significant), the transition rate
at steady-state of an electron from an initial electron state |k) to a final state |q)
induced by these photons is

as _ €N*Nsl(gles - V)| Ty
9k 2m2ews 2 (Eq — Ex — ha)? + I}

(3.74)
n=y e’ Nyl (gles - VIk)I>
k Zm%ews.Q

8(Eq — Ex — hawy)
q

for Ex < E4 and for finite Awg. The above expressions describe the photon absorp-
tion process. Superscript “abs” in p2  stands for “absorption”. For Ej > Eg4, the

q<k
photon emission rate is
pem eI (Ns + Dl(gles - VIK)|? Iy
7k 2mlews 2 (Eq — Ex + ho)? + I}
(3.75)
233 2
me h’(Ng +1 es - Vk

. (e + Dlgles VIR o

7 2myews 2

Superscript “em” in p;“j_ x stands for “emission”. Here Ny is the number of
monochromatic photons having an energy of hwy, e is the polarization vector of
the optical field. Note that ng = Ng/§2 is the photon density, and £2 is the normal-
ization volume, see Eq. (3.38).

The understanding of Eq. (3.74) is straightforward, the electron will transit from
|k) to |q) by absorbing one photon from the photon field and the transition rate is
proportional to the intensity Ny of the photon field. It is the fundamental mechanism
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of photodetection (e.g., photodetector and solar cell). We notice that the emission

term p;‘f‘_ & can be rewritten as stimulated and spontaneous emission terms
s _ €PNslgles - VIK)|? I
gk 2miews 2 (Eq — Ex + hwg)? + I}
(3.76)
2p? V)| Iy
spon _ e“h|{qles k)| k
9k 2miews2  (Eq— Ex + hwg)? + I}
t spon

Superscript “st” in pfl . Stands for “stimulated”, and superscript “spon” in p

q<k
stands for “spontaneous”. pZ‘(_k represents the transition rate from |k) to |q) ac-
companied by emitting a photon in an existing photon field N;. This is known as the
stimulated emission, which is the fundamental mechanism of lasing. p;pink on the
other hand describe the photon emission process in the absence of any photon field,
thus named as spontaneous. It is the mechanism of the light-emitting devices. These
are known as the Einstein theory of photon. We will discuss more in late chapters.
We consider an electron system composed of many electrons, such as in a device.

The transition rate between state |k) and |q) is

qu(hws) = pqekf(Ek)[l - f(Eq)] - Pk(—qf(Eq)[l - f(Ek)] (3.77)

by including the Pauli exclusion principle, i.e., an electron in an occupied state |k)
is capable to transit to an empty state |q). At equilibrium, the occupation of electron
state |k) is expressed by the Fermi function

1
JE)=—"—"F—F— (3.78)
1 +exp( ’;BTJ )
where E ¢ is the Fermi level.
Normally Ng >> 1 so that py X pr—gq = Pgk
Wk (hawg) = par[ f(Ex) — f(Eg)] (3.79)

Summing over all possible electron states in the electron system gives us the total
optical transition rate

W (hos) = Wy (hos) (3.80)
qk

We now relate the optical gain (lasing action) and absorption (detection action)
coefficients of an optical photon beam to the optical transition rate of electrons when
the optical beam travels through the electron system. We consider the photon beam
traveling along the z axis, we can write the continuity equation for the photon den-
sity as

dNg  9ONg  9(cNy)

= _ 3.81
dt ot 0z ( )
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where on the right side of the equation, the first term represents the net gain-
absorption rate of photons,
dNg
ot
The second term represents the photons leaving the region between z and (z + dz)

due to the photon propagation. Here c is the velocity of light. In the steady state,
dN;/dt = 0. Moreover, in general we have

— W (haws) (3.82)

Ns(z) = Ng(0)e8hes) (3.83)

which defines the optical coefficient g(hws)

e2h2|(qles - V|k)|? T
g(hws)zz l{gles - V]k)]| %

Ep) — f(E
2micews2  (Eq — Ex £ hog)? + I} [f(Ex) — f(Eg)]

(3.84)
It is thus noticed by Eqs. (3.83) and (3.84) that when g (hws) > 0, the intensity of the
incident radiation becomes amplified when it travels through the electron system,
optical amplification is expected, thus defined as optical gain; whereas if g(hw) < 0,
the radiation intensity reduces along its transmission through the electron system,
i.e., radiation becomes absorbed (the absorption coefficient is normally defined as
a = —g when g < 0), e.g., in photodetectors.

Furthermore, when we consider a two-level electron system such that there are
only two electron states |k) and |q), Eq. (3.84) immediately states that a population
inversion, f(Eq) > f(Er) when E; > Ey, is essential for optical amplification,
where at equilibrium status, f(Eg) < f(Eg).

In Sect. 1.9 we have discussed the electron states in nanostructures. In the fol-
lowing we consider optical spectra of the four types of nanostructures.

qk

Bulk Material We begin with the bulk material

U (r) =/ QcenVe(Pug(r), vi(r)= %ei’” (3.85)
so that

(qles - VIk) = Wy (r)|es - V| (r))

_ chll
2

ey - [/ ei(q_k)"uZ(r)Vuk(r)dr
2

—ik f e“q—k)"u;(r)uk(r)dr] (3.86)
2

It is important to note that the total wave functions of the electron states are used
when calculating the optical transition matrix element. The second term on the right
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side is zero because the two wave function are orthogonal (g # k). The first integral
can be performed

/ iq—kyr *(r)Vuk(r)dr—Zel(q k)- Rn/ ) (1) Vug (r)dr
2 cell

= / uy (1) Vg (r)dr Y el @=0 R
cell n

:Ncqu/ ufl(r)Vuk(r)dr (3.87)
cell

For two electrons, one occupies a valence-band state and the other in a conduction-
band state,
# _Po
U (r)Vuyg(r)dr = — (3.88)
cell h
and |p.,| = /moEp, where E, is the same energy parameter in the eight-band k - p
model in Sect. 1.6. Finally

Py
h

f iq—kyr uy (r)Vug(r)dr = Nogx (3.89)
2

where 84 = 1 if ¢ =k, it is zero otherwise. N is the number of unit cells in £2.
Since N 2¢en1 = £2,

€s Dy
h

(wy(r)|es - V| (r)) = Sqk (3.90)

Thus, the optical spectrum of a bulk material is

(hop =Y Ry (r)les - V[W(r) PTiLf (Ex) = f(Eg)]
§(hws) = 2micews R[(Eq — Ex + hwg)? + sz]

qk
_ Z 212 (W (r) les V|w,,k(r)>|2 Lokl f (Ev) = [ (Ecq)]
2mcewsR2[(Ecq — Evk + hwg)? + 5]

_e’Tles- p,,|? / F(Ew) — f(Eck) 2dk
2mlcews? J (Eck — Egk & hoy)? + T2 (27)3 /2

(3.91)

Here we assume that I” is k independent. Finally,

g(hwy) =

2 . 2 —
e I'les pcv| /(E f(Evk) f(Eck) 2dk (3.92)

2m%cea)s ck — Evk £ hwg)? + I'? (27)3

Quite similar to the mathematical manipulations in normalizing the components
of the total wave function in Sect. 1.9, we have used the following relationships in
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deriving the above equations:

> a= €L > gk (3.93)
k Ak k

where Ak is the minimal separation between two adjacent k’s for which Ak =
(27)3/82 because of the Bloch theorem. Replace Ak by (27)3/2 in front of >
and the one in ) _ by dk, we convert the summation into integration

1
Xk:gkz e / grdk (3.94)

The double summations in Eq. (3.92) are

dk
2 Sakdok = / / Sakdek (271)%/9 @rY/2

gk
dg dk
=/[/ 8akdqk (2;1)3/.(2](271)3/9
Ak dk
=/ [g"" <2n>3/9}(2n)3/9
A\ dk
/ (g"" )<2n>3/9

= / S 5T )3 o ngk (3.95)

Furthermore, it is reminded that the integration in k is limited within the first
Brillouin zone due to the fact that the wave function in a crystal is written as a
function with the periodicity of the lattice times a plane wave, while the plane wave
is unique only up to one reciprocal lattice vector. It is interesting to see that the
number of allowed k values in the first Brillouin zone is equal to the number of unit
cells in £2:

/ e (3:96)

Quantum Well A quantum well is characterized by an effective confinement
length Lgw along the z direction and an extension area Agw in the xy plane, and
the wave function is expressed as

Wi (r) = v/ QLeenVin(Mur(r),  Vig(r) = Yi (el &) (3.97)

1
,/AQW
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Fig. 3.3 Schematic Qw CB
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The optical transition matrix element

$2cell

QW

i(exky 4 eyky)2celn
Aqw

(Wigles - V|Wik) = ——es - / M b=y @) g (@Jug (r) Vug (r)dr
2

/ e/t =a)xtky=qy)y] V7 @i (Dug (rug (r)dr
Q

€z 82¢ell [ —qs —qy i(z)
+ﬁ /Q etk —auxttky qy)yllﬂ;(z)—alz w (rug (r)dr (3.98)

where e; = (ey, ey, e;). The second term in the above expression is zero because the
wave functions are orthogonal.
Refer to Fig. 3.3, the first term represents interband transition

£cenn (ke — )y
Aow /Q /M ma =0y 2y g (2 (r) Vag (r)dr
2 :
= Zeell Zez[(kx—qx)Rx+(ky—qy>Ry]W(RZ)%(RZ)/ () Vg (r)dr
A J q
QW ¢ cell
cell Pw
= Now$ E R R
AQW QWOk,qy, kv(h I/f ( )I/fl( )aZ
Lcell Py 1
== NQWSkxq,rykvlh - l” (R )sz(R )dZ
AQW ok az Low

= By B @i =gk, Pty @) (399)

QW

Here a; is the length of the unit cell along the z direction, Nqw is the number of
unit cells within Aqw. Skqu,kyqy = 1if k, = gx and ky = gy, it is zero otherwise.
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The corresponding interband optical spectrum is

Zinter (hwy)
_ e*Tles - p Z / / (W @i (@) PLf (Eikyk,) — f(Ejiok,)] 2dk,dk,
ZmOcea)sLQw (Ejkeky = Eikek, £ hewg)? + T2 (2m)?
(3.100)

Note that £2 = Aqw Low-
The third term in Eq. (3.98) is about the intraband transition

ez chll / ei[(kx—‘Ix)X+(k}'_q)')}’] lp* (Z) 8‘('[/1 (Z) l/l* (r)uk(r)dr
AQW 2 J 0z 7

= ST kg e 0By gy PR g ryar
AQW R 8R cell

82ce 81/& (R ) *
_ eAlel NQWk, gy kyqy |: ZI// (Ry) a{| |:/cell uq(r)uk(r)dr]

oY N
= €28k, q.,kyqy |:/ Vi) ——— w (Z) ][/ ““k(")uk(")df}

_e. skqu,kyqy<wj @

3—‘¢i(1)> (3.101)
z
for states within the same band since

/ ity e () = / W Pty (P = 1
ce

cell
(3.102)
/ uéB’k(r)uVB,k(r)dr =0
cell
and the corresponding intraband optical spectrum is
(o) ezh21“e3
. w) = ,
Sintra s Zm%cewsLQw
‘Y / / (W (2)10/0z 19 ) PLf (Eikgr,) — f(Ejiyk,)] 2dkydky
(Ejioky — Eikok, = hog)? 4+ T2 (2m)?
(3.103)

Quantum Wire A quantum wire is characterized by an effective confinement
area Agwr in the xy plane and an extension length Lowr along the z direction, and
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the total wave function of an electron state is expressed as

Wi (r) = v/ QeenVir (Nug(r),  Yie(r) = ¥i(x, y)e' (3.104)

QWR

Similar to the derivations of the optical interband and intraband transitions in a
quantum well, the interband and intraband transitions in a quantum wire are

2 2
e“I'les - peyl
ginter(hwy) = d =

Zm%CECUSAQWR
LW e, 1Y e, Y)Y PLF(Eir) — f(E )] 2dk
x>y / (Epr— En £ hon)? + T2 o (3.105)
e’n’r 1 Tji e, WIPLf (Eix) — f(E )] 2dk
gintra(hws) 2 7 A
2mocewsAQWR (Ejk — Eix £ hawg)=+ T 2
where

a d
Tji(x,y)=<lﬂj(x,y) ey +6y@‘wi(x,y)> (3.106)

Quantum Dot  For a quantum dot confined three dimensionally within an effec-
tive volume 2qp,

Yi(r) = v/ Qcenyi (rug(r), /Q [i(r)|*dr =1 (3.107)
QD

and the optical interband and intraband spectra are

2 Y _ 012 N .
gimer(ﬁws)=e I'les - peyl ZI(%(r)Ilﬁz(r))l Lf(E) — f(E)]

2méc€a)s.QQD I (E; —E; £ hws)? + I'?
(3.108)
e*hir [(Wj(r)les - VI (N)PLF(ED) — f(E)]
Z (Ej — Ei & hwg)? + I'?

intra (i) =
Sintra s Zm%cestQD -

Figure 3.4 shows the optical spectra of various materials under various carrier in-
jection conditions. Three-dimensionally extended bulk material (3D), 2D quantum
well, 1D quantum wire and OD quantum dot are considered. The extension of the
quantum confinement is denoted as L, i.e., L is the quantum well width, L x L is
the cross section of the quantum wire, and L x L x L is the volume of the quantum
dot. The carrier densities indicated in the figure are injected electron (hole) con-
centrations in the conduction (valence) bands. It is observed by Fig. 3.4 that the
optical spectrum in general consists of two parts: The optical gain part in the long
wavelength region, where the population inversion is achieved; and the optical ab-
sorption part in the short wavelength region, where high-energy electron states are
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Fig. 3.4 Optical spectra giner (hws) of low-dimensional electron systems. L = 10 nm, 7 = 300 K.
Integer O (quantum dot with a volume of L x L x L, dashed line), 1 (quantum wire with a cross sec-
tion L x L), 2 (quantum well with a thickness L), and 3 (bulk material) indicate the dimensionality
of the electron system

largely unoccupied and high-energy hole states are occupied. We shall come back
to discuss the optical spectra in Fig. 3.4 in Chap. 5.

3.4 Exciton and Its Optical Properties

We have thus far focused on the electric and optical properties of a single electron
in semiconductor materials. However, there are many electrons in real devices. The
simplification of the multiple-electron system to a single-electron system is largely
justified by the envelope function approach that for almost all semiconductor de-
vice applications, we concern with the electrons that occupy bandedge states whose
wave functions can be separated into the fast-varying Bloch functions and the slow-
varying envelope functions. Other electrons will form approximately an effective
homogeneous medium which can be described by a Poisson’s equation for exam-
ple (see next chapter). However, there is one critical situation that needs specific
attention, namely an exciton.

Let us consider an intrinsic semiconductor bulk material for which we know
that all the single-electron states up to the valence band are all occupied and all
the single-electron states from the conduction band are all empty. We denote this
state as the ground state ¥. As discussed in the previous section, when a photon
has an energy larger than the bandgap, it can excite an electron from one of the
valence-band states into one state in the conduction band. The physical problem we
are dealing with now is: the conduction-band is occupied by one electron, and the
valence band is almost fully occupied except one empty state, In the absence of
external fields, the wave function of an ensemble of electrons in a semiconductor
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material is an eigen function of the Hamiltonian

D Hor)+ ) Viri—r)) (3.109)

i<j
where

2V2 2

i e
HO(ri)Z—W(;‘f‘VO(ri)a Vri—r;)) (3.110)

47T600|r,' — r.,~|

r; is the spatial position of the ith electron and Vy(r;) is the periodic lattice po-
tential. Hy(r) is the same single-electron Hamiltonian in Eq. (1.32), V(r; —r;) is
the Coulombic potential energy between electron r; and r ;, where € is the high-
frequency dielectric constant of the semiconductor material. This is very similar to
the Coulombic potential of a shallow impurity, see Eq. (2.123). Note that the proper
treatment about the electron-electron and electron-hole interactions is rather compli-
cated [8], while the above expression is valid when the electrons are well separated
and moving relatively slowly with respect to one another [9]. When discussing an
electron-hole pair (see below) that the electron and hole move relatively slowly, the
electron-hole is normally referred to as the Wannier exciton. As the electron and
hole approach one another, the situation becomes complicated as various effects be-
come important, most critically the entire effective-mass formalism will eventually
break down. Fortunately, these effects are not particularly important in most device
applications, so that it is generally sufficient to consider the Coulombic interaction
potential in the above equation.

As before, we denote ¥, (r) as the eigen function of Hy(r) in the valence band,
and Y, (r) as the conduction-band state. In the Hartree-Fock approximation, the
electronic wave function is written as a Slater determinant of single-electron func-
tions. The wave function ¥ of a state where the valence band is completely occu-
pied and the conduction band empty, can be written as

1 lpvkl(rl) lpvkz(rl) kah(rl)

%:ﬁ .q./r{kl(rZ) Yok, (r2) -+ Wyp,(r2) -+ (3.111)

for an n-electron system. As always, k; is limited with the first Brillouin zone.
Consider an excited state of the n-electron system

Yok, (r1) Yok, (r1) -+ Wer, (r1)

‘I’kek,,=ﬁ .ll-llfkl(rz) Pok, (r2) -+ e, (r2) -~ (3.112)

in which a single electron has been transferred from the valence-band state ¥, to
a conduction-band state W, .

The excitation energy of the excited state, (Ex,k,, Wk.k,) expressed by
Eq. (3.112), above the ground state (¥, Eg) is given by

Exk, — Eo = Eck, — Evky, + Vi,k, (3.113)
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where Ey, and Ey, are given by

Eck, = (Wek, |HolWer,) + ) _[(Wek, (re) Wut, (r) |V (re — 1) Wk, (r o)W, (1))

1

— (e, (re)Wok; (r) |V (re — 1) | Wk, (r o) ek, (r1))]
(3.114)
Evk, = (Wok, | HolYok,,) + Z[(‘I’ukh (r)Wok, r) |V (i — 1) | Pk, F0) Yok, (i)

— (Wb, (r) Yok, (r) |V (i = 10) Wk, (1) W, (r1))]

where the summations over i run over all occupied valence-band states, i.e., all
valence-band states except ¥y, (ry). In previous discussions, we only focused on
a single electron described by Eq. (1.32) and its eigen value (¥, |Ho|¥k,), while
neglecting all other electrons in the electron system. As shown by the above expres-
sions, such a single-electron treatment is an approximation. On the other hand, the
exact numerical calculations of the above equations, usually referred to as the first-
principles calculations, are almost impossible for solid state materials because of
the large number of electrons included in the electron system. A general approach is
to parameterize the multiple-electron Hamiltonian, such as the sp3s* tight-binding
model and the k - p model in terms of experimental measured energy band structures
of the semiconductor materials. Such a parameterization is actually a process that
has already included the interactions between the single electron and its surround-
ing electrons since the experiment always involve a large number of electrons. In
other words, Ex, from parameterized sp3s* tight-binding and/or k - p models are
already E., and E,x, expressed by Egs. (3.114), which from now on are denoted
as the single-electron conduction- and valence-band energies, they replace our early
notations of (W, |Hol|Wek,) and (Wyk, | Hol Wk, )-
In Eq. (3.113),

Vi, = —(Wek, (re) Wk, Fi) |V (re — 1) [Wek, (re) Yok, (rn))
+ (W, (re)Por, )|V (re — 1) [Wok,, (re) ek, (rn)) - (3.115)

The valence band with one empty state can be treated as a particle, a “hole”,
which has a positive effective mass, see Ref. [10] about the mathematic formula-
tion of the hole. Furthermore, when we neglect the exchange interaction term, the
Coulombic interaction between the electron in the conduction band and the hole in
the valence band becomes

Vi = —(Weke, (r ) Wor, k) |V (re — 1) | Wek, (r ) ok, (r1))
In other words, we can express the interaction between the electron and the hole as

62
Vre—rp) = (3.116)

dmecol|re — 1yl
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so that the hole is positively charged. A direct consequence of such a positively
charged hole in the valence band and its attractive Coulombic interaction with the
negatively charged electron in the conduction band is the formation of the electron-
hole pair, which is the so-called exciton.

Note that the hole is not only a concept, its presence has been demonstrated
experimentally, particularly through the anomalous Hall effect. With the concept of
the valence-band hole, we re-formulate the wave function expressed by Eq. (3.112)
of the exciton as

Yok, (re)Wok, (rn) (3.117)

The momentum of such an exciton is k, + kj,.

The physical problem of Eq. (3.113) now becomes: the conduction band is oc-
cupied by one negatively charged electron denoted as r., and the valence band is
almost fully occupied except one empty state, i.e., a positively charged hole rj. The
electron and hole may be described as “free” particles with definite effective masses
(the effective mass approximation). Furthermore, there is a Coulombic interaction
between the electron and the hole. Because of the Coulombic interaction between
the electron and the hole, Eq. (3.117) does not represent an eigenstate of the exciton
system. We approximate the eigenstate by a linear combination of two-particle wave
functions of Eq. (3.117)

W(re.rn) =Y Alke, ki)W, (re) ok, (rn) (3.118)
koky,

Equation (3.113) is now extended into a set of simultaneous equations
[E - Eckg + Evkh]A(kev kh)

=Y (Yek )Wk, r) |V (re — 1) W (r) W (ri))A (K, K, )
kK,

(3.119)

where E is the total energy of exciton state ¥ (r,, ry), Eck, and Ey, are given by
Eq. (3.114).

As we discussed before concerning Eq. (3.116), we focus on the Wannier exciton
which is the most relevant in device applications. Since the spatial extension of the
Wannier exciton is normally quite large, we use the Bloch functions to describe the
electron and hole states

1 ik-r 1 ik-r
Ve (r) = ﬁe Uck(r), Yk(r) = ﬁe uyk (r) (3.120)
where N is the number of unit cells and u.x(r) and u,x(r) are the periodic Bloch
functions of the conduction- and valence-band states with the period of the crystal
lattice and are normalized in a unit cell of volume 2.y1. W (r) and ¥, (r) are
normalized in the semiconductor volume £2 = N £2¢e]1.
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When u .k (r) and u,x(r) vary slowly with k over the range of k of interest and
that this range is small compared to the dimension of the Brillouin zone, one can
write

1 '\ IK,r,
2cenl Xv: C (ke’ ke)e

Ueg, (re)uey, (re) =
(3.121)
1 —_
”i}ﬂk;, (rh)”vk;l (rp) = _Q—“ Z Cu(kh, k}l)e’K“ r
ce
“w

where K, and K, are reciprocal lattice vectors. With these

(Wek, (r )Wk, r) |V (re — rh)|¥’ck; (re)¥yk, (rn))

1
= 53 2_ Culke, k) Cp (fen k)
Vi

% //ei(Kl,—qe)»reV(re _rh)gi(Ku_qh)-rhdredrh

1
= o 2 Collke k) Co (ko K3V (Ko 40K 4K v, 40, (3122)
Vi
and
2

V(g) =/e””V(r)dr =— (3.123)

€x0lq|

is the Fourier transform of the electron-hole interaction potential Eq. (3.116). g, =
k, —k,and q, =k, — ky,.

Since the total exciton wave vector k. + kj, is restricted within the first Brillouin
zone, the only possible solution of the § function in Eq. (3.122) is

K,+K,=0 (3.124)
which means

ket ky =k, +k| (3.125)

indicating that the exciton momentum k. + kj, is a quantum number of the exciton
state. Equation (3.122) can be now rewritten as

(Wek, (re) ok, r) |V (re — Fh)}‘lfck; (re)¥yk, (rn))

1
= 5ch(ke,k;)c,v(k,,,k;)V(Kv+qe) (3.126)

In the above expression we denote C, as C_,, under the condition of K, + K, = 0.
For V (r) being Eq. (3.116) so that Eq. (3.123) is true, the largest contributing term
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is the one when K, = 0 for small ¢, thus

(Wer, (re) Wk, (rp) |V (re — rh)’ll’ck’e (re)¥yk, (rn))

1 /
= ECO(ke,k’e)Co(kh,kh)V(qe) (3.127)

As said before, the periodic Bloch functions u. and u,; do not vary strongly
with k so that we can write

Mck’e (re) = Uck, (re) + q.- Vkeucke (re)+--- (3.128)
Substituting this into Eq. (3.121) and integrating over one unit cell,

Colke k,)=1+q, Xc(ke)-

(3.129)
Co(kn. ky) =1—q,- Xy(kp)---
where
Xc(k) = (uck | Viluck) 2cen» Xy (k) = (k| Vieluvk) 2cen (3.130)
With Egs. (3.129) we obtain
(Weke, () Woke, (P |V (re — 1) [Wege (r) W ()
= PO g Xtk X))+ (3.131)

to the first order in q,,.
Retaining only the first term in the above equation, Eq. (3.119) becomes

1
(E — Eck, + Evi, ) Ake, ki) = o Z V(g Atke +q.kn —q) (3.132)
q

It is known mathematically that when a function f (k) is expandable in powers
of k, we have the following relationships

1 . 1 )
ol Xk:e””f(k)G(k) = [(=iV)g). g =5 ;el’”G(k) (3.133)
Thus, by introducing the Fourier transform of A(k,, kj):

1 o
Ve =5 > " etkereetnn Ak, k) (3.134)
kokp,

then taking the Fourier transform of Eq. (3.132), it is easy to show that ¥ (r,, rp)
satisfy the following differential equation

[Eivy) = Eiviy + V(re —r) [¥ (re, ) = EY(re, rp) (3.135)
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where E(_;v,) is the expression obtained by replacing k. in the power-series expan-
sion of E.x, by —iV,. During the derivation of the above equation we have used the
fact that only small ¢ contributes significantly, see Eq. (3.123).

Consider only one exciton formed by a hole in the valence band and an electron
in the conduction band, and u, (r;) and u.(r.) are independent of kj; and k., it is
easy to see by Eqgs. (3.118) and (3.134) that the total wave function of the exciton
state is

V(re.rn) =29 e, rp)ucre)uy(rp) (3.136)

The exciton wave function is therefore made up of a product of the electron and hole
band functions times a modulation function v (r,, r;,), which is in general referred

as the exciton envelope function.
We now try to express explicitly the effective-mass equation for the exciton in a
bulk semiconductor material. We write the conduction band and the valence band as
h2k? Rk}

Ecke = EC + %’ Evkh = Ev -

3.137
e (3.137)

by Eq. (1.156), where E. and E, are conduction- and valence-bandedges. E, —
E, = E, is the bandgap. Inserting Eq. (3.116) into Eq. (3.135) we obtain

<h2k§ Rk e?

2m¥%  2mi Ameso|re —rp

)W(l‘e,rh) =(E—-E)y(re,rn)  (3.138)

Write

* *
_mgre +myry

* *
my +mj
as the exciton center of mass,

*

* __ %
m-=m.+m,

as the exciton mass,
1 1 1

" - mk - m}
where u is the reduced mass of exciton. Moreover,
V(e 1) =Y (E)Yn(re —rp), E:Ek+En+Eg
Equation (3.138) becomes

V2
— 5 V() = Exi(r)

vz, e?
(_ - )d’n(re_rh)zEan(re_rh)

2u dreso|re — 1l

(3.139)
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Table 3.2 Physical parameters [11, 12] at low temperature and exciton binding energy and exciton
Bohr radius

Unit  Si GaAs AlAs InAs CdSe  ZnO
m’; (heavy hole) mo 0.537 0.45 0.409 0.35 0.45 0.59
mk mo 1.026 0.067 0.15 0.026 0.13 0.28
E, eV 1.1700  1.51914 2.229 04180 1.751 3.2
€00 €0 11.9 12.40 10.06  15.15 6.3 7.8
Exciton binding energy E.x meV 33.8 5.16 14.7 1.3 34.5 42.4
Exciton Bohr radius ap; nm 1.78 11.2 4.8 35.8 3.3 2.2

It is easy to see that [ Ex, ¥ (r)] represent the motion of the exciton center of mass.
In bulk semiconductor, we can write

3

ik-r
=k, Ex =
Vi(r)=e k=5

(3.140)

[E,, Yn(r. — rp)] represent the relative motion of the electron and hole with one
another, which is just hydrogen like. Refer to Egs. (1.7), (1.9),

2
n (e \ Ry
I/fn(re_rh):wnﬁm(Ve_rhl), En=——<—> —3 (3.141)
mo \ € n

Neglect the motion of the exciton center of mass (k = 0), the exciton states (dif-
ferent n in the above equation) are denoted by their energy E, below E,. The exci-
ton ground state (n = 1) is

2
—|re— n [ €0 mo €
Vex(re —rp) = e~ Irernl/as: Eex = _m_(_> Ry. apr = — —a
0 \ €00 n €
(3.142)

where E¢y is the exciton binding energy, ap; is the exciton Bohr radius, ag is the
Bohr radius, see Eq. (1.4). Table 3.2 lists the exciton binding energies and exciton
Bohr radii in common semiconductor bulk materials.

We now study the effect of exciton on the optical transition. The probability
that the electron makes a transition from a valence-band state in a completely filled
valence band to one conduction-band state in a completely empty conduction band,
i.e., from the ground state ¥ to an excited exciton state ¥ (r,, rj) is proportional
to

(lI/(re, rh)|eis"es op|llfo> (3.143)

where p is the momentum operator, s and e are respectively the wave vector and
polarization vector of the photon. As discussed before, s is negligible as compared
with the momenta of the electron and hole. Thus the total momentum of such a
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photo-generated exciton is zero. In other words, the wave function of the photogen-
erated exciton has the form of

Yre.rn) =y e ee” Ak, k) (3.144)
k

apart from a normalization factor, by referring to the general solution Eq. (3.134) of
an exciton.
By Eg. (3.118) the optical transition probability is proportional to

(Wre.rn)les - p|wo) = ZA(k, —k)(Pekles - pl¥ok) (3.145)
k

where we have neglected the contribution from all other bands except the valence-
and the conduction bands. By Eq. (3.90),

(Verles - pl¥ok) X es - pey (3.146)

which can be well approximated as independent of k over the range ¢ of k involved
so that

(W (re.rp)les - p|¥o) = e -prA(k, —k) (3.147)
k

By Eq. (3.144) we finally see that the transition probability is therefore proportional
to

(lp("e’ rh)|es 'P|l1/0) =€ PV (e, r1)lr,=r, (3.148)

Refer to Eq. (1.12), the radial wave functions are nonzero when r, = r, only for
states with zero angular momentum (£ = 0). Moreover,

1
U (Fe, ) \/—_36_‘”_”"/"“3' (3.149)
n

so that the optical transition matrix element is

1
(@ e, ri)es - IO) o [¥ (e, 1) lrumry | = (3.150)

where n is the principal quantum number in Eq. (3.142).

The most important impact of the above equation is that electron-photon interac-
tion, i.e., light-matter interaction, is much strong when the electron and hole form
an exciton, i.e., when n is small. We will elaborate the impact of Eq. (3.150) by the
end of the next section after we learn how to engineer exciton in nanostructure.

3.5 Exciton in Quantum Well

In this section we will study the binding energy of an exciton in a single GaAs
quantum well. Within the effective mass approximation as discussed in the previous
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sections, we need to solve the Schrodinger equation along the z axis which is also
the sample growth direction. By Eq. (3.138), the Hamiltonian of an exciton has the
form

RV RV &

H=
2m 2my dmexs|re — 1y

+ Ve(Ze) + Vh (Zh) (3151)

where V,(z.) and V},(z;,) are confinement potentials for electron and hole respec-
tively in the z direction. €, is the dielectric constant of the crystal.
We build a three-dimensional trial wave function for the exciton ground state as

V(re,rn) = Ve(ze)¥n(zn) Yex(re, r1) (3.152)

where r, = (p,, z.) and r, = (p,, z;,) are spatial coordinates of the electron and the
hole, respectively. ¥, (z.) and ¥, (z;,) are eigen functions of the electron and hole of
their Schrodinger equations

R d?
[_%@ + Ve(Ze)i|¢e(Ze) = E Ve (ze)
(3.153)

h* d?
[ + Vh(Zh)i|‘/fh(Zh) = En¥n(zn)

ZmZ dz,zl

see inset in Fig. 3.5. The exciton envelope function Ve (7., rj) is approximated by
a three-dimensional hydrogenic-type envelope wave function

P 2
Wex(re,rh)=exp[_\/|pe 2/0h| Jr(ze 2Zh) } (3.154)

dyy a;

where ay, and a; are exciton Bohr radii in the xy plane and z direction, respectively,
to be determined from minimizing the total exciton energy

(e, r)|H|Y (re,rp)) = Ec + Ej — Eex (3.155)

where the binding energy E.x of the exciton described by Eq. (3.152) is given by

Eex = / e Ge)¥n ) U (e r)

thIZ' —ry 62
x — + Yex(Fe rp)drodry,  (3.156)
2 4dmesolre — rl

Here pu is the reduced effective mass, 1/u =1/m} + 1/mj.

It is easy to see that Eq. (3.154) reduces to the envelope function of an exciton
in a bulk material which is translationally symmetric in all the three dimensions
(axy = a;). In this case, the exciton Bohr radius and the binding energy of the lowest
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exciton state are given by Eqgs. (3.142). Such hydrogenic spectra of exciton have
been observed in the optical absorption that occurs below the interband threshold.

In reality, we can write down a general form for the envelope function of an
exciton in a nanostructure system by introducing three different Bohr radii ay, ay
and a, along three spatial directions

Vex(r) = e, (3.157)
with which it is easy to obtain
e/ 2 2 2 1/y2 22
Vi Yex = —3[(—4+y—4+—4)“— _2<y_2 +—z>
o ag ay a; ag\ay a:
1 (x2 22 1 (x2 2
ay\ay a: az\a; ay
which reduces to
2 e_r/aBr r
Viex = (— - 2) (3.159)
aprl Aapr

when a, = ay = a; = ap, for exciton in bulk material.

Back to the single GaAs quantum well, see inset in Fig. 3.5, which is grown along
the z axis and extended in the xy plane. Because of the translational symmetry in
the xy plane, ay = a, so that we have two parameters a, and a, to describe the
exciton. Actually the two parameters are not independent. Let us examine the issue
from a different perspective: When the spatial coordinates of the electron and hole
coincide, both the kinetic energy of the relative motion of the electron-hole pair and
the Coulombic interaction between the electron and hole are infinite, but they cancel
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with each other. This is easily observed for the electron-hole pair in bulk material
that

PRV e el
2u 4 enot

r—0
hZ e—2r/aB,- r e2e—2r/a3r
= —_—— _ _2 -
|: 2 ager <aBr ) Amesor ]
NG e \1 1
N uagy 4meso ) r

=0x —
,
by inserting Eqgs. (3.142). Therefore, for a quantum well system which is extended
in the xy plane, let x =y =7 — 0,

(_ YV ex e2|1//ex|2>

r—0

=0 (3.160)

r—0

r—0

21 4 enot

r—0
n? a;(2ai +a3) 1 1
. > 5375 — (3.161)
w ax(a; +2az) / 4\/§7T600 X x>0
which is expected to be zero for any x so that
32+ B2 1
V3pRe+phH 1 (3.162)

ax(1+26%32 " ap,

where 8 =a;/ay.

We now calculate the binding energy of an exciton formed by the ground electron
and heavy hole states in a GaAs quantum well embedded by infinitely high barriers.
Refer to Table 3.2, m} = 0.067, m;*l = 0.45, €50 = 12.4 so that Eex = 5.16 meV
and ag; = 11.2 nm in bulk GaAs. Let Lgw be the quantum well width so that the
envelope functions of the ground electron and hole states are in the form of

Ve(20) = sin < e ) Y (z) = sin <ﬂ> (3.163)
Low Low

for (z¢, zn) € [0, Low]. The binding energy of the exciton in the quantum well is
the minimal value of

1 [ Low Low 7z 7z
Eex.Qqw = —/ Zn,odp/ dze/ dz, sin? (—e> sin® (—h>e2"‘
CJo 0 0 Low Low

{h2 |:<,02 (ze—zh)2> 0? ,02-1-2(Ze—2h)21|
X ——t— o —

2ue [\ at a? at ata?

2
¢ } (3.164)

A eqolr
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in its relationship with 8. Here C is the wave function normalization factor

o0 Low Low
C:f 27Tpd,0f dze/ dz;, sin? (—”Ze )sin2 <—”h >e—2“ (3.165)
0 0 0 Lqow Lqow

Numerical result of exciton binding energy are shown in Fig. 3.5 as a function of the
width of the GaAs quantum well. The direct conclusion is straightforward: quantum
confinement forces the electron and hole to stay together, resulting in a high exciton
binding energy, which implies a stable exciton at high temperature.

As we have learned from the previous section, see Eq. (3.150), light-matter in-
teraction is much strong when electron and hole stay close to form exciton. On the
other hand, we know that the exciton binding energies of common semiconduc-
tor materials are very small, see Table 3.2, in terms of thermal excitation energy
kpT = 25 meV at room temperature. Thus room-temperature photoluminescence
from bulk material is almost zero. However, in nanostructures whose sizes are com-
parable with exciton Bohr radii, quantum confinement strongly influences the exci-
ton which dominate the optical absorption and the photoluminescence spectra of the
nanostructures. Even at room temperature the sharp exciton lines can be detected in
the absorption spectra of AlGaAs/GaAs quantum wells [13], which can hardly be
observed in bulk GaAs samples. Interestingly, one of the reasons for the fast de-
velopment of ZnO and its related materials is their large exciton binding energy of
about 60 meV which binds the electron and hole strongly at room temperature [14].
Table 3.2 further explains that since the exciton Bohr radii of common semicon-
ductors are in the range of nm scale, structures at nanoscale, i.e., nanostructures,
are essential in order to engineer exciton. We shall discuss more the vast expanding
research and technical development of nanophotonics in Chap. 5.

3.6 Colloidal Quantum Dot

To precisely engineer light-matter interactions at the nanoscale with electron-hole
pairs (excitons), and their coupling with photons (excitonpolaritons), are becom-
ing increasingly important in contemporary research in nanoscience. Materials with
nanoscale features have the potential to revolutionize optoelectronics, permitting
new and interesting devices and system capabilities. One key design element is the
geometry, i.e. size and shape, which defines the properties of the nanostructured
material and which connects to the possibility to design new and significantly im-
proved physical, electrical and optical properties. Excitons represent one such im-
portant property that can be dictated by the size and the shape of a nanostructure in
which they are confined, in addition to the material constitution of the nanostruc-
ture. Here we outline the most studied quantum dot and the optical properties of
the exciton confined in the quantum dot. Figure 3.6 shows schematically a colloidal
semiconductor quantum dot.
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Fig. 3.6 (a) Schematic configuration of a typical colloidal quantum dot consisting of a CdSe core
and a CdS shell. (b) Conduction-band (CB) and valence-band (VB) structures of the core-shell
quantum dot

Optical spectroscopy deals with interactions of electromagnetic radiation with
matter that occur at the ultraviolet (UV), visible (Vis), near-infrared (NIR) and in-
frared (IR) wavelengths. In the UV/VIS spectral regions (< 700 nm), light can pen-
etrate only superficial tissue volumes (a few hundred microns to a millimeter in
depth) due to the fact that this biological medium is highly absorbing. However, in
the NIR spectral region (700 ~ 900 nm) tissue is generally less absorbing and, fur-
thermore, the number of elastic scattering events of light in tissue is approximately
two orders of magnitude greater than the number of absorption events. This enables
the light to propagate through tissue volumes that are up to several centimeters in
depth.

The success of bio application depends very much on the optical excitation and
detection technologies, which are in the infrared regimes in most cases.

Because the quantum dot of interest consists of more than 10° atoms, we can
apply the effective mass approximation, i.e., the single-particle Hamiltonian of a
conduction-band electron in a quantum dot can be expressed in the form of

h2v?
B 2m*

c

H.=

+ Ve(r) (3.166)

where m is the effective mass of the electron, V,.(r) is the confinement potential

E. rl <a

. (3.167)
E.+ A.(r) otherwise

Vc(r):{

where E. is the conduction bandedge of the quantum dot core, a is the radius of the
quantum dot, and A, is the band offset between the quantum dot and its surrounding
medium. When referring to only quantum dot and vacuum such as a CdSe quantum
dot (without CdS shell in Fig. 3.6), A, = x, which is the electron affinity of CdSe.
Similar expressions can be written down for the hole in the valence band. Relevant
energy band structure parameters are listed in Table 3.3.
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Table 3.3 Room-temperature energy band structure parameters of II-VI materials [11, 16-25].
Data are obtained from [25] if not otherwise stated

Parameter Waurtzite CdS Hexagonal CdSe Zincblende CdTe
Eg [eV] 2.485 1.751 1.49
Ao [eV] 0.062 0.416 0.80
mk 0.18 [15], 0.2, 0.20 [11] 0.12,0.13 [11, 16]  0.090, 0.096 [11]
mh/mjn 0.53[15],0.7/5,0.8 [17], 1.02 [18]  0.45/1, 0.41 [16] 0.72

0.12
€(0)1/€(0)) 8.45/9.12 9.29/10.16 10.2
€(00)1 /fe(00))  5.32 6.3/6.2 7.1
E, [eV] 20.7 [11]
A [eV] 2.21[19],2.3 ~2.5[20,21]
Ay [eV] 2.21[19]
x [eV] 4.79 [22], 4.22 [23] 4.95[22] 428 [22]
Parameter Cubic ZnS Waurtzite ZnS Waurtzite ZnO
Eg4 [eV] 3.68 3.78 32
Ago [eV] 0.086
mk 0.184,0.28 [11], 0.42 [24] 0.28 0.24,0.19 [11]
mh/m:j” 1.76, 0.61 [24] 0.49/1.4 0.59, 0.45 [17]

0.23

€(0)1 /€(0) 8.0 9.6 7.8/8.75
€(00) 1 /€(00)) 5.1 5.13 3.70/3.75
E, [eV] 20.4 [11]
Ac [eV]
A, [eV]
x [eV] 3.9 [22] 4.57[22]

Advanced theories to account for the fine structures in the energy bands of II-VI
semiconductor nanocrystals have been developed, e.g., the effective bond-orbital
model for valence-band holes [26, 27], the sp3s* semi-empirical tight-binding the-
ory [16, 24, 28], and sp3d5 nearest-neighbor tight-binding model [15, 29]. Ad-
vanced theories improve very much the energy positions of peaks in the optical
spectrum [30], it is expected that the general principal features of the optical spec-
trum are determined by the geometric structures of the quantum dot. It has been
shown numerically that the ground level energies obtained by the effective mass
approximation of Table 3.3 are very close to the results from the sp3d> nearest-
neighbor tight-binding model (Fig. 3 in [15]).
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Because of the rotational invariance, we pick wave functions of the Hamiltonian
Eq. (3.166) in the form

%zm(r, Gv‘p):RnE(V)YZm(Q’(P) (3168)
from which comes the radial Schrodinger equation

2mELE — Ve(r)]
h2

Rpe(r) +

2
Rue(r) | 2dRue(r) _ L ;r D Rue(r)=0 (3.169)

dr? r o dr

where Yy _,, (0, ¢) = (—1D)"Y};

o (0, @) are the angular momentum eigen functions.
We discuss four cases.

Free Electron For V,.(r) =0 and E > 0, we denote k% = 2miE/ K2, the regular
solution of Eq. (3.169) is j,(p), known as spherical Bessel functions

. 1d\%/sinp
Je(p) = (—p)‘(——) ( ) (3.170)
pdp P
where p = kr. And the irregular solution is called the spherical Neumann function
ne(p)
1d\* cos p
nz(p)=—(—p)‘<——> ( ) (3.171)
pdp P
The first few values of these functions are
. sin p
Jo(p) = —
I
. sinp  cosp
J1p) = —5 -
o o

. 3 1\ . 3
J2(p) = — — — |sinp — — cosp
pd p P

(3.172)
cos o

no(p) =—

cosp sinp
02 P

ni(p) =—
3 1 3 .
na(p) = — — — — Jcosp— —sinp
p P 1Y
Infinite Potential Well For infinite potential well of

Ve =10 =a 3.173)
77 Moo otherwise '
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Table 3.4 Bessel function roots of ka for a few values of £

=0 1 2 3 4 5

3.1416 (=) 4.4934 57635 6.9879 8.1826 9.3558
6.2832 (=27) 7.7252 9.0950 10.4171 11.7049 12.9665
9.4248 (= 37) 10.9042 12.3229 13.6980 15.0397 163547
12,5664 (= 47) 14.0661 15.5146 16.9236 18.3013 19.6531
15.7080 (= 57) 17.2208 18.6890 20.1218 21.5255 22.9046

the solution that is regular at r = 0 is Ry(r) = j,(kr) with the eigen values deter-
mined by the condition that the solution vanishes at r = a, i.e., jy(ka) = 0. The
roots of ka for a few values of £ are listed in Table 3.4.

Square Potential Well In reality, the potential barrier for the electron in a quan-
tum dot is always finite. Refer to Fig. 3.6, for a CdSe quantum dot (without the CdS
shell) so that its potential energy is in the form of a square potential well

rl <a

otherwise (3.174)

Ve(r) = {O_X

where a is the radius of the quantum dot. For continuum solutions E > 0, the solu-
tion for r > a will be a combination of the regular and irregular solutions

Ry(r) = By je(kr) + Cong(kr) (3.175)

while the solution for r < a must be the regular one of

Re(r) = Ae¢je(gr) (3.176)
where
2_2m?(E+)() k2_2ij
e

The two solutions and their derivatives must match at » = a. This leads to

. dje(p) dne(p)
L diw)| By Oy (3.177)
Je) dp p—ge  Beje(p) + Cone(p) | peia '
by which the ratio of By/Cy is determined. The ratio of A;/Cy is
By -
Ay cojetka) +ng(ka)
Lo (3.178)

Co Je(ga)

and C; is obtained by the wave function normalization
2
A
2 4
|Cel { —

2
rzdr} =1 (3.179)
Cy

a .2 2 o Bl .
Ji (kr)r=dr + — je(kr) + ne(kr)
0 a 1Ce
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For bound states —x < E <0, we write o= —2m2‘E/h2. The solution forr < a
must be regular at the origin
Re(r) = Agje(qr) (3.180)
and the solution for » > a must vanish as r — oo,
R¢(r) = Behe(iar) (3.181)
where Ay (p) is the spherical Hankel function
he(p) = je(p) +ine(p) (3.182)
The first three spherical Hankel functions are
ie'f
ho(p) = —
0
eir i
h](p):——(l—l-—) (3.183)
o o
ie'f 3i 3
) =—(1+= -3
P p P
The solutions of bound states are given by the boundary conditions
1 dj 1 dh
g Je(p) Cia e(p) (3.184)
Je (p) dp p=qa hf (10) dp p=iaa
A¢/B¢ and By are
Ay _ he(iaa)
By ju(qa)
(3.185)
A 2 ra 00
IBelz[ =t f jt(qryrtdr +/ |hg(iotr)|2r2dr] =1
By 0 a
The spherical Bessel functions have the following recurrence relation:
: L. dje(p) 20+1 . :
Jer1(p) = —je(p) = ——— = ——je(p) — je-1(p) (3.186)
p dp p
Alternatively, we can expression the relationship as
Jeri(p) | _ t/p -1 Jje(p) (3.187)
Jer1(P) L—e+2)/p* (+2)/p][iP) ’
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The same recurrence relation holds true for ny(p) and h¢(p). Followings are the
recurrence relation in different forms:

20 +1
Jeo1(0) + jer1 () = o)
.
e 1(p) — €+ Djep1(p) = 2L+ 1) ’;ﬁf )
(3.188)

d

i [0 je(o)] = x 1 fomi(p)

d

@[p—%p)] =x"" fer1(p)

Arbitrary Potential Profile = For more complicated quantum dots such as the
CdSe-CdS core-shell quantum dot in Fig. 3.6 where the confinement potential varies
with r, it is convenient to introduce the function u,¢(r) = r R,,¢(r) so that

duue(r)  2m*

£+ 1)h?
dr2 hzc [E - Vc(r) -

2
2mir

:|un€(r) =0 (3.189)

from Eq. (3.169) which looks very much like a one-dimensional Schrodinger equa-
tion (see Sect. 6.2) except that the definition of u,(r) and the finiteness of the wave
function at the origin (r = 0) require that u,(0) = 0.

As mentioned early, the matrix element of optical transition between a valence-
band state

!/fiuv = R@i (r)YZ,'mi (91 ¢)Mv
and a conduction-band state

Wjuc = le (r)Yijj , ¢)ut
denoted as interband transition, is

(VjuclA- pliuy) = A - p, (Vi)

[e'9) b4 2
=A p, /0 r2dr /0 sin6dg /0 dpR; (Y], (0, ®)Re, (1) Yem, 0, 9)

0
=A- pcvaljei(smjmi /() I'zdl‘RZ_ (r)RZ,' (r) (3.190)

where A is the vector potential of the electromagnetic field.
Between two states within the same band, either the conduction band or valence
band, referred to as intraband transition, the optical matrix element is

dr
dr

dr wi>

(WjuclA-pliuc) = (Y;|A - plyi) =moA - <1/fj
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= Z0A . )
:M(Iﬂj|A~r|lﬂﬁ (3.191)
and
(YjlA-riy)

[e'e) b4 2
- / r2dr / sin0do / dpR} (MY{,,, (0, 9)A - R, (1) Yem, (0, §)
0 0 0 ’
(3.192)

Writing r =rrg, where r is the unit vector, A = Ayxo + Ayyo + Azz0, X0, ¥g
and z( are unit vectors along x-, y- and z directions, respectively,

A-rog=Axsinfcos¢ + Aysinfsing + A; cos ¢

[4x (—A,+iA, A +iA,
= — ——"Y AY — Y3 3.193
3 ( 73 11+ A Y0+ 7 1 ( )

so that the angular integral in Eq. (3.192) now becomes

b4 2w
f sin@d&/ d¢YZ*-m-(9’¢)Y1,m(9’¢)Ylimi(9’¢) (3.194)
0 0 jmj

for m = —1, 0, 1. The azimuthal integration yields
/ d¢eflmj¢elm¢elmi¢ =2775m,mj—m,- (3.195)
0

If we define the z axis to lie along the photon momentum direction s so that A, =0
and thus m = £1, the above equation indicates quantum selections of m ; — m; =
+1.

By using the addition theorem for spherical harmonics

L1+,
Yeum 0. 0)Youm, 0. ¢) = Y C(Limy+mallimy: £2m2)Yemy1my (0. $)
=1t —Lo|

(3.196)
so that the angular integration in the optical matrix element vanishes unless £; =
i +1,¢;,|¢; — 1], which is the general form of the electric dipole radiation selec-
tion rule AZ = 1,0, —1. In the above equation, C ({m|€1m1; £2m>) are the Clebsch-
Gordan (CG) coefficients which are nonzero only when m = m 4 m». The expres-
sion below for the CG-coefficient is the most symmetric one of the various existing
forms [31, 32]
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Table 3.5 Clebsch-Gordan (CG) coefficients C(¢m|€imy; 1, my) when m =m| 4+ my

l my=1 my =0 my=—1
0 +1 i +m)( +m+1) y—m+D (€ +m+1) Wy —m)(¢y—m+1)
1 0+1)(201+2) Qe+ +1) 201+1)(2¢1+2)
¢ [ m)E —m+1) m2 1—m)(€1+m+1)
! 26, (€1 +D) vV a@+n 20,6 +1)
0 —1 Ly—m)(ly—m+1) _ [ =m)&+m) 1+m)(l1+m+1)
1 201(201+1) £1(2¢1+1) 201 (2¢14+1)
01+ 1 Ci+mi+ ) +m+2) Cy—mi+ D) +m+1) Wy —mi+1)(—m;+2)
1 Q6+D 26 +2) Q6 +D G +D) QO+D 26 +2)
¢ _ [Gtm+ D€ —my) m% C=m+D)(€+my)
! Vo 20@+D L@+n Vo 20@+D
0 —1 [ Ci—mi =Dl —my) _ [ Ci=m)+my) Citmi—D (€ +my)
1 201(2¢1+1) £ 20,+1) 201 201+1)

Table 3.6 Clebsch-Gordan (CG) coefficients C (€, m + ma|1m; €rmy)

m=1 m=0 m=—1

0=10y+1 Gotmap+ ) (o +mr+2) G—mp+D(bptmy+1) bo—mp+ D (b —mr+2)
=2 26+1)(20,+2) 2e+1)(Lr+1) 2e+1)(20242)

(=20 a+mr+1) (b —m2) ) _ [ =my+ ) (lr+my)
=% Vo 26L@G+D NZIZE) Vo 26L@G+D

=10 —1 G—my—1)(la—my) _ [ a—mp) o tmy) botmy—D)(bo+mr)
=% 20,(202+1) £ (20+1) 207(202+1)

C(m|limy; Lam3)

14+l —0D — b+ OV (—L1 4+l + £)!
=34 V20 +1
momymy 26+ \/ 1+ L+ 4+ 1!

Z (=D +m)IE —m)(& + m)(& — m) €+ m)I(l —m)!
Ky + €2 — L — )1 —mi — k) (€a +m2— )€ — Cr +my +K)(E — € —mz+k)!

(3.197)

and the sum runs over all values of integer k which do not lead to negative factorials.
Table 3.5 below lists C(¢m|€im1; 1, my), where m =m| + mo.

Table 3.6 lists C(€m|€ym1; 1m;), where m = m| + m, obtained from the ana-
Iytical expression of Refs. [31, 32].

Cylindrical Quantum Wire Finally we brief introduce the cylindrical quantum
wire positioned along the x axis

od> &
[_M(@er_zz)+Vc(y’1)}W(y,z)=E¢(y,z) (3.198)
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where
~A, Y +2<d?

3.199
0 y2 +72 > a? ( )

Ve(y,2) ={

where we assume Ac = 0. In the cylindrical coordinate of (y, z) = (p, ¢) and by
Writing 1/’()’, )= elm¢Rm (0),

dsz (0) 1 dRy (p) Zm:[E — Ve(p)] m? i
o) S, { —el ?}Rm@) —0 (3200

where m is an integer (negative or positive so the state of |m| is two-fold degenerate).
For free electrons where A, = 0 and E > 0, Eq. (3.200) is the Bessel equation

A2Ru(p)  dRu(p)
2 m m
FP=ar TP e T

(K2p* —m*)Ru(p) =0 (3.201)

where k? = 2m*E /h%.

For finite A, and for energy states confined in the quantum wire, i.e., —A, <
E < 0, the wave function outside of the quantum wire (o > a) is described by the
Helmbholtz equation

2 CRu(p) | dRn(p) _

2 2 2 —
02 P (@”p” +m*)Ry(p) =0 (3.202)

where o? = —2m}E/ h?. Inside the quantum wire (p < a), we still have the Bessel
equation
d®Ru(p) | dRu(p)
p*—"5= + p—— 4 (a?p* = m?) Ry (p) =0 (3.203)
dp dp
where g2 = 2m*(E + A.)/h%.
The Bessel function
o0 +2s 2 +2
=D /x\" X x"
J, = — - | = = ... 3.204
n(x) §s!(n+s)! 2 il T 2+ 1 (3.204)

which also holds for n < 0. And J_,(x) = (—1)"J,(x). Recurrence relations are

2n
Jn1(x) + Jpp1(x) = TJn(x)

(3.205)
Jn—1(x) = Jyg1(x) =27, (x)
Neumann functions, which are Bessel functions of the second kind,
J —J_
N, (x) = cos (vrr)J, (x) p(x) (3.206)

sin (vir)
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is also a solution of Bessel’s equation when v = n, an integer. The most general
solution for the Bessel’s equation can therefore be written as

ApJu(x) + By Ny (x) (3.207)

Jn(x) and N, (x) are independent. N,(x) diverges at least logarithmically (Inx)
so that any boundary condition that requires the solution to be finite at the origin
automatically excludes N, (x). Conversely, in the absence of such a requirement
N, (x) must be considered. Neumann functions satisfy the recurrence relations

2n
Np—1(x) + Npg1(x) = ?Nn (x)
(3.208)
Ny—1(x) = Npg1(x) =2N,,(x)

The solutions of the Helmholtz equation, Eq. (3.202), are Bessel functions of
imaginary argument, often written as the modified Bessel functions

L(x)=i""J,@ix) (3.209)
In terms of infinite series,
00 2s+v
1 X
I = B e 3.210
Y gs!(s+v)!<2> ¢ )

I,(x) = I_,(x). The recurrence relations for 7,,(x) are

2v
Li—1(x) = Li+1(x) = ?IV(X)
(3.211)
L1(x) 4+ L1 (x) =215 (x)

The second independent solution of Eq. (3.202) when v is an integer is

_ T~ L)
Ky(x) =3 pr— (3.212)

K, (x) = K_,(x), which satisfies the recurrence relations
2v
Ky 1(x) = Kyy1(x) = _YKV(X)

(3.213)
Ky—1(x) + Kyy1(x) = —2K (x)

Some values of the root of the equation J, (x) = 0 are listed in Table 3.7.
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Table 3.7 Roots of the equation J,(x) =0

n=0 n=1 n=2 n=3 n=4 n=>5
1 2.405 3.832 5.135 6.379 7.586 8.780
2 5.520 7.016 8.417 9.760 11.064 12.339
3 8.654 10.173 11.620 13.017 14.373 15.700
4 11.792 13.323 14.796 16.224 17.616 18.982
5 14.931 16.470 17.960 19.410 20.827 22.220

3.7 Exciton Polariton

For an optical absorption process, induced by an external electromagnetic field
E(r,t), in which an allowed electric dipole transition creates an exciton, ¥, g, from
a filled valence band, the wave function of the initial state is simply unity, which is
denoted by ¥ in the formalism of second quantization

|k ey Fes 1)) = Vi, () Wi, (P1) = Ol,::ﬂ;; |Wo(re. rn)) (3.214)

in which an electron has been raised to the conduction band at k, (creation of an
electron in the conduction band, a;' ), leaving a hole in the valence band at kj, (cre-

ation of a hole in the valence band, ﬂ,’; ). The exciton state can now be written as

Wk (Fer ) = Y Wkt ) W by |9k = D Ank (koo ke Bt W)
keakh ke’kh
(3.215)
where A’s are the same coefficients as in Eq. (3.118). In the following we denote
(Yo HolWo) = 0 as the energy of the ground state (the filled valence band). The first-
order perturbation Hamiltonian, V', induced by an external electric field E (r, 1), is

v/ =/d(r) CE(r,t)dr (3.216)

where d(r) is the dipole-moment operator of the exciton
d(r)y=—er,8(r —r,) +ery,d(r —ry) (3.217)

By assuming weak quantum dot excitation so that the ground-state occupation of
the quantum dot is only lightly perturbed by the external radiation, we express the
time-dependent wave function

Fes i t) = o) [Po(re, r)) + Y cnk ()| Pak (re, 7a. 1)) (3.218)
nK
where

l’an("ev rn, t) = l’[/nK(rEv rh)e_iwnKt
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By inserting Eq. (3.218) into the time-dependent Schrédinger equation of

3re, rht
ih% = (Ho+ V')lre. 1 1) (3.219)

we obtain directly

de,k (1)
dr

ih :co(t)(lI/nK(re,rh)|/d(r)-E(r,t)dr|l1/0(re,rh)>ei‘””"’ (3.220)

in the first-order approximation. In obtaining the above equation we have utilized
the following relationship due to the symmetry consideration

(Wnk (re. i) /d(r) E(r,0)dr Wk (re,rp))=0 (3.221)

We express the optical radiation as
E(r,t)=E(r,0)e " +c.c. (3.222)

“c.c.” in the above equation denotes “complex conjugate”. Notice that E(r,t) is a
physical quantity so that it is real. The first-order perturbation becomes

dek (1)
dr

ih

= (O uk (re.Th)| / d(r) - E(r, o)dr|Wo(re, ry))e! k="
(3.223)
where we have neglected the term corresponding to the less-likely photon emission
during the creation of the exciton.
Assuming weak excitation so that the occupation of the initial state is only per-
turbed, i.e., co(¢) = 1, a straightforward solution to the above equation is

ik —w)t

ek () = hi(‘l’nK('“e,rh)’/d(") CE(r,w)dr|W(re,rp))  (3.224)
(wng — )

This however has neglected the decaying of the occupation of the initial state
due to the excitation of the excited states. By including the damping rate y of the
excitonic state, we have thus arrived at the steady-state solution

ei(a)nkfw)l‘

enk () = m(%ﬂre,m! / d(r)-E(r,w)dr|W(r., ry)) (3.225)

The excitation of the excited exciton state, i.e., the appearance of the electron and
hole, results in an electric dipole, and the dielectric polarization is given by

d(r)’r(f7rh’ t>= <l1/0‘d(r)’l1/nl((rearhﬂ t))CnK(t) +C'C-
(3.226)

Pl‘lK(rrt)=<resrh7t

We first calculate the matrix element of the electron momentum p,
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e %>

(lI/nK(re, rh)|pe|l‘[/0>

ar
=mo\Yuk (Fe,Th)

lmo

= — (g (re. ri) |[[Ho, rel|Wo)

= imo(wnk — 00)(¥nk (Fe, T1)|re|%0) (3.227)
Here

[Ho, r.] = Hor. —r.Hy

HoWuk (re, 1) = hongkWYnk (e, rp)

HyWy = hawo¥y

hwy =0
so that

(Wnk e, 1. 0| pe|Wo(re. 1)) = iwngmo{ Wk (e, i, O|re[Wo(re. 1)
where my is the free electron mass. The dipole moment thus becomes

(lan(re’rh’t)|re ‘E(re)|lp0(revrh))

= Wk e 1. D], - E()|Wo(re. Ts) (3.228)
Wy KM

By expressing the momentum operator as

Pe=Y_ o Bt (Vi ro) [PV, r))or.r, (3.229)

ke kp
and by Eq. (3.214), the matrix element of the momentum is
(Wnk (re.r)|pe - E(ro)|Wolre. r)

= Z Arg ke, ki) {Yk, (ro) | pe Yk, (ri)) - E(r)or, ), (3.230)
ke.kp

where

(Wol Y e B, D o B %)= Y (3.231)

K, K, ke ke koK

For the spatial variation of the excitation field is small, e.g., E(r) = E qeiq" with
small ¢, it is then easy to show that the matrix element becomes [33]

(lI’nK(re,rh)|/Pe-E(re)dr|‘1’o(re,rh))=/W:K(r,r)lfcv-E(r)dr (3.232)
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when p., = (u.(r)|plu,(r)), referred as the dipole momentum between conduction
and valence bands, is approximated as constant over the range of k involved. Here
Yk (re, rp) is the exciton envelope function determined by Eq. (3.138).

It is easy to calculate (¥y|d (r) |,k (re, rp)) similarly and the result is

—e

(old(r)| Wk (re,ri)) = Unk(r,r)pey (3.233)

imowy K

Inserting Eqgs. (3.227) and (3.233) into Eq. (3.226), we get

2
e
Pok(r1) = Pt or) [ ey E ()

Mopg — a))m%wnK
(3.234)

Coupling the nonradiative damping rate I" (= hy) of the exciton state (see Chap. 2
and more discussions late in this chapter), it can be shown that

2
e pCU / ES / / / /
P r,t)= r,r r,r -E(r',t)dr
nK( ) h((,()nK —a)—ly)m(z)a)rle WnK( ) 1,[/nK( )pcv ( )
(3.235)
We shall discuss the damping more closely shortly.
Define
3
€coWLTTTA
Tk (@) = — o BT (3.236)
wpK — W —1Yy
where
4e? p?
3 _ cv

Pev = |Peyls oL and ap; are the exciton longitudinal-transverse splitting and Bohr
radius in the corresponding bulk semiconductor, the exciton contribution to the di-
electric polarization is

P.g(r,t)=T,g(@)Yug(r,r) / Vnk (' F)E(r t)dr’ (3.237)

where we have assumed p,,(p,, - E) = p>,E.

We now discuss briefly the significance of such a dielectric polarization in a
spherical quantum dot with radius R. Let us focus on the first excited exciton state.
Repeat Eq. (3.138) and also add the quantum confinement potentials for the electron
and hole

[hzkg h*k, e

2m¥% - 2md Ames|re — 1

+ Vop(re) + VQD(rh):|‘/f(re9 rp)
=(E— Eg)l/f(re, ry) (3.238)

For the first excited exciton state, the electron and hole are confined largely in the
same spatial region, i.e., |r, —a| < R and |r;, — a| < R, where a is the center
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of the quantum dot, see Fig. 3.6. We hence approximate Vop(r.) ~ Vop(rp) =
Vop(r). Follow derivations of Eq. (3.139), ¥,k (re, rn) = ¥k (r)Y,(r. —ry), and
the equations for ¥ g (r) and v, (r, — ry) are

hZ 2
[ om -+ VQD("):|1/fK (r)=Egvyk(r) (3.239)
h2v? &2
— Te—rjp Yn(re —rp) = Ey Y, (ro —rp) (3.240)
2p dresclre —ral
respectively.

By Egs. (3.172) and Table 3.4 in the previous section, the solution of Eq. (3.239)

is in the form of
1 . (m|r—a|
Yk (r) = sm( ) (3.241)
|r —al+/27 R R

The relative motion of the electron-hole pair of Eq. (3.240) was studied before,
which is in the form of

lre—rpl

e B (3.242)

1
Yn(re —rp) =
Jrai,
see Eq. (3.142). Note that the two wave functions in the above equations are nor-

malized. Thus, the first-excited exciton state in a spherical quantum dot with radius
R is described as

- ) 1 .<n|r—a|) L lren (3.243)

K(Fe,rp) = sin e aBr .

e |r —al+/27 R R /na]33
T

which is confined and real. Note that the above expression is valid when R = ag;
so that one may neglect the internal motion of the electron-hole pair in the quantum
dot. And

Mel e +mprp

r=——m (3.244)
me +myp
is the exciton center of mass.
Forr,=ry=r,
Yok (rr) 1 . <n|r—a|) 1 (3.245)
k(r,r)= sin .
! |r —alv/27 R R

Jrag,
Assuming small spatial variation of the excitation field within the quantum dot, i.e.,
E(r)~ E(a),

2

4
1/fn r’ r )dr _E(a)/lﬂn r’ r)dr =———F(a) (3.246)
/ : : 7'[,/2Ra%r
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In other words, it is assumed that the electric field inside the quantum dot is uniform
since the wavelength of interest is about 1 um (visible optical range) whereas the
quantum dot diameter is about 20 nm or less.

Let o, = m|r — a|/R and by Egs. (3.236) and (3.246)

ZGOOwLT sin OnK
P,k (r)= . E(a)
WpK —W —1lYy Ok

By approximating E(a) =~ E(r), we obtain the dielectric polarization of the exciton
due to its optical generation by the external optical field E (r)

, .
Pox(r) = — @l SNOK gy (3.247)
WpK — W —1Yy OoyK

Due to such an exciton polarization, the nonlocal material equation relating the
electric field E (r) and the displacement vector D(r) is

D(r)=excE(r)+ P(r)=eqp(r)E(r) (3.248)

where an effective permittivity can be defined for the quantum-dot exciton polariton

(3.249)

2w sina
eQp(r) = eoo<1 + s "K)

wpng —w+iy opk

By averaging eqp(r, @) over the quantum dot, we obtain the expression for the
effective permittivity of the quantum dot due to the ground-state exciton excited by
an external electromagnetic field

bwrr } (3.250)

1
€QD = 7] /GQD(r)dr = €00 |:1 + ok — o1 17)
where £2 = 47 R3/3 is the volume of the quantum dot with a radius of R.
We have thus far assumed that the quantum dot stays largely at its ground state
and the probability of optical excitation is very small. Let us exam this assump-
tion closely in this section. Due to the external radiation, the time-dependent wave
function

re.riat)=coO[Po(re. 1))+ > cn(O)|W(re. i, 1)) (3.251)
from which
ip3en® _ oW (re, ri)|V' @) |Wore, rp))e'
(3.252)
390 S e, )| V0 [, ri))e

n(#0)
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where V'(¢) is the perturbation due to the optical field. Here we have ignored the
exciton wave vector K since it is zero for exciton states confined in a quantum dot.
Note that optical couplings among exciton states are zero because of the selection
rules. Furthermore, only a limited number of exciton states have nonzero optical
couplings with the ground state.

Let V/(t) = V'e!“". We consider a two-state system

deo(t i |
ih Cdot( ) = (l‘)e—t(an—w)t (O|V’|1> = hyC] (t)e_l(w'_w)t
(3.253)
dey (¢ ‘
ih c(;t( ) = hyco(t)el(wl—a))[

where (0|V’|1) = hy /2 simplifies the optical transition matrix, fiw; is the eigen-
value of |1) and the eigenvalue of |0) is set to be zero. In terms of the detuning
parameter § = w — w1, the above equations read

deo(t) h ;
0@ _ Iy o
dr 2
(3.254)
o der(n)  hy —is
I =—co(t)e "
th— > co(t)e
Differentiating Eqs. (3.254) with respect to time yields
d? § .o iydel d 2
0 _ VO st VA s _gdc0 YT (3.255)
a2 2 2 dr a4
ie.,
d%c dcg y2
— =if— - — 3.256
az " a4 ¢ )

A trial solution of the form

leads to

5§ 1
2 2 2 2
Sy —y2=0, =xr=—=+—/82+ 3.257
X +ox—v X=X+ ) 14 ( )

Thus a general solution is

— ,i01/2 L. 2 L [ 2
cp=¢e [Acos(Z\/S +vy )-I—Bsm<2\/8 +y )] (3.258)

By the first equation of Egs. (3.254),
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2i _.s.dc
¢ = _e—zél_o
y dr

. ) t t
— _pidt/2) 7 Z./s82 2 inl Z./82 2
=—e {y[Acos(z,/(S +y )—l—Bsm(z,/S +y )i|
V82 +y? t t
+i%|:Asin(§,/82+y2)—Bcos(i,/Sz—i-yz):H

(3.259)

If the system is in the |0) state at time # =0, i.e., cop(0) =1 and ¢;(0) =0, A =1
and B = —i§//8% + y2, so that at a later time

: t i t
— ,ibt/2 /52 2 ; /2 2
co(t) =¢' |:cos(2 8- +y ) 5 y2 sm<2 8~ +y ):|

(3.260)
) t 2iy
Cl(l) — e*lal‘/z sin (_ 52 + y2>7
2 /82 + y2

We can then discuss the probability of an electron transiting from its initial
state |0) to |1) under the influence of V’(r). Expressing the total wave function
as co()|0) + c1(¢)|1), the probability of electron occupying state |1) at time ¢ is

simply
2
i 14
lerl? =" [1 —cos (f\/32+V2)]m (3.261)

We now calculate the matrix element of momentum p (can be any physical pa-
rameter)

((1ef () + (0l (D) p(co()0) +c1(D)11)) = co(t)ef (1) (11 p10) 45 (1)e1(1)(0l pl1)

Note that (0| p|0) = (1|p|1) = 0. The above equation shows that the physical vari-
able is to be evaluated by cg (t)c’lk (1), which is

co()ct(t) = e[ (/82 +y2 —i8)cos (t,/82 + y2) — id] % (3.262)

by Egs. (3.260). Including the term ¢/t in (1| p|0) (remember that the total wave
function of an eigen solution contains such a term) and making a time average

(w1 — W)y

(co®ei @)(11p10)), =[(11p10) ="

(3.263)

( )¢ denotes the time average. Note that Ay /2 = (0|V|1) is the transition matrix
element. It is easy to see that the above equation is equivalent to the real part of the
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dielectric polarization in Eq. (3.235): Repeating Eq. (3.235) here

2

e’p

Pk (1) = () [ Ui (e E (1)
WMonk — o —iy)myw; g

where apart from physical constants

1 wpK — @ e )4
= l
wopg —w—iy (opx — )2+ y? (wng — w)> +y?

Furthermore,
y o (0| V']1) o / w:K(r’, r/)pw . E(r/, t)dr/

Here we see the damping rate of the initial state due to the excitation of the
excited states. A more advanced treatment of multiple states (we considered only
two states in the above derivations) can be done by the generalized Golden rule,
which will result in a damping rate due to the interactions among all the states, see
Chap. 2.

We now calculate the energy dissipation. First we consider Poynting’s theorem
describing conservation of energy. Repeat Eq. (3.26)

aD )
%ExH-dsz—f[E-ngH-W}dQ (3.264)

where S denotes the surface and 2 the volume. Denote € =€’ +ie” and u = u’ +
in”. For monochromatic light with a frequency w, an amplitude Ey for its E field
and Hy for H field, the time average of Poynting’s theorem in Eq. (3.26) gives

E? H?
f(E x H);-dS = —/[we“;o + w//?o}d.{z (3.265)

Loss requirements are satisfied through the signs of €” and ©”. Assuming " =0
and a small volume A2, the power dissipated is thus

E2
— f(E x H),-dS = TOwe”AQ (3.266)

On the other hand, consider a thin slab of material with thickness Az and normal
surface area §, and a plane wave traveling in the z direction with complex wave
number k = k' +ik”. The time average Poynting vector, assuming a single traveling
wave, is

EZ (1
5 ZO_om{ 1 z} (3.267)
2 n*
where n = /u/€ is the complex wave impedance and z is the unit vector of the
z direction. 1A denotes the real part of a complex variable A. The closed surface

integral of the Poynting vector, i.e., the power dissipated in A$2 = SAz, is thus
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S g 1 —2k" A
Pa= 200 — (1 e 24 (3.268)

Writing n = 4/o/€ and assuming Az very small so that e WA 1,
2

_ SEO " *
Pi= N R{2k" Az(Ve)*} (3.269)

Since k = w+/€/c, where c is the speed of light,

(1)6//

R{K"(Ve)*} 5 (3.270)
C
so that
SE? E?
Py= Toa)e”Az = TOwe”A.Q (3.271)

as Eq. (3.29). Therefore, the energy and Poynting vector descriptions for dissipation
are in agreement, as they must be from Eq. (3.26).

We now calculate the optical loss of the external electromagnetic field due to the
quantum-dot exciton excitation by writing the continuity equation for the photon
density

dnpe(z) _ Inpe(@)  dlcnpw(2)]
e at 3z

Here we consider a beam of photons traveling along the z axis. The first term on the
right side of the above equation represents the absorption rate of photons and the
second term the photons leaving due to the photon flux. c is the speed of light in the
medium. We have used the above equation in Sect. 3.3 when discussing the optical
spectrum of the materials. At steady state we have, in general

(3.272)

N (2) = N (0)e ™€ @7 (3.273)
which defines the optical loss €”(w) as in Egs. (3.29) and (3.271). Since

0npe(z)
dt

= puk <01 — fuk) fo — ponk (1 — f0) fuk (3.274)

where fo and f,x are the occupations of state ¥, and ¥, g, respectively. fo = |co|?
and fx = |chx (00) |2. PnK <o 1s the transition probability per unit time

PnK <0 = ‘CnK(OO)‘Z)/

2 2
ety [/ WnK(r/,r/)pcv . E(r/)dr/]

R [(wnk — )2 + y2la? gmd

(3.275)
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At steady state,

dnhw(Z) -0
dr
so that
2 2
” ey (fo— fuk) [/ /:|
- -E(r')d 3.276
‘ hz[(a)nK —a))z—i-)/z]cnhww Kmo l/f”K rr )pcv ( ) r ( )

We assume again that the electric field inside the quantum dot is uniform and
note that the energy density of the electromagnetic field equals €xo E* = haonpe/ 2,
where 2 =47 R3 /3 is the volume of the quantum dot,

2.2 _
o e po,yo(fo— fuk) [f Yk (', 7)) :| (3.277)

2hl(@nk — ®) + ycencwy gmy

By inserting Eq. (3.245) into the above equation, we finally have

7 6y worr(fo — fuk) 6y wwrT
= 2.2 2 RN (3.278)
wocf(wnk —w)*+y°]  woc[(wnk —w)” +y~]
so that by Eq. (3.33)
6
¢ (w) = Yo (3.279)

2 [(wnk — ©)? +y?]

per quantum dot. The last equality in Eq. (3.278) is obtained since f,x < 1 and
fo ~ 1. Note that Eq. (3.279) is exactly the imaginary part of the complex effective
permittivity of Eq. (3.250).

Without any extra external modifications expect the incident electromagnetic
field of E(r, 1), fux (t) = |cnk (1)|?, which is small (the first-order perturbation con-
dition). High pumping rate can be achieved by increasing the optical power which,
however, is not the case for common optoelectronic applications. The occupation
of the excited state is normally very smaller than the ground state so that fo > f,x
and optical absorption dominates. This means that the optical field E(r, t) is ab-
sorbed during the exciton excitation following its propagation through the quantum
dot. The situation is normally referred to as optical loss, for examples, in photode-
tectors. Optical gain is achieved in light emitting and laser devices by population
inversion of fy < fuk.

When we consider the extra pumping process that the exciton population f, is
finite so the time-dependent wave function becomes

re.rnt) =[cg” + co®]|Wore. i)+ Y _[elR + cur O]k (re. 7. 1)
" (3.280)
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Fig. 3.7 Dielectric coefficients of a quantum dot before and after it becomes excited. €50 = 12.8,
hwyg = 1.5 eV, hwopr =5 meV, and iy = 1 meV for typical I[I-VI semiconductor quantum dots,
e.g., colloidal PbSe/ZnSe quantum dots (Reprinted with permission from Y. Fu, L. Thylen, and
H. Agren, A lossless negative dielectric constant from quantum dot exciton polaritons, Nano Lett.,
vol. 8, pp. 1551-1555, 2008. Copyright 2008, American Chemical Society)

due to the external electromagnetic field E (r, t). By following the same mathemat-
ical procedures as what we did before, we can obtain

6Q2lcy” > - 1)””] (3.281)

eop(w) =€ [1+ -
@O =] 1 D g —w i)

Here we observe that the quantum dot can become lossless if |c(()0) |> =1/2. At the
same time, the polarization changes sign. Figure 3.7 shows the dielectric coefficients
before and after the quantum dot becomes populated.

Equation (3.281) and Fig. 3.7 show that resonant exciton states in quantum dots
provide a source for both the high and negative dielectric constant.

3.8 Multiphoton Process

One important aspect concerning the optical properties of quantum dots is the mul-
tiphoton process, which has been widely applied in recent years in biological and
medical imaging after the pioneer work of Goeppert-Mayer [2-5]. Early theoretical
works normally try to solve perturbative and time-independent Schrodinger equa-
tion, see the end of Sect. 3.2, while today’s experimental setups of ultrafast (fem-
tosecond = fs = 10~ 13 s, even attosecond = as = 10~'8 5) and ultraintense (in many
experiments the optical power of the laser pulse peak can reach GW/cm?) are to be
understood only by trying to solve the nonperturbative time-dependent Schrédinger
equation.



3.8 Multiphoton Process 169

We now study the dynamical optical transitions in a spherical quantum dot. By
Sect. 3.2 and Eq. (3.54), the total Hamiltonian of the electron and the electromag-
netic field is

1
H(r,t):Ho(r)+iA~p+2hws<bjbs+ —> (3.282)
mo . 2

where Hj is the Hamiltonian of the electron in the quantum dot. b and b are an-
nihilation and creation operators of the photon of state s which carries a momentum
hs and an energy hws. As before, we denote

Hy(r)Wy(r) = ExW(r) (3.283)

to characterize the eigen state of the electron in the quantum dot. After the switch
on of an external electromagnetic field in Eq. (3.282), the total wave function of the
electron-photon system becomes

W(r 1) =Y Co(t)W(r)|Ni) exp [—i (Ex + Nyhooy)t /1] (3.284)
k

where |Nj) describes the photon field with Ny photons associated with electron
state k. Here we focus on monochromatic light with photon energy Aws and photon
momentum hs. Let us now solve the time-dependent Schrédinger equation

L ov(r,t)

lhT =H(r, )Y (r,t) (3.285)
Following the generalized Golden rule presented in Chap. 2 we now consider the
optical transition induced by the external excitation radiation. We insert the total
wave function expression Eq. (3.284) into the above Schrodinger equation, multiple
both sides of the equation by (¥, Ng|exp[i(E4 + Nghws)t/h] then integrate over
the electron and photon coordinations

dCy(r) e h
dr mo\ 2wsef2

i(E, — Ey — howg)t
x{‘/Nkexp|: 4 - S SNy Ni—1

i(Eqg — Ep + howg)t
+,/Nk+1exp[ (Eq — Ek s) :|3Nq,Nk+l} (3.286)

ih Y (la- pl) Cr(n)
k

h

Here we have set /" =1 in Eq. (3.38) because of the small wave number of the
photon compared with the electron momentum.

The above equation shows again, see Eq. (3.69), that an electron originally occu-
pying electron state k will transit to electron state g (k # q) after absorbing (emit-
ting) one photon hws, thus the number of photons in the photon field is reduced
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(increased) by 1. Equation (3.286) itself describes absorption and stimulated emis-
sion processes. For spontaneous radiative transition when the electron transits from
state k to g, we can use a similar equation with a photon resonance energy that
equals Ex — Eg4. Since the spontaneously emitted photon does not accumulate in
the quantum dot, the number of such photon inside the quantum dot is zero before
the transition. It becomes one directly after the transition. (g|a - p|k) in Eq. (3.286)
was already calculated numerically earlier in the previous section.

As we have discussed in Sect. 2.2, Eq. (3.286) is perfect within the time interval
[#, t 4 dr] such that the eventual change in C(¢) is not significant so that C(¢) can
be approximated as constant on the right side of the equation.

We now use Eq. (3.286) to design the following Monte Carlo scheme to study
the temporal development of electron distribution in the quantum-dot states under
the influence of an photon field. Before switching on the excitation photon field,
all valence-band (VB) states are occupied and the conduction-band (CB) ones are
unoccupied. After the switch on of the photon field, electrons originally occupying
VB states will be photoexcited to CB states, leaving holes in the VB band. During
the time, the occupation of each electron state is either 1 or 0, while Eq. (3.286)
shows the transition probability.

For nonradiative energy relaxations, we focus on the predominant electron-
phonon scattering in the following form

dCy (1) [m(DiK)? i(Eq — Ex — hop)t
i— =/ G, ?ck(r){\/Mkexp[ - My My—1

i(Eq — Ex + hwp)t
+ M+ lexp [ d 5 " i|5Mq,Mk+l} (3.287)

where M, is the number of phonons associated with electron state k. hw), is the
phonon energy. Note that the above equation is consistent with the common expres-
sion about the scattering rate for an electron to relax from state k to ¢ by emitting a
phonon hw), [34-36]

P—”wxﬁM+U r
M 0w, 1 (Ex— Eq+ hwy)? + T2

(3.288)

where D, K is the optical deformation potential and p = 5.8 g/cm?> is the mass
density of the CdSe material. hw, =37 meV is the optical phonon energy of CdS
at which the phonon density of states is maximal [37, 38]. I, the relaxation energy,
is obtained similarly by Eq. (2.85), which is about 2.04 meV by adopting D; K =
108 eV/cm for most commonly used semiconductors [35] which gives a scattering
rate of 3.09 x 10'> s~! at phonon emission resonance by including the phonon
density of states. Such a rate is typical in common semiconductor bulk materials
[39] as well as in quantum-dot-based light-emitting devices [40, 41].

In the Monte Carlo scheme, the time interval dr is chosen in such a way that
maximally only one transition event can occur. Thus, the time duration of each event
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Fig. 3.8 Schematic diagram of transition process. (a) Electron picture. Black dots are electrons.
(b) Electron-hole picture. Black dots in the conduction band (CB) are electrons. They are holes
in the valence band (VB). hwex denotes the excitation photon field, iwgp denotes the quantum-—
dot emission field (Reprinted with permission from T.-T. Han, Y. Fu, and H. Agren, Dynamic
photon emission from multiphoton-excited semiconductor quantum dot, J. Appl. Phys., vol. 103,
p. 93703(6), 2008. Copyright 2008, American Institute of Physics)

varies, which is denoted by adding a subscript to d¢;. For the whole system contain-
ing n electrons and N electron states, there are n x (N — n) probable final states for
a one-electron-transition process. After calculating the probability for every possi-
ble transition within dz, a random number is generated in the Monte Carlo scheme
to determine the occurrence of transition events.

We switch on the excitation photon field at # = 0. After ¢+ = d#;, one electron
originally occupying one VB state, may be excited to a CB state, via interband ab-
sorption, and the photon field is reduced by one photon. After t = dt; 4 d#,, the CB
electron may recombine with the VB hole; the CB electron may absorb a new photon
then transit to another CB state via intraband transition; It may also emit a phonon
.... Schematic temporal development of the sublevel occupation in the quantum dot
is shown in Fig. 3.8. Note that all the sublevels are identified by an index number
according to their relative energies. For example, the ground sublevel is tagged as
number “0”, and the first-excited sublevel as “1”. The occupied sublevels in the CB
and the unoccupied sublevels in the VB (i.e., holes) are marked by black dots. As
schematically shown in Fig. 3.8, an electron originally staying at VB state 1 at time
0 is excited to CB state 3 at time interval 1 by absorbing one photon. Transitions in
time interval 2 are nonradiative phonon scattering processes from CB3 to CB1 and
from VBI to VBO.

We now consider a single CdS quantum dot with a radius of 3.7 nm in vacuum,
where the quantum-dot bandgap (energy separation between the ground states in
the CB and VB) is 2.655 eV. Figure 3.9 shows the dynamic occupations of the CB
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Fig. 3.9 Temporal development of occupations of CB and VB states in a CdS quantum dot with a
radius of 3.7 nm (its energy bandgap is hwgp = 2.67 eV). The excitation power S* = 108 W/cm?
and excitation photon energy hiwex = 1.34 eV, corresponds to a two-photon excitation (Reprinted
with permission from T.-T. Han, Y. Fu, and H. Agren, Dynamic photon emission from multipho-
ton-excited semiconductor quantum dot, J. Appl. Phys., vol. 103, p. 93703(6), 2008. Copyright
2008, American Institute of Physics)

and VB states using the electron-hole picture after a continuous-wave optical exci-
tation is switched on at = 0. This Monte Carlo scheme includes all the probability
calculations of possible transitions. And a random number is generated to pick up
one transition when it is smaller than the sum of the probabilities of all possible
transitions. Otherwise the system remains unmodified until the next time interval.
“A” corresponds to an optical excitation which occurs just a few fs after the turn-on
of the excitation photon field. “B” marks a radiative recombination process. For the
excited electrons and holes, stepwise tracks are observed in Fig. 3.9 (such as a series
of points marked with “C”) due to the electron-phonon nonradiative relaxation pro-
cesses from high-energy- to low-energy-states. And from time to time, the quantum
dot can stay idle (“D”).

Figure 3.10 shows the occupation of the ground CB state, i.e., |Ceol® in
Eq. (3.286), after the continuous-wave optical excitation is switched on at 1 = 0.
We observe that the excitation spectral range is very broad. Single-photon excita-
tion (i.e., photon energy larger than 2.655 eV) is very fast and strong, whereas for
the photon energy from about 1.3 eV to 2.6 €V, i.e., two-photon excitation between
the two arrows along the photon energy axis in Fig. 3.10, the calculated excited
exciton rate is also very significant, even when the photon energy is below 1.3 eV
(more-than-two-photon excitation).

Table 3.8 lists the details about three types of core-multishell CdSe quantum
dots, which are denoted as QD556, QD600, and QD622, respectively, that were
chemically synthesized. Before optical characterization, the quantum dot sam-
ples were diluted by toluene to concentrations of 2.0 x 107, 1.3 x 107, and
1.6 x 1079 mol /L. Fluorescence spectroscopy measurements were performed using
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Fig. 3.10 Multiphoton

excitation of quantum-dot 0.04
exciton in an ultrashort period
excited by a CW light source
switched on at r = 0.

S5t denotes the optical power
of the excitation light source
(Reprinted with permission
from Y. Fu, T.-T. Han, Y. Luo,
and H. Agren, Multi-photon
excitation of quantum dots by
ultra-short and ultra-intense
laser pulse, Appl. Phys. Lett.,
vol. 88, p. 221114(3), 2006.
Copyright 2006, American
Institute of Physics)
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Table 3.8 Structure and
optical properties of QD556 QD600 QD622
core-multishell CdSe
quantum dots core CdSe diameter [nm] 3.6 4.5 5.4

shell CdS [ML] 1 2

shell Cdg 5ZngsS [ML] 1

shell ZnS [ML] 1 1 1

fluorescence peak wavelength [nm] 556 600 622
full width at half maximum [nm/meV] 32/121 29/104 24/77
quantun dot exciton energy haogp [eV] 2.23 2.07 1.99

the fluorescence spectrometer (Cary Eclipse, VARIAN) at excitation wavelengths
of 350, 400, 450 nm (one-photon excitation), respectively, which shows that the
one-photon fluorescence spectra of these quantum dots are independent of the exci-
tation wavelength. Two-photon-induced fluorescence experiments were performed
using a femtosecond laser with a pulse width of 130 fs, peak wavelength of 800 nm,
full width at half maximum (FWHM) is 7 nm, and average power output of about
630 mW at 800 nm at a pulse frequency of 76 MHz. The laser pulse beam was
focused into the center of a 1.0 cm path length square sample cell using a 10 cm
focal length lens, and the laser beam had a diameter of approximately 30 um on
the sample. The two-photon excitation fluorescence of the samples was led to a
monochrometer. The results of the three quantum dot assemblies are listed in Ta-
ble 3.8 and presented in Fig. 3.11.

Except the differences in the peak wavelengths, fluorescence spectra of the three
types of quantum dots are rather similar both qualitatively and quantitatively with
a full width at half maximum of about 30 nm. We observe the decrease of the full
width at half maximum when the quantum dot is coated, which is believed to be the
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Fig. 3.11 One-photon and multiphoton fluorescence spectra of the three quantum dot assemblies
(Reprinted with permission from Y. Fu, T.-T. Han, H. Agren, L. Lin, P. Chen, Y. Liu, G.-Q. Tang,
J. Wu, Y. Yue, and N. Dai, Design of semiconductor CdSe-core ZnS/CdS-multishell quantum
dots for multiphoton applications, Appl. Phys. Lett., vol. 90, p. 173102(3), 2007. Copyright 2007,
American Institute of Physics)

result of reduced surface states that deteriorate the optical properties of low-energy
states confined in the CdSe core. Most importantly, after removing the base level
count of about 125, the multiphoton fluorescence spectra are strikingly identical to
the one-photon spectra, both the shapes including the full widths at half maximum
and the relative intensities.

3.9 Auger Recombination and Impact Ionization

The Auger recombination is a process in which an electron and a hole recombine and
the excess energy is transferred to either another electron or a hole, see Fig. 3.12.
We first examine the case in semiconductor bulk materials, where we denote that
state k1 is occupied by electron, ky empty (hole), and k3 is occupied (electron) (or
empty when the third partner is a hole). The probability of such a configuration is

Wk, k2, k3) = f(k)[1 — f (k)] f (k) (3.289)
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n —Eck
k) =— —t
f (k1) N, eXP( ipT )

_ _r " Fvky

1— fky) = N, exp( isT ) (3.290)
_n —Eck;

fk3) = E eXp(kB—T>

for nondegenerate semiconductors. Here n and p are electron and hole concentra-
tions and N, and N, are CB and VB intrinsic densities of states, see Eq. (4.5).

We further assume that the final state k’ for the third electron is always available
(i.e., empty) since it is a high-energy electron state in the conduction band. The total
probability is thus

n E¢+ Ecky + Evk, + Eck
Wk, ko, k3) ~ — -—£ 1 2 3 3.291
(ki k2, k3) NCCXP( % ) ( )
We now try to minimize the energy
k2 Rk Rk
! 2 3 (3.292)

* * *
2m 2m 2m

(in the parabolic band approximation) for optimal probability factor, which is con-
sistent with energy and momentum conservations. It is found that the threshold is
reached when the high energy state k% lines opposite to the other three states. And
the conditions of

ki =k3 = uk; (3.293)

give us a maximum probability factor

W(ky, ko, k3) = — exp[ (3.294)

_ (1 +2,U«)Egi|
Nc

I+ wkpT

where p =m}/m}.
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Fig. 3.13 Schematic depiction of impact ionization of a high-energy electron-hole pair. (1) Elec-
tron-hole pair (e; and hj) is photogenerated. (2) e, gets excited from a valence-band state to a
conduction-band state via Coulombic interaction with ey, leaving hole hy behind. The reverse pro-
cess is referred to be Auger recombination, see Fig. 3.12

The final Auger rate is obtained by evaluating the multiple integral of the ma-
trix element multiplied by the probability factor over all the available states. The
interaction is Coulombic among the charged particles.

In general, the Auger rate increases exponentially as the bandgap is decreased.
They also increase exponentially as the temperature increases. These are the direct
results of the energy and momentum conservations and the carrier statistics. Auger
processes are more or less unimportant in semiconductors with bandgaps larger than
approximately 1.5 eV (e.g., GaAs, AlGaAs, InP). However, they become quite im-
portant in narrow bandgap materials such as InGaAs and HgCdTe (E, < 0.5 eV),
and are thus a serious hindrance for the development of long wavelength lasers. In
general, Auger processes can be mediated by defects as well. Moreover, deep levels
in the bandgap can be involved in the Auger processes.

We now consider the case of semiconductor nanoparticles. Nozik proposed that
impact ionization (i.e., the reverse process of the Auger effect) might be enhanced
in semiconductor quantum dots to increase the efficiency of solar cells up to about
66 % [42]. This was later verified experimentally by Schaller and Klimov [43]. Im-
pact ionization was reported to produce multiple excitons per photon in one quan-
tum dot, which is referred to multiple exciton generation (MEG), that results in a
very high quantum yield (up to 300 % when the photon energy reaches 4 times
the quantum-dot bandgap) in quantum-dot solar cells [44]. Multiple carrier extrac-
tion (> 100 %) was observed at photon energies greater than 2.8 times the PbSe
quantum-dot bandgap with about 210 % measured at 4.4 times the bandgap [45].
In a recent communication in Nano Letters, Trinh et al. [46] showed compelling
support for carrier multiplication in PbSe quantum dots, while at the same time the
obtained MEG efficiency was very close to the one in bulk material.

Figure 3.13 shows a highly photoexcited electron and hole pair that evolves into a
multiple-exciton state through the impact ionization. The carrier-carrier interaction
is expressed by the Coulombic potential

62

= (3.295)
4ne|r1 — r2|
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to account for the two-body interaction of two electrons from an initial state
@j(r)Yi(ra)exp[—i(E; + E;)t/h] to a final state

1 wn(rl)wm(rl)

\/5 Y (r2)Ym (ra)

Note that the two electrons in the final state are not distinguishable so that we use
the Slater determinant.
Let us discuss the scattering matrix element of the Auger-type process

exp[—i(E,, + Em)t/h] (3.296)

/ f Wc*kl (r l)q):kz (rp) ﬁ lI/Ck/l (r l)lpck’z (rp)dridr; (3.297)
where an incident high-energy electron in the conduction band with a wave vector
k1 collides with a second electron that occupies a VB state k3, resulting in two CB
electrons k/1 and k’2 See, for example, the textbook of Landau and Lifshitz [47].
Here W, (r) [®yr(r)] denotes the total wave function of CB electron (VB hole)
state k. For semiconductor systems and within the effective mass approximation,
Yok (r) = Yo (P uck(r) and @y (r) = dpr (r)uyg (r), where i and ¢ are envelope
functions of CB electron and VB hole, respectively, and u’s are periodic Block func-
tions, the above expression becomes

/ / ijkl (rl)ujkl (rl)(f):kz (rZ)U:kz (r2)
1

ml/fck/l (roueg r)VYer, (r))ucg, (ra)dridry - (3.298)

See, for example, Eq. (6.128) in Ref. [35]. Following overlap integrals are thus
involved

I =/ Uog, (P U (r)dry
cell
(3.299)

12=/ Uiy (F2)ut g, (r2)dra
cell

in the evaluation of the Auger-type scattering processes. The first overlap integral
can be approximated to unity. Because of the orthogonality of u functions for differ-
ent bands but the same k, the second overlap integral I is, in crudest approximation,
zero. This however is not correct since the periodic Bloch functions are functions of
wave vectors, see Egs. (3.128), (3.129). For small k we can write

uek(r) =uc(r) + kVuc(r) + - -
(3.300)
Uy (r) =uy(r) + kViu,(r) +---

where u.(r) and u,(r) are periodic Bloch functions at the CB and VB edges, re-

spectively. fce” u}(ry)uc(rp)dry = 0. Substituting these expressions into the over-



178 3 Optical Properties of Semiconductors

lap integrals we obtain the squared overlap integral in terms of the heavy-hole mass
my [48, 49]

my My

R /1 1 )
L= — | —+— ||ky =K. 3.301
[1>] 2Eg( + >‘2 2’ ( )

where E, is the energy bandgap of the bulk material. By using the inverse Bohr
radius of shallow impurities as a measure about the k values, Landsberg and Adams
obtained that |I>| = 0.223 for shallow-impurity-assisted Auger-type processes in
bulk CdS and |I;| = 0.265 in GaAs [49]. Note that the inverse Bohr radius of shal-
low impurities in bulk semiconductors is small. For quantum dots under investiga-
tion, the effective Bohr radius of the electron and hole distribution is largely de-
termined by the quantum dot size, which is about 5 nm, i.e., very small compared
with the Bohr radius of shallow impurities in bulk semiconductors (about 100 nm in
CdS and GaAs [49]). This results in a large value of |I,| that may exceed unity de-
pending on the quantum confinement of the carrier inside the quantum dots. Under
this specific circumstance, we approximate |I>| = 1. In other words, the electrons
and holes in quantum dots, described by effective masses with the presence of the
quantum-dot confinement potentials, interact with each other via the Coulombic
force of Eq. (3.295).

By the scattering theory and the generalized Golden rule presented in Chap. 2
and denoting (¢; 1//,<|f(t)|¢ Vi) A e Wiil/2 a5 the temporal development f"(t) of
state ji, it is easy to obtain

2
wii === Y2 @ ilVIvatn) PS(E; + Ei = Ey — En) (3.302)
nm#ji

I'ji = hwj; /2 is the relaxation energy and 1/wj; the decaying time. In numerical
calculations the § functions in the above equation are replaced by I'j; / [szi +(E;+
Ei = Ey = En)’l.

To estimate the Coulombic potential of Eq. (3.295), we make the following anal-
ysis. Consider the best configuration for Eq. (3.295) that the four wave functions
involved in the impact ionization are all uniformly distributed within the quantum
dot volume. The corresponding Coulombic potential is

r>a

2
e o

o 2 (3.303)
8me | 13- 5), r<a

where a is the radius of the quantum dot. When the hole is assumed to distribute
also uniformly in the same quantum-dot volume, the Coulombic interaction en-
ergy between this electron-hole pair is 3¢2/10mea, which is about 28.8 meV when
a =5nmand € = 12 (common semiconductors) when we neglect the energy conser-
vation requirement, i.e., we neglect the § function in Eq. (3.302). This is very large
compared with the value in bulk because of the quantum confinements (electrons
and holes are now confined within a spherical volume with a radius of a). Such an
interaction energy is much large as compared with the light-matter interaction which
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is normally less than 0.1 meV in similar quantum dots. Large impact ionization and
also Auger recombination are thus expected in colloidal quantum dots.
To calculate the impact ionization interaction from an initial state of

R, (r1)Ye m, (01, 1) Re, (r2) Yeomy (02, $2)
to a final state
Roy (r1)Yem (02, 92) Rey (r2) Youmy (02, $2)
(the first term one in Eq. (3.296)), we notice

r< *
=Y Y Y (02,6 Yim (01 1) (3.304)
r>

where r- = min{|ry|, |[r2|} and r~ = max{|ry|, |r2|} so that the impact ionization
energy consists of

14

-
—rlil Ry (r))Rey (r2) Res (r) Rey (r2)
>

X Y{ o, 01, 91 Y, (02, $2) Y, (02, ¢2)
X Yem (01, 01)Ye3ms (01, $1)Yeym, (02, ¢2) (3.305)

for which we utilize the addition theorem for spherical harmonics, see Sect. 3.6.

A little detailed analysis shows a few selection rules about £ and m such as
m4 — my = m| — m3. However, these selection rules can be easily fulfilled in
nanoscale quantum dots because of the large number of available states confined
in the quantum dots. The most important qualitative selection rules are about the
radial functions that

l
/ / L= Re (P Rey () Res () Re, (1)
r>

¢ " "f 2
=/ Rzl(rl)Rz3(Vl)[/ —= Ry (1) Ry, (r2)rydr
0 0

POt
a r@
+/ Z—IHRzz(Vz)Rz4(m)rgzdrz]rlzdrl (3.306)
r r2

which shows that a direct spatial overlapping between Ry, (r2) (VB hole state) and
Ry, (r4) (CB electron sate) will result in a large impact ionization. Impact ionization
in type-II quantum dots is thus negligible since the electron-hole wave function over-
lapping is small. Furthermore, to ensure energy conservation, Ry, (r) is normally a
high-energy CB state, while both Ry, (r) and Ry, (r) are low-energy CB states. Im-
pact ionization in many core-shell-structured quantum dots will be small, since the
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Fig. 3.14 (a) Impact ionization energy between initial CB state(s) and initial VB state(s). Inset
shows the band structure of the CdSe quantum dot in vacuum. (b) Auger recombination. The quan-
tum-dot radius @ = 4 nm (Reprinted with permission from Y. Fu, Y.-H. Zhou, H. Su, EY.C. Boey,
and H. Agren, Impact ionization and Auger recombination rates in semiconductor quantum dots,
J. Phys. Chem. C, vol. 114, pp. 3743-3747, 2010. Copyright 2010, American Chemical Society)

high-energy wave functions are much more extended (extended into shells) than the
ground-state wave function (deeply confined in the core region).

We pick up one of the CB state and one VB state to calculate the total impact
ionization energy to all possible combinations of two final CB states, which is shown
in Fig. 3.14(a).

Figure 3.14(a) agrees what can be expected intuitively that the initial CB state
has to be high while the VB state low in order to fulfill the energy conservation
requirement. Furthermore, as mentioned before, high-energy states can be highly
degenerate because of large ¢, so I' can be also high. For the case of Fig. 3.14
where a = 4 nm, we observe a maximal I” of about 7 meV. We further observe
tens of I" over 4 meV while majorities are about 1 meV. These are very high as
compared with the light-matter interaction in a similar CdSe quantum dot; thus,
we can be very optimistic about MEG processes in colloidal quantum dots, as has
been very much reported as well as anticipated for significant solar cell applica-
tions. This is more clearly reflected in Fig. 3.15 about the relationship between the
impact ionization and initial CB state(s). For the CdSe quantum dots under inves-
tigation, MEG effect can be expected when the excitation radiation energy exceeds
a threshold of about 2E, (E, = 1.84 eV for CdSe) when the quantum-dot radius
a = 4.8 nm, while the threshold energy will be 3E ¢ when @ =4 nm, and 4E, for
a=3nm.

Auger recombination rates (reverse processes of the impact ionizations) shown in
Fig. 3.14(b) can be similarly analyzed. Note that the energy range of the initial CB
states in Auger recombination processes is much wider than the impact ionization,
especially for small quantum dots. This is due to the large density of states at high
energy so that there are more available final CB states for two initial CB states to
interact via the Auger recombination process.
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Fig. 3.15 Impact ionization
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Chapter 4
Electronic Quantum Devices

Abstract Starting with the introduction of electron transport in conventional p —n
junction and field-effect transistor, we first discuss semiclassical versus quantum
mechanical considerations about carrier transport in solids after which we focus
on the tunneling of an electron wave through a potential barrier in resonant tun-
neling diode and heterostructure barrier varactor. Quantum mechanical engineer-
ing of nano-scale transistors, including high-electron-mobility transistor and single-
electron transistor, are then presented for higher carrier mobility and better current-
voltage control.

4.1 p — n Junction and Field-Effect Transistor

As we learned from Chap. 1, an intrinsic semiconductor bulk material has a com-
pletely filled valence band and a completely empty conduction band separated by a
bandgap E,. It is not conducting under a moderate external bias which is less than
a few volts, see Sect. 2.4. When shining the semiconductor material with a light
with photon energy hw larger than E, electrons, initially occupying the valence
band, will transit to the conduction band after absorbing the photon. Both the con-
duction band and the valence band are now partially filled and the semiconductor
becomes electric conducting. Furthermore, the semiconductor can become electric
conducting when we incorporate dopants into the semiconductor, either n-type or p-
type dopants which have one or more extra or less valence electrons than the atoms
in the host semiconductor. The extra valence electrons will occupy the conduction
band, while the missing valence electrons will make the valence band partially un-
occupied.

By the drift and diffusion model of Sect. 2.7, we can calculate the current density
Jj of a uniform, bulk, and n-type doped semiconductor

j=—enpnkE 4.1

where n is the concentration of free electrons, w is the carrier mobility and E is
the electric field due to the external bias. In normal situations, free electrons in a
semiconductor materials come from dopings such as in a Si-doped GaAs material
where each Si atom contribute one free electron to the conduction band in GaAs so
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Fig. 4.1 Energy band structures of (a) p-type and n-type doped semiconductor, (b) p —n junction
at equilibrium, (c¢) forward bias Vp. (d) Current-voltage I — V characteristics

that the concentration of the free electrons equals to the Si doping concentration.
A similar equation can be written down for a p-type doped semiconductor.

The story of electric conduction becomes more much interesting when we put
one half-infinitely large n-type semiconductor and one half-infinitely large p-type
semiconductor together to form a p — n junction. Figure 4.1 shows the energy band
structures of the p-type, n-type doped semiconductor, p — n junction at equilibrium
and with a forward bias Vp, as well as the general feature of the current-voltage
I — V characteristics.

The p-type and the n-type semiconductors are normally characterized by their
doping concentrations, na and np, respectively, where subscript “A” denotes ac-
ceptor (to accept one electron from the host material, thus leaving one hole there)
and “D” donors (to donate one electron into the host semiconductor). We adopt the
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concept of Fermi level E ¢ to characterize quantitatively the semiconductor

where N3(FE) is the three-dimensional density of states, see Eq. (1.194). The numer-
ical calculation of E as a function of np at different temperature 7 is not trivial,
see Sect. 6.1. In practical device applications, np is not so high so that E is far
below E.. In this case,

1
- o ,(E-Ep)/ksT
1+ e E—Ep/kaT ~ © e “.3)

for E > E., thus
np = /ef(EfEf)/kBTNS(E)dE — Ncef(chEj‘)/kBT (44)

where
Ne= f e EEN/ksT Ny (EYAE (4.5)

is a physical constant about the semiconductor, normally known as the intrinsic elec-
tron concentration in the conduction band. Equation (4.4) indicates that £y will be
close to E. when we increase np. A similar relationship can be obtained between
Ey and na. The general energy band structures of the p-type and n-type semicon-
ductors are shown in Fig. 4.1(a).

By joining a half-infinite p-type semiconductor (z < 0) and a half-infinite n-
type semiconductor (z > 0) at z = 0, see Fig. 4.1(b), a depletion region will be
formed where holes will be depleted in (z,,0) and electrons in (0, z,;), leaving
ionized dopants that induce a built-in electric field, thereafter a potential barrier A.
Electrons in the n-type region will diffuse to the p-type region through the depletion
region because of the non-uniform electron distribution. However, such a diffusion
is suppressed by the built-in electric field in the depletion region so that eventually
at equilibrium, there is no net electron transport through the depletion region. Same
situation occurs for the holes in the valence band. A uniform Fermi level is well
defined which is flat across the whole p — n junction.

Now we put the p side of the junction grounded and a bias Vp on the n side, see
Fig. 4.1(c). The bias will apply largely across the depletion region because of Ohm’s
law, which will reduce the electric field there. Diffusion of the electrons from the n
side to the p side will thus surpass the drift, resulting in a net electron transport.

Let us calculate the current induced by Vp, i.e., the I — V characteristics of the
p — n junction. Instead of detailed analysis of the formation of the depletion region,
the strength of the electric field in the depletion region, then the diffusion and drift
of the electrons across the depletion region, we consider the following equivalent
approach: electron transport from the n side to the p side is largely stopped by the
potential barrier A. A forward bias Vp will decrease the barrier height to A — eVp
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Fig. 4.2 An n-channel metal-oxide-semiconductor field-effect transistor

to assist the electron transport. By assuming quasi equilibrium state, the electron
density in the p side of the junction is

n= Nce*(A*EVDJFEc*Ef)/kBT (4.6)

Since the current is proportional to the number of electrons that overcome the po-
tential barrier, we have

j & Noe~(A=eVo+E—Ep)/kpT 4.7)
We further know that the net current is zero at zero bias. Thus
Jj=jo(e"? 1) (4.8)
where

jO O(Nce_(A'i‘Ec—Ef)/kBT (49)

When eVp > A, there is no potential barrier for the electrons to transport from
the n side to the p side, a linear I — V relationship will be expected. Figure 4.1(d)
shows schematically the I — V characteristics of the p — n junction.

We have thus be able to obtain a variable current through a p — n junc-
tion. We now study the base of the modern electronics, namely, the metal-oxide-
semiconductor field-effect transistor, i.e., MOSFET. Figure 4.2 shows the schematic
device structure of an n-channel MOSFET.

We first look at the metal-oxide-semiconductor structure along the x axis at the
middle of the MOSFET, which is shown in Fig. 4.3(a). Referring to the vacuum
energy level Ey, the distance between Ey and the Fermi level of a metal E fpy, is
known as the work function e¢p,, i.e., the energy needed to excite an electron at
the Fermi level into the vacuum level. Another physical parameter is ey, electron
affinity, is the energy needed to excite an electron at the conduction bandedge into
the vacuum level. Table 4.1 lists work functions e¢y, of important metal elements
and electron affinities ey of commonly used semiconductors. Note that the values
of epm and ey are rather scattered in literatures and Table 4.1 serves only as a
reference.
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Fig. 4.3 (a) Energy band structures of the metal, oxide, and p-type Si semiconductor. (b) Energy
band alignment of the metal-oxide-p-type Si structure. (¢) Energy band structure of the under a
gate bias Vg where an inversion layer (n-type) is formed at the oxide-semiconductor interface

Table 4.1 Work functions e¢, of important metal elements and electron affinities ex of com-
monly used semiconductors [eV]

Element ePm Semiconductor ex
Ag 4.26 Ge 4.13
Al 4.28 Si 4.01
Au 5.1 GaAs 4.07
Cr 4.5 AlAs 3.5
Mo 4.6 SiO; 0.95
Ni 5.15

Pd 5.12

Pt 5.65

Ti 4.33

Y 4.55

When we join the metal, SiO; and p-type Si in Fig. 4.3(a) to form a metal-
oxide-semiconductor structure in Fig. 4.3(b), various energy levels are to be aligned
in order to reach equilibrium. Without any external bias, thermal equilibrium is
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n-type substrate
Fig. 4.4 Complementary MOSFET device

reached which is described by Fermi level E ¢. Referring to Fig. 4.3(a), we observe
that the MOS structure is characterized by the so-called modified work function
edr, = epm — 0.95 eV between the metal and SiO, and modified electron affinity
e Xéi =exsi — 0.95 eV between Si and SiO,, where 0.95 eV is the electron affinity
of SiO.

When we put a gate bias Vg with respect to the p-type Si, the local Fermi level
in metal is lowered by —e V. Because of the high free carrier concentrations in the
metal and p-type Si, the gate bias applies largely in SiO; and the SiO;-Si inter-
face where the free carrier concentration is low. At high enough Vg, the conduction
bandedge of Si close to the SiO,-Si interface will get close to the local Fermi level in
Si so that electrons begin to accumulate there, forming the so-called inversion layer,
see Fig. 4.3(c). Refer back to Fig. 4.2, we thus obtain a carrier conduction channel
along the y axis between the n-source and n*-drain, where originally there is no
electrons at zero gate bias Vg = 0. A conduction current Ip will be induced when a
drain bias Vp is applied (the source is normally grounded Vs = 0).

The revolution of the MOSFET device is that we are able to control the current
between the source and the drain by the gate. The gate modifies the device through
its electric field at the Si0,-Si interface, thus the term “field-effect”, while the word
“transistor” was formed by two words “transfer” and “resistor”, meaning that the
resistance is now transferable. Putting a p* source and a p* drain in an n-type
substrate we obtain the so-called p-channel MOSFET. Complimentary configurat-
ing the n-MOSFET and p-MOSFET we obtain the CMOS device, see Fig. 4.4, on
which the current digital world is based. The whole device is fabricated on an n-type
substrate. The left side is processed into a p-MOSFET, while the right side is first
p-type doped into a p-type region, then processed into an n-type MOSFET. Wiring
various electrodes as in Fig. 4.4 and setting Vss high, the CMOS device becomes
an inverter such that when the input Vj is high, the output V, is low, while when
V; =low, V, = high.
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When V; = high, G| = G, = high, SiO;-Si interface in the n-MOSFET becomes
inverted (the SiO5-Si interface in the p-MOSFET remains n-type), so that D is
conducting with S;. The situation of the n-MOSFET is called “on” and the p-
MOSFET is “off”. Since S is grounded thus low, D and therefore V, = low. When
Vi = low, the p-MOSFET becomes “on” while the n-MOSFET is “off”, resulting
in V, = Sy = Vss = high.

Most of the electronics nanotechnology in the past 50 years is about scaling down
the size of the CMOS device. One basic driving force of scaling down is to increase
the density of CMOS devices in order to enhance the functions of the electronics,
while the second most important driving force is to reduce the current in order to
minimize the power consumption of the electronics. The process of scaling down
has been continuous and the devices are already so small that the effective area of
the devices where the electrons transfer signals is in the order of tens nm.

4.2 Semiclassical vs Quantum Considerations

To accurately analyze a semiconductor structure which is intended as a self-
contained device under various operating conditions, a mathematical model has to
be given. The equations which form this mathematical model are commonly called
the basic semiconductor equations.

For the well-established semiclassical particle picture, the basic semiconductor
equations consist of Poisson’s equation, the continuity equations for electrons and
holes and the current relations for electrons and holes. For some applications it is
desired to add to this set the heat flow equation [1].

e Poisson’s equation

e
V-(éV(j)):—e—(n—p—NA—i-ND) 4.10)
0
e Continuity equations
on
V. Jn — 65 =¢eR
(4.11)
ap
V. — =—¢R
Toteg=¢

e Carrier transport equations

Jo=enu,E+eD,Vn
(4.12)
Jp=epupyE —eD,Vp

with the Einstein relation
kgT

e

D

4.13)
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Table 4.2 Physical

parameters in the basic n,p carrier concentration
semiconductor device Jns I p current density
equations ¢, E electric potential and field
Na, Np doping concentration
R net generation rate/recombination rate
s Kp carrier mobility
Dy, D, diffusion coefficient
€ dielectric constant
H thermal generation
cp specific heat capacity
p mass density
k thermal conductivity
and
E=-V¢ 4.14)
is the electric field.
e Heat flow equation
aT
c,,pg—H:V-(kVT) 4.15)

The physical parameters used in the basic semiconductor equations are listed in
Table 4.2.

The above basic equations are based on the concept of a probability distribution
function f(r, p,t) well defined over the phase space (both the r- and k-space) of
the carriers. It is however limited when discussing wave transport in the submicron
region where a phase-space distribution function becomes inadequate:

1. Due to the uncertainty principle
Ar-Ap=>h

f(r, p,t) does not have a precise meaning as a probability function in both the
position (r) and momentum (p) spaces.

2. Semiclassical picture treats carriers as essentially free particles which are only
scattered at specific spatial locations by phonons, impurities, imperfections etc.
but are otherwise free between collisions. It means that the scattering takes place
locally in both the space and the time domains. Quantum mechanically however,
scattering potentials are extended in the space and scattering processes take a
finite amount of time to complete.
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Table 4.3 Issues relevant to
quantum wave transport in
semiconductors Periodic crystal potential; energy band structure effects

Strong electric and magnetic fields

Carrier-carrier scattering

Pauli exclusion principle

Inhomogeneous electric fields

Energy dissipation, charge extraction and injection

Band-engineered nanostructures (potential barrier and quantum
well)

Dynamic screening

Tunneling

Transient effects

Scattering from defects, phonons
Temperature dependence

Many-body effects

3. External force F should be essentially constant over the width of the electron
wave packet so that the acceleration theorem

hk=F

become justified.

4. Correlations among successive scattering events become important when scat-
tering centers are densely populated.

5. Carrier-carrier interaction becomes significant for degenerate electron systems.

6. It is really a Thomas-Fermi approximation when interpreting f(r, p,t) as a
probability density in position and momentum spaces. It is however grossly in-
accurate when describing critical doping density of semiconductor-metal (Mott)
transition in multiple-valley semiconductors. Furthermore, low-temperature con-
ductivity of degenerately doped semiconductors, with highly anisotropic energy
band structures (e.g., Si and Ge), can be understood only through the use of
dielectric screening, as the use of Thomas-Fermi screening significantly under-
estimates the screening effect.

Hence, quantum mechanical considerations must be involved when discussing
electron systems whose geometric sizes are comparable to the wavelengths of elec-
trons. The most important issues relevant to quantum transport are listed in Ta-
ble 4.3.

4.3 Resonant Tunneling Diode

Consider a hetero-interface structure along the z axis such as GaAs when z <0 and
AlGaAs when z > 0, see Fig. 4.5. When we take the conduction bandedge of GaAs
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Fig. 4.5 GaAs/AlGaAs GaAs AlGaAs
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as potential reference V (z < 0) = 0, the conduction bandedge of the AlGaAs side is
characterized as a potential barrier with a potential energy V (z > 0) = AE., which
is the conduction band offset between GaAs and AlGaAs. If the total energy, E, of
an electron is less than AE,, the Schrodinger equation of the electron in AlGaAs

hZ d2
(‘ 2m* 422 + AEc>¢(Z) =Ey () (4.16)
becomes
N Py
mr 2 (AE: - E)Y¥(2) (4.17)

Here m is the electron effective mass and AE, is constant for z > 0. The electron
wave function v (z) varies as e %% with

2m*(AE. — E)
TN TR

(The general solution is ¥ (z) = Ae™%* + Be®* mathematically, while we have to
let B =0 so that 1/ (z) remains finite in the whole region of z > 0.) The momentum
in this case is clearly undefined, i.e., it is imaginary for z > 0, and there is a finite
probability of the electron wave existing on the ‘wrong’ side (z > 0) of the barrier,
this probability decreasing with the penetration into the potential barrier. Such a
wave is termed evanescent.

Evanescent waves are the key to the quantum mechanical tunneling effect. With
very thin potential barriers there is a finite probability of an electron appearing on
the far side of the barrier, although on a classical argument the potential barrier is
too high for any penetration to occur. This is the basis for the tunnel process in the
tunnel diode. Electrons can tunnel through thin insulating films between metals and
can also tunnel across the bandgap at high enough electric field. This latter process
is the Zener effect.

The concept of tunneling diodes goes back several decades, and was first imple-
mented in very heavily doped p — n junction diodes [2]. In this case the tunneling
is through the forbidden gap region, and involves electrons making transitions from
the conduction band to the valence band, and vice versa. In the present context,
however, we can separate two GaAs regions by a thin barrier region of AlGaAs, and
the tunnel barrier is formed by the conduction (and valence) band discontinuity at
the AlGaAs/GaAs heterointerfaces.
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Fig. 4.6 Structure and carrier transport of an AlGaAs/GaAs double barrier resonant tunneling
diode. (a) There is no net current at zero external bias. (b) Properly biased so that electrons from
the emitter will tunnel through the device via the quasi state in the central GaAs well to empty
states in the collector. (¢) Off resonance and the carrier transport is low. (d) I — V characteristics
shows a resonant tunneling current peak

Current

The tunneling of electrons through heterojunction barriers is the basic feature
of many new quantum electronic devices [3—7]. Most of these devices can be cate-
gorized into two broad areas. The first ones are three-terminal devices and use the
barriers associated with heterojunctions as a means of injecting fast and hot carriers
into a narrow base layer. Ideally the scattering rate in the base should be small so
that the electrons can traverse a collector barrier (also a heterojunction) with a rea-
sonably high efficiency. An example of such a device is the tunneling hot electron
transistor [5].

The second type of devices are based on “resonant” tunneling, involving either
a superlattice structure [4] or double barrier quantum well [S]. These are usually
two-terminal devices, though several three-terminal transistor variants have been
proposed [6, 7]. Figure 4.6(a) shows a typical n-type AlGaAs/GaAs double-barrier
resonant-tunneling diode. The GaAs emitter and collector are n-type doped which
are characterized by Fermi level E ? in the emitter and E< in the collector. At zero
bias, the two Fermi levels are aligned so that there is no net current. The central
GaAs well is about 10 nm thick sandwiched between two AlGaAs barriers. Because
of the finite thickness and the surrounding barriers, electron states in the central
GaAs well become quantized, see the shadowed thick line which denotes the ground
state. Note that the quantized states here are not infinitely narrow in energy because
of the finite barrier thickness. They are normally referred to be quasi states. By
applying an external bias, see Fig. 4.6(b), in such a condition that the quasi state is
aligned between E¢ and E¢, electrons in the emitter will tunnel to the quasi state
in the central GaAs well through the evanescent state of the first AlGaAs barrier
(provided that the AlGaAs barrier is not too thick), then further tunnel to the empty
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states in the collector, forming the tunneling current. Further increasing Vp pushes
the quasi state below E¢, see Fig. 4.6(b), so that there will be no quasi state available
in the central GaAs well to receive the electron from the emitter, carrier transport
through the device will be low. Increasing Vp furthermore will push the second
AlGaAs barrier below E¢ so that the current increases. A current peak exists as
a function of Vp, which leads to a negative differential conductivity between (b)
and (c), see Fig. 4.6(d). Such a negative differential conductivity has considerable
potential as millimeter-wave devices as well as functional devices for digital and
optical applications.
Four important experimental results should be mentioned:

1. Photoluminescence and photoluminescence excitation spectra indicate the exis-
tence of quasi states in the central quantum well of the resonant tunneling diode
[8]. This is a support of Luryi’s opinion [9] that the resonance observed in the
resonant tunneling diode can be explained as the tunneling of electrons from the
three dimensional states in the emitter to the two dimensional quasi states in the
well.

2. The dc I — V characteristic measurements show not only the principal resonant
peak as predicted by the theory, but also an oscillation, a bistability and a shoul-
der peak in the negative differential resistance region [10, 11]. These results are
interpreted by Sollner as results of dynamic properties in the measurement cir-
cuits [12], while other explanations remain.

3. An experiment shows a peak in the capacitance-voltage characteristic at the res-
onant tunneling diode’s resonance state [13].

4. The ac measurement results indicate that the charge transit time through the res-
onant tunneling diode is in the order of r = 60 fs and the resonance strength
decreases when the ac frequency increases [10, 14].

4.3.1 I —V Characteristics at Steady State

Refer to Fig. 4.7, we assume that the tunneling diode is positioned along the z di-
rection. The left side z < 0 is denoted as the carrier emitter and the right side z > L
as the carrier collector. Let Np be the Si concentration in the GaAs regions on the
left side of the left AlGaAs barrier and on the right side of the right AlGaAs bar-
rier (thus n-type doping), while the two AlGaAs barriers and the central GaAs well
are undoped. The high doping levels in the electrodes are designed to provide free
electrons, while the low-doping level in the central part is aimed to minimize var-
ious scattering processes that perturb the electron transport from the emitter to the
collector.

Because of the barriers, the tunneling current via evanescent waves is normally
rather low so that we assume that the electrons in the regions of the emitter and the
collector that are far away from the AlGaAs barriers and GaAs well, i.e., z < 0 and
z > L, see Fig. 4.7, are at equilibrium with their donors. Note that we still do not
know exactly where z =0 and z = L are, which are to be determined.
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Fig. 4.7 Energy band Emitter | i ! Collector
diagram of double-barrier : ;
resonant-tunneling diode . :
under bias Vp Be. . el ek il N
Ef— ==
: //

z=0 z=lz1 z=L

The emitter and collector are highly doped so that their resistances are small,
while the AlGaAs barriers and the central GaAs well are not doped so are highly
resistive. Grounding the emitter and biasing the collector with Vp, the bias will be
largely applied in the resistive region, i.e., 0 < z < L, see Fig. 4.7, between the
emitter and the collector, because of the Ohm’s law. Thus, ¢ = 0 for z < 0 and
¢=Vpforz>L.

For the bulk GaAs of z < 0, the energy of one electron at state k is

2k2
2m*

c

E(k)=E¢+

(4.18)

where E¢ is the conduction bandedge of the emitter (superscript e denotes “emit-
ter”).
In general, the total energy of the electron in a bulk material is

E=E(k) — e

after including the Coulombic potential energy ¢. The electron concentration is
given by

o 1 2k 1 (miksT 3/2F et +E;
T ] 14 lE@=eo—E/ksT (27)3 ~ 27\ K2 e\ o
4.1

where E ¢ is the Fermi energy and F1; is the Fermi-Dirac integral of order 1/2

0o L 1/24x
F = - 4.20
172(n) /o Ty (4.20)

E ¢ can be determined by letting n = Np at equilibrium.

By Eq. (4.19), we can determine the Fermi level and conduction bandedge E;‘}
and E{ in the emitter, and E — eVp and ES — eVp in the collector (superscript ¢
denotes “collector”), see Fig. 4.7.



198 4 Electronic Quantum Devices

We now determine the Coulombic potential ¢ (z) in the region of 0 <z < L by
solving the Poisson equation

d d
« [e(z) ";S)} =—e[n(z) — Np(2)] 4.21)

In the above equation, €(z) is known when we know the geometric structure of the
diode. Np(z) is also known. And the boundary conditions for ¢ (z) are: ¢ (z)|;<0 =
0 and ¢(2)|;>1 = Vp. n(z) is the electron distribution which is unknown for the
moment.

Including the Coulombic potential, the Schrodinger equation in the effective-
mass approximation has now the form

FL2 v2
[— + Ec(2) —ed (z)]W(r) =Ey(r) (4.22)
2m

Here E.(z) describes the spatial variation of the conduction bandedge of the diode,

which is zero when we set the GaAs conduction bandedge as the potential reference,

and AE, the conduction band offset between AlGaAs and GaAs, see Fig. 4.5.
Since the resonant tunneling diode is one-dimensional along the z direction while

extended in the xy plane,

Y(r) =Ty
AR
N 2m¥

Cc

+E.+E; (4.23)

h2 32
[—M@ + Ec(z) — €¢(Z):|W(Z) =E.v(2)

Refer to Fig. 4.7, there are electron states in the emitter (z < 0) above E., which
are occupied by electrons according to the Fermi distribution. These electrons are
three dimensional

2002 L 12 112
wlkaykz (x,y,2) = ei(kxx+kyy+kzz)’ Ee(kx, ky, kz) —E. + MIC)C+—]2’-’_I€Z)
(4.24)
which are two-fold degenerate in terms of k,. The one with k, > 0 will travel from
the emitter to the central region. It will be partially reflected by the double barriers
and partially tunnel through the central region. Such an electron transport is quan-
titatively determined by the Schrédinger equation Eq. (4.23). Since the potential
energy of the electrons is x and y independent, k, and k, will be conserved during
the transport and we obtain the following simple boundary conditions for the last
equation of Eqs. (4.23)
etkaz rkze_ikzz, z<0

Vi () = { (4.25)

tkzeiqzz, z>1L
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where ry, and #;, are the amplitudes of reflected and transmitted waves. For coherent
tunneling, the total energy of the electron is conserved so that

21,2 2.2
h7k; thz oy
2m* 2m* b

Electron state wk (z) in the collector is determined in the similar way.
The spatial distribution of all these electrons is

oy [[ P G2 DF Wi G2 D) adk
PO P 0B kT T JEM—E+eol/kaT | 2m)3

Since |1ﬂk kyks (x,v,z)> and Wk ks (x,y,2)|* are k, and ky independent, see the
first equatlon of Egs. (4.23), the integrations over k, and ky in the above equation
can be carried out analytically and we obtain n'(x, y, z) = n’(z), i.e., the electron
distribution is x and y independent, and

“kpT .
n/(z):mL = /{‘I/fk (Z)’ In[1+ olEF—E-E (kz)l/kBT]

2 h?
¢ __pc_pc 2dk
+ [V @ In[1 4 o F T 2 4.27)
since
1 dkedk, 1 .
= In(1 4.28
/1+77€°‘(k§+k>2~> 2m)?  dma n(l+n7) (4-28)
Here

mikpT In[1 4 By EE—EGOVksT ]
2m h?
is normally referred to as the sheet density of state E°(k;).

We notice that there are a few quasi states which are confined in the triangle
quantum well before the left barrier and in the quantum well between the two bar-
riers, i.e., E; in Fig. 4.7. These states are definitely confined in the emitter since
their energies are below E¢ so that their wave functions are decaying, see Fig. 4.5.
On the collector side, they are open if we assume that their wave functions can ex-
tend coherently all over the space. However, as we mentioned before, the barriers
are normally thick so that the transmission through the tunneling structure is low. If
electrons from the emitter happen to occupy these states, they will stay there long
time before tunneling through the barriers to reach the collector. We can thus assume
that electrons occupying E; are at equilibrium with the electrons in the emitter. Their
contribution to the total electron distribution is

m*kgT 2 ¢ _E
ns(@) == IZWz)y In[1 4 E7—E0 k5T (4.29)
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Table 4.4 Tunneling diode structures. Layer 4, 5, 6, 7, and 8 are unintentionally doped

Material Thickness [nm] Doping [10'8 cm—3]
1 GaAs 100 2.0
2 GaAs 80 0.2
3 GaAs 50 0.02
4 GaAs spacer 20
5 AlAs barrier 3
6 GaAs quantum well 8
7 AlAs barrier 3
8 GaAs spacer 20
9 GaAs 50 0.02
10 GaAs 80 0.2
11 GaAs 300 2.0
12 AlAs etch-stop layer 15
13 GaAs buffer 400
14 GaAs substrate

The derivation of the above equation is very similar to Eq. (4.27) when we real-
ize that 2k, /27 is actually the density of states along the z direction for extended
states k.

In a brief summary, the theoretical consideration consists of: We start with a
guess of the potential distribution ¢ (z) under Vp such as Vp is linearly applied
between z =0 and z = L. The Schrodinger equation of Egs. (4.23) is then defined
from which we find ¥ , ¥ and ;. After that, the total electron distribution n(z) =
n'(z) + ns(z) are obtained from Eqgs. (4.27), (4.29), which will be inserted into the
Poisson equation Eq. (4.21) for an updated potential ¢ (z). The process then repeats
until self consistency is reached.

The definition, or rather, the determination of z = 0 and z = L is quite arbitrary
at the very beginning of the self-consistent calculation. It is only certain that z =0
and z = L should be deep enough in the emitter and collector. The basic method is
thus only trial by error. Try a narrow central region (between z =0 and z = L) then
expand the region and compare the two results. A proper set of z=0and z =L is
reached when the two results converge.

We now apply the above equations to study a n-type AlGaAs/GaAs double bar-
rier resonant tunneling diode schematically shown in Fig. 4.6. The double barrier
layer structures were grown by molecular beam epitaxy (MBE) on semi-insulating
GaAs substrates and nominal material layer structure is listed in Table 4.4 [15].
Typical I — V characteristics at 77 and 300 K is shown in Fig. 4.8, which clearly
demonstrates the resonant tunneling effect.

Theoretical expectation of the I — V characteristics is shown in Fig. 4.9, where
one tunneling current peak is observed at an external bias of 0.28 V, corresponding
to the zero-bias resonant state at 0.12 eV in the tunneling probability |z | spectrum
as a function of the electron kinetic energy hzkzz /2m shown in the inset.
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Fig. 4.8 [ —V characteristics of a GaAs/AlAs tunneling diode at 77 (solid line) and 300 K (dashed
line). Inset shows details of the resonant tunneling current (Reprinted with permission from Y. Hou,
W.-P. Wang, N. Li, W. Lu, and Y. Fu, Effects of series and parallel resistances on the current—
voltage characteristics of small-area air-bridge resonant tunneling diode, J. Appl. Phys., vol. 104,
p- 074508(5), 2008. Copyright 2008, American Institute of Physics)
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Fig. 4.9 Theoretical I — V characteristics at 77 K (solid line) and 300 K (dashed line). Inset
shows the tunneling probability |z, | as a function of the electron Kinetic energy hzkf /2m?, see
Eq. (4.25) (Reprinted with permission from Y. Hou, W.-P. Wang, N. Li, W. Lu, and Y. Fu, Effects
of series and parallel resistances on the current-voltage characteristics of small-area air-bridge
resonant tunneling diode, J. Appl. Phys., vol. 104, p. 074508(5), 2008. Copyright 2008, American
Institute of Physics)

We first have a close look at the tunneling probability spectrum which shows
two tunneling peaks. By referring to the transport mechanism of Fig. 4.6 it can be
realized that these two tunneling peaks correspond to two quasi states in the central
GaAs well, one at 0.12 eV and the other at 0.42 eV. The tunneling peaks are very
narrow, especially the peak at 0.12 eV. In other words, only those electrons in the
emitter with a certain k, which matches with the quasi state in the central GaAs
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Fig. 4.10 (a) Potential energy profile and (b) carrier distribution as functions of external bias Vp at
77 K. The arrow indicates the linear increase of the external bias Vp from 0.0 to 0.44 V (Reprinted
with permission from Y. Hou, W.-P. Wang, N. Li, W. Lu, and Y. Fu, Effects of series and parallel
resistances on the current-voltage characteristics of small-area air-bridge resonant tunneling diode,
J. Appl. Phys., vol. 104, p. 074508(5), 2008. Copyright 2008, American Institute of Physics)

well can tunnel to the collector. All other electrons will be reflected. Thus, the total
tunneling current is very weak. This agrees with what we have pre-assumed that the
electrons in the emitter are at equilibrium state which can be described by Fermi
level E; Figure 4.10 shows the numerical expectations of the potential energy and
carrier distribution of the tunneling diode as functions of the external bias, which
all agree well with what we expected by Fig. 4.6. Here we observe the lowering
of the GaAs well by Vp in Fig. 4.10(a), the filling of the quasi states in the triangle
quantum well on the left side of the first AlAs barrier and in the GaAs well, which is
normally referred to as the accumulation. We also see the depletion on the right side
of the second barrier in the collector. The carrier accumulation in the quasi states is
reflected in the I — V characteristics as a shoulder on the right side of the tunneling
peak in Fig. 4.9.

Discrepancies between experimental Fig. 4.8 and theoretical expectations in
Fig. 4.9 exist. Most prominent difference is the voltage of the current peak, which is
0.63 V while theoretically it is only 0.28 V, at 77 K. Another significant difference
is the high peak-to-valley ratio predicted by the theory as compared with the exper-
imental one. The first difference can be explained by a series resistance, mostly in
the circuit such as contacts, so that only a portion of the total experimentally ap-
plied bias is distributed to the active central region of 0 < z < L in Fig. 4.10. The
second difference can be explained by a parallel resistance, such as edges of the
tunneling diode since in reality the extension in the xy plane can never be infinite.
Moreover, the theoretical model assumes coherent tunneling, while in reality, the
tunneling electrons are under the influences of many energy relaxation scatterings
including defects at GaAs/AlAs hetero interfaces, residual dopants in layers 4 to 8
(see Table 4.4).

The series resistance has a much profound effect. Figure 4.11 shows the I —
V characteristics of another tunneling diode, which has the same nominal device
design structure as in Table 4.4 but fabricated in another process. As compared with
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Fig. 4.11 [ — V characteristics of another tunneling diode at 300 K. Arrows indicate the changing
directions of the external bias. Dashed lines are the I — V characteristics when the tunneling diode
was in series connection with an external resistance Rg = 3.9 k2 (Reprinted with permission from
Y. Hou, W.-P. Wang, N. Li, W. Lu, and Y. Fu, Effects of series and parallel resistances on the
current-voltage characteristics of small-area air-bridge resonant tunneling diode, J. Appl. Phys.,
vol. 104, p. 074508(5), 2008. Copyright 2008, American Institute of Physics)

the tunneling diode of Fig. 4.8, the current through the latter diode is about one
order of magnitude higher. Furthermore, the latter diode shows a clear bistability
effect when we increase the external bias Vp from 0.0 to 3.0 V then decrease from
30t0 0.0 V.

By denoting I (V) — V as the original / — V characteristics of the tunneling diode
without any external series resistor, we can expect theoretically the I(V*) — V*
curve when the tunneling diode is in series connection with a series resistor Rg

V¥*=V+I1(V)XRg (4.30)

This describes exactly the relationship between the two sets of measurement data in
Fig. 4.11. Here we can see that the external series resistance shifts the current-peak
bias to a higher value, it also widens the bistability loop.

4.3.2 Response to a Time-Dependent Perturbation

We now study the effect of a small external ac bias V. on the carrier conduction
through the double-barrier resonant-tunneling diode. Using the effective-mass ap-
proximation, the Schrodinger equation for a one-dimensional electron in a time-
dependent ac electric field is given by:

L AY(z, 1) K2 92 _ ;
= [‘ it 32+ Be = 9@+ Ve L VI Juzt) - @431)
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where E. is the conduction bandedge, ¢ (z) is the Coulombic potential originated
from carrier distribution, dopants and a external dc bias Vp, see Eq. (4.21). V. is the
amplitude of the small ac bias at frequency of w. Here we write the ac perturbation
as Vace " + V% e'! to make sure that the ac perturbation is real.

As in the previous section, we assume that the energy band diagrams and thus the
eigen wave functions in the emitter and collector are not affected by the ac perturba-
tion since the doping levels there are high. Moreover, since V. is a perturbation, it
is expected that the conduction band structure under the bias of Vp is not affected by
Vac. We use the dc conduction band structure of Fig. 4.10(a) to calculate the effect
of the ac perturbation on the current conduction.

The electron state at E in the region between z = 0 and z = L is modified by the
ac perturbation. Between z = 0 and z = L, we denote the eigen solution of electron
state E; without the ac perturbation as

K2 92
[— — +E.— e¢<z)]w,°<z> = Eiy(2) (4.32)

2m} 972

the wave function of the electron state under the ac perturbation is written as

Yz =) Cie Fillyl) (4.33)

By the first-order perturbation it is easy to obtain

dC t . .
n D (Ve ™ Vi) i) (434
which results in
\% —iwt Vv iwt
Ci(t) =exp o — (4.35)
hw hw

Here we see that the ac perturbation does not mix up eigen state E; with other eigen
states. It only modify its wave function to

w

V. .e ot VY plwt .
exp( ac€ _ Vact )elEiI/hwio(Z) (4.36)
w

[IEE L
1

In order to simplify notations, we drop the subscript on E; and write wio as

Y in Eq. (4.32).
We consider the electron in the form of plane wave

ol kz—Et/h)
injected into the active region from the emitter, where

R2k2
E_

- *
2m¥
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is the electron kinetic energy. The electron wave is partially reflected from the active
layer and partially transmitted through the active layer, similar to Eq. (4.25). The
general form of the wave function, in the emitter z < 0, the active region 0 <z < L,
and collector z > L, is

ei(ka—Et/h) 4 Zn B, e~ lknz+(E+nho)t/h] 7<0
—iw * iwt .
Ve(z, ) =13, C, exp(vﬁ%t _ Vacae; W E-inho(2)e {EHIONE 0 < 7 < [
Zn Anei[qnzf(EJrnhw)l/h] 7> 1L
4.37)

where 7 is an integer. Here k, and g,, are wave vectors in the emitter and collector,
respectively, corresponding to the total electron energy E + nhw

h2k2 hZ 2
" — E +nho, n =FE +nhw+eVp (4.38)
2m 2m¥

We may expect that the ac perturbation couples all possible electron states,
whereas only states E + nhw are explicitly involved in Eq. (4.37). The reason is
as follows. We expand the modified wave function of Eq. (4.36)

V. e—iwt V,*eiwt .
exp( dcw _ dcw lZfE+nhw(Z)e i(E4nhw)t/h

VE fnho (Z)e—i[E+()1+k—j)ﬁw]t/ﬁ (4.39)

(Vae/ Bt (= V3 /hw)!
=2 K !
Jjk

where j and k are integers, which requires n being as integer so that C,, is nonzero.
Equation (4.37) is solved numerically to obtain the A,. The total wave function
of electron state E in the collector region is

lp =u, Z Anei[qnz—(E—i-nhw)t/ﬁ]

n

where u,. is the periodic Bloch function of the conduction band. By inserting the
above expression into the probability flow density Eq. (2.10), the transmitted con-
duction current of such electron state E originated from the emitter is

i(Ey=e) ﬁ"”|An|2 (4.40)

*
mC

where e is the electron charge.

Figure 4.12(a) shows the calculated tunneling probabilities as functions of inci-
dent electron energy when Vp = 0. Here the tunneling diode consists of a 5.6-nm
thick GaAs well sandwiched between two 8.5 nm thick Alg 4Gag ¢As barriers. The
dashed line in Fig. 4.12(a) is obtained for the case without the ac perturbation, while
the solid line is calculated when V,c =2.5 meV and hiw = 5 meV. Here we clearly
observe that V. couples the electron states E &+ nhw. Side-bands are expected due
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Fig. 4.12 (a) Calculated tunneling probabilities as functions of incident electron energy from
the emitter. Vp = 0. (b) Calculated I — V spectra at T = 25 K. Dashed lines: V,. = 0; solid
lines: Vyec = 2.5 meV and hiw = 5 meV (Reprinted with permission from Y. Fu and M. Willander,
Response of a semiconductor tunneling structure to an ac perturbation, J. Appl. Phys., vol. 72,
pp- 3593-3597, 1992. Copyright 1992, American Institute of Physics)

to the ac-assisted tunneling, see Eq. (4.39). Also indicated in Fig. 4.12(a) is the
reduced peak value of the tunneling probability.

The calculated I — V spectra at T = 25 K are shown in Fig. 4.12(b). The ac-
assisted tunneling side-bands in Fig. 4.12(a) are clearly reflected in Fig. 4.12(b).
The current density at resonance is reduced while the resonance peak is broadened.

The current density at resonance is plotted in Fig. 4.13 as a function of V,. and
huw. Since the perturbation approach is used here, V, should always be smaller than
fiw in the calculation so that the condition

V’dC
— <1

hw

is always established, see Eq. (4.39)

Figure 4.13 indicates that the current density at resonance is larger than its dc
value when V. and hw are quite small. This is easy to understand because of the
ac-assisted tunneling side-bands in Fig. 4.12(a). When hw is large, the current de-
creases and is below its dc value. The current density reaches its lowest value in
response to the ac perturbation when Aw = 3 meV. The larger the amplitude of the
ac perturbation, the more is the current density lowered, but the frequency of the ac
perturbation at which the current density reaches its lowest value is almost indepen-
dent of the amplitude of the ac perturbation, i.e., always at hw =3 meV.

When ho is further increased, the current density at resonance gradually retrieves
its dc value. By Fig. 4.13, when Aw > 10 meV, the current density at resonance re-
sumes its dc value. This suggests that the response of the correlated wave functions
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at E + nho to the ac perturbation is time limited. When the frequency of the per-
turbation is low or comparable to the speed of the wave function response, the cor-
relation of the wave functions can follow the temporal variation of the perturbation.
When the ac perturbation frequency is too high, e.g., hw = 10 meV for the present
tunneling diode, the wave functions have difficulties to follow up with the temporal
variation of the ac perturbation so that the current returns to its normal dc value.

Here we understand that the speed of the wave function response to the external
perturbation is finite, as demonstrated experimentally [10, 14].

4.3.3 Phonon-Assisted Tunneling

Electron-phonon scattering is a major issue in semiconductor devices. Moreover, the
phonon state becomes also confined in low-dimensional system so that the strength
of the electron-phonon interaction is greatly affected, see Sect. 2.8.1. Here we shall
study the effect of the phonon scattering on the tunneling current of a tunneling
diode.

Using the effective-mass approximation and similar to the independent-boson
model when describing the electron-phonon scattering, the Schrodinger equation
for a one-dimensional electron state in the tunneling diode is given by:

2 2
ihaw(z,t):[ Rk

> ~5i3a TEcmep@+ We ' + W*ei“”]tp(z, 1 (4.41)
c

where

W=>" Mg,
q

M (q) is the electron-phonon scattering matrix and a, is the phonon annihilation
operator, hw is the phonon energy, and Aq is the phonon momentum.
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In the bulk semiconductor, the quantity W in Eq. (4.41) depends on the electron
energy, see Sect. 2.8.1. The heterointerfaces in the tunneling diode modify substan-
tially the phonon modes [16], so that W is further complicated and becomes depen-
dent on the electron position. To avoid complications, here we assume that W is a
constant, independent of the electron energy and position. Then Eq. (4.41) is solved
in the similar way as we solved Eq. (4.31) in the last section.

Experimentally, only electrons whose energies are between the conduction band-
edge E¢ and the Fermi level E¢ in the emitter are available to transport from the
emitter to the collector, see Fig. 4.6. The external voltage Vp is applied to lower the
resonance state in the central quantum well to the position between E¢ and E ? S0
that resonant tunneling processes can occur.

Note that the energy of optical phonons that are most important in electron-
phonon scattering in commonly used semiconductors is about 30 meV, while for
n-type GaAs doped at 10'8 cm ™3, the Fermi level is about 100 meV above the con-
duction bandedge (see Fig. 6.1). Thus, even for highly doped semiconductors, there
are a large portion of total electron states available in the emitter which does not
have enough energy to emit a phonon in the emitter. On the other hand, since

E¢—ES=eVp

where EY is the conduction bandedge of the collector, an electron can gain energy
from the electric field Vp during its transport from the emitter to the collector. If

eVp > hw

the electron can emit a phonon when it gains enough energy from the electric field
even though the phonon emission may not be possible in the emitter region.

In Fig. 4.14 we show three major tunneling channels (we neglect multiple phonon
emission and absorption processes because of their low probabilities) where we take
the Fermi level E;} into consideration, namely, the energy of the incident electron
should be less than E¢ at low temperature. Channel E is the principal one (assuming
the conservations of the energy and momentum in the xy plane), the other two are
one-phonon processes, absorption of a phonon (channel “+”, largely possible at high
temperature) and emission of a phonon (channel “—), respectively. The local Fermi
level is E ef = 18 meV above the conduction bandedge when the doping level is 2 x

10'7 cm~3 for a GaAs/AlGaAs tunneling diode. Since the phonon energy fiw is 36.2
meV [17] in the GaAs material, the phonon-emission channel is always below E?.
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Fig. 4.15 Tunneling probability as function of electron kinetic energy. The sample is biased at
Vp =0.12 V at T = 4.2 K. (a) Without the phonon field; (b) With a fixed electron-phonon interac-
tion gmax; (¢) With a reduced electron-phonon interaction (Reprinted with permission from Y. Fu
and M. Willander, Evanescent channels in calculation of phonon-associated tunneling spectrum of
a semiconductor tunneling structure, J. Appl. Phys., vol. 73, pp. 1848-1852, 1993. Copyright 1993,
American Institute of Physics)

When a tunneling channel at E is below E, its corresponding wave function is
bounded in the emitter (z < 0), namely it is an evanescent state having the form of

e**, where
[2m*(E¢ — E)
o= hicz (4.42)

Let us now explicitly analyze a simplified situation by maintaining the perturba-
tion expansion to the order of |W|?. The wave function are expressed as
Forz <O,

(eikz+BEe—ikz)e—iEz/h+B+e—i[k+z+(E+hw)t/h]+B_€—i[k_z+(E—FLw)t/h] (4.43)

for 0 <z < L, we refer to Eq. (4.39),
W 4 W . w »
1— —— v - — iEt/h M i(E+hw)t/h
[< h2w2 WE + ho W ho ¢+ € + ) WE + w+ e
_K* —i(E—hw)t/h
+ o YE+ Y- e (4.44)

forz > L,

AEei(qZ—ET/FL) +A+ei[q+z—(E+hw)t/h] +A_ei[q_z—(E—hw)t/h] (445)
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Fig. 4.16 Calculated tunneling current-voltage characteristics at 7 = 4.2 K. (a) Without the
phonon field; (b) With a fixed electron-phonon interaction gmax; (¢) With a reduced elec-
tron-phonon interaction (Reprinted with permission from Y. Fu and M. Willander, Evanescent
channels in calculation of phonon-associated tunneling spectrum of a semiconductor tunneling
structure, J. Appl. Phys., vol. 73, pp. 1848-1852, 1993. Copyright 1993, American Institute of
Physics)

where the subscript E, “+” and “—” indicate the tunneling channels of E, E + hw
and E — hw, respectively.

When E —hw < E¢, k_ is imaginary and v_ as well as B_e *-2 gre evanescent,
and therefore are expected to vanish in the emitter. Since the matching condition for
channel “—"" at z = 0 demands

w* :
——Yp+y_ =B e "F
how

which in its turn requires

W*

o VE
to be small. If the electron-phonon interaction W is finite, ¥ g must vanish. This
means that Bg in Eq. (4.43) is close to 1. A large Bg implies a large reflection
current, and the tunneling current is therefore small.

This phenomenon is clearly demonstrated in Fig. 4.15 which shows the tunneling
probability as a function of incident electron energy. Without the phonon field, see
Fig. 4.15(a), the tunneling probability at resonance is quite large compared with the
off-resonance situations. When the phonon field is turned on, Bg increases so that
the tunneling probability in the principal tunneling channel is drastically decreased,
see Fig. 4.15(b). However, such result is unreasonable as compared with experiment
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[17] and the theoretical work of Wingreen et al. [18], where it was shown that the
tunneling resonance is still dominant even when there exists a phonon field.

Such a problem is caused by the assumption of a constant electron-phonon in-
teraction, which is reasonable to treat the electron-phonon coupling between two
electron states which are well above E¢. Let us take it as the upper limit gmax for
the interaction between an evanescent state which is below E¢ and an unbounded
state which is above E¢

M 2
8max = Z[l—(q)'] (4.46)

w
q

The specific value of g at certain incident electron energy is obtained as between
0 and gmax in such a way that boundary conditions for evanescent state and wave
function matching conditions are satisfied at the same time. The resulting tunneling
probability is shown as Fig. 4.15(c). Figure 4.16 is the current-voltage character-
istics with gmax = 0.03. In both Figs. 4.15 and 4.16, spectrum (a) is obtained in
the absence of the phonon field. A phonon field with constant gnmax results in spec-
trum (b). And spectrum (c) is obtained when 0 < g < gmax-

Let us now discuss the electron-phonon interaction when an evanescent state
is involved. Generally speaking, the electron in a crystal is under the influence of
the lattice potential, see Eq. (1.32). Phonon is a quasi particle of lattice vibration
from it equilibrium position. Let @, be the displacement of a lattice vector R,,
the modification in the lattice potential, i.e., the electron-phonon interaction can be
expressed as

Hypy=Y"0Q, VV(r—Ry) (4.47)

where r is the electron position, V is the lattice potential. Consider only one phonon
mode

1 ,
0, = A TR f . (4.48)

where ¢ is the phonon wave vector. “c.c.”” denotes complex conjugate. The coupling
between two bulk electron states

uce’kf",

1
ki = —
i) VN

via the electron-phonon interaction is

1 . .
(e g | Heplki) = 5 D el / KD PA-VV(r = R)dr  (4.49)
n cell

. i (Ex, —Ex, —ho)t/h . .. . . .
with a term ¢ Pk ~Fk; )t/ indicating energy conservation. Here N is the number

of unit cells in the lattice and u, is the Bloch function of the conduction band.
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Assume that the electrodes are doped at 2 x 10'7 pm_3 so that the Fermi level
is about 18 meV above the conduction bandedge. e'ki=kj)'T can be replaced by
el ki=kj)Ru gince |k;| and |k ;| are very small. Moreover,

/ luc|*A-VV(r —R,)dr = A
cell
is the same for every cell, we obtain

{(k ¢ | Heplhi) = Ze“‘”" )R (4.50)

Because the electron energy and the wave vector in the xy plane are conserved
during the tunneling process, the above expression becomes further simplified:

(k f|Heplk;) = Zel(qﬁ_kl —kj)na 4.51)

where na is the position of lattice n in the z direction, and a is the lattice constant
in the z direction. Because

1 T
2N & ol GHki=kna — (g, 4 ki — k) (4.52)

we finally obtain the result of the electron-phonon interaction in bulk material:
(ky|Heplki) = Ad(q: + ki — k) (4.53)

which is expected as the momentum conservation during the electron-phonon inter-
action.

We now take a look at the case when an evanescence state is involved. Let su-
perscript ‘4’ and ‘—’ represent the spatial region of z > 0 and z < 0, respectively.
Channel E in Fig. 4.14 can be approximated by real wave vector k; for z < 0 and
kl.+ for z > 0. Channel “—”, the evanescent state, is represented by (kj_ —iB) (B >0)

for z < 0 and kf for z > 0. Let
4+ ki —k; =k7, g:+ k- —k=k*
the summation in Eq. (4.50) becomes

A R .
<kf|Hep|k )= N (Z etak n+afn + Zezak+n)

n<0 n>0

A B
= —5 )+ e —————— 4.54
(k%) 2N a(k—)? + aB? (4.54)
By this simple analysis we see clearly that the coupling between two electron
states via the electron-phonon interaction is reduced by half when an evanescent
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state is involved (the second term in the above equation vanishes when N goes
to 00). Thus, the matching condition of small

W*
%WE

does not necessary demand a small /g, it can indicate a weakened electron-phonon
interaction.

4.4 Heterostructure Barrier Varactor

Solid-state devices have long been used for sensitive receivers in the millimeter- and
sub-millimeter-wavelength ranges (0.03 ~ 3 THz). Typical applications at these fre-
quencies can be found in advanced scientific purposes like radio astronomy but re-
cently also in commercial applications such as intelligent cruise control. The use of
solid-state THz sources offers significant advantages in weight, size, and reliability
over their high frequency continuous-wave tube counterparts.

To provide power in the submillimeter wavelength range, a reverse biased Schot-
tky diode is commonly used. When the Schottky diode is pumped with a sinusoidal
signal, its non-linear capacitance generates harmonics and an external circuit ex-
tracts the desired harmonic. An alternative method to produce power is to use a
direct generator such as Gunn or IMPATT oscillators, but decreasing efficiency and
shrinking dimensions make the output power decrease rapidly with the frequency.
Therefore, frequency multipliers are normally employed at this wavelength range.

In recent years new varactor structures with a symmetry C — V characteristic
have been proposed. A symmetric C — V characteristic and an anti-symmetric I —V
characteristic will mainly create odd harmonics in a frequency multiplier. For the
frequency tripler case, only the circuit impedances at the input frequency and the
output frequency are of major importance. In contrast, a tripler circuit using the
Schottky barrier varactor diode must also impedance-match the second harmonic
(idler) properly to convert a reasonable amount of the pump power to the third har-
monic.

A promising symmetric varactor device is the heterostructure barrier varac-
tor diode (HBV) diode [19, 20], e.g., single-barrier varactor [21], double-barrier
quantum-well varactor [22], barrier intrinsic-N structure, barrier-N-NT structure
[23, 24], multi-stack quantum-barrier varactor [25]. The possibility to epitaxially
stack several barriers for a high power capability and a low capacitance value per
unit area makes this device very promising for millimeter and submillimeter wave
power generation.

The heterostructure barrier varactor consists of an undoped high-bandgap semi-
conductor (barrier) sandwiched between two moderately n-doped low-bandgap
semiconductors, see Table 4.5. The barrier prevents electron transport through the
structure. The first heterostructure barrier varactor was fabricated in the AlGaAs
material system [19]. The disadvantage of this system is the low barrier height lead-
ing to an excessive conduction current even for Al-rich barriers. The reason is that
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Table 4.5 Heterostructure barrier varactor sample structures

Thickness [nm] InGaAs/InAlAs AlGaAs/GaAs
300 InGaAs, n = 10"7 GaAs, n = 10"
5 InGaAs GaAs

L InAlAs AlGaAs

3 AlAs AlAs

L InAlAs AlGaAs

5 InGaAs GaAs

300 InGaAs, n = 10'7 GaAs, n = 10"

Al,Gaj_,As is an indirect bandgap semiconductor for x > 0.41, and for barriers
with thickness of more than 4.0 nm a parasitic I"-X transfer current dominates over
the direct I"-I" current [26, 27].

To obtain a high multiplier conversion efficiency, the displacement current should
dominate over the conduction current, i.e., a varactor type of multiplier. The con-
duction current can be reduced by placing a thin AlAs layer in the center of an
Alp.4Gag ¢As barrier, which increases the effective barrier height [28].

The differential capacitance is defined as

o2

= 4.55
Vo (4.55)

where Q is the total charge accumulated in the emitter region, or the total charge de-
pleted from the collector region. Vp is the external voltage. The C — V characteris-
tic is very important for the performance of a frequency multiplier. The capacitance
modulation ratio

Crax
Cmin

is an important figure of merit, where the maximum differential capacitance, Cpax,
is given at zero external bias and the minimum capacitance, Cp;p, at the maximum
external bias during a pump cycle.

It has been shown that the multiplier efficiency increases monotonously for in-
creasing Crax/ Cmin ratio. Moreover, the efficiency does not only depend on Cpyax
and Chip, but also on the shape of the C — V characteristic. The multiplier efficiency
is improved if the shape of the C — V characteristic is sharp near zero bias [29]. It
is therefore important to characterize the capacitance well, especially close to zero
bias.

Here we employ a similar self-consistent analysis of the Poisson and Schrédinger
equations, that we developed in the previous section, to study the heterostructure
barrier varactor. As discussed in the previous section, the emitter and the collector
are approximated by two local Fermi levels, E; and E; Here let us discuss a lit-
tle bit more about this local quasi-equilibrium-state approach. The validity of local
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Fermi level concept depends on the small conduction current which does not de-
stroy the local equilibrium state. The conduction current is normally low when the
external bias Vp is small. We now analyze the conduction current when the bias is
increased.

An electron wave is injected from the emitter in the form of

eikgz

where k. is the wave vector in the emitter. It is partially reflected

ree—zkez

and partially transmitted
te ei qeZ

Assume that the central active layer is thin enough so that we can express the wave
function as

eikgz +ree—ikez z7<0

Y(z) = . (4.56)

eeifhz 2>0

The continuations of the wave function and its first-order derivative at z = 0 give

lL+re=t, ke(l—re)=qete = to= 4.57)

where
nk; _ g
2m*  2m*

due to the conservation of the total energy. It is thus observed that the amplitude
of the transmitted wave, 7., decreases following the increase of the bias Vp. The
carriers from the emitter are largely reflected and the transmission is small. The
carriers from the collector are completely reflected when the sample is biased in
such a way that E¢ is below E¢.

The amplitude of the transmitted wave, ¢., is further reduced when the finite
thickness of the barrier and the finite barrier height are taken into account. It has thus
been shown that the local equilibrium assumption of E¢ and E is valid because
of the low carrier transmission. The two quasi Fermi levels are aligned within their
corresponding regions and are separated from each other by e Vp.

The conduction bandedge and electron distribution as functions of the external
bias Vp are plotted in Fig. 4.17 for an InGaAs/InAlAs varactor. Here the heterostruc-
ture barrier is composed of a 3-nm thick AlAs layer sandwiched by two 8-nm
thick Ings2Alg.4gAs layers. The central barrier is embedded in 107 cm—3 doped
Ing 53Gag.47As. And the device temperature is set at 300 K.
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Fig. 4.17 Conduction bandedges (dashed lines) and electron distributions (solid lines) in an
InGaAs/InAlAs heterostructure barrier varactor at 300 K. Arrows indicate the increase of
Vp =0.5,1.0, 1.5 V (Reprinted with permission from Y. Fu, L. Dillner, J. Stake, M. Willander,
and E. L. Kollberg, Capacitance analysis of AlGaAs/GaAs and InAlAs/InGaAs heterostructure

barrier varactors, J. Appl. Phys., vol. 83, pp. 1457-1462, 1998. Copyright 1998, American Insti-
tute of Physics)

4.4.1 Conduction Current

The I — V characteristic is mainly composed of thermionic electron emission over
the heterostructure barrier as well as tunneling through the barrier. The dominating
mechanism depends on the electron temperature, the barrier height, and the barrier
thickness. To ensure varactor mode operation over a wide range of pump power in
a multiplier circuit, it is important to minimize the conduction current.

The current contribution of state k. originated from the emitter is expressed by
Eq. (4.40). Including the Fermi distribution and the density of states, see Eq. (4.27),
the total conduction current from the emitter to the collector is

—em*kpT [ hg e _pe_ 2dk
ITemitter—collector = W / m_£|te|21n [1 + Pk Ee)/kBT]Z—jTe (4.58)

By adding the current from the collector to the emitter, the total conduction current
along the z axis is calculated from the following equation

*kpT hk ¢ _pe_ 2d
[ _ emeks /—Cltc|2ln[1+e(Ef E¢ EC)/kBT] qc
2nh? m* 27

emikpT / hge (ES—E¢—E) kT 2dke
- —— L|"In|1 4" f  FeTme BB = 4.59

27 h? m;%'e' [ ] 27 (49)
where 7, and 7, are amplitudes of transmitted waves when transmitting from the
emitter to collector and from the collector to the emitter, respectively, with wave
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Fig. 4.18 The relations between conduction current and barrier thickness of an InGaAs/InAlAs
varactor. Dashed lines: central barrier region does not have an AlAs layer; Solid lines: with a
3-nm AlAs layer. Vp =2, 4, 6 and 8 V, respectively (Reprinted with permission from Y. Fu, L.
Dillner, J. Stake, M. Willander, and E. L. Kollberg, Capacitance analysis of AlGaAs/GaAs and
InAlAs/InGaAs heterostructure barrier varactors, J. Appl. Phys., vol. 83, pp. 1457-1462, 1998.
Copyright 1998, American Institute of Physics)

vector k, and ¢g.. Relationships between various parameters are

h2k2 h22 h22 h2k2
— EeteVp=ode, g "4 Ee—eVp=——¢

P ® 7 ¢ P *
2m¥ 2m 2m¥ 2m¥

E,

In order to minimize the conduction current, its relation with the barrier thickness
is to be investigated. The results are presented in Fig. 4.18. The conduction current
decreases generally following the increase of the barrier thickness, as expected for
the situations without central AlAs layer.

With a 3-nm thick AlAs layer introduced to the barrier region, the situation be-
comes complicated. We can discuss the situation in three steps.

e The AlAs layer is dominant when the total barrier is thin enough that the conduc-
tion current decreases following the increase of the barrier thickness. It is easy
to show that the barrier height does not affect the transmission when the barrier
is very thin. We expect the same current-thickness relation for cases with and
without the central AlAs layer.

e When the total barrier is very thick, the effect from the 3-nm AlAs layer becomes
negligible, the current-barrier-thickness relation converges to the one when the
AlAs layer is absent, as demonstrated in the figures.

e Itis expected that the conduction current is reduced by introducing the AlAs layer
because of the higher barrier height. A valley is then anticipated in the current-
thickness-relation in the presence of the AlAs layer.

The above analysis is clearly demonstrated by Fig. 4.18.
Minimization of the conduction current with respect to the proper barrier struc-
ture design is thus possible. Figure 4.18 indicates an optimal InGaAs/InAlAs var-
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Fig. 419 C — V characteristics at 300 K for an AlGaAs/GaAs (solid line) and In-
GaAs/InAlAs (dashed line) varactors. The AlGaAs/GaAs varactor consists of 3/3/3-nm
Alp3Gag7As/AlAs/Aly3Gag 7As heterostructure barrier. The heterostructure barrier in the In-
GaAs/InAlAs varactor is 8/3/8 nm Ing 50 Alg 43 As/AlAs/Ing 50 Alg43As (Reprinted with permis-
sion from Y. Fu, L. Dillner, J. Stake, M. Willander, and E. L. Kollberg, Capacitance analysis
of AlGaAs/GaAs and InAlAs/InGaAs heterostructure barrier varactors, J. Appl. Phys., vol. 83,
pp. 1457-1462, 1998. Copyright 1998, American Institute of Physics)
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Fig. 4.20 Schematic energy band structure at (a) small and (b) at large external bias Vp

actor with a barrier structure of a 3-nm AlAs layer sandwiched between two 8-nm
InAlAs layers.

4.4.2 C —V Characteristics

The C — V characteristics at 300 K are plotted in Fig. 4.19 calculated self-
consistently from the Schrédinger and Poisson equations.

For further analysis, we approximate the energy band structure of the varactor
shown in Fig. 4.17 at small and large bias by Fig. 4.20. Much alike the resonant tun-
neling diode, the varactor consists of an emitter and a collector, both are doped with
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a same doping level Np. There is a central barrier with a thickness W. Two undoped
spacers (thickness L) separate the barrier from the doped emitter and collector. The
conduction bandedge of the emitter is denoted as E¢, which is set to be the po-
tential reference (thus EZ = 0). E denotes the Fermi level in the emitter. EZ and
E; denote the conduction bandedge and Fermi level in the collector, respectively.
At zero external bias, ES =0 and E; = E; With a nonzero Vp, ES = —eVp and
E ; =F ; —eVp. And a Coulombic potential ¢ (z) distributes due to the distributions
of dopants and electrons.

4.4.2.1 Small External Bias

At low temperature, eETEN/KBT 5 | \when E; is below E?, thus the sheet density,

see Eq. (4.27), of an one-dimensional electron state E; in the emitter is

mjkBT

~ mj(E; —E)
27 h? ~

2 h?

In[1 4 Er=E0/ksT] (4.60)

We approximate the electron state E; semiclassically so that its wave function
Y; is constant in the classically allowed region (E; > EY). Moreover, we approx-
imate all the states E; below E; are identical so that the distribution of electrons
originated from the emitter is nS(E; — E{ — e¢), where ny is an effective sheet
density. ngy can be obtained by the charge neutral condition in the emitter such that,
at z=—00, ¢ =0 and E{ = 0 so that ng E‘/i = Np. We then obtain the following
Poisson equations for the emitter

2
d? E[Np —ns(ES —ep)] z2<0
_‘f =1 By —ed (4.61)
22 ( Sl-ns(ES —eg)] 0<z<L
and for the collector,
2
d2 CINp—n.(ES —e 7>
—‘f={3[ p—ns(Ef—eg)] z>p “4.62)
dz Clng(ES —eg)] Br<z<P
where
B=2L+W, BPi=L+W+b (4.63)
and b is the width of the depletion layer, see Fig. 4.20.
The corresponding solution of the above equations is
Ey az
-+ +cy)e <0
s(=] T T ¢ (4.64)

E;}+cle‘“— T’e““ O<z<L
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in the emitter, where o2 = ezns /€. For the collector,
—eVp + (E—? +¢)e* B2 2> p
()= ? > (4.65)
ES —eVp+ cre® =) — Te_“(ﬁ_z) Br<z<§B
c1 and ¢ are coefficients to be determined via boundary conditions.
And the net charges in the emitter and collector are
en y
Q.= _Y<CleaL + fe—ocL)
(4.66)

eny a(L—b) E; —a(L—b)
Q.= —| e + Te

When Vp =0, Q, = 0 so that

Ee
¢ = —Tfe*M, $(L) = ES(1 —e L)
As long as L is finite, ¢ (L) will be smaller than E‘f In this case, b is zero when
eVp is lower than E¢e~*L. The above equations are then very much simplified.
At z = L + W, the continuities of the potential

e e

E E
ES + cre®t — Tfe_“L +aW<cle°‘L + Tfe_“l“>

EL’
= E; —eVp + et — Tfe_“L (4.67)
and the electric field
E¢ E¢
cre®t + Tfe_“L +cyel + Tfe_“L =0 (4.68)

result in the following relation between eVp and Q.

Cevp = 2 FAW) (4.69)
eng
In Eq. (4.67), the left side is the potential of Eq. (4.65) at z = L 4+ W in the collector
region. The first three terms on the right side give the potential of Eq. (4.64) atz = L
in the emitter region, the rest is the potential drop across the barrier.
Thus, at small external bias, the differential capacitance is

do. o

T = T (4.70)

Cmax =
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Note that Q. is negative when deriving the above Eq. (4.70). The relation between
Cmax and W in the above equation can be understood in a straightforward way.
When the barrier becomes thinner, the potential drop across the barrier is reduced.
The reduction is used to drive carriers so that the capacitance increases. When n; is
large, i.e., large «, e.g., in metal materials, Eq. (4.70) becomes

1
T eWw

which is the common expression of capacitance for a capacitor formed by two metal
plates separated from each other at a distance of W.

For semiconductor materials of interest, Eq. (4.70) indicates that the capaci-
tance is proportional to m /e as clearly confirmed by Fig. 4.19 which shows a
larger capacitance for an AlGaAs/GaAs varactor. For an InGaAs/InAlAs varactor,
m} =0.043, while for an AlGaAs/GaAs varactor, m} = 0.065, in the 300 nm doped
regions.

The capacitance is usually measured by applying a small ac signal in addition
to the dc bias. If the amplitude of the ac signal is large compared with the Fermi
energy, b in Eq. (4.62) is no longer negligible. The spacer in the collector region is
readily depleted so that

1
Cmax X L—|——W (47 1)
is expected, as compared with Eq. (4.70).
In obtaining Eq. (4.70) we have calculated the carrier concentration by

ns(Ey —¢)

In a real varactor structure where the doped region is quite wide (300 nm in Ta-
ble 4.5), a carrier density of states of the bulk material is to be used. Again we
assume that all the states between E ¢ and conduction bandedge E are totally occu-
pied and all states above E  are totally empty (which is true when the temperature
is rather low, and/or when the doping level is very high). For a three-dimensional
material, the carrier density is then

Er 2dk
- S —nap(Ef — Ep)? 4.72
n /E Gy =" (Er — E @.72)

where

1 [2m*\*/?
D=3\ 2
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Fig. 4.21 (a) Cpax calculated by the Poisson equation of Eq. (4.73). (b) Cpax self-consistently
calculated from Schrodinger and Poisson equations at 300 K. (¢) Comparison of electron and
potential energy distributions

And the following Poisson equation is to be studied

CINp —nsp(Ef — )3/ 2<0
¢ | Sl-nap(Ep — )72 0<z<L )
dz? Cl—n3p(Ef — eVp — $)*/2] L+W<z<§

2
C[Np —n3p(Ef —eVp—¢)*?] z>p

The boundary conditions are
¢(—00) =0, V(00) = —eVp

¢(z) is obtained from the above Poisson equation. Knowing ¢(z), Q.(Vp) is
readily calculated. Figure 4.21(a) is the calculation result of Cpax as function of
spacer thickness L, barrier width W for an Aly4Gag ¢As/GaAs varactors based on
Eq. (4.73). A voltage step of 0.01 volt is applied. Equation (4.71) is clearly con-
firmed.

However, the self-consistent Schrodinger and Poisson equations give us a bit
different picture about the Crax which are depicted in Fig. 4.21(b) due to the elec-
tron wave nature. For a wave, its amplitude decreases when its distance to a barrier
becomes comparable to its wave length. For the varactors under investigation, the
distance of the first peak carrier distribution to the barrier edge is about 20 nm, see
Fig. 4.21(c). Carriers are depleted within this range. It is then expected that the car-
rier distribution and energy band structure are almost unchanged for spacers whose
layer thicknesses are comparable with this distance. On the other hand, a classical
particle can actually touch the barrier edge so that the carrier distribution depends
strongly on the spacer layer thickness.
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4.4.2.2 Large External Bias

When the external bias is largely increased so that the conduction bandedge of the
collector at z = L, —e¢ (L) is below zero, a triangle quantum well forms in front of
the barrier.

At 300 K, when Np = 1017 em™3, Ey is 16 meV in the InGaAs/InAlAs varactor
below the conduction bandedge of the emitter. The sheet density is 2.0 x 10! cm™2
when the sublevel energy is zero. When the sublevel is lowered by 30 meV, the sheet
density becomes 4.6 x 10'! cm™2. At this stage, the first excited state is formed in
the quantum well in addition to the ground state, so that the total sheet density is
6.6 x 1011 cm™2. For an AlIGaAs/GaAs varactor with the same Np, Ey =—35meV.
The sheet density is 1.6 x 10! cm™2 when the sublevel energy is zero. When the
ground state is lowered by 20 meV, the first excited state appears and the total sheet
density becomes 4.8 x 10'! cm™2.

The energy band structure is schematically represented by Fig. 4.20(b). The ex-
ternal bias largely applies on the depletion region in the collector because of the
huge localized carrier concentration in the accumulation region in the emitter. The
figure also represents the band structures when L is small or when the voltage step
is comparable to the Fermi energy. For small L, the band bending in the emitter is
small according to Eq. (4.65). Extra carriers readily accumulate in the quantum well
in front of the barrier.

The electron distribution in the collector can then be well approached by an ef-
fective depletion length z.. The potential ¢ and the electric field E at z = § are
then
2

eNpz eNpz
PP =—"  EB=——" (4.74)
Because the net charge in the barrier region is negligibly small,
eNplzZ +2(L + W)z]
(L) = < =, E(L)=EB) (4.75)

2e

As discussed earlier, lowering V(L) increases very much the sheet density of
the localized state. Due to the large sheet density of localized electrons, the triangle
quantum well in front of the barrier is quite shallow. Its depth D is:

D=eVp —ep(L) (4.76)

The width of the triangle quantum well is however quite large because of the wave
function extension of the localized sublevels in the emitter region. Energy sepa-
rations among sublevels are reduced with the increased well width so that more
sublevels exist in the quantum well. This is another reason for the high sheet density
of localized states.

When the external bias is large, D can be neglected as compared with eVp so
that

_ eNplzZ +2(L + W)z ]

V]
¢'b 2e

, Q. =eNpz, (4.77)
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it is then finally concluded that

ee
Chin = (4.78)

2eV;
(L+W)2+ >

Figure 4.19 directly confirms Eq. (4.78), as it is observed here that the capaci-
tance becomes independent of the materials used in the varactor at large external
bias. Thus, for a small Cp,;, low doping concentration is desired.

4.5 High-Electron-Mobility Transistor

In 1967 Stern and Howard first formulated the two-dimensional electron transport
for the silicon inversion layers [30]. Dingle, Stérmer, Gossard, Wiegmann [31]
and Hess [32] in 1978 and 1979 investigated experimentally and theoretically the
mobility enhancement due to the separation of carriers from their parent donors.
In GaAs/AlGaAs heterostructures, electrons confined at the GaAs side of the het-
erointerface have exhibited enhanced mobilities [33]. Much attention then has been
focused on modulation-doped heterostructures in order to realize ultra-high-speed
field-effect devices, such as the high-electron-mobility transistor (HEMT) [34].

Walukiewicz et al. in 1984 considered the electron mobility in an AlGaAs/GaAs
heterostructure with a triangular potential well on the GaAs side including the
phonon, alloy, disorder and remote impurity scatterings [35, 36], while more compli-
cated model for ionized impurity scattering was involved by Yokoyama and Hess in
1986 when analyzing the two-dimensional electronic transport in the AlGaAs/GaAs
HEMT [37]. To describe the impurity scattering, Hirakawa and Sakaki [38] used the
expression derived by Price [39] for phonon scattering.

Here we shall study the remote impurity scattering involving the realistic electron
wave functions at the AlGaAs/GaAs heterointerface in an AlGaAs/GaAs HEMT.
The AlGaAs/GaAs HEMT is usually grown by molecular beam epitaxy on semi-
insulating (001) GaAs substrate. An n-type GaAs buffer layer is followed by an
undoped AlGaAs spacer of thickness L, then n-AlGaAs, and finally the cap. The
existence of a band offset AE,. at the AlIGaAs/GaAs heterointerface causes the elec-
trons to transfer from the AlGaAs side to the GaAs side. The mobilities of these
electrons are very high because of the spatial separation from parent dopants which
are located in the n-AlGaAs layer. A metal contact is mounted on top of the cap
layer so that a gate bias Vg can be applied to modify the electron states.

Set the sample growth direction as the z direction and the perpendicular plane as
the xy plane, the charge distribution and conduction bandedge, as functions of gate
bias Vg, are calculated by the Schrodinger and Poisson equations and the results
are plotted in Fig. 4.22. It is clear from Fig. 4.22 that electrons are transferred from
the highly doped Alg3Gagp7As layer to the undoped GaAs side, and the electron
transfer is controllable by the gate, as expected. Since the spatial distribution of
the electrons in the GaAs layer is very narrow (about 15 nm), the electrons are
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Fig. 4.22 Conduction bandedge (solid lines) and electron distribution (dashed lines) of an
Alg 3Gag 7As/GaAs high-electron-mobility transistor at 300 K

usually denoted as the quasi-two-dimensional electron gas (2DEG). In Fig. 4.22 the
n*-doped Alg3Gag7As layer is 50 nm thick and the thickness L of the undoped
Alp3Gag 7As spacer is 5 nm. Depending on the purpose of the device, the thickness
of the n*-doped AlGaAs layer can be tuned accordingly. When a small depletion
gate bias is needed, thinner n™-doped AlGaAs layer is to be grown.
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4.5.1 Remote Impurity Scattering

We focus on an unscreened ionized impurity potential

/ _ _62
Viir,ro)=—— 4.79)
dre|r —ro|

to understand the fundamental mechanism of the enhanced electron mobility, where
ro and r are spatial positions of the impurity and the electron. This simple impurity
potential is actually implicitly implicated in Fig. 4.22 that at a moderate gate bias,
the AlGaAs layer is free of electrons. Further increasing the gate bias introduces
free electrons to the AlGaAs layer. When free electrons begin to accumulate in the
AlGaAs layer, they start to screen the gate bias, and we will lose the proper control
over the 2DEG at the AlGaAs/GaAs heterointerface. Therefore, the impurities in
the AlGaAs layer should be largely ionized and their potentials not to be screened
at device working conditions of the HEMT.

By discussions in Chap. 2, the probability sx_, 4 (ro) that the interaction due to
dopant at r( causes one electron to transit from state W (r) to state ¥, (r) is

2
skg (r0) = ()| V', o) 0y ()] PO[E ) — E(@)] (4.80)

where the interaction potential V'(r, ro) of Eq. (4.79) is time-independent. In a
three-dimensional system with translational symmetry, the Bloch theorem says that
the total wave function of an electron state k is

Y (r) = J%eik"uk(r), up(r) = ug(r + R) 4.81)

In the case of a layered system grown along the z direction, the electron in the
conduction band is described by

Wik, (r) = Vi @€' Puc(r) (4.82)

where k,, is the wave vector because of the translational symmetry in the xy
plane. p = (x, y). ¥;(2) is the envelope function of state E; determined by the one-
dimensional Schrodinger equation along the z direction.

By inserting the above wave function form into Eq. (4.80), we obtain

278 N b
Sikey— 4.y (ro) = T‘/wi*(z)V/(r,ro)lﬁj(z)e’(qu key)pgp (4.83)
where
8 =8[Ei + E(kyy) — Ej — E(q,,)]

and E(kyy) = ﬁzkfy /2m’ is the kinetic energy in the xy plane.
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Since the density of atoms in GaAs is 4 x 10?> cm ™3, while the concentration
Np of n*-doped impurities is normally less than 10'8 cm™3, the impurities can be
treated as independent from each other and the scatterings from different impurities
are incoherent. The total impurity scattering from state ik, to state jq ., is

Sikey— jgyy = /ND(rO)SikXy%jq” (ro)dro

4 * 2
S : , .

-0 / Notro| [ YLV ita—krogr | ary (4.84)

8mwelh |r — rol

Let 2 =g,y — kxy| and
e’(qu_k)r)')'l’

g(rlz —z0l) = f - dp (4.85)

|r —rol

It is easy to see that g(«) is small when « = A|z — zp| is large, i.e., when the electron
has a large kinetic energy in the xy plane (large k and ¢g) and/or the spatial separation
between the electron and impurity (|z — zo|) is large. Numerically g(x) =~ 1/« so
that

N e*s
Sikvy— gy S22 Sl (4.86)
where
Vi)Y (z)
0= [ Mo )'f L [ azo (4.87)

Here Np(rog) = Np(zo) since the doping profile is one dimensional along the z
direction, see Fig. 4.22. And the total electron-impurity scattering rate is

Sotal = Y Sty jgn, LU Kx)[1 = £ 4xy)]

ikx)';jqu
- qux".%ikxy[l - f(l, kxy)]f(]s qu) (4.88)

where we have taken into account the Pauli exclusion principle that the initial state
is occupied and the final state empty. It is easy to see that numerically S;x, Jay =
Sjqy—ikyy- By denoting them simply as Sik, jq. -

Sotal = Y Sikeyjgy, [F G kny) = £ q1y)] (4.89)

ikyijdxy

Since Sik,, jq,, 1s proportional to 1 /A% for the same subband states of i and j,
see Eq. (4.86), the transport of carriers with high kinetic energies in the xy plane
will be less affected by ionized impurities than those with small kinetic energies.
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Assuming that the ionized impurity scattering is the dominant factor in determin-
ing the transport properties of the 2DEG, we obtain the relaxation time as

1
; = Stotal (4.90)

and the carrier mobility in the xy plane is expressed as

e 2 af
p=- rvxy(E”)aTN(Exy)dExy (4.91)

Xy

see Eq. (2.172). Here vyy(Eyy) is the group velocity in the xy plane, N(Eyy) is the
electronic density of states, and 7 is the sheet density of the 2DEG.

Because of the factor 0f/0Ey, in the above equation, the mobility is largely
determined by the relaxation time and group velocity at the Fermi level.

To optimize the carrier mobility with respect to the thickness, L, of the undoped
AlGaAs spacer, we first notice that the first excited state is very close to the Fermi
level, thus having much smaller group velocity, its contribution to the mobility can
be neglected. High-energy states are largely unoccupied so that they do not con-
tribute to the total carrier mobility. We only need to concentration on the ground
state to calculate the mobility of the 2DEG in the xy plane.

Secondly, since the first excited state is well separated from the ground state,
inter-subband transitions from ground subband to excited subbands are not likely
because of the energy conservation factor 5. We only need to consider the intra-
subband transition within the ground state.

Transitions are thus only possible at the Fermi surface. Let Ao = Ey — E be the
kinetic energy at the Fermi level, where E. is the conduction bandedge. Since

K222
~Er—E
2m¥ ! ¢

we obtain the expression for the relaxation time

Ao
TX — (4.92)
800
and the mobility is
Af
n= 4.93)
ngoo

apart from a proportionality constant. In the above mobility expression, the first Ag
comes from the relaxation time 7 and the second Ag from the group velocity

1
Em:fv%y(Ef) = Ag

In Fig. 4.23 we have listed three principal factors that determine the mobility as
well as the mobility itself as functions of the AlGaAs spacer thickness L. Here we
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Fig. 4.23 Carrier mobility (a) and three principal factors Ag (b), n (¢) and gop (d) that deter-
mine the carrier mobility as functions of the AlGaAs spacer thickness L in an Aly3Gag7As/GaAs
high-electron-mobility transistor

see that the increase of the spacer layer thickness decreases goo. And L basically
represents the overlapping between 2DEG and dopants.

The AlGaAs/GaAs heterointerface is in principle an n™ — n™~ junction with a
built-in potential. Without the undoped AlGaAs spacer layer, the built-in potential
applies completely on the GaAs side because of high doping level in AlGaAs side.
Due to the conduction band offset between GaAs and AlGaAs, the quantum well
thus created in the GaAs side is the deepest, resulting in the highest sheet density of
the 2DEG confined in this quantum well. When an undoped AlGaAs spacer layer is
introduced, it will share the built-in potential, and the depth of the quantum well in
the GaAs side is decreased. Ag and the sheet density of the 2DEG are consequently
decreased as well. When the spacer is thick enough, the undoped AlGaAs spacer
will be able to sustain the whole built-in potential. Further increasing L will no
longer affect energy subband structure in the GaAs side. And the GaAs conduction
bandedge becomes flat and there are no free carriers.
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By Fig. 4.23, we see that n and Ag decreases monotonically as function of L.
However, at about L = 10 nm, there are shoulders in both the n — L and Ay — L
relationships. Checking carefully at subband structures, we see that when L < 10
nm, the ground state of the 2DEG is lower than that of the carriers confined in the
nt AlGaAs layer, while for L > 10 nm, the relationship is reversed.

Assuming the domination of the ionized impurity scattering in determining the
carrier mobility, the mobility of the 2DEG is determined by the following four fac-
tors. (1) The overlapping of the carrier distribution with dopants, goo; (2) The energy
of the carrier in the xy plane, kfy; (3) The square of the group velocity at the Fermi
level, v)%y; And finally, (4) the sheet density of the 2DEG, n. The square of the group
velocity at the Fermi level is proportional to Ag, which is the kinetic energy at the
Fermi level in the xy plane. The relations of Ag and n with L are the same, so that
their effects on the mobility cancel with each other and the mobility is then mainly
determined by the overlapping and the kinetic energy at the Fermi level. Since Ag
decreases while 1/ggo increases with increasing L, an optimal value of the mo-
bility as a function of L is expected, as demonstrated in Fig. 4.23. In the present
AlGaAs/GaAs HEMT structure, the optimal mobility is reached when the undoped
AlGaAs spacer is about 15 nm thick.

4.5.2 §-Doped Field-Effect Transistor

Modern semiconductor growth techniques have provided great possibilities to create
thin doping layers with a thickness of a few atomic layers which is normally referred
to as §-doping. §-doped layers in Si molecular beam epitaxy (MBE) can be achieved
by solid-phase epitaxy [40] and by ion beam doping [41]. The charged carriers are,
in this case, confined in a quantum well induced by the §-doped impurity layers.

We assume that the z axis is along the sample growth direction. A buffer layer
is followed by one (singly §-doping) or two planar doped impurity layers (doubly
8-doping) whose doping profile is modeled as

NZD _ (zle)z

e 2?2 (4.94)
a2

centered at z = 71, where N»p is the two-dimensional sheet doping density. A metal
contact is mounted on top of the cap layer so that external bias can be applied
to modify the electronic states in the doped regions. A typical §-doped metal-
oxide-semiconductor field-effect transistor (MOSFET) is schematically shown in
Fig. 4.24.

We briefly discuss the carriers in the quantum well induced by the §-doping layer.
For the one-dimensional n-type Si system along the z axis, the description of the
electron states is very simple by the effective-mass approximation, since the sample
growth direction (001) is one of the principal axis on each of the six ellipsoids of
constant energy. The six ellipsoids are grouped to:

Np(r) =
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Fig. 4.24 Schematic §-doped Source Gate Drain
metal-oxide-semiconductor ﬁ oxide
field-effect transistor
MOSFET. Here two §-doping Z4 §-doping layers
layers (centered at z; and z2) Z
are inserted

Buffer layer

Substrate

z

(a) m}=0.19, m;y =043,¢g=4
(b) m} =0.98, miy =0.19,¢g=2

The effective masses are in the unit of free electron mass. g is the band degener-
acy. As functions of the gate bias, the total charge distribution and the conduction
bandedge are plotted in Fig. 4.25 for a doubly §-doped Si field effect transistor. It is
observed that only the lowest two sublevels are largely occupied, they are confined
mainly around the §-doped impurity layers. Remaining carriers are quite extended.
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Fig. 4.25 Conduction bandedge (a) and electron distribution (b) of a doubly §-doped Si field
effect transistor calculated at 77 K. The arrows indicate the increase of the gate bias Vg (0.0, 0.25,
0.5, 0.75, 1.0, 1.25, 1.5 V). At z = 0 nm in the z axis is the oxide-semiconductor interface. The
Fermi level is at —77.7 meV (Reprinted with permission from Y. Fu and M. Willander, Subband
structure and ionized impurity scattering of the two dimensional electron gas in §-doped field
effect transistor, J. Appl. Phys., vol. 78, pp. 3504-3510, 1995. Copyright 1995, American Institute
of Physics)
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Figure 4.25 indicates that the depletion of the carriers confined in the doubly §-
doped region can be divided into two stages. There is only one quantum valley which
is occupied in the conduction band of the doubly §-doped field effect transistor when
the gate bias Vg = 0. A gate bias of Vg = 1.5 V is needed in order to push down the
second quantum valley close to the surface and get it occupied.

Let us focus on a simple picture about the impurity-scattering-limited carrier
transport in the xy plan by considering the scattering of electrons by an unscreened
Coulombic potential of an ionized impurity Eq. (4.79). Let A = |q ., — kxy|.

go(Alz — zol) / e @y k)P
A Ir —ro
(4.95)
2
g1k, 20) = ‘/ Vi (2)g0(Mz — z0l) ¥ (2)dz
the scattering matrix element can be expressed as
Sikey— jqoy = 87‘[62)»277, / Np(ro)gi (A, zo)dro (4.96)

If the kinetic energy of the electron in the xy plane is rather small and/or the
separation between impurities and carriers is small so that

Alz —zo0l =0

go~1

and
2

/Iﬂ (Z)I/IJ(Z)dZ l] 4.97)

The last equality in the above expression comes from the wave function orthogo-
nality. It is thus shown then that the inter-subband transitions are negligible if A is
small. The scattering matrix element becomes

Sikny— 4.y O(/ND(ro)dl‘() (4.98)

indicating that electrons with small kinetic energy or/and small spatial separation
between electrons and impurities are completely under the influence of the impuri-
ties.
On the other hand, if the kinetic energy is very large (large 1),
go(Alz — zol) ~ 82,z
so that

= Y7 (20)¥7(20) (4.99)



4.6 Nano-scale Field-Effect Transistor 233

and the scattering matrix element becomes

iy gy f N (ro) ¥ (z0)¥ 3 (zo)dro (4.100)

i.e., the scattering probability is proportional to the overlapping of the electrons with
impurities. Since the spatial extension of the doped impurities is much narrower (“6-
doping”) than that of the electrons, the overlapping between electrons and impurities
is expected to be very small. It is therefore concluded that the ionized impurity
scattering probability is small when A is large.

Assume that the ionized impurity scattering is the principal factor that determines
the carrier mobility, the first advantage of the §-doped field effect transistor over
uniformly-doped materials is naturally the small overlapping between impurities
and carriers. For a uniform material, the carriers overlap completely with impurities.

The energy band diagram of a homogeneous material is continuous, thus the av-
eraged value of the k vectors will not be very large, due to the large density of states
along the z axis. However, along the z axis in the §-doped field effect transistor, the
electronic states become quantized so that the energy separations among subbands
are very large. If the first excited state is to be occupied, the ground state must
be occupied by electrons whose kinetic energies in the xy plane equal the energy
difference between the first excited state and the ground state. By numerical calcula-
tions, it is easy to show that the energy difference can be 15 meV for singly §-doped
Si field-effect transistor and 5 meV for doubly §-doped field-effect transistor. The
Fermi level of a homogeneous 10%° cm ™3 doped Si is very close to the conduction
bandedge because of the large electron effective mass. From this theoretical analy-
sis of ionized impurity scattering we thus expect an enhanced carrier mobility in a
5-doped field-effect transistor as compared with uniformly doped materials.

4.6 Nano-scale Field-Effect Transistor

By the fast development of the processing technology [42, 43], electronic devices
are being made smaller and smaller [44], driven by the need to obtain larger and
faster circuits (mostly CMOS) that consume less power [45]. In the early years,
the MOSFETSs had dimensions that made it possible for the device designer to rely
on classical and semiclassical basic theories and fairly straightforward models. The
evolution towards smaller sizes made these basic assumptions too crude, forcing
the designer to take more and more special effects into account. Most important is
the quantum effect in determining the small size device characteristics. Quantization
effects in the inversion layer as well as along the channel can no longer be neglected.
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4.6.1 Wave Characteristics and Threshold Voltage

We study the three-dimensional quantum effect by solving the three-dimensional
Schrddinger equation

H(r)yp(r) = [— 22mV; —ep(r) + Vc(r)} VEe(r)=EyE(r) (4.101)
and Poisson’s equation
V[er)Ve(r)] =—e[Np(r) —n(r)] (4.102)
Here
n(r) = / N(E)f(E)|1pE(r)|2dE (4.103)

is the carrier density at position r. N(E) is the density of states and f(E) is the
Fermi distribution function. e > 0 is the charge unit. Np is the doping profile. The
equations are written down for negatively charged electrons. V,(r) is the conduction
bandedge profile. € is the dielectric constant.

The calculation of the Poisson equation is straightforward if n(r) is known. How-
ever, the three-dimensional Schrodinger equation, Eq. (4.101), is very complicated
to the common knowledge. It is noticed that we do not need the complete informa-
tion about the electron wave function, at least for the Poisson equation where only
the amplitude of the wave function is needed when calculating n(r). There is just
one numerical method that serves perfectly our need. It is the recursion method de-
veloped by Haydock, Heine, and Kelly from the Green’s function theory [46, 47].
The recursion method constructs a new set of normalized orthogonal basis, in which
Hamiltonian H (r) is turned into a tri-diagonal matrix. The diagonal elements of the
Green’s function of H(r) are expressed as the continued fractions of the diagonal
and off-diagonal elements of the tri-diagonalized Hamiltonian matrix, from which
the amplitudes of wave functions and thus local densities of states (LDOS) are ob-
tained.

To do numerical calculations, we first digitalize the electron coordinate space
r by a mesh structure. A simple mesh structure is cubic such r = (x,y,z) =
(iA,jA,kA), where i, j and k are integers, and A the cubic mesh size. For simpli-
fying mathematical notations, we denote (i, j, k) by a single index ¢, i.e.,

C=(,j,k)=(A,jAkA)=(x,y,z)=r
For example, for an electron in a space of (i, j, k) € (1:10,1:20,1:30),i.e.,arect-

angle of size 10 x 20 x 30 A3, we candenote £ € 1: 10 as iel:10, j=1,k=1),
Lell:20as (iel:10, j=2, k=1),.... We now construct a set of base func-
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tions. The first base function |1) is

? -1

1) = ol ¢
0 £4+1
£42

the second base function |2) and higher base function |r) are defined by

12) = H[1) —a1|1)

In+1) = H|n) — ap|n) — by—1|n — 1)

In this set of base functions, Hamiltonian H is tri-diagonalized

ag Jbi 0 0 0 0
Vi a B 0 0 0
H_| 0 VB2 oax VB 00
Tl 0 0 b3 as B O
0 0 0 s as b

where the diagonal and off-diagonal elements a,, and b,, are

(n|H|n) n+1n+1)
ap, = , by=—-—-
(n|n) (n|n)
Since
1
G(r’r/’ E) =(r| E—H |r/>

235

(4.104)

(4.105)

(4.106)

(4.107)

is the Green function of H, the local Green function G (r, r, E) of H in the form of

Eq. (4.106) is

1
G(r,r.E)=

b
E—a — !
E—ay— b

E*ﬂ}*éfg

(4.108)

we obtain the local density of states v(r, E) from the local Green function

G(r,r, E) atr [48-50]

v(r, E) = —% /%iirb{lm[G(r, rrE+ip)]}=>Y" [ (P [8(E — En)  (4.109)
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Modity the first base function in Eq. (4.104), for example, to

I
1) = ¢ (4.110)
1
ol £4+1
042

we will find the local density of states at spatial location £ 4 1. And finally the carrier
concentration at r is

n(r) = / F(E)v(r, E)AE @.111)

In this way, the self-consistent solution of Schrodinger and Poisson equations can
be carried out without direct knowledge of the wave functions.

Note that the base functions |r) defined by Eqgs. (4.105) are not normalized (they
are orthogonal [46]). In numerical calculations it is however good to normalize the
base functions. Denote X, as the normalized function of |n), i.e.,

n)
Xn) = 4.112
| Xn) T ( )

with some simple mathematical manipulations, we have the following recursive re-
lationships

A, = (Xn|H|Xn>
In+1)=H|X,) — Ayl Xp) — By_11X5—1)

(4.113)
B, =+/(n+|n+1)
[n+1)
X =
| n+1) B,
and
an = A, b, = B> (4.114)

In Fig. 4.26(a) we plot schematically a nano-scale transistor. The gate length is
Lc =40 nm, the thickness of the oxide layer between the gate and the Si layer
is tox = 3 nm, the effective channel length is L¢gr = 25 nm, and the ultra-shallow
junction depth is x; = 10 nm. Based on the experimental data, see Fig. 6 of [51, 52],
the doping profile in the source and drain junctions is modeled by

Np(x,z) =10>703 ¢m=3 (4.115)
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(a) Schematic transistor structure (b) Schematic energy band structure
Source <|-_G> Drain

(ES.:°)
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/ \ ' S fevp
(x,2)=(0,0) z No '
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——_(EP.4")
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Fig. 4.26 (a) Schematic nano-scale transistor. The substrate doping level is 10'8 cm—3. (b) Energy
diagram along the conduction channel

for 0 < z < 10 and |x| > 22.5. For 0 < z < 10, 12.5 < |x| < 22.5 and

V(x —22.5)2 4+ 22 < 10,
Np(x,z) = 10217037/ (x=22.5)2+2% | =3 (4.116)

Elsewhere, the doping level is p-type at a level of 10'® cm™3. Here x and z are
in the unit of nm. We set the potential energy of the substrate valence bandedge as
zero, and the gate as x| < 20 nm and z < 0 so that z > 7« defines the Si region.

The calculated electron distribution is plotted in Fig. 4.27(a) based on
Egs. (4.101), (4.102). Using the classical model by setting |1/|? as constant in clas-
sically allowed regions (total energy larger than the potential energy) and |/|* = 0
in classically forbidden region (total energy smaller than the potential energy), the
calculated electron distribution is shown in Fig. 4.27(b). Because of the large built-
in potential, there is a clear overlapping between electrons from the source and the
drain even at zero gate bias in Fig. 4.27(b). From the usual depletion approximation,
the width of the space-charge region is estimated to be a few hundred nanometers,
much wider than the effective channel length of 25 nm designed in the experiment.
The classical result of Fig. 4.27(b) is thus expected.

The difference between Fig. 4.27(a) and (b) is due to the wave property. At a
boundary to a barrier region, the wave amplitude is small (for infinitely high bar-
rier, the amplitude is zero). By the classical model, on the other hand, the amplitude
is constant in the classically allowed region. Thus, the increase of the carrier con-
centration from a barrier region (classically forbidden region) is gradual in the wave
picture. A distance from the barrier exists before the amplitude of the wave becomes
significant.

The electron distributions at Vg = 0.5 volt have been calculated which show
that at this gate bias, the electron waves from the source overlap with those from
the drain, so that the conducting channel becomes open. When Vg = 0.40 volt, the
electron concentration at the middle point between the source and the drain is about
10'2 cm—3, indicating the threshold voltage value. Experimentally, the extrapolated
threshold voltage is 0.42 volt [51, 52].
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Fig. 4.27 Electron distributions based on (a) quantum mechanical wave model and (b) classical
particle model. Vg =0

50

Fig. 4.28 Spatial distribution of the conduction bandedge from two different viewing perspectives

Figures 4.28(a) and (b) show the conduction bandedge profile when Vg = Vp =0
from two different viewing perspectives.

4.6.2 Steady-State Wave Transport

Conductance quantization has been revealed experimentally when studying quan-
tum ballistic transport of an electron through a narrow construction (quantum wire).
As the number of transistors integrated on a circuit continues to increase, dis-
crete device dimensions start to reach the nanometer region. Already in 1990 high-
electron-mobility transistors with gate lengths as short as 25 nm were fabricated
[53]. To analyze and design electronic devices on a sub-100 nm scale it is neces-
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sary to go beyond the well established Boltzmann transport equations to develop
simulation techniques based on quantum mechanical transport equations.

Experimental fabrication indicates clearly the normal transistor operation fea-
tures in short channel transistors at room temperature [51, 52]. They also show quan-
tum wave interference effect and conductance quantization at relatively high tem-
perature [54-56]. Extensive theoretical works have been devoted in this fast devel-
oping device physics field [57], e.g., Monte Carlo simulation [58], non-equilibrium
Green’s function theory [59] and real-time Green’s function formalism [60], Wigner
function [61] and many more. Many theoretical investigations assume very idealized
conduction channel and even zero electric field in the conduction channel. Here let
us study the quantum effects in nano-scale electronic devices to connect the proper-
ties of quantum transport to the transistor operation characteristics.

We concentrate on the electron transport in the conduction channel in the form
of a quantum wire, see Fig. 4.26(a). The source is normally grounded and the drain
is biased at Vp so that its local potential energy is lowered by eVp. Here we focus
on the n-type field-effect transistor. The extension of the present discussion to the
hole transport in a p-type transistor is straightforward. Because of the large spatial
extensions of the source and the drain, quantum quantization effects are negligible
in these junction areas.

Quasi equilibrium states are usually assumed in the junctions due to the high
doping levels. The quasi equilibrium states are defined by two local Fermi levels,
E]Sc and E? , in the source and rain, respectively. When assuming the same doping
levels in the source and drain,

E}=E;,  EP=Ef—eWp

where the source is grounded and Vp is the drain bias. See Fig. 4.26(b).
Quantum mechanical wave nature of the carrier is expected due to the reduced
dimensions. The carrier is described by the Schrodinger equation

R2v2

Ey(r)= |:— + V(r)i|1ﬁ(r) (4.117)

*
2m

at steady state. Here V (r) is the electric potential energy induced by electrons, the
ionized impurities and the external gate and drain biases. m is the electron effective
mass.

The boundary conditions for the above Schrodinger equation are given as:
(i) electrons in the form of waves injected from the source moving toward the drain;
(ii) electron waves injected from the drain moving toward the source. An electron
from the source injected into the conducting channel is described by

¥S(y, ek (4.118)
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where wis (y,2) and E ls are ith eigenfunction and eigenvalue in the yz plane in the
source

S s R (3% 92
Efyi(y.a)= -5~ a_y2+ 32 + Vs (3, 2) |47 (v, 2) (4.119)

Here Vg is the potential energy at x = —Legs/2. see Fig. 4.26b. The wave vector of
the propagating wave, kis must be real.

The electron wave becomes partially reflected from the conduction channel and
the total wave function of the electron in the source region is

.S A
Y, Y Dlxe a2 =70 (3, DN Y T reyd (v, e (4.120)

The electron wave which is partially transmitted into the drain is described by

:1.D
VY. Dles Loz = Y teprpe (4.121)
[
Here (1//}53, E?) are eigenstates in the drain at x = Legr/2
A L
EQyp o =|-—(-—5+-—=)+W 4.122
Yo (. 2) |: 2m2?<3y2 922 D ’M (v, 2) ( )

In the formalism of the quantum wave transport, the total electron energy, Es ;,
is conserved so that the sums over £ in Eqgs. (4.120), (4.121) are restricted by the
following equation

Rk} £ Rk e P&’
x L %t *
2m 2m 2m

c c

Es;=E} +

(4.123)

Here k? and k? may be imaginary to represent decaying waves in the source and
drain.

The wave function ¢ is thus obtained from Schrédinger equation, Eq. (4.117),
by satisfying the wave function boundary conditions, Egs. (4.120), (4.121), and the
energy conservation Eq. (4.123).

The current density from the source to the drain,

2dk
15—62/—f(Ek51’

is obtained by inserting Eq. (4.121) into the standard quantum mechanical expres-
sion of probability flow density Eq. (2.10). Since the external electric field induced
by the drain bias applies along the x direction, the component of the current in the
vz plane is zero, only hk? /m? appears in Eq. (4.124).

(4.124)
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A similar expression is obtained for the current density ip transmitting from the
drain to the source. The net current density /p between the source and the drain is
given by

Ip=is+ip (4.125)
The conductance G and the transconductance Gy are defined as

dalp alp

=—, =— 4.126
Vo v 3G ( )

Here Vg is the gate bias.

When the drain bias Vp is small as compared with the gate bias, its effect on the
potential energy across the conduction channel in the yz plane can be approached
as

V&JJQ=V@J)—ﬂb£i££B

Lest

where L is the lenght of the conduction channel, Fig. 4.26(b). Since V (y, z) is
independent of x, the wave functions and the corresponding eigenenergies in the yz
plane at position x in the conduction channel are

Legs/2
(Ve(y.2). Er)|, = (WS(y, 2), EY — eVDu>

eff
It is then easy to see that because of the wave function orthogonality

(Wi (v, D[ We(y. 2)) =8¢ (4.127)

In other words, sub-states in the yz plane do not mix with each other (r, =#, =0
when ¢ # i, where ; is the incoming wave) during the wave transport through the
conduction channel. The current density is then

_ 2dkS kP
is = —EZ/ 2—nlf(EkS,,-, Ep)ln|? mf:
i

(4.128)

The wave transport through the conduction channel becomes effectively one dimen-
sional along the x direction. In this case, an electron comes into the channel with
wave

okt
it is partially reflected
ri e—i klsx
and is partially transmitted
ikPx
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Fig. 4.29 Amplitudes of the
transmitted waves |¢|?
through a conduction channel
of 20 x 100 nm? at

Vb =0.00,0.01,0.05,0.10 V.
Dashed lines are obtained by
Eq. (4.129)
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We first consider a zero-length conduction channel so that we have the following
boundary conditions for the above three waves due to the continuities of the waves
and their first-order derivatives

. s N D, 2
Ltri=t,  K0—r) =Pt — 1 =—— (4.129)
1+ %

Here we see that if Vp =0, t; = 1. When the bias is increased, #; decreases because

hZ kD 2 h2 kS 2
ROPP_ ISR
2m* 2m*

c

(4.130)

due to energy conservation. Equation (4.129) however is valid for a conduction
channel of zero length. For realistic situations, we have to calculate the amplitude
of the transmission wave, t;, by numerical methods.

Numerical results of the amplitudes of the transmitted waves at different bias are
plotted in Fig. 4.29, where we have assumed that the conduction channel is 20 nm
thick in the y direction and 100 nm long in the x direction (the width is assumed
to be wide enough so that the quantization effect in the z direction is neglected).
When the waves are injected from the source, |z‘|2 < 1; when the waves are injected
from the drain, |t|2 > 1, see Eq. (4.129). It is observed here that the amplitude of the
transmitted wave is unity only when Vp is exactly zero. When Vp is increased, the
amplitude of the transmitted wave decreases when the wave propagates from high
potential energy region to low potential energy region, while it increases when the
wave is transmitting in the opposite direction.

The amplitudes calculated by Eq. (4.129) are also plotted in Fig. 4.29 as dashed
lines for comparison. Deviation becomes significant when the wave vector, either k5
or kP is small. However, the current density is also very small when the wave vector
is small so that the errors in calculating the conduction current introduced by using
Eq. (4.129) are small. In the analytical analysis, we can approximate the amplitude
of the transmitted wave, |¢|, by Eq. (4.129).



4.6 Nano-scale Field-Effect Transistor 243

We now need to study the relationship between E ¢ and E; in a realistic device
before further discussing the I — V characteristics and conductances. We consider a
typical high-electron-mobility transistor (HEMT). Since the HEMT is usually quite
wide, the quantum confinement effect in the z direction is neglected,

ZkZZ

2m*

c

Uiy, ) =vietE By, =E() +

(4.131)

where 1; (y) and E;(y) are energy sublevels in the y direction.
By the relationship of Eq. (4.129), the total current density from the source to the
drain becomes

8e o
=;2i:/0 dk;
X/OOd VE(Ex +eVp)
0

[f(E.Ef)— f(E,Ef —eVp)]

(V + +Ex +eVp)?
(4.132)
after necessary mathematical manipulations. Here
2,2 1252
E=E; E, + —=, == 4.133
i)+ Ex + 2m x 2m ( )

We first discuss the quantum transport at low temperature with an infinitely small
drain bias eVp < E, so that

VE(Ex+eVp) 1

- (4.134)
(VE: +VE: +eVop 4
Moreover, at extremely low temperature,
fEEp=1t E=E
T 710 otherwise
so that Eq. (4.132) becomes
2e dk,
=Y [ 55 [QELrE B - 1(EEf —ev)]
1
2 2y, 2m*(E E;
¢ D e f ) (4.135)

where the sum over i in the above equation is restricted in such a way that Ey > E;,
as we discussed early for real kis.
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Fig. 4.30 Conductance and transconductance of quantum wave transports in an AlGaAs/GaAs
HEMT. Vp = 1075 V and T = 0.0 (solid lines) and 4.2 K (dashed lines) (Reprinted from Y. Fu
and M. Willander, Carrier transport characteristics of small size field effect transistors, Physica E,
vol. 4, pp. 149-155, 1999, with permission from Elsevier)

Since

2m(Ef — E;
NEH=Y" % (4.136)

is the total number of energy sublevels in the conduction channel at x = 0 which are
occupied, we obtain

262V,
Ip = D

N(Ey) (4.137)

It is easy to show that the above equation is rather general. It is valid when the
width of the transistor is reduced along the z direction so that the electron states
there become discrete.

This gives us rather simple expressions for conductance and transconductance at
low temperature and low bias

2¢? 2¢2Vp AN(E
G="N(E)), Gy =% D IN(ES)
h h Vg

(4.138)

In Fig. 4.30 we plot the calculated conductance and transconductance as func-
tions of the gate bias at a rather small drain bias (Vp = 107> volt) for quantum
wave transport in the AlGaAs/GaAs HEMT of Fig. 4.22. The discontinuities in
the conductance and singularities in the transconductance correspond to new oc-
cupied sublevels in the conduction channel following the increase of the gate bias.
It is observed that the thermal excitation easily smears the sharp structures in the
transconductance.

When the gate bias is increased, there will be more occupied sublevels in the
conduction channel, and thus more peaks in the G — Vg relationship. We have
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Fig. 4.31 Calculated Ip — Vp characteristics of the HEMT at (a) 4.2 K and (b) 300 K. The dotted
lines in (a) are obtained by setting 112 =1 (Reprinted from Y. Fu and M. Willander, Carrier trans-
port characteristics of small size field effect transistors, Physica E, vol. 4, pp. 149-155, 1999, with
permission from Elsevier)

thus obtained oscillations in the transconductance as a function of the gate bias. It
has been shown that in addition to the Coulombic blockade effect in the small field-
effect transistor, this quantum transport of electron waves through energy sublevels
in the conduction channel also induces oscillations in the transconductance [62].

In Fig. 4.31 we present the numerically calculated Ip — Vp characteristics of
the HEMT at 4.2 K and 300 K. We first look at the dotted lines in Fig. 4.31(a)
which are calculated by setting |¢|> = 1. We observe the expected linear relationship
between Ip and Vp at low drain bias. The current density becomes saturated when
the drain bias is much increased to such a value that the local Fermi level in the
drain junction is below the conduction bandedge of the source. At this moment, all
the states occupied in the source contribute to the total current and all the occupied
states in the drain become reflected from the conduction channel.

However, the current density (solid lines) never reaches its optimal value at per-
fect transmission (|¢|> = 1). The wave reflection is enhanced by the large potential
energy difference between the source and the drain due to the drain bias. When the
drain bias is large enough,

1
Ip x —— (4.139)
Vo

which is easily deduced from Eq. (4.132). The above equation is clearly demon-
strated in Fig. 4.31(a).
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When the temperature is increased, high kinetic energy states become occupied,
thus the critical value of the drain bias at which Eq. (4.139) becomes valid is much
increased, as shown in Fig. 4.31(b).

4.6.3 Interface Roughness

Molecular beam epitaxy was rapidly developed for heterostructures of various car-
rier confining potentials. It is however realized that due to the inherent nature of the
growth kinetics and mechanisms, the width and depth of the confining potential are
in fact functions of spatial coordinate in both the lateral (in the plane perpendicular
to the growth direction) and vertical (along the growth direction) directions [63]. In
other words, a certain degree of lateral and vertical intermixings of the two materi-
als at their heterointerface is inevitable. The lateral intermixing is usually referred
as the interface roughness, which is expected to influence directly the performance
of an electron device based on the heterointerface [64, 65].

Consider an AlGaAs/GaAs heterointerface. Let the growth direction be the z
axis and the lateral plane the xy plane. The interface roughness is mathematically
expressed by a potential function as §V (x, y, z = 0) (z =0 is the position of the in-
terface), which varies from zero to A E. where an Al atom protrudes completely into
the GaAs layer. The interface roughness also introduces a potential change along the
z direction. However, since the lattice constant (5.6 A) is very small compared with
the electron extension (the wave extension along the z direction is about 15 nm in
common AlGaAs/GaAs quantum wells), this potential change can be neglected.

Because of the complication of the exact nature of the interface roughness, the
interface roughness is modeled here by three random numbers, namely, a;, x; and
y; in the following way

SV(x,9,0)=AE. Y aif(x —x;i +5)-0(xi +5—x)-0(y —yi +5)-0(yi +5— )
i

(4.140)
where
1, x>0
0(x) =
0, x<0
The position of the protruding Al atom, (x;, ;) are randomly generated by the com-
puter. The number 5 here represents the extension of the interface roughness in the
unit of A, which approximately is the size of the AlAs unit cell. The concentration
of the protruding Al atoms varies from zero to its maximal value of the Al concen-
tration in AlGaAs. The last random number, a; € (0, 1), controls the depth of the Al
atom protruding into the GaAs layer.
Let us set the conduction channel as 20 nm wide. When the width of the channel
is increased, more sublevels in the y direction become occupied and the current
increases accordingly while the physics about transport remains unchanged.
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Fig. 4.32 Ip — Vp characteristics through perfect conduction channel, a conduction channel with
100 and 200 scattering centers due to the interface roughness. From the low curve to the high one,
the corresponding gate biases are Vg = 30, 60 and 90 mV (Reprinted from Y. Fu, Y. Mu, and
M. Willander, Interface roughness effect on the I — V relation of a AlGaAs/GaAs heterojunction
field effect transistor, Superlattices Microstruct., vol. 23, pp. 417425, 1998. Copyright 1998, with
permission from Elsevier)

Let us also set the channel length quite short. Without any scattering centers in the
conduction channel, the channel length does not affect very much the current. When
the interface roughness is introduced, short channel length can cause fluctuations
in the Ip — Vp characteristics because of the small number of scattering centers
involved in the calculation. This problem is avoided by averaging the current values
calculated for many different scattering center configurations.

Figure 4.32 shows the calculated /p — Vp characteristics as a function of the
gate bias Vg for different scattering center concentrations. We have only plotted the
results of the transport of carriers occupying the ground sublevel in the z direction.
At high Vg, high sublevels in the z direction are occupied and their contributions to
Ip are additive.

Now we consider in the similar manner the impurity scattering potential for car-
rier wave transmission in the same AlGaAs/GaAs high-electron-mobility transistor.
The problem has been addressed in the last section where we have treated the remote
ionized impurity scattering by the scattering matrix method, the electron mobility
was derived from the scattering matrix element. The method was in principle semi-
classical. Here let us study the wave transmission through the potential induced by
the ionized impurity.

The spatial position of an ionized impurity, (x¢, ye, z¢), is generated in the com-
puter by random numbers. The impurities concentration is accounted by Np. L is
the thickness of the AlGaAs spacer layer.

Figure 4.33 shows the calculated Ip — Vp characteristics for two different im-
purity concentrations and configurations. The results are configuration-dependent
because of the small number of impurities present in the short channel that can be



248 4 Electronic Quantum Devices

2]
o

(a) N_=1x10" cm™ (b) N_=2x10" cm™

[9)]

o
n

\

!
\
!

N
e
_m
Il
)
o
3
(o)
<

Current density |_h/2e? [mV]
w

0 20 40 60 80 100 0 20 40 60 80 100
Drain bias V [mV]

Fig. 4.33 Ip — Vp characteristics for two different impurity concentrations and two different con-
figurations (Reprinted with permission from Y. Fu and M. Willander, Near ballistic transport and
current-voltage characteristics of a GaAs/AlGaAs heterojunction field effect transistor under the
influence of impurity scattering, J. Appl. Phys., vol. 82, pp. 5227-5230, 1997. Copyright 1997,
American Institute of Physics)

numerically investigated in the computer system. In Figs. 4.33, the impurity concen-
trations are Np = 10'? and 2 x 10'® cm™3, respectively. They are about ten times
higher than the real impurity doping concentration. High doping level has been cho-
sen to avoid too strong numerical fluctuations in the current due to the small number
of scattering centers experienced by the carriers.

Similar effect on the conduction current is observed here due to the ionized im-
purity scattering as the interface roughness effect.

In addition to the general feature of current reduction due to the interface rough-
ness and ionized impurity scatterings, the effect of the current reduction caused by
the drain bias (Ip o 1/4/Vp discussed in the last section) is reduced because of the
higher scattering probabilities when the electronic kinetic energy is small (low Vp).
Thus, the critical value of the drain bias at which Ip becomes significantly reduced
by Vp is further pushed upwards.

We have thus shown that the ionized impurities and interface roughness are two
very important factors in determining the electron transport properties in quantum-
size electronic devices. Combining Figs. 4.32 and 4.33, it can be concluded that for
the AlGaAs/GaAs heterojunction field-effect transistor, the source-drain current is
optimal when the AlGaAs spacer is 10 nm thick. This is very close to the result
derived in the last section.
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4.6.4 Time-Dependent Wave Packet Transmission

‘We have thus far studied the carrier transport at steady state. Because of the reduced
device size and increased device operation speed, we now study the time-dependent
carrier transport from the source to the drain in the Si nano-scale field-effect tran-
sistor of Figs. 4.26(a), 4.27, 4.28 in Sect. 4.6.1.

In Sect. 4.3.2 we already discussed the response of the quantum transport in
a double-barrier resonant-tunneling structure to a time-dependent perturbation. The
superposition was performed by coupling the incoming plane wave at energy E with
waves at E &+ i hw, where w is the frequency of the time-dependent perturbation and
i is an integer. Furthermore, we have discussed the quantum wave transmission in
Sect. 2.1. The quantum wave transmission scheme was adopted to study the carrier
conduction through a heterostructure barrier varactor induced by an ac bias [66]. The
problem we have now is described by the following time-dependent Schrodinger
equation

0 ,Z,t
Hw(x,z,t):ih%
(4.141)
W 9% 92
H=——|—+ — Vix,z,t
2m;‘f(8x2+8z2)+ (r.2,1)

where m is the electron effective mass. It is reminded here that the single effective
mass is only used to simplify the mathematical expressions, whereas in the numeri-
cal calculations we have to take into account the six ellipsoids in the Si conduction
band. V (x, z, t) is the potential energy. We have assumed translation symmetry in
the y direction so that the y direction is not explicit in Eq. (4.141). However, the
kinetic energy of the free motion in this direction has to be included (see later).
Because of the high doping concentrations in the contact areas, local quasi-
equilibrium states are assumed with well defined local quasi Fermi levels, E? and

E® in the source and drain, respectively. Electrons are injected to the conduction
channel from both the source and the drain. We consider an initial wave packet at

t=0
[ee) dex eik)C (x+40)
we [ (4.142)
0o 27 Ex+Ey+E§—ES
1 +exp (—7—2)
which is centered at x = —40 nm. Here E, = h*k/2m}, E, = h’k;/2m}.

[ng (2), Eg] is the ground state along the z direction in the source. ky in Eq. (4.142)
is the wave vector of the y-direction free motion. It must be included since the
occupation of electron states in the source is limited by the local Fermi level E ?
Therefore a fast motion in the y direction indicates in general a slow motion in the
x direction. Moreover, it is noticed that the state of E, is two-fold degenerate, one
with k, and the other —k,. Only state k, is included in the above wave packet since
we consider the motion of a wave packet from the source to the drain along the x
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Fig. 4.34 Wave packet transmission in the shallow source junction. fox = 3 nm so that z < 3 nm
is the oxide region

direction. Similar expressions can be written down for waves transmitting from the
drain to the source.

Numerically it is obtained (Sect. 4.6.1) that E§ = 0.2202 and E§ =0.5126 eV.
Inserting them into Eq. (4.142) and setting k, = 0, we find the wave function of an
initial electron wave packet. First we put the wave packet deep in the source (x =
—340 nm). The motion of this wave packet (its amplitude) in the source junction is
shown in Fig. 4.34. The wave packet moves along the x direction. At the same time,
it becomes diffused, as can be expected.

The speed of the wave packet is determined by its average kinetic energy. By
taking an electron with a kinetic energy of E ? - Eg =0.2924 eV (the maximum
kinetic energy in the source along the x direction when neglecting thermal excita-
tion) and an effective mass of 0.7my, the distance that the electron moves in 70 fs
is about 27 nm. In Fig. 4.34 we observe the travel distance of about 7.5 nm for the
wave packet.

Now we put the electron wave packet close to the conduction channel, e.g., x =
—40 nm. Figures 4.35 and 4.36 show the motion pictures of the amplitude of the
wave packet in two different MOSFETSs under the same gate bias (the drain bias is
setto be Vp = 0.5 V). A gate leakage current is observed when the gate oxide layer
becomes too thin. The gate leakage current can also be induced by a high gate bias
(Jx] <20 nm and z < 0 is the gate region).

To show the wave function in the barrier regions including the conduction chan-
nel and the gate oxide layer, we have used the logarithmic scale in Figs. 4.35 and
4.36. The wave packet which transmits to the drain is however very diffusive due
to the large drain bias of Vp = 0.5 V. Here we have neglected all kinds of scatter-
ing processes so that the transmitted wave packet gains 0.5 eV from the drain bias.
The transmitted wave packet thus moves very fast, and its spatial profile becomes
diffused. The diffusive distribution of the leakage wave in the gate is due to the
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same reason. The results are more clearly reflected in a one-dimensional transport

in Fig. 4.37.
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One remarkable effect of the tunneling transport characteristics is its speed. By
Fig. 4.35 we see that the tunneling of the wave packet through the conduction chan-
nel (25 nm) is complete in about 40 fs. However, it must be indicated that such a
speed is due to the 0.5-V drain bias. Letting Vp = 0 and re-doing the numerical
calculation it is easy to show that the speed of the wave packet tunnel is almost
identical to the free motion of the wave packet as Fig. 4.34.

By analyzing carefully Figs. 4.35 and 4.36, we conclude that for the nanoscale
MOSFET under investigation (40-nm gate length, 25-nm channel length, and bi-
ased at a drain bias of 0.5 V), a significant gate current is induced when the gate
bias exceeds 0.7 V (fox = 3 nm). For 7,x = 1 nm, the same gate current is induced
when the gate bias is only 0.2 V; when the gate bias reaches 0.8 V, the whole wave
packet tunnels to the gate bias. These results are obtained when Vp = 0.5 V, they
are expected to be rather different if the drain bias is much reduced.
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Fig. 4.38 (a) Without gate G2, the device is referred to as ultrathin body MOSFET. With G2,
it is called the double-gate MOSFET. The thin body/film ensures that no conduction path is far
from the gate(s) to suppress the leakages. (b) FinFET. Formation of the narrow fin, low-resistance
source/drain contacts will be is a primary challenge for Lg < 20 nm

4.6.5 Nanometer MOSFET Architectures

The effective channel length approaches 10 nm, and at the same time, the source and
drain junction depths (x; in Fig. 4.26) are also being drastically reduced. Moreover,
the width of the conduction channel must be greatly reduced for the sake of total
component miniaturization. Eventually the conduction channel is to take the form
of a short quantum wire or, effectively, a three-dimensional quantum dot, with a
nanoscale in its width, thickness and length.

The MOSFET structure of Fig. 4.26 is normally referred as the planar bulk MOS-
FET. Ultrathin body MOSFET and FinFET [67, 68] of Fig. 4.38, with ultrathin
Si film on insulator (SOI) [69], are expected to constitute mainstream nanometer
CMOS technology due to excellent scalability, superior immunity against short-
channel effects, near-ideal subthreshold slope, high near-ballistic drive-current and
transconductance, low subthreshold intrinsic capacitance, improved electrical isola-
tion, the possibility of optimal operation with relatively low channel doping, and cer-
tain advantageous circuit characteristics. And, above all, they can be fabricated with
a process flow that utilizes techniques and tools relatively similar to those currently
used for fabricating planar bulk MOSFETs. The ultrathin body SOI may be either
a single-gate or a double-gate MOSFET. The double-gate MOSFET has superior
scalability (i.e., superior control of short-channel effects) for very small MOSFETs
due to the electrical shielding action of the bottom gate for electric fields originat-
ing from charges in the source and drain. However, there are major issues with the
complicated process flow required (hence high cost) and difficult manufacturability
issues.

In addition to the nano MOSFET configurations of Fig. 4.38, there are other
variations including silicon-on-nothing [70], vertical MOSFET [71, 72], and ballis-
tic tunneling MOSFET (Fig. 4.39), when the dimension of the conduction channel
becomes less than 10 nm [73].

The main issue that the MOSFET designer has to consider here is the distribu-
tion of the electric field in the nanoscale field-effect transistor. The electrodes in the



254 4 Electronic Quantum Devices

Top QW control gate  ToP QW depletion gate
Top QW contact

R E—

Bottom QW
Bottom QW contact

Back depletion gate ~ Back control gate

Fig. 4.39 Schematic of the double-electron-layer tunneling transistor

conventional-size MOSFET are rather extended in space so that they generate rather
uniform electric fields which are used to control the electron flow in the device.
When the feature size of the device reaches nanoscale, the electrodes become sheets
and wires, and the electric fields from them are expected to be rather diffused. Fig-
ure 4.40(a) shows the geometric structure of the gates in a dual-gate MOSFET [74].
The lower gate was designed to create a conduction channel between the source
and the drain and the upper gate was supposed to deplete carriers directly under-
neath the metal bars, thus cutting the conduction channel into a series of quantum
islands. However, self-consistent calculation show that the electric fields from dif-
ferent metal bars in the upper gate merge into a rather smooth potential barrier, see
Figs. 4.40(b) and (c).

The reason is very simple: The upper gate can be simplified as an array of metal
cylinders extended along the y axis. Since the electric potential of a metal cylinder is
in the form of In \/ (x — x0)2 + (z — z0)2, where (xo, zo) is the center of the cylinder,
the solution for the corresponding Poisson equation of the array of metal cylinders is

3
p(r.2)=A Y Inv(x—id?+2+B (4.143)

i=—

where A and B are constant to be determined by boundary conditions. d = 300 nm
is the distance between two adjacent metal cylinders, and there are 7 cylinders
(i=-3,-2,—-1,0,1,2,3). ¢(x,z) shows significant spatial variations along the
x direction when z is small (in terms of the spatial separation d between adjacent
metal cylinders). However, when z > d, ¢ (x, z) is only a big potential barrier, as
observed in Figs. 4.40(b) and (c). We thus see that the upper gate only makes the
conduction channel, which is about 300 nm beneath the upper gate, narrower.

A good solution to the problem is the gate-all-around (GAA) MOSFET configu-
ration. Figure 4.41 shows the device schematic of coaxially gated silicon nanowire
transistor structure. The cross-section of the as-grown nanowire consists of a p-
doped Si core (10 nm) with subsequent layers of i-Ge (10 nm), SiO, (4 nm), and
p-Ge (5 nm). The source and drain electrodes are in contact with the inner i-Ge
core, while the gate electrode is in contact with the outer p-Ge shell and electrically
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Fig. 4.40 (a) The dual-gate structure and geometric parameters of the Si metal-oxide-semicon-
ductor field-effect transistor. (b) and (¢): potential energy profile (different perspectives) at the Si
side of the interface between oxide layer and Si. The height of the barriers induced by the upper
gate is 0.81 eV, while the depth of the conducting channel is —0.145 eV. The upper gate is biased
at 6 V while the lower gate at —3.5 V (Reprinted from Y. Fu and M. Willander, Energy band di-
agram of nanostructure field-effect transistor, Surf. Sci., vols. 361-362, pp. 500-504, 1996, with
permission from Elsevier)

isolated from the core by the SiO, layer [75]. However, the fabrication and process-
ing of such a configuration is rather complicated. In addition, we have to consider
the integration of the components into circuits [76].

Figure 4.42 shows the conduction current of the transmitting wave packet as a
function of the kinetic energy along the quantum wire (defined as the x direction, see
Fig. 4.41) with a diameter of 10 nm. Through a perfect quantum wire, the conduction
current is proportional to the momentum of the wave packet, which in its turn is
proportional to the square root of the kinetic energy, see curve (a). The other two
lines in the figures represent the currents of the transmission electron under the
influence of an ionized impurity located at (b) the center and (c) the edge of the
silicon quantum wire, respectively. The quantum wire is 1.0 um long coordinated
along the x axis, x € (—0.5, 0.5) um, and the impurity locates at x = 0.

Moreover, a resonance is observed at about 85 meV in the current spectra, as can
be further clarified by Fig. 4.43, which compares the wave packet transmissions at
three electron energies, 40, 85 and 300 meV. A small resonance can be distinguished
in curve (c) of Fig. 4.42 at about 20 meV.
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It has thus been shown that one single impurity considerably reduces the carrier
conductance. The volume of a wire with the present dimensions (10 nm diameter,
1.0 um length) is about 7.85 x 10~!7 cm? and the Si/SiO; interface area is about
3.14 x 10719 ¢cm?. To limit the number of impurities per wire to one, as assumed
in the calculation, the concentration of bulk impurities must be limited to about
1.3 x 10'® cm™3, while the total concentration of surface states must not be higher
than about 3.2 x 10° cm™2. The former value is higher than what would be expected
from existing silicon processes and can probably be easily satisfied. However, the
maximum surface state concentration required is in the lower range of what is avail-
able in the best planar Si/SiO, processes of today. The scattering potential of an
ionized impurity at the edge used in the numerical calculation of Figs. 4.42 and 4.43
is the long-range Coulombic potential, whereas the scattering potential of many sur-
face states is short range.
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4.7 Coulombic Blockade and Single-Electron Transistor

We come to the quantum dot domain by further decreasing the quantum wire length.
A quantum box defined by lateral potential barriers in a thin Si-film and by two
vertical potential barriers due to the gate oxide and to the buried dielectric of the
SON architecture leads consequently to Coulombic-blockade properties [77]. Con-
ductance oscillations in the subthreshold regime were also reported in submicron
silicon transistors at liquid helium temperatures [78]. Ionescu et al. has reviewed
the CMOS evolution, where CMOS-SET (single-electron transistor) hybrid circuits
were envisioned [79].

Silicon SETs have been fabricated in the form of point-contact MOSFETSs with
various channel widths using electron-beam lithography and anisotropic etching
technique on SOI substrates [80-82]. The dot size, as small as 5.3 nm in a silicon
point-contact channel, showed a negative differential conductance due to quantum
levels up to 25 K [83, 84]. For a similar point-contact MOSFET and the gate oxide
by chemical vapor deposition (CVD) instead of thermal oxidation, it was found that
the single-electron addition energy is about 259 meV and the dot diameter is less
than 4.4 nm [85]. Si SET with in-plane point contact metal gates was reported [86].

Si nanocrystals were deposited by very high frequency plasma decomposition
of silane, resulting in an average dot diameter of 8§ nm, the source-drain electrode
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separation is 30 nm, and a gate electrode is employed so that the charge states in
quantum dots can be controlled [87, 88] (see Fig. 4.44), Si SET memory using a
multiple-tunnel junction was also fabricated by electron-beam direct writing tech-
nique [89], and the experimental works have been carefully analyzed theoretically
[90-93]. The nanocrystals were then further processed into single electron non-
volatile memory devices [94].

The most prominent effect appearing in a nanoscale single-electron transistor is
of course the Coulombic blockade effect. When one electron arrives at the conduc-
tion channel, its Coulombic potential lifts up the local potential energy so that the
later electrons become scattered. For a nanoscale conduction channel, the poten-
tial energy changes very significantly so that the scattering is very strong. In other
words, the transport of other electrons becomes blockaded. Figure 4.45 shows a
typical drain current as a function of the source-drain and gate voltages.

When extending the road beyond CMOS, we also see quantum dot cellular au-
tomata (QCA) along the logic line of the emerging technology sequence [95]. Am-
bitions of researchers have been to develop faster and denser integrated circuits
and the field is sliding towards nanoelectronics and molecular electronics [96, 97],
among them are cellular automata and cellular neural networks [98, 99].

The novel cellular automaton was proposed by C. Lent, W. Porod and their col-
laborators at the University of Notre Dame [100, 101]. The design depends on the
dynamics of direct and local interactions between devices and their neighbors. The
Lent-Porod quantum-dot cellular automata (QCA) scheme composes of many quan-
tum dot cells seeking the lowest energy state for the entire assembly of cells. Refer
to Fig. 4.46, a quantum cell consists of five quantum dots with two confined elec-
trons. The wireless ground-state computing of the QCA is based on the transfer of
the electric fields of electrons in the cell. A high energy state exists when two elec-
trons in one cell are in close proximity to each other due to the repulsive forces of
their electric fields.

Because of the necessary carrier transfer among quantum dots within one quan-
tum cell, wave function overlappings and therefore the Coulombic exchange in-
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Fig. 4.45 Drain current contour plot of a device at the source-drain voltage and gate voltage plane.
The measurement temperature was 20 K (Reprinted from Y. Fu, M. Willander, A. Dutta, and S.
Oda, Carrier conduction in Si-nanocrystal-based single-electron transistor—I. Effect of gate bias,
Superlattices Microstruct., vol. 28, pp. 177-187, 2000, with permission from Elsevier)

Fig. 4.46 QCA majority
logic gate. Signal A, B, and C
arrive through QCA wires
and are fixed as the result of
previous operations. The cell
state is determined by the
state of the majority of the
three inputs. The output
proceeds out to the right
down a QCA wire

Extra QDs

teractions are inevitable. Consider the three QD cells marked with QD index in
Fig. 4.46, each quantum dot has one localized electron state available to accommo-
date one electron, but the electron is missing (e.g., due to thermal excitation). We
now introduce one, or two electrons at the left cell by the input A.

We denote sublevels in the QD as E,,, and ¥,,,, where n is the QD index and
m the sublevel index. When there is only one electron injected into the system from
the contact,

FE) =" AunVum (4.144)

and the Schrédinger equation becomes

. dA;;
zh? - ;Aani nm (4.145)
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where Hjjnm = (Vij| H|V¥um). Let
Aj(t=0)= 5,"1 (4.146)

the calculated result shows that due to the wave function overlapping, this electron
moves from one quantum cell to the other and gets bounced back from the other end
of the quantum dot array. The spatial distribution of the electron extends over every
quantum dot after 20 ps.

When there are two electrons, because of the antisymmetric property, a conve-
nient choice of the pair-state basis function is

L 1//}'l]ml(rl) Wn|m|(r2)

\/5 wnzmg("l) 1/fn2m2(r2) 4.147)

[ninomimy, rira) =

where the electrons are expected to have the same spins at low temperature, and

f(rler):ZAnlnzmlmzmanmlmZ’rlr2> (4.148)

The matrix element of the Coulombic interaction between the two electrons is

2
Vi]jlizjznlmlnzmz = <¢.i1j1 (rl)wizjz(r2)| 47_[6"_61 — r2| ‘Wnlml (rl)wnzmz(rZ))
2
— (Wi POV, ()| 4M|fl — i [V DY )

(4.149)

The first term is the direct Coulombic interaction between two electrons and the
second term is the exchange Coulombic interaction due to antisymmetric property
of the many-electron state. This term becomes negligible when the overlapping of
the wave functions at different quantum dots is small.

The final two-electron Schrédinger equation is

dAiljlizjz
dr

ih = Z Anymyngmy Biy jinymy Hiy jynymy

nyminama3

+ ‘Sizjznzmz Hiljlnlml + Viljlizjznlmlnzmz) (4.150)

By setting A112; = 1 at time t = 0, Fig. 4.47(a) shows the spatial distribution
of the two electrons in the time domain. The two electrons are well confined in
the first quantum cell. Checking the values of interactions, it is observed that when
the electrons stay with each other as the first nearest neighbor, the direct Coulombic
interaction is 3.0 meV and the Coulombic exchange interaction is —1.5 meV, so that
the total energy of the pair electrons is: 2E(+3.0— 1.5 meV. When the two electrons
become second nearest neighbors, the total energy becomes 2E(y + 2.1 meV! Thus,
the Coulombic exchange interaction reduces the total energy of the pair electrons
when they stay close.
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Electron distribution

Fig. 4.47 (a) Two electrons in the QCA in the time-domain. (b) Two electrons in the QCA with
extra quantum dots are inserted between two adjacent quantum cells (Reprinted with permission
from Y. Fu and M. Willander, Modeling and design of quantum-dot cellular automata, J. Appl.
Phys., vol. 83, pp. 3186-3191, 1998. Copyright 1998, American Institute of Physics)

Adding the extra two QDs between the cells, see Fig. 4.46, the electrons extend
very quickly to all cells, Fig. 4.47(b).

The important conclusion we have thus derived is the importance of the many-
body interaction, i.e., the Coulombic exchange interaction in determining the carrier
transport property of the quantum cellular automata. This many-body interaction fa-
cilitates the fabrication of the quantum dot cellular automata in a positive way that
it provides a kind of self-binding force between the two electrons in one quantum
cell so that the two electrons become better isolated from other electrons, since it
is the polarization of the electron distributions in the quantum cells that is transfer-

ring across the cellular automata, instead of the charge transfer in normal electronic
devices.

4.8 Future Perspectives

4.8.1 Carbon Nanotubes

Electronics of single-wall carbon nanotubes (SWNT) was discussed [102, 103], a
0.4 um long semiconducting single-wall carbon nanotube reveals single-electron
charging at temperatures up to 160 K [104], similar works were reported [105].
A single-electron transistor (SET) was fabricated using the single-wall carbon nan-
otube grown directly on to the Si atomic-force-microscopic (AFM) tip and TiO,
lines as the tunnel junctions which showed room-temperature Coulombic oscillation
with periods of 1 V [106], Coulombic blockade effect was observed in a metal-on-
tube metal/multi-wall carbon nanotube/metal structure (metal = Ti or Pt/Au) [107],
and multi-wall carbon nanotube between two gold electrodes at SiO; surface [108].
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Fig. 4.48 (a) atomic structure of a short single-wall carbon nanotube (SWNT), (b) schematic
drawing of a SWNT device

Electrical transport properties of intramolecular p —n — p junctions formed on in-
dividual semiconducting carbon nanotubes were reported, well-defined and highly
reproducible SETs with much smaller size than the geometrical length of the nan-
otube were obtained [109]. Single-electron tunneling through amorphous carbon
dots array was reported [110].

Figure 4.48(a) shows the geometric structure of a short single-wall carbon nan-
otube which consists of only 150 C atoms, with 10 hydrogen atoms attached to the
left end and another 10 hydrogen atoms to the right end, and Fig. 4.48(b) shows
schematically a single-wall carbon nanotube based device.

4.8.2 Molecular Devices

The possibility of atom/molecule switching devices, Atom Relay Transistor (ART)
and Molecular Single Electron Switching (MOSES) with total dimensions of a few
nm and an operation speed of more than THz to supersede the present metal-oxide-
semiconductor devices and to establish the new era of Atom Electronics has been ex-
tensively discussed and exploited [111], and devices based on ART will be ultimate
in its performance of switching speed [112]. Quantum computing devices are im-
plemented into the same substrate as the widely used large-scale-integrated circuits
are discussed [113]. A variety of molecular organic semiconductors have been in-
vestigated for electronic applications [114, 115]. Figure 4.49 shows schematically a
single molecular device connected to two atomically sharp gold electron reservoirs.

4.8.3 Metallic Devices

Single electron memory utilizing a Schottky in-plane gate quantum wire transis-
tor with nano Schottky metal dots whose positions and sizes can be precisely con-
trolled was realized [116]. The offset charge noise in metallic single electron tun-
neling (SET) devices fabricated on dielectric substrates was experimentally studied
[117, 118]. Background charge rearrangements in metallic SETs were modeled in
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Fig. 4.49 Structure of a single molecular (1,8-octanedithiol) device connected to two atomically
sharp gold electron reservoirs

two-level tunneling systems as a Poisson process [119]. A SET was made from a
cadmium selenide nanocrystal [120].

Metal based SETs were fabricated by the step edge cut off process [121]. An
aluminum SET was bonded to an InP HEMT for high frequency applications [122].
There were multilevel SET devices with Au-SiO-Al and Al-AlO,-SiO-Al overlap
capacitors [123]. And a self-aligned metallic SETT was fabricated on a separated-
by-implanted-oxygen substrate, where an array of 10-50 gold islands of 1-3 nm
diameter was isolated between source and drain electrodes on a silicon nanowire
[124]. Fabrication of metallic SETTs has been developed using different lithogra-
phy steps for the preparation of the different layers [125]. A few tens of nm wide
oxidized metal line was formed using a scanning tunneling microscopy (STM) tip
and an AFM cantilever as a cathode, which works as an energy barrier for an elec-
tron in SET [126].

4.8.4 Ferromagnetic Devices

There was also ferromagnetic dot structure embedded in split-gate quantum wires
on AlGaAs/InGaAs/GaAs pseudomorphic high-electron-mobility transistor (PM-
HEMT) by two-step surface modification with STM [127].
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Chapter 5
Nanostructured Optoelectronics

Abstract Detailed aspects about light-matter interactions in nanostructure materi-
als are presented and discussed in terms of optoelectronics performance. We be-
gin with quantum selection rules about optical intraband and interband transitions
and thereafter the optical grating required for photodetector. We further discuss the
functions of solar cell, light-emitting diode, and nanostructure laser. Quantum-dot-
based biomarkers for bioimaging applications are introduced by the end of the chap-
ter to demonstrate the extension of information-communication-technology (ICT)-
predominant solid-state nanotechnologies to many other fields.

5.1 Optical Transition and Quantum Selection Rule

Infrared absorption by intersubband transitions in quantum wells and superlattices
have been extensively investigated in recent years as a result of the applications
of these structures as infrared photodetectors and other optoelectronic devices. Ab-
sorption coefficient studies are of great importance for these devices because of their
direct connections to the design of the infrared detector, to the detecting wavelength
and to the detecting efficiency. The measurement of the absorption coefficient is a
commonly used method to study the quantum well structures. Here, we start from
basic quantum mechanics to calculate the absorption coefficient of intersubband
transition in both the quantum well and superlattice structures.

We begin the discussions about optical transition in nanostructures from our pre-
vious study in Sect. 3.3, namely, Eq. (3.84) about the steady-state optical coefficient
g(hwyg) of nanostructure

2h2|(qles - V|k)|? I
) = Y TN les - V) i

2micews?  (Eq — Ex % hog)? + I} [f(Ex) — f(Eg]

(5.1)
Here the electromagnetic field is described by photon energy Aws, photon momen-
tum hs, and polarization vector eg. ¢ and € are speed of light in the nanostructure
and dielectric constant of the nanostructure. §2 is the volume of the nanostructure.

[k, Ex, f(Ep)] and [q, E4, f(E,)] describe the initial and final states of the elec-
tron before and after optical transition.
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To make the discussions easy, let us consider optical excitations in a quantum
well structure grown along the z direction. The electron states are then in the form

ei (kxx'f‘k_vy) Wi (Z)

where k, and ky, are wave vectors in the x and y directions, respectively, and ¥; (z)
is the wave function in the z direction. There are two types of optical transitions,
the first one is between conduction-band and valence-band states, referred to as
interband transition, Eq. (3.100),

2 2
e“I'les - peyl
inter (hawg) = %
2mycews Low

£y / / 5 @1Wi () PLf (Eikyk,) — f(Ejiuk,)] 2dk,dk,
Ji

(Ejioky — Eikek, = hog)? 4+ T2 (2m)?
(5.2)

Here v;(z) denotes the electron state in the conduction band, and ¢; the hole
state in the valence band. The second is referred to be intraband optical transition,
Eq. (3.103). For conduction band,

eZHQFeg

moalheog) = — %5
8intra s Zm%cea)sLQw

% Z// (W D1 E Wi @)PLf (Eikyky) — f(E jigk,)] 2dk, dk,y
I (Ejkoky — Eikek, = hog)? + T2 (27)2

(5.3)

Similar expression can be written down for intraband optical transition in the va-
lence band.

Figure 5.1(a) shows schematically the energy band structure and optical tran-
sitions of a quantum well embedded in an infinitely high barrier. Because of the
infinite high barrier, the electron and hole states along the z axis in the conduction
band and valence band are totally confined in the quantum well region and can be
mathematically described as

Vi(2) = i (2) = Lsm<””> (5.4)
iZ)=Qi\Z2) = LQW LQW .

where the quantum index of the state i = 1,2, ... is a positive integer and z €
(0, Low), Lqw is the quantum well width.

The first set of the requirements for nonzero optical transitions, which are nor-
mally referred to as the quantum selection rules, or simply quantum selections, is
that the wave vector of the final electron state in the xy plane must equal to the
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Fig. 5.1 (a) Interband and intraband optical transitions due to photon absorption in a quantum
well embedded in infinitely high barrier. (b) Quantum well in a finite high barrier

one of the initial electron state. This is simply due to the translational symmetry in
the xy plane of the quantum well. Exactly the same requirement is needed when
we consider the optical transition in bulk material where translation symmetry ex-
ists in all three dimensions. And by Sect. 3.3, we can state further that k is to be
conserved for the optical transition in a quantum well which is extended along the
z axis. Thus, optical transition is also referred to be the vertical transition in the k
space. This leads to the well-known fact that the optical properties of Si are not as
good as most III-V materials since Si is an indirect material while common III-V
materials are direct.

For interband optical transitions, the quantum indices of the conduction band
state and the valence band state must be the same, i.e., i = j, since

(Vi@)]¢; (@) =8 (5.5)

when 1; (z) and ¢; (z) are expressed as Eq. (5.4), while for intraband optical transi-
tions,

0 i 1 —cos[(j+i)m] 1—cos[(j—i)r]
<¢j(Z) —‘wi(z)> = { —— + —— (5.6)
0z Low Jti Jj—i
If i =1, we can see that transitions to j = 2,4, ... are possible, while it is not

allowed to j =3, 5, .... And the largest transition probability is when j — i = £1.

On the other side, there is a distinct requirement about the electromagnetic field.
For the interband optical transitions, Eq. (5.2) contains |eg - pcv|2, where e is the
polarization vector of the electric field, while e,, the component of the electric field
in the z direction, is contained in Eq. (5.3). We know by the fundamental electro-
magnetic field theory that e is perpendicular to the propagation direction of the
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electromagnetic field, i.e., s. For a quantum well along the z direction, we therefore
realize that interband optical transition occurs for any polarization of the electric
field, but intraband optical transition only occurs when e, # 0. More specifically,
a quantum well along the z direction will not emit a photon along the z direction
when one electron transits from a high-energy state in the conduction band to a
low-energy state in the same conduction band. The emitted photon due to intraband
transition will propagate in a direction which is perpendicular to the z axis. Simi-
larly, the quantum well along the z direction will not absorb a photon that incidents
along the z direction to induce an intraband transition either in the conduction band
or in the valence band. This generates a profound impact on the design of quantum
well based optical devices. We will discuss it in more detail a bit later.

In reality we do not normally work with nanostructure systems that are embed-
ded in infinitely high barriers. The barriers are almost always finite, especially when
we work on optoelectronic systems where either we inject electrons to get pho-
tons, light-emitting diodes and lasers, or we use photons to generate electrons for
photodetector and solar cell applications. In all these cases, electrons, either in the
initial state or the final state of an optical transition, need to be extended so that
they can be reached by external circuits. Thus, we actually deal with nanostruc-
tures as depicted in Fig. 5.1(b) where the barrier height is finite so that the envelope
functions of the electron states are more or less extended. The diffusion of the enve-
lope functions across heterointerfaces makes the theoretical treatment of the optical
spectrum more complicated, while we expect similar major features of interband
and intraband optical transitions as in the case of a quantum well in infinitely high
barriers.

One complication in the theoretical analysis of the optical spectrum is the vari-
ation of the material parameters in the heterostructures. We discussed the effective
mass in multiple quantum wells in Sect. 1.8, Eq. (1.159), that for a one-dimensional
heteromaterial along the z direction, the kinetic energy is expressed as

Rk, ———k

2m*(z) "

It is easy to see that a generalization of the above expression to a three-dimensional
case results in

1

Epfup 5.7

where w is the 3 x 3 inverse effective-mass tensor taking into accounting the
anisotropic effect of the band structure, see Eqgs. (1.73), and its elements wy,, =
Wym = 1/m},,, where m,n = x, y, z. Here p = hk, k is the wave vector of the elec-
tron in the crystal. And the light-matter interaction, i.e., the interaction between an

electromagnetic field and the electron now becomes
eAwp (5.8)

See Sect. 3.2.
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5.2 Intraband Optical Transition

Now we are going to calculate the absorption coefficient due to intraband optical
transitions in a quantum well along the z axis, the plane perpendicular to this direc-
tion is defined as the xy plane. Here a radiation is switched on at time # = 0. Since
the quantum well is translationally symmetric in the xy plane, the envelope function
there is in the form of plane wave and the total wave function can be expressed as

Yik(r) = ¥i Qu(r)e'* (5.9)

where u(r) is the Bloch function, which is the same for all i and k since we focus
only on intraband optical transitions in this section. k = (k,, k,) and p are the wave
vector and coordinate in the xy plane, respectively. r = (p, 2) = (x, ¥, 2). ¥;(2) is
the normalized envelope function in the z direction.

Since u(r) is periodic with a period of lattice unit cell, the integration over p can
be approximated as

/ei(q—k)-p’u(r)’de%/.ei(q—k)-l?dp/ |u(r)’2dp (5.10)
cell
Moreover,

/ei(q_k)"”dp = Skg (5.11)

we obtain the optical transition matrix element

Wikig = (Vi ()| ADp|Yig(r) = 8kg A emwmz(V; @) | pz|i () (5.12)

where A = Aeg, e = (ex, ey, e;), m =x, y, z. We have approximated in Eq. (5.12)
that the envelope function does not vary much within one unit cell so that

[ vi@p@ue P [viopneon [ ez 513

The reader can find similar but more detailed mathematical manipulations in
Sect. 3.3.

Equation (5.12) indicates that the intraband optical transition occurs only when
the momentum in the xy plane is conserved. And the transition is between the enve-
lope functions in the z direction. These have been discussed in the previous section.
Note that

1, ifk=g¢q
Sry = 5.14
kq {O, otherwise ( )

so that we can simplify the notation of the optical transition matrix element of
Eg. (5.12) to be Wj; (k).
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Table 5.1 Material

parameters of four commonly Material Major axis  Dielectric constant € wy wy

used semiconductors. The

unit of the inverse effective AlAs [001] 10.1 5.263  0.909

mass elements is 1/mo, AlGaSb  [111] 13.0 6.304 0.766

:f;z;e my is the free electron Si [001] 118 5963 1.020
Ge [111] 16.0 12.195 0.610

As discussed briefly in the previous section, and is further shown by Eq. (5.12),
the optical transition matrix element W;; (k) will be zero for an electromagnetic
field which is propagating along the z direction (e, = 0) if wy, = wy; = 0. For
spherical bands, w;,, = Wy, =0 when m # n, see Eq. (1.74), so that W;; (k) =0
when e, = 0. This implies that the quantum well made of spherical bands will not
absorb light which incidents normally to the quantum well surface. We will discuss
such a case in the next section.

On the other hand, it is a new story for an ellipsoidal band described by
Eq. (1.75). We know from Chap. 1 that the conduction band of Si consists of six
ellipsoids described by a longitudinal effective mass m,; = 0.9163 along the major
axis of the ellipsoid and a transverse effective mass m; = 0.1905 in the plane perpen-
dicular to the major axis, expressed in the unit of free electron mass mg. For almost
all the indirect-gap semiconductor materials, the conduction bands have either six
symmetrical ellipsoidal constant energy surfaces (usually the X valley electrons),
or eight symmetrical half ellipsoidal constant energy surfaces (usually the L val-
ley electrons). Table 5.1 lists material parameters of four common semiconductors
AlAs, AlGaSb, Si and Ge. For X valley electrons, there are six ellipsoids whose
major axes are oriented along three crystal axes, [100], [010] and [001], which form
the principal coordinate system XY Z. The inverse effective mass tensor w, is di-
agonal in this principal coordinate system. For example, the w, matrix, for the two
degenerate ellipsoids whose major axes are in the [001] direction, is in the form of

Wy 0 0
w,=[0 w, 0 (5.15)
0 0 Wy

where w; = 1/my, wy, = 1/my. The equation of the constant energy surface of these
two ellipsoids is

hZ
E(w,kf( +wiky +weky) = E (5.16)

Table 5.2 lists degeneracy g of the lowest energy valleys. By Eq. (5.12) we can
expect the similar quantum selection rule that the quantum wells made from ellip-
soidal bands can not absorb radiations that incident normally to the quantum well
surfaces if the quantum wells are grown along one of the major axes.

We now discuss a quantum well whose growth direction, i.e., the z axis, does not
coincide with any of the three major axes. Let us denote the quantum well growth
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Table 5.2 Degeneracy g of the lowest energy valleys [XY Z]

X valley L valley

[XYZ] g Occupied valleys [XYZ] g Occupied valleys
X=Y=Z7 6 all X=Y=0 4 all

X=Y>Z 4 [100][010] Z=0 2 (111301117
X>Y>Z 2 [100] otherwise 1 [111]

direction by its crystal direction notation [¢mn]. The choice of the x and y axes is
arbitrary as long as the two axes are perpendicular to [¢mn] as well as perpendicular
to each other. In order to simplify the mathematics, we choose the y axis to be
perpendicular to not only the already defined z axis, but also to one major axis of
the ellipsoid. The x axis is then uniquely determined by its orthogonality with both
the y and z axes. In this xyz coordinate system, the inverse effective mass tensor
has nonzero off-diagonal elements, which will enable this type of quantum well to
detect normal incident radiation. Let us analyze the situation step by step.

The general equation of the constant energy surface is

1 2 2 2

T(w”kx + wyyky + wezk? + 2wyykyky + 2wy kyk: + 2wzxkzkx) =F (5.17)

which results in the following effective-mass Schrodinger equation

K2 d? d? d? d? d?
—— | Wyx —|— +wZZ +2wxym+2

2 a2 T2 dz2 V7 dyvdz
d2
+2w2x— +V(Z) wi(x»ysZ)ZEwi(x,y,Z) (518)
dzdx

see Sect. 1.8. Here V (z) is the potential energy due to the heterostructure of the
quantum well along the z axis.

The first-order derivatives with respect to z in the above equation can be elimi-
nated by letting

—i k -k . !
Vi y.2) = E:(2) exp[ iz(wyzky + wy; y)i|ez(kxx+kyy) (5.19)
Wz
so that the partial envelope function &;(z) in the z direction is determined by
—w, 1 d?
[ i V(z)]s,- (2) = Ei&i(2) (5.20)

We call &;(z) as the partial envelope function in the z direction to distinguish the
complete envelope function

¥i(z) =& (2) exp|: —iz(Wazky + wyzky)i|

Wzz
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The total energy of Eq. (5.18) is
Eix=E; + Ei (5.21)

where Ejy, is the kinetic energy in the xy plane.

hz 2 2
Ep = ?(wxxkx +2wiykiky + wyyk2) (5.22)

In many practical samples, the barrier is quite high and the effective mass is large,
so that the wave function penetration into the barrier region can be neglected and
the barrier can be approximated as infinitely high. Take Lgw as the quantum well

width,
2 inz i2mhw,,
fa@=|r—sin(T—)  Ea=——5— (523
QW QW 2LQW

where i is an integer. It is noticed here that since the sublevel is normally indexed
as 0,1,2,... where Ej denotes the ground sublevel, E; the first excited sublevel
and so on, whereas i in Eq. (5.23) must be a non-zero integer, we denote the wave
function and the corresponding eigen energy by (i — 1).

If we only consider the transition between the ground and the first excited sub-
levels,

372w d 2

E|— Ey=——>5—, Kvn (2) 8—‘I/fo(z)> =—— (5.24)
2LQW Z 9LQW
For the second relationship, see Eq. (5.6).
We obtain the absorption coefficient
32¢2H2Tn, 2

a(hws) = e | 2 Ot (5.25)

9cews Lyl (- 2Léw“ — hawg)” + ']

by Eq. (5.3). I is the lifetime of the excited state, € and c are the dielectric constant
and the speed of light, respectively. e; = (ey, ey, e;) is the polarization vector of
the electromagnetic field and hws is the photon energy, n, is the sheet density of
electrons occupying Ey in the quantum well which will be discussed a bit later.

It is obvious that the absorption is maximal if £ — Eo = hwy, the corresponding
optimal absorption opyax is (apart from constants)

1 2
. 5.26
Qmax X LQszz Zm:emwmz ( )
Note Eq. (5.24) so that E1 — Eoy = hws means
372 h?
TN Wz _ o (5.27)

2
2Ly
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In other words, Lgow, w;; and hw; are inter-correlated. Device design normally asks
for a quantum well structure with the best absorption coefficient for a fixed optical
energy. Thus, for a fixed hwg, the above equation indicates that we need to modify
Lqw proportional to ,/w;; when w;; is changed due to the change of the growth
direction [¢mn]. Thus, for a fixed fws, the optical absorption coefficient becomes

E EmWmz

m

1 2

Omax X 352
Wzz

(5.28)

When considering the normal incident and non-polarized radiation, i.e., ex = e,
and e; = 0 so that

e;=0
(exwy: + eywy:)® = (ex) wy, + (ey) wy, (5.29)
1
2 2
(ex)” = (ey> = E
we obtain
2
w
Omax X —;‘fz (5.30)
Wz

We need to calculate w,, and w;, in order to estimate and optimize the absorp-
tion coefficient of Eq. (5.30). Knowing [¢mn] and thereafter coordinate xyz, we are
able to calculate the inverse effective mass elements w,,, in Eq. (5.18) from w, by
coordinate transformation. The coordinate transformation matrix 7 between coor-
dinate system XY Z and xyz is unitary, i.e., T—! =77, where T~} and T are the
inversion and transpose of matrix T, respectively. The inverse effective mass tensor
w in coordinate system xyz is

w=T"w,T (5.31)

For the ellipsoid whose major axis is in the [001] direction of the principal coor-
dinate system,

tn —m 14

r\/£2+m2 «/£2+m2 r

- mn J4 m
T= r\/l2+m2 \/€2+m2 r (532)

—(+m?) 0 n

ra/ 024+m? r

where r? = ¢> + m? 4 n?. For other ellipsoids, the 7 matrices can be obtained in
the similar way.

For the L valley material, the calculation is a bit more complicated since the
principal axes do not coincide with any of [100], [010], [001] directions. What we
do is first transfer w,, expressed in the principal coordinate system XY Z, to the one
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in [100], [010], [001] system, and then to the system xyz determined by the growth
direction. Therefore, Eq. (5.31) should be modified as

w=T"Bw,B"T (5.33)
whose elements are

Win =Y _ Tim »_ Buwwi Y B Tern (5.34)

k K K"

For the ellipsoid whose major axis is in the [111] direction,
S
NIERNGEENG]
= 1 1 1

B= NN NG (5.35)

=2 o L

V6 NG

Moreover, since the y axis of coordinate system xyz is set to be perpendicular to the
major axis of the ellipsoid, wyy, = w; and wyy, = wy; = 0. Thus,

(mAm)e—m*+n®)  n—m 4
rry rl r
T=| (tm=—(2+6)  n m (5.36)
rry r r :
Ermn—(C4m*» m—€ n
rry ry r

where r2 = 02+ m? +n?, as defined before, and rl2 =(m—m)2 4+ —n)24+m—1)%.

Wmn in coordinate system xyz can then be obtained by the above transformations.
However, we hereby present an alternative and simple method instead of the direct
coordinate transformation. Obviously wy, and w,, are linear functions of w; and
wy, see Eq. (5.34). And it is known that if w, = wy, the inverse effective mass tensor
in the principal coordinate system is a numerical matrix, i.e., a unit matrix multiplied
by a constant. Such a matrix is invariable under any unitary transformation. It is thus
expected that for any w; and wg,

Wz, = —a)w +awy
(5.37)
Wyz = b(wy — wy)

In other words, in the expression of w_,, the sum of the coefficients of w; and wy

equals one, while for w,, it is zero. Thus, the calculation of w,, and w,, becomes
extremely simplified. By Eq. (5.34), we can get a and b of Eq. (5.37) as

2
a= (Z Tszkz) . b= —(Z Tix Bkz) (Z Tszkz) (5.38)
k k k
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Equations (5.37, 5.38) are also valid for X valleys after setting B as an unit matrix.
Finally we have

Wzz = (1 - Tzzz)wf + Tzzzw/Z
(5.39)
Wiy = =T Trpwy + Tox Tz wy

This method is of great convenience to determine the elements of the inverse ef-
fective mass tensor in the new coordinate system whose z axis is along the quantum
well growth direction. However, this calculation of inverse mass tensor elements can
be further simplified by a more detailed investigation.

In the transformation of the coordinate systems, there are four mathematically
invariable quantities

Wyy Wxy Wy O w, 0 0 0
Wyy Wyy Wy 0| 10 w O 0 _ Euw?
= =—FEw;wy
Wy, Wy Wy O 0O 0 wy¢ O
0 0 0 -—F 0O 0 0 -E

Wyy Wyy Wy w, 0 O

Wyy Wyy Wy =0 w, 0= wtzwg (5.40)
Wy Wyz Wy 0 0 wy
Wxx + Wyy + Wz = 2w, + wy

2 2 2 _ 240

WxxWyy + WyyWzz + WzzWxx — Wy, — Wy, — Wr =W, + 2w;wy

In above equations we have chosen wxx = wyy = w; and wzz = wy. Other choices
of w, elements give the same results as shown by the above equation.
By these four equations it is easy to see

2
WyxWzz — Wy, = Wi Wy
(541
Wyx + Wz = Wy + Wy

since wyy = w; and wyy, = wy; = 0 because of the choice of the y axis. These two
equations are universal and thus are very useful to simplify the calculation of the
elements of the inverse mass tensor and the discussion of the limits of the normal
incident radiation absorption as well as its optimization. From these two equations
and Egs. (5.37), we can write w,; in a much simpler form

2 _
Xz

w2 =a(l —a)(w; — wy)? (5.42)

where a is defined by Eq. (5.38). We can therefore write the following equations

wzz = (1 —a)wr + awy

Wy =+ a(l —a)(wy —wy)

(5.43)
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Table 5.3 The parameter a for X and L valleys. [XY Z] denotes the principal coordinate system
of the major axis, while [£mn] is the quantum well growth direction. r? = £% 4+ m? + n?

X valley L valley
Major axis ar? Major axis 3ar?
[(XYZ]= [100] 2 [XYZ]= [111] L+ m +n)?
[010] m? [111] (—C+m +n)?
[001] n? [111] € —m +n)?
[111] €+ m—n)?
Fig. 5.2 Absorption 6

coefficient of the normal
incident radiation based on
the intersubband transition as
a function of the parameter a
for Ge, GaAlSb, AlAs and Si
quantum well materials
(W. Xu, Y. Fu, M. Willander,
and S. C. Shen, Theory of
normal incident absorption
for the intersubband transition
in n-type indirect-gap
semiconductor quantum ]
wells, Phys. Rev. B, vol. 49, 0 : : : :
pp. 13760-13766, 1994) 0.0 0.2 0.4 0.6 0.8 1.0
a, parameter of sample growth direction

GaAlISb

Absorption coefficient [arb unit]

In other words, we have transformed the calculation of elements of the inverse ef-
fective mass tensor into the calculation of one parameter a, which is evidently much
simpler. In Table 5.3, we list the expressions of the parameter a for X- and the
L-valley electrons.

Back to the absorption equation, Eq. (5.30) now becomes

a(l —a)(w, — wy)?
(1 — a)w; + aw,]3/?

(5.44)

Omax

by inserting Eq. (5.43).

The well-known quantum mechanical selection rule about optical transition is
again clearly reflected in the above equation. Namely, if the quantum well is grown
along one of the major axes of the semiconductor material, @ = 1 so that ¢max =0
which means that optical transition is not possible when the propagation direction
of the incident radiation coincides with the quantum well growth direction.

Figure 5.2 shows the absorption coefficient @ as a function of parameter a for
four quantum well materials which have been widely investigated.
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Table 5.4 Maximal absorption coefficient and optimal growth directions. The photon energy fiw;
is in the unit of eV and the quantum-well width Lgw in A. The unit of the inverse effective mass
elements is 1/mg, where my is the free electron mass

Material Valley Major axis wy wy a % Low~/hwg  Jw; Optimal [¢mn]
AlAs X [001] 5.263 0.909 0.795 1.278 14.17 2.294 [102][113][203]
GaAlSb L [111] 6.304 0.766 0.839 1.941 13.25 2.511 [123][133][112]
Si X [001] 5.263 1.020 0.780 1.132 14.52 2.294 [102][113][203]
Ge L [111] 12.195 0.610 0918 5.182 12.87 3.492 [122][112][133]

It is easy to obtain the condition of a maximal omax(a) as a function of a with
respect to a such

darmax (@)

=0 5.45
i (5.45)

a=a’

from which we obtain

, 3w,+wg—\/w,2+w%+l4wtwg
a =

5.46
2(w; — wy) (5:40)

Using the formulas listed in Table 5.3, we can calculate the a parameter for the
different growth directions of the quantum well. By comparing the calculated a
parameter with a’ of Eq. (5.46), the optimal growth direction for the absorption of
the normal incident radiation can be obtained.

For X electrons in the energy valley with an [100] major axis and L electrons
with an [111] major axis, we present the calculation results in Table 5.4 for the four
different quantum well materials. The value of ,/wy; is also given, which will be use-
ful for later discussions. It is clear that if the calculated optimal growth direction is
[£mn], the direction of [m£n] for the [001] X valley, and the directions obtained by
the index rotation for the [111] L valley are also optimal because of the symmetry.
The optimal growth directions for other valleys can be obtained in the similar way. It
should be pointed out that in Table 5.4 only low-index optimal growth directions of
the quantum well detector have been listed, where we have not taken into account
the problems of the real material growth. In addition, the results are obtained for
only a single valley whose major axis is listed in the table.

Figure 5.2 and Table 5.4 clearly demonstrate that for maximal absorption, a large
ratio between w; and wy is desirable, and among these four quantum well mate-
rials studied, Ge is the best candidate for the largest absorption for the normal in-
cident radiation based on the intersubband transitions. This conclusion agrees with
the experimental results [1]. It is of interest to compare the absorption coefficients
of indirect-gap systems with well-known direct-gap systems, e.g., GaAs quantum
well. Still keeping hwg constant, it is easy to obtain from Eq. (5.25) that for a non-
polarized incident radiation o = 0.48 at 45 degrees incident illumination for GaAs
well where w, = w, = 15.0.
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Fig. 5.3 Elements of inverse
effective-mass tensor w_, and B
Wy (in unit of w;) vs
parameter a (W. Xu, Y. Fu,
M. Willander, and S. C. Shen,
Theory of normal incident
absorption for the
intersubband transition in
n-type indirect-gap
semiconductor quantum
wells, Phys. Rev. B, vol. 49,
pp. 13760-13766, 1994)

[in unit of w,]
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a, parameter of sample growth direction

Let us compare the absorption of the normal incident radiation with that of the
parallel incident radiation for same quantum well structure based on the intraband
optical transitions. For the parallel incident radiation, e, =0 and ey = e,, and by
Eq. (5.25), the absorption coefficient o) can be written as

2
w
o) X ;/Zz =/ Wzz (5.47)

Z

It is then more convenient to compare w,, with w,, instead of comparing Eq. (5.30)
with Eq. (5.47). From Egs. (5.37), (5.42), assuming w; = Bw,, we have

Wzz = [(1 —a)p +a]wl

wyz =va(l —a)(1 - Bwy

Obviously, the parameter § is related with the anisotropic property of the effective
mass tensor of the quantum well material (0 < 8 < 1). 8 = 1 means that the effective
mass is isotropic so that w,, = 0. The absorption coefficient of the intersubband
transition for the normal incident radiation vanishes, similar to the I" electrons in
a GaAs/GaAlAs quantum well. The parameter a, defined in Eq. (5.38), represents
the orientation characteristics of the quantum well (0 <a < 1). Both ¢ = 0 and
a = 1 imply that the growth direction of the quantum well coincides with one of the
principal axes so that wy, = 0, and thus the absorption coefficient of the intraband
transition for the normal incident radiation vanishes though the quantum well is
made of the indirect gap semiconductor material. Figure 5.3 shows w_, and wy,
as functions of parameter a. By a very simple calculation, it is found out that the
straight line of w,, and the curve of w,; have two cross-points only if

(5.48)

B>PBo=3++8=5828
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In this case, when

3,3—1—\/m<a<3,3—1+\/m
4B8—-1D 4B —1)

we will have w,, > w,. In other words, the absorption of the normal incident radi-
ation is larger than that of the parallel incident radiation. Thus, for the same quan-
tum well, the conditions for a large absorption of the normal incident radiation are
as follow: First, the anisotropy effect of the effective mass tensor of the quantum
well material should be large enough, so that the longitudinal mass m, is at least
5.828 times larger than the transverse mass m,. Secondly, the growth direction of
the quantum well must satisfy Eq. (5.49). For example, for electrons in GaAlSb L
valley, 8 = 8.229 > By. If one chooses [213] or [233] as the growth direction [¢mn],
the parameter a is 0.8571 or 0.9607, which satisfies Eq. (5.49). Thus, the absorption
of the normal incident radiation is larger than that of the parallel incident radia-
tion in this quantum well. For a quantum well made of Ge, the same analysis can
be done and a similar conclusion is obtained. However, for Si quantum well, since
B =5.16 < By, the absorption of the normal incident radiation is always smaller
than that of the parallel incident radiation for any growth direction.

Because the maximal value of the absorption coefficient of the parallel incident
radiation based on the intersubband transitions is omax & /w; (when the growth
direction coincides with one major axis), as listed in Table 5.4, it is noticed that
for a quantum well, the maximal value of the absorption coefficient of the parallel
incident radiation is not always greater than that of the normal incident radiation.

Now we discuss the sheet density ng of electrons occupying Ep in Eq. (5.25).
The total absorption coefficient is the sum of the ones from all occupied valleys,
it is thus necessary to investigate the degeneracies and the occupancies of different
energy valleys. For many practical applications, the total sheet density of electrons
in the quantum well is about 5 x 10'> cm™2. Let us examine the position of the
Fermi level E  with respect to the ground sublevel Eq, for which we need to know
the density of the electron states N> in the xy plane, which can be obtained by
straightforward calculation similar to Sect. 1.9. However there is a simpler way.

The three-dimensional density of electron states for an ellipsoidal energy valley
with transverse and longitudinal effective masses m; and my is

(5.49)

N3 ocm?my (5.50)

in the principal coordinate system, see Eqgs. (1.82), (1.83). It remains the same for
the ellipsoidal valley in any Cartesian coordinate system xyz by the method of in-
variables during coordinate transformation, see Eqs. (5.40). Most important of all is
the fact that N3 is a physical quantity and thus is independent of the choice of the
coordinate system. On the other hand, we understand by Sect. 1.9 that the density of
states of a one-dimensionally extended system N| & /m*, where m* is the effective
mass along the extended dimension. For the quantum well under investigation, the
effective mass along the z direction is 1/w,;, see Eq. (5.20). It is thus easy see that
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the two-dimensional density of states of the ellipsoidal valley in the xyz coordinate
system is

1 W,

h ﬂﬁzLQw wtzwg

Ny (5.51)

Let us examine the position of the Fermi level E; with respect to the ground
sublevel Ey. We know from previous chapters that the sheet density of electrons
occupying state Ej is

N/oo dE NokgTln| 1+ Er = Eo
ne = = n eX _—
CT8N2 | T+expl(Bo— Ep)/kgT] 502 P\T kg

(5.52)

which becomes
ng=gN2(Ey — Eop) (5.53)

at low temperatures. Here g is the degenerate factor which is listed in Table 5.2 for
X and L valley electrons. The six X valleys are degenerate in bulk materials. For a
quantum well grown along the [¢mn] direction, the six valleys are still degenerate if
L=m=n.If £ =m > n, two of the six X valleys are lifted up so that the degeneracy
of the lowest energy valleys becomes 4, while if £ > m > n, the lowest energy
valleys are only two-fold degenerate. Similar considerations can be carried out for
L valleys. For a sheet density of carriers of ny = 5 x 1012 cm™2, it is only the
lowest energy valleys which are occupied. For example, for an n-type Si quantum
well grown on the [110] direction, g =4,

Ef —Ep=9.0meV

while
Ei— Ey=27.9 meV

Among the four commonly used heterostructure materials (AlAs, AlGaSb, Si and
Ge), (Ey — Ep) of AlGaSb grown along the [111] direction is the largest, which is
75.0 meV, (E1 — Ep) is however even larger (265.6 meV).

Table 5.5 shows results of the optimal growth directions of different quantum
wells. It is found that in the listed quantum well structures, the most common op-
timal growth direction is [110]. The Ge/SiGe quantum well which has the largest
anisotropy of the effective mass has the largest absorption coefficient for normal in-
cident radiation. For high doping concentration or other detecting wavelengths, the
conclusions may be different, but the physical principle is the same.

For four most promising n-type quantum wells, the absorption coefficient is plot-
ted as a function of parameter a (characterizing the sample growth direction) in
Fig. 5.2. We also list in Table 5.4 the optimal growth directions. We have taken
¢ = co//€, where € is in the unit of j. The permeability of the sample is assumed
to have the value of the free space. Since the dielectric constant of GaSb is 16.0, the
dielectric constant of AlGaSb is approximated as 13.0, the average between GaSb
and AlAs.
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Table 5.5 Quantum well growth directions and the total absorption coefficient

Material Growth direction Occupied valley Uotal (Arb. unit)
AlAs [110] [100][010] 3.50
[111] all 3.40
AlGaSb [110] [111](111] 3.23
[100] all 2.90
[102] (11101 2.86
Si [110] [100][010] 323
[111] all 3.18
Ge [110] [111][111] 6.31
[203] [111]0111] 5.93
[102] [111[111] 5.26

It is noticed that in addition to the dependence of the absorption coefficient on the
sample growth direction, through the parameter of w,; in Eq. (5.24), the quantum
well width Lqw is another critical factor in determining the response wavelength
of the photodetector. This is the reason that Low~/fiws and amax/+/Fiws are listed
in Table 5.4. Table 5.4 thus provides a guild line for designing the optical quantum
well photodetector: the optimal growth direction and the quantum well width.

We now extend the discussions to the optical transition between mini bands.
Semiconductor superlattice provides us with a good way to increase the mobility
of the photocarriers. For a single quantum well or multiple quantum well systems,
the photo-excited carriers are still largely localized in the quantum well. For a su-
perlattice, the ground states in each quantum well can be quite well separated from
one another, while the excited states form delocalized mini bands so that the photo-
carriers are more mobile.

When forming mini bands in the z direction, the quantum designation m consists
of the subband index m and the wave vector g, in the form of

1 .
Enz,qz (2) = \/—Mvm’q"' (Z)elf{zZ

(5.54)
Vin,g.(2) = Vi ,q. (2 +d)

where d is the sum of the well and barrier widths (i.e., the period of the superlattice),
M is the total sample thickness. vy, 4, (z) is normalized within one unit period of the
superlattice.

‘i: n,k; >

<%—m,qz

1 OV k. ; k.—q. ik; i (k,—
— _/v;’qz s P q(v)zdz+ﬁ/‘v;’qzvn’k261( =47,

0
0z
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Sk, .k,
— ku‘lz/l)* vn*k&dz (555)
d

d "4z 9z

where ¢, and k;, are limited within the first Brillouin zone in the z direction. Mo-
mentum conservation in the xy plane is required. In addition, we see by the above
equation that the momentum in the z direction is also conserved. Since the momen-
tum of a photon is negligibly small as compared with that of the electron, the optical
transition is always vertical in the k space.

The total transition probability from ground state to excited state m is

_— / 2dQ
(27)3

2 62)/

h2 (2% +v?)

FIEoD]{1 = F[En(D]}
(5.56)

> Anuz (vl pelvo)

n

where Q = (¢, 9),
Em(Q) = Eq + Em(CIz)

h‘Qm =Em(Q) - EO(Q) — how

E .. (g:) is the energy dispersion in the z direction because of the translational sym-
metry of the superlattice.

Let us calculate and compare the absorption coefficient of a superlattice with a
quantum well. For simplicity we assume that the energy band in the xy plane is
parabolic so that E,,(q) = Eo(q). We consider a n-type Si superlattice for which
the lowest energy levels are six X valley states. The sample is grown along [102],
as optimized in Table 5.4. The sheet density of carriers in one quantum well is set
to 10'? cm~? in the superlattice (with this sheet density only the ground subband is
occupied). We focus on the optical transition from the ground subband to the first
excited subband.

Figure 5.4(a) shows the energy dispersion in the z direction. The barrier height
is assumed to be 0.125 eV. The energy dispersion shown in Fig. 5.4(a) is calculated
by the standard transfer matrix method [2], see also Sect. 6.2 in the next chapter.
The Si quantum well thickness is set as 50 A while two values of barrier thickness,
10 and 20 A are chosen to compare the absorption coefficients of the superlattice
detector with a quantum well detector. Figure 5.4(a) shows that the dispersion in the
z direction of the superlattice can hardly be approached as parabolic.

Figure 5.4(b) presents the absorption coefficient numerically calculated from
Eq. (5.56) for a normal unpolarized incident radiation. We observe two major ef-
fects. The first effect is the energy dispersion in the z axis which reduces the num-
ber of carriers at one particular value of g, (which is far less than ng). The energy
dispersion is induced by the overlappings of electron waves from different quantum
wells (the wave penetration into the barrier region). Thus the absorption coefficient
is decreased because of the reduction of the carrier numbers and the spectrum of the
absorption coefficient becomes wider due to the energy dispersion. The matrix ele-
ment (v, |p;|vo) is also reduced in the superlattice as compared with the quantum
well. It is however the energy dispersion in the z direction that is the principal cause
for the optical absorption reduction.
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Fig. 5.4 (a) Energy dispersion of a n-type Si superlattice grown along [102] (the z axis). (b) Ab-
sorption coefficient of normal incident radiation as a function of barrier thickness for a n-type Si
superlattice grown along [102] (Reprinted with permission from Y. Fu, M. Willander, and Wen-
lan Xu, Optical absorption coefficients of semiconductor quantum-well infrared detectors, J. Appl.
Phys., vol. 77, pp. 4648-4654, 1995. Copyright 1995, American Institute of Physics)

The absorption of the quantum well can be easily retrieved by increasing the bar-
rier thickness. In the case of the n-type Si [102] superlattice, a barrier thickness of
larger than 3 nm is enough to retrieve the absorption coefficient of the correspond-
ing quantum well detector. For a barrier thickness of 2 nm, the Fermi level is only
about 5 meV above the ground subband, far less than the distance between the first
excited subband and the ground subband.

In Fig. 5.4(b), the absorption coefficient is calculated for only one quantum well
in the superlattice. The total absorption coefficient of the superlattice is the number
of quantum wells in the structure times the one we have calculated. This of course
will increase very much the absorption coefficient of the superlattice. But the half
width of the absorption peak is not improved.

5.3 Optical Grating and Crosstalk

For the most commonly used AlGaAs/GaAs materials, normal incident radiation
absorption is not possible because of their isotropic effective masses of the active
I" electrons. Optical grating is required by such quantum-well infrared photodetec-
tors (QWIPs) to diffract the normal incident radiation into non-normal transverse
electromagnetic modes. One of the key requirements for the focal plane array (FPA)
fabrication is to optimize the diffraction grating. In order to improve the grating cou-
pling efficiency for the quantum-well infrared photodetectors, a lot of works have
been done, such as the studies on symmetric grating [3]; long period gratings [4];
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Fig. 5.5 Geometric Diffraction grating q(X,Y)
smilcFu;es 02 thﬁ c%ugniun: , 4‘23‘F b XY)
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a waveguide combined grating coupler [5—7] and metallic diffraction grating [8—
10]. Random gratings [11, 12] and quantum-well-infrared-photodetector structure
contained grating have also been proposed to improve the detector performance.

Here we try to give an outline of the grating theory for quantum-well infrared
photodetectors based on the well-known Huygen’s principle and Kirchhoff formula
to calculate the absorption coefficient for a general shaped reflection grating coupled
quantum-well infrared photodetector.

The AlGaAs/GaAs quantum well infrared photodetector is prepared normally
as follows: semi-insulating (100) GaAs substrate, GaAs contact layer (1.0 pm, Si-
doped 10'8 cm™3), 50 periods of quantum wells (thus denoted as multiple quantum
wells), GaAs top contact layer (2.0 um Si-doped 10'® ¢cm™3). The quantum well
is made of Aly3Gag7As barrier (45 ~ 50 nm thick) and GaAs quantum well (4 ~
5 nm). The structure is schematically shown in Fig. 5.5.

We consider a two-dimensional diffraction grating shown in Fig. 5.5(b). The size
of one photodetector pixel is L x L. The diffraction grating structure consists of
2a x 2a rectangular apertures, or circular apertures with radius a periodically ar-
ranged on the optical pixel, at distance b from each other. The depth of the apertures
is denoted as h.

For electromagnetic waves propagating in semiconductor materials with negli-
gible electric conductivity, the wave equation for the electric field E, Eq. (3.18)
becomes

V’E =¢ MaZ_E
ar?
where € is the permittivity or dielectric constant, w is the magnetic permeability of
the medium. In our case we simply assume © = 1. The velocity of the light waves
in free space is ¢ = \/€ofto, it is v = ¢/n in the medium, n = /€ /€ is the refractive

index.

For the diffraction radiation detection experiments with unpolarized incident ra-
diation, the vector nature of the wave amplitude will not be important. The only
consequence of the vector properties is multiplication of the diffracted intensity by
a polarization factor, depending only on the angle of diffraction. Hence we may as-
sume that we are dealing with a scalar function ¢ (r) which is a solution to the wave
equation [13]

(5.57)

9%

Vi =epu—r
) Ko

(5.58)
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For pure elastic scattering, we need consider only a single frequency w so that
the wave equation is of the form

V2 +47%k*p =0 (5.59)

where 27k = /€ tw is the wave number.
An important solution to Eqgs. (5.59) is

e—i2ﬂer
po=—"—" (5.60)

ro
which corresponds to a spherical wave radiating from a point source Q.

Huygen’s principle indicates that the propagation of waves through space in-
volves the generation of secondary waves at each point of a wave front so that the
envelope of the secondary waves becomes a new wave front. By this the Kirchhoff
formula is written in the form of: The wave field ¢ at point Q due to any source
wave ¢ is given by integrating over any closed surface S containing Q as [14, 15]

1 g—ianr e—iZJTkr
[ .v¢0—¢0.v( - )}dS (5.61)

T 4x S r

where r is the distance from point Q to the surface S.

The optical wave function for the refractive diffraction grating defined by its
reflection coefficient ¢ (X, Y) which is perpendicular to the direction z of radiation
incidence, becomes

1 e—i2mkr  ,—i2mkrg
¢(xsy7R):_//q(X7 Y) .
4 r ro

1 1
X |:<— + iZJrk) cosf — (— + i27rk) cosGQi|dXdY (5.62)
r ro

where r2 = (x — X)2 + (y— Y)2+ RZ, R is the distance of the observation plane xy
to the diffraction grating plane XY (in our quantum well infrared photodetector, this
is the thickness of the top n*-GaAs contact). Here the surface S is the XY plane
plus a closing surface at infinity. r¢ is the distance from the source Q to the point
(X,Y). 0 and 6 are the angles between the z axis and vectors r and r .

When the light source is far away from the diffraction plane XY (the illuminating
light is in the form of plane wave propagating along the z axis),

ro=oco> k!, 6p=0

so that Eq. (5.62) becomes

—i2mkr
r

o(x,y, R):,B(k)//q(X, Y) |:<;—|—i27rk> c050—i2nk:|dXdY (5.63)
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where B(k) is the normalization factor depending on the photon spectrum of the
radiation source. If the intensity of the radiation is independent of its wave vector,

/ / |¢|>dxdy = constant (5.64)
The intensity distribution of the optical field is

1.y, R) = |p(x. 3. B’ (5.65)

Let us make simple analyses about Eq. (5.63). It is easy to observe thatif g(X, Y)
is constant in the rather extended area, ¢ (x, y, R) is also constant, independent of

(x,¥),

oo 0 e—i2nkr 1
/ f |:<— + i27rk> cosf — i2nk]dXdY = constant (5.66)
—o0d—oo T r

In other words, when we simply cover the photodetector having a large surface
area with a uniform refractive metal film, mirror reflection of the source radiation is
obtained.

In general the extension of g(X,Y) is limited. In a focal plane array system,
q(X,Y) is determined by the refractive grating structure on one optical pixel. In
other words, g(X, Y) = 0 outside the optical pixel when considering only one sin-
gle optical pixel. When the radiation wavelength is very small (large &, or high
photon energy) as compared with the geometric dimension of the optical pixel and
the distance between the observation plane and the diffraction grating plane (R),

b, y, R =q(x, 1) (5.67)
apart from a constant. The above result is due to the rapid oscillation factor e 27"
so that only the radiation from the source at (X, Y) = (x, y) is observed at (x, y).
We thus obtain a mirror reflection from the reflective grating structure.

Now we apply Eq. (5.63) for the infrared radiation of 1/k = 10 um to calculate
the optical field diffracted from a reflective grating structure of 40 x 40 um? (X, Y €
—20, 20 um), corresponding to one optical pixel in the focal plane array. The grating
consists of 7 x 7 apertures arranged in the form of Fig. 5.5.a =2,b=8, h =1.5
and R =2 pm (R is the thickness of the top n™ GaAs contact layer which separates
the grating from the absorbing GaAs quantum wells). The calculation results (x, y €
0, 50 pm) of circular and square apertures are presented in Fig. 5.6.

Periodicity is observed in the optical field ¢ in the xy plane. The period is deter-
mined by the wavelength of the incident radiation. The optical field along the y axis
is presented for different radiation wavelength in Fig. 5.7. We observe the periodic-
ity of 1/k. Such a periodicity is understood by considering one-dimensional grating
structure so that the oscillation factor becomes

e—i27rkr — e—i2nkxei2n'kX
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Fig. 5.6 Intensity distributions of the optical field for 1/k = 10 um with (a) circular diffrac-
tion apertures; (b) square diffraction apertures. Dashed lines mark the edge of the optical pixel
(Reprinted with permission from Y. Fu, M. Willander, W. Lu, and Wenlan Xu, Optical coupling in
quantum well infrared photodetector by diffraction grating, J. Appl. Phys., vol. 84, pp. 5750-5755,
1998. Copyright 1998, American Institute of Physics)

Fig. 5.7 Optical intensity
distributions along the y axis 1 (@) 1x=4 um
of the optical fields for
different radiation wave
vectors (Reprinted with
permission from Y. Fu, j T j T j T j T j
M. Willander, W. Lu, and
Wenlan Xu, Optical coupling
in quantum well infrared
photodetector by diffraction
grating, J. Appl. Phys.,

vol. 84, pp. 5750-5755, 1998.
Copyright 1998, American
Institute of Physics)
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Fringing fields, see Fig. 5.6 when x, y > 20 pm and Fig. 5.7 for x > 20 um, on
the other hand, are very strong due to the long wavelength of the incident radiation
which causes the crosstalk between adjacent optical pixels on a focal plane array.
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The problem can be solved by a new design of the optical grating, see more in the
following section.
The solution of Eq. (5.59) can be expressed as

P(x,y,2) =P 4N "1y el @ Pz (5.68)
q

where ¢/27*% is the incident light in the form of plane wave along the z direction,

tg= / / b (x,y,2)e 2" Pdxdy (5.69)

is the amplitude of the reflected wave diffracted from the grating surface which
propagates along —z direction with wave vector ¢ = (¢x, gy) in the xy plane,

4y +aq; +qi =k (5.70)

when considering elastic diffraction.

The design of the diffraction grating is to optimize the optical intensities 7, with
small ¢,. The larger can be these optical intensities, the larger will be A, the com-
ponent of the optical field along the z direction, and thus a larger optical coupling
between the incident photons and active electrons in the photodetector.

By considering Fig. 5.7 and the responding wave vector of the quantum well
infrared photodetector (1/k = 10 um), we can conclude that for R ~ 1/k,

D 1 ifg,=0 (5.71)
& 0 otherwise ’

so that A, =~ A/2, where A is the amplitude of the vector potential of the incident
infrared radiation and A; is the z component of the vector potential of the radiation
diffracted from the grating diaphragm.

We have thus learned that optical grating formed by a metal film on the top con-
tact layer of the photodetector is based on the reflection and diffraction of the light
by the metal due to the large dielectric constant of the metal. We simply assumed
thus far a huge dielectric constant for the metal grating structure so that light is per-
fectly reflected from the metal. Most fundamentally, the large dielectric constant of
metal materials is the result of free electrons in metals. Here let us exploit the mo-
tions of free electrons in metal in an electromagnetic field, and vice versa, i.e., the
evolution of the electromagnetic field in the presence of free electrons, which has
been studying and developing into an exciting field of plasmonics. We will then use
the concept of plasmonics to design optical gratings.

In the Maxwell’s microscopic equations

v.p_lu
€0
V-B=0 (5.72)
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. oE

VxB =MOJtot+€0M0¥
oB
VXE=——
ot

niot represents the total, possibly both time- and space-dependent, electric charges,
i.e., free (nfee) as well as induced (ning) (polarization) charges, and j, represents
the total, possibly also both time- and space-dependent, electric current, i.e., con-
duction currents (motion of free electrons) as well as all atomistic (polarization,
magnetization) currents.

To include situations involving matter, it is useful to distinguish external fields
and fields produced by the response of the material. By denoting P as the local elec-
tric polarization of matter and M the local magnetization, the electric displacement
field D and magnetic field strength H are given by

1
D=¢qE+P, H=—B-M (5.73)
1o

where E and B are the electric field and magnetic flux density, respectively. po and
€o are the permeability and permittivity of free space, respectively. The sources of
D and H are nfee and j g, respectively. The Maxwell’s equations now read

V- D = nfree

voE=0 5.74

VXHijree—i_Q o
ot

VxE:—%

In order to solve real problems, relations describing the responses of the materi-
als, the so-called constitutive relations, are needed

j=0oE, B =puuoH, P=¢yxE (5.75)

with phenomenological coefficients o, @, and x (conductivity, permeability and
electric susceptibility, respectively). They depend on the medium under consid-
eration, but are normally assumed to be independent of the electromagnetic field
strength, in other words, the medium is linear. The coefficients can also be fre-
quency dependent. The time dependence of the involved fields can be assumed to be
harmonic, e.g., E(r,t) = E (r)e~'®" More complicated time-dependent fields can
be written as superposition of such fields (which is normally referred to as Fourier
synthesis). Introducing all these equations into the Maxwell’s equations,

V - (e0€ E) = nfree
V-B=0 (5.76)
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io
VxH= —iw(e + —>60E
€W

VX E=iouuH

with the dielectric function e =1 + x.

We now study free electrons in a metal. Compared with semiconductors and in-
sulators, the extraordinary optical properties of metals are due to the existence of
a gas of free electrons nfree. In Dude-Sommerfeld model which is naturally sim-
plified but still rather effective, these electrons are approximated independent and
point-like. In between independent collisions with various collision centers (such
as lattice ions, other electrons, defects, phonons, etc.), which occur with an average
rate of 1/t, these electrons move freely, or, are accelerated under the influence of
an external electromagnetic field, resulting in a drift motion. Each collision leads
to a complete loss of directional information and results in a random orientation of
the electron velocity afterwards. In reality, only electrons near the Fermi level con-
tribute because the Pauli exclusion principle does not allow deeper lying electrons
to change their electronic state. Band-structure corrections lead to a modification of
this motion. These corrections are customarily incorporated into an effective mass
m™*, which is in general different from the free-electron mass my.

Many (but not all) properties of real metals, including their optical properties
as described by the frequency-dependent dielectric function € (w) (see below), are
surprisingly well predicted from this simple model.

If nfree electrons per unit volume all move with velocity v, the current density is

jfree = —Nfree€? 5.77

Assume 7 as the relaxation time (or the average time between successive collisions),
the average velocity acquired in the presence of a dc field E is —e Et/m* so that

2
. _ Nfree€™ T
J free =

" E (5.78)
m
where m* is the effective mass of the free electron in the metal.

Treating the electron as semiclassical particle and letting p = m™*v be the mo-
mentum of the electron, the equation of motion is

dp )4

—=—>=+4+F 5.79

” ot (5.79)
where F = —e(E + v x B) is the Lorentz force the electron feels in the electromag-

netic field.
To calculate the current in a metal driven by a time-dependent electric field, we
write the field in the form

E(t) = %{E(w)e "}
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where w is the angular frequency, then seek a steady-state solution of the form
P =R p@)e™"}

for the equation of motion, Eq. (5.79). We find that p(w) must satisfy

—iwp(w) = —@ — ¢E(w) (5.80)
ie.,
et
p(w)= 13 E(w)
—lwT

so that the current density is j () = R{j(w)e ¢},

Nfree€ P () _ nfreee27:/m*

jfree(w) = - m* —ior E(a)) (581)
One customarily writes this result as
Jtree (@) = 0 () E(w) (5.82)

where o (w), known as the frequency-dependent conductivity, is given by

2
a0 Nfree€” T
—, 00 = "
1—iwt m

o(w)=

(5.83)

Assume now that these electrons are subject to a time harmonic electric field
(optical wave) of the form E(t) = Ege "'y, where yj is the unit vector along the
y axis. The equation of motion of the electron is

d’y 1dy e :

— +——=——Fpe ' 5.84

dr2  tdt m* 0 (5:84)
by Eq. (5.79), where p, = m*dy/dt, m* is the mass of the electron and e is the
elementary charge. The above equation has the solution y(t) = ype™'®’, and upon
substitution we find the position of the electron at time ¢ to be

eE(t)
Y= ——2 (5.85)
m*w(w+1/1)
The polarization P is defined as the induced dipole moment (—ey for one elec-
tron at position y) per unit volume

2
Nfree€
P = —Hfree€) = —mE (586)

As Egs. (5.75), we also define the polarization for linear dielectrics in terms of
the permittivity of free space €g, and the electrical susceptibility x as

P =¢xE =eo[e(w) — 1]E (5.87)
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€(w), the relative permittivity, or dielectric constant of the material under investiga-
tion, is found to be

1 < 1 < T 5.88
W=l i T iy Vet wrd (5.88)

where ), =/ Nfrec€?/m*€q is known to be the plasma frequency. This is commonly
called the Drude model for the dielectric constant of a metal, since it is based on the
Drude theory of electrical conductivity.

If the positive ion core background has a dielectric constant labeled €, which
is essentially constant up to frequencies well above @, for many common metal
materials, then Eq. (5.88) becomes

@)

where @, = w,/€oo.

Often it is useful to work backwards from Eq. (5.88) and find the plasma fre-
quency and relaxation time in terms of the dielectric constant € = €’ 4 i€”, resulting
in
1=

T = ——
606//

op= 1) (024 )

Note that a heavily doped semiconductor will optically have the same behavior
as a metal and a similar derivation can be done for its dielectric constant. It turns
out to be similar to that of a metal, with the only alteration being the replacement of
the ‘1’ in the first real term in Eq. (5.88) by the relative permittivity of the undoped
semiconductor. The reader can refer to Sect. 3.7 about the derivation of the effective
permittivity of quantum-dot exciton polariton.

Now back to the crosstalk issue in the optical grating. Figure 5.8 shows the basic
fabrication process and final functioning of a quantum-well infrared photodetector
focal plan array. In common photodetection array structure, an epoxy underfill is
used between pixels for mechanic support. The refractive index of epoxy is about
1.5 (which is much smaller than that of GaAs) and the infrared absorption by the
epoxy is characterized by a few narrow peaks. SiO, or SizNy thin films are also
used to cover on the pixels as passivation materials whose optical absorptions are
very small [16]. Thus we can neglect the optical effect of the underfill material in
the quantum-well infrared photodetector.

Knowing the geometric structure thereafter the spatial distribution of the di-
electric constant, the spatial and temporal development of an incident electromag-

(5.90)
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Fig. 5.8 Basic fabrication process and functioning quantum well infrared photodetector (QWIP)
focal plan array

netic field can be calculated by the so-called finite-difference time-domain (FDTD)
method, a direct time-domain solution of Maxwell differential equations on spa-
tial grids or lattices [17, 18]. FDTD is beyond the scope of this book, while
Refs. [17, 18] are recommended for introduction and numerical operation about
FDTD. In the following we present the numerical results of electric fields in optical
gratings.

We have applied Huygen’s principle and found out that in the conventional re-
flective diffraction gratings lithographically patterned on the tops of photodetectors,
i.e., Figs. 5.5 and 5.8, the fringing electromagnetic field outside of the optical pixel
is very strong, as shown in Fig. 5.6. Moreover, Fig. 5.9 shows strong diffraction
from the corners. The part that diffracts into the space between pixels propagates
much faster in the underfill than in the semiconductor material, resulting in a direct
crosstalk. The crosstalk caused by the fringing field in Fig. 5.6 can be reduced by
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putting quantum wells close to the metal grating surface, while the corner diffrac-
tion induced crosstalk is rather difficult to be reduced in common pixel structured
quantum well infrared photodetector. Furthermore, the wavelength of the optimal
diffraction strongly depends on the grating geometry.

Figure 5.10 shows a concave metallic reflector that can effectively diffract and
focus the electric field components to deep absorbing layers without causing inter-
pixel crosstalk [19].

Figure 5.11 shows the distributions of E, and E, in the concave pixel struc-
ture at three different times. A strong focusing effect is observed in E,, which
also results in a very strong and similarly focused E, component. Similar focusing
effect and strong E, are also obtained when continuous wave radiations are used
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Fig. 5.11 Spatial distributions of (a, b, ¢) E, and (a’, b/, ¢/) E; in the concave pixel structure
at three different times excited by a radiation pulse (wavelength 2 ~ 10 pm). Arrows mark the
motion of the electric field (Reprinted with permission from Z.-H. Chen, S. Hellstrom, Z.-Y. Yu,
M. Qiu, and Y. Fu, Time-resolved photocurrents in quantum well/dot infrared photodetectors with
different optical coupling structures, Appl. Phys. Lett., vol. 100, p. 043502(5), 2012. Copyright
2012, American Institute of Physics)
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Fig. 5.12 Spatial distributions of (a, b, ¢) E, and (a’, b/, ¢/) E; in the concave pixel structure
excited by three continuous wave radiations at wavelengths 2, 5, and 10 pm

(A =2~ 10 um in the same concave structure), see Fig. 5.12. By the concave pixel
structure, we not only eliminate the crosstalk but also generate a huge diffracted and
focused electric field which significantly increases the photocurrents in broad-band
photodetectors.
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5.4 Nanostructure Infrared Photodetector

5.4.1 Quantum Well Infrared Photodetector

After the determination of the z component of the electric field of the incident ra-
diation from the previous section, we can now calculate the optical absorption co-
efficient for our quantum well infrared photodetector. Figure 5.13 shows the key
structure and function of a GaAs/AlGaAs multiple-quantum-well based infrared
photodetector. GaAs quantum wells embedded in AlGaAs barriers are sandwiched
between two n-type doped GaAs contacts, see Fig. 5.5. The GaAs quantum well
width Lgow and the AlGaAs barrier height A are designed in such a way that there
is only one confined state in the GaAs quantum well. The reason of one confined
state is to obtain a narrow response wavelength range. As we will see a bit later
that the minimal photon energy required to photoexcite an electron confined in the
GaAs quantum well is the distance from the confined state to the bandedge of the
AlGaAs conduction band. And in theory there will be no up limit for the photon en-
ergy but numerical calculations show a decreased optical transition matrix between
the confined state and the extended state when the energy distance between the two
states increase too much. The GaAs quantum wells are n-type doped to such a level
that only the confined state is occupied. An incident photon Aws will be absorbed
by one electron occupying the confined state which will transit to an extended state
above the bandedge of the AlGaAs conduction band. AlGaAs barrier regions are
not doped for two reasons. The first one is that we need an electric field to drive
the photogenerated electrons in the extended states to the electrodes. According to
Ohm’s law, electric fields will be strong in the areas with low charge concentrations.
Secondly, the photocurrent will experience weak scatterings due to impurities when
the AlGaAs region is as pure as possible. Moreover, in practical devices, only the
central part of the GaAs quantum well is doped (6 doping) in order to restrict the
spatial distribution of the dopants.

Normal GaAs/AlGaAs-based quantum well infrared photodetector consists of
50 GaAs quantum wells to increase the possibility of absorbing incident photons
that the photons will have further chances to interact with electrons in the second
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GaAs quantum well if they miss to interact with electrons in the first GaAs quan-
tum well. Too many quantum wells are however difficult to grow uniformly due
to eventual accumulations of various defects at GaAs/AlGaAs heterointerfaces. We
consider a common GaAs/AlGaAs quantum well infrared photodetector which con-
sists of Alp3Gag 7As barrier with thickness 50 nm, GaAs quantum well thickness
Lqw = 4.5 nm whose the central 2.5 nm thick layer is doped at 10'8 cm™3. The
energy band structure of one well-barrier period, at zero bias and 77 K, is shown
in Fig. 5.14, which is self-consistently calculated from Poisson and Schrédinger
equations. There is one confined state Eg = 92.5 meV in the quantum well and the
Fermi level is Ey = 96.9 meV at 77 K, where the conduction bandedge of GaAs
is taken to be the energy reference. The conduction bandedge of the Alp3Gag7As
barrier is 243.2 meV so that the response wavelength of the photodetector is 8.2 um
(hwg =243.2 — 92.5 meV = 150.7 meV).

We can extract the electron concentration from Fig. 5.14 in the following way. By
the numerical scale of the vertical axis, the peak value of the electron envelope wave
function |1ﬂ0(z)|2 is 0.188, while the zero is positioned at 0.093 (Ey in eV) so that
the net peak height is 0.188 — 0.093 = 0.095, which corresponds to a peak electron
concentration of 0.47 x 10'®8 cm™3. Comparing with the doping distribution (doped
region marked by two horizontal arrows in Fig. 5.14), we see that the electron dis-
tribution is a bit broad when including the penetrations of electrons from the GaAs
quantum well to the surrounding Alg3Gag7As barriers. But the charges, both the
dopants and the electrons, are largely confined in the GaAs quantum well, resulting
in an almost zero electric field in the GaAs quantum well. In Fig. 5.14, the electric
field in Alp3Gap 7As barrier regions is also zero since we have set the external bias
zero. A straightforward deduction is that the external bias will apply mainly in the
Alp3Gag 7As barrier regions since the charges are localized in the GaAs quantum
well regions, as schematically shown in Fig. 5.13.

Since the electric field in the GaAs quantum well is very small, the quantum well
can be approximated as square. Let the GaAs quantum well width be Lqw, the Al-
GaAs barrier width b, the barrier height A, and the growth direction as the z axis, see
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Fig. 5.13. Since the Hamiltonian of the conduction-band electron is translationally
symmetric in the xy plane, the total wave function can be expressed as

Wk, 1) = Y (Qu(r)e*? (5.91)

where the envelope wave function v, (z) is determined by

—h2 92
[Zm* 972

-t V(Z)]lﬂm (2) = Emm (2) (5.92)

L L
A B pogo Lew

V@=10 -—5%<z<liow (5.93)
L

which repeats periodically along the z axis
V[z+ b+ Low)]=V(2) (5.94)

where ¢ is an integer.
The total energy of the electron is

R4k

En (k) =k, + Ey, Ey
2m*

(5.95)
where k = (ky, ky) and p are the wave vector and coordinate in the xy-plane.

The boundary conditions for the ground state ¥o(z) are unambiguous that the
corresponding wave function is zero deep inside the AlGaAs barriers

ki L
Ageror? < -
Y0(z) = { Bocos (kowz) ——9¥ <z< (5.96)
—k L
Age kovz 2> =¥
where
h2k2 h2k2
2m* 2m*
1 sin(koy L cos(koy L —1/2
By = ﬁ[qu+ L sinGowlow) |, costhon QW)] (5.97)
kop kow koo

kowL kop L
A= BOCOS(%) ex;{w)

The approximation we made for 1/o(z) is that since the barrier width b is rather
wide compared with the well width Lgw, ¥(z) in one GaAs quantum well does
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not penetrate through the AlGaAs barriers to reach the neighboring GaAs quantum
wells. The reader can refer to the numerical result in Fig. 5.14.

The determination of the extended states whose energies are higher than A is not
straightforward. First of all, the conduction bandedge of the AlGaAs barrier will not
be flat when an external bias applies. To avoid complications we assume that the
external bias is zero, we then calculate the photocurrent from the left to the right as
an estimation about the photocurrent under an external bias in a real device. The next
question about the extended state is its boundary conditions, i.e., where comes the
electron and where goes the electron. There are three theoretical sets of boundary
conditions, while the reality can be a mixture of them.

Since the barrier width b is rather wide compared with the well width Lgw,
we can approximate each GaAs quantum well as embedded in infinitely extended
AlGaAs barriers so that

Aysin(kipz —8) 7 < —ZQV

2
Yoox =1 Bisin(kiyz) — — <z<iow (5.98)
Arsin(kipz +8) 7> 2
Here
R2k? h2k?
1w —E , 1b — E1 —_A
2m* 2m*

1
A= | ——
Low +b
2 —-1/2
By = A, | sin2( kv (k)" o Kwlow
2 k1p 2

B
s =sin~'| =L gin kiwLow — kipLow
Aj 2 2

However, due to the consideration of the carrier transport in the quantum well
infrared photodetector under normal device working conditions, we must envisage
the conduction of the electrons in the extended states from one GaAs quantum well
to the next. We first consider the running wave

(5.99)

eiklbz_i_refiklbz 7 < _LgW
Yrumning (2) =  Aeikn 4 Be=ikwz  _Law -, Low (5.100)
tetkivz 7> —ng

For the square quantum well described by Eq. (5.93), it is easy to obtain an analytical
expression for the amplitude of the transmitted wave

2a
=
2acos (k1yLow) —i(1 + o?)sin (k1w Low)

(5.101)
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by matching the wave function and its first-order derivative at interfaces of z =
+Lgw/2. Here a = kyp/ kiyp.

An alternative form for the conducting electrons in the extended states is the
Bloch wave form

VBloch(2) = u(2)e'*2, u(z) =ulz +€(Lqw +b)] (5.102)

as in the context of standard semiconductor material and device physics, where u(z)
accounts the periodic boundary conditions of the GaAs/AlGaAs multiple quantum
wells. £ in the above equation is an integer.

We are now able to calculate the absorption spectrum of the photodetector after
we have determined the electron states. Since the effective mass of the I' electron
is isotropic, the interaction between the incident radiation and the I' electrons in the
quantum well infrared photodetector is

“A.p (5.103)

m*

for an incident light of Ae’®s’. We repeat a few equations from previous sections.
The optical transition matrix element is

(W1(k, )|A - p|Wo(g.r))= iAzhak,q<w1 (2)

d
a—‘l/fo(z)> (5.104)
z

Again we have observed that the momentum is conserved in the xy plane, the tran-
sition is between the envelope functions in the z direction. The transition probability
from state (Eq, k) to (E1, k) is

2 or
RI(E| — Eg — hw)? + I'?]

eA;h

m*

wk) = ‘ (5.105)

d
<¢1(z) 32 ‘x/fo(z)>
Z
It is easy to see that w(k) is actually k-independent because of the momentum con-
servation and the isotropic effective mass. The probability of an electron transiting
from state Eq to Eq is

2dk

7 (5.106)

W :/w(k){f[Eo(k)] — fE1(0]}

By Fig. 5.14, E ¢ is far below the barrier height, i.e., A, in our photodetector so
that f[E1(g)] =0 and
2dk
= Eok)|—— 5.107
n ff[ 0(k)] ) (5.107)

is the carrier density in the GaAs quantum well, the optical absorption coefficient of
the photodetector is obtained as

0=—  npp=—— (5.108)
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Here v is the speed of light in the photodetector.

Here we see that due to the isotropic effective mass of the active I electrons, nor-
mal incident photon absorption is not possible. A component of the optical electric
field along the quantum well growth direction, A, is required. For fabricating large
arrays of optical photodetectors based on I' electrons in AlGaAs/GaAs materials,
diffraction gratings are needed for achieving large optical coupling, as we discussed
already in the previous section.

Numerical results are presented in Fig. 5.15, where the experimental spectrum
(spectrum with running-wave boundary conditions) is vertically shifted up (down).
The experimental photocurrent spectrum was obtained at 77 K. Figure 5.15 suggests
the Bloch-state boundary conditions as the most proper ones for continuum states in
characterizing the photocurrent spectrum of the quantum well infrared photodetec-
tor consisting of multiple quantum wells. The discrepancy between the theoretical
and experimental spectra at low wavelength range can be the results of the com-
plicated conduction band structure at higher electron energies, where the simple
effective mass approximation needs to be modified.

5.4.2 Quantum Wire Infrared Photodetector

We have thus far focused on the optical properties of quantum wells, especially the
quantum well infrared photodetector. One major issue for the quantum well based
optical devices is the quantum selection rule that electrons in the quantum well
cannot interact with light that propagates along the quantum well growth direction.
This constrains overwhelmingly the application of these devices such as photode-
tection since the plane perpendicular to the growth direction is the natural plane
to receive incident radiation. We discussed before the solution of optical grating,
another solution is to use quantum wires, and/or quantum dots as the active pho-
ton absorbers. Typical structure of quantum wire based infrared photodetector is
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Fig. 5.16 (a) Schematic structure of the quantum wire infrared photoconductor. (b) Transmission
electron microscopy (TEM) image of the quantum wire cross section

schematically shown in Fig. 5.16(a) and a transmission electron microscopy (TEM)
image of stacked GaAs quantum wires which are extended along the y axis, see
Fig. 5.16(b) [20], grown on V grooved GaAs substrate. The structure does not re-
quire optical grating.

5.4.3 Quantum Dot Infrared Photodetector

Quantum dots are three-dimensional nanostructures which can interact with photons
incident from any direction. For quantum-dot-based infrared photodetector (QDIP),
surface coating is still needed, not because of any quantum selection rule about light-
matter interaction, but mostly due to the consideration of reducing optical reflection
at the air-device surface, in other words, anti-reflection. A schematic quantum-dot
infrared photodetector is shown in Fig. 5.17.

In recent years sub-wavelength hole arrays in metallic films have received con-
siderable attention after the experimental findings of Ebbesen in 1998 which showed
that the transmission of light through these structures is orders of magnitude higher
than expected by the standard aperture theory [21, 22].

In this section we study the transmission of an incident electromagnetic field
through a sub-wavelength hole array then calculate the photocurrent enhancement
in the quantum-dot infrared photodetector underneath the grating. The grating is
schematically shown by the inset in Fig. 5.18 where we consider a sub-wavelength
hole array in a thin metal film, d denotes the diameter of circular holes, P the period
of the hole array, and ¢ the thickness of the metal film. 7 is normally in the order of
100 nm, p =3 ~ 4 um, and d = 1.0 um. The photon wavelength of interest ranges
between 2 to 12 um.

Note that a major difference between the optical diffraction grating in Sect. 5.3
and here is that the optical diffraction grating is a reflection grating so that light
incidents from the bottom of the quantum well infrared photodetector, see Fig. 5.5,
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which will make the device structure more complicated. Here in Fig. 5.17, light
comes vertically down into the quantum dot infrared photodetector which is inte-
grated directly on a read-out circuit at the bottom, so that the device structure is
much simplified, in addition to the large optical transmission (see below) through
the sub-wavelength hole perforated thin metal film.

We first present results of optical transmission and diffraction through the grating
by the three-dimensional finite-difference time-domain (FDTD) numerical simula-
tion method. Refer to Fig. 5.18(a), a simulation volume with the size of 3 ym in x
and y directions and 10 pm in the z direction is used, containing three parts, air (a)
0 <z <5 pm, a 150-nm-thick gold film (m) 5 <z < 5.15 ym, and GaAs substrate
(s) z > 5.15 pm. Pulsed transverse-electric-polarized (TE polarized) plane waves in
a broad wavelength range from 2 to 12 um are injected into the simulation volume
along the z axis. Periodic boundary conditions are used in both x and y directions
to produce the periodic array structure. The relative complex dielectric constant of
Au is given by the lossy Drude model discussed in the previous section

(&5 — €c0)

ot (5.109)

€an(®) = €0 —
where €5, = 12.18 and €; = 12.75 are the relative permittivities at infinite and zero
frequency, w, = 1.545 x 10'® Hz is the Au bulk plasma frequency, y =9.01 x 103
Hz is the damping constant.
The transmission results for a few hole sizes and also for the case of a thicker
metal film and the case without any metal film are shown in Fig. 5.18(b), where the
plasmonic features and their mode numbers are identified by

P
Aspp = | Shued (5.110)
\/iz—‘r-j2 €Au T €4

where €a, are ¢, are dielectric constants of the Au film and dielectric (either semi-
conductor or air), respectively.

Figure 5.18(b) shows that the optical transmission can be improved by the
photonic crystal and surface plasmon effects. However, the average transmission
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Fig. 5.18 (a) Geometric structure of the perforated Au thin film. “a” denotes air, “m” metal and “
semiconductor. ¢ is the film thickness and d the diameter of the hole. (a) Transmission coefficient
of the optical grating. Plasmon modes (i, j) are labeled, “a-m” and “m-s” denote air-metal and
metal-semiconductor interfaces. From low to high transmission curves: d = 800, 1200, 1600 nm.
The dashed curve at about 0.7 denotes the case without any metal film (Reprinted with permission
from S. Hellstrom, Z.-H. Chen, Y. Fu, M. Qiu, R. Soltanmoradi, Q. Wang, and J. Y. Andersson, In-
creased photocurrent in quantum dot infrared photodetector by subwavelength hole array in metal
thin film, Appl. Phys. Lett., vol. 96, p. 231110(3), 2010. Copyright 2010, American Institute of
Physics)

through the grating is merely 10 ~ 20 % as compared with 70 % for the case of
no film, whereas the measured photocurrent enhancement achieved in the experi-
ments are often much higher so the reason for the enhancement is not due to the
transmission enhancement.

In Fig. 5.19, the temporal developments of E, and E, of the optical field are
shown using logarithmic scale, represented by the surface integral of the optical
field components on planes subdividing the z axis. The reflection and transmission
of the pulse are easily seen as well as the diffraction of the pulse.

Most quantum dots grown by molecular beam epitaxy and metal-organic chemi-
cal vapor deposition methods are dome shaped with a circular base of radius r and
a height £, see Fig. 5.17. We model such a quantum dot as a cylinder with a circular
cross section (radius r) in the xy plane and a height & along the z axis. We con-
sider only the low-energy levels in the conduction band for which we can approxi-
mate the confinement potential as infinitely high so that we can separately solve the
Schrodinger equation along the z direction as a square quantum well with a width
h and in the xy plane a cylindrical quantum well disk with radius . A cylindrical
quantum wire positioned along the z axis is described by

o d> &2
[—Zm—*<@+d—y2>+V(x,y)}lﬁ(x,y)=El/f(x,y) (5.111)

where m™* is the effective mass of electron,

v ) —A  when x% + y2 < r2 (5.112)
X,y)= .
Y 0 when x? + y? > r?
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A = 0 is the confinement energy of the conduction-band electron. In the cylindrical
coordinate of (x, y) = (p, ¢) and by writing ¥ (x, y) = €% J,, (p),

(o) | 1ddn(p) | [2m*[Em —V(p)] m? _
lf) 4 12t +{ a —?}me)-o (5.113)

where m is an integer (negative or positive so the state of |m| is two-fold degenerate).
Inside the quantum wire, g2 = 2m*(E,, + A)/h?, the above equation becomes

dZJm(p) 1 dJ,(p) 5 m2
- + ——|J =0 5.114

The solutions to the above equation are called Bessel functions, see Sect. 3.6. For
ground state m = 0,

1 rr . .
Jo(p):Z/ l90PSINT 4 (5.115)
—TT

Including the wave function in the z direction which is confined between z =0
and z = h, the ground-state envelope function is then

2 . nz 1 § igopsint
WO(P, ?, 7) = E s 7 Ni_Z e'dor? dr (5.116)
r -7

where B is a normalization factor. The exact numerical value of go and thereafter
E of the ground state are obtained when we set the wave function to zero at the
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edge of the quantum dot (p = r, where 2r is the diameter of the base, see Fig. 5.17)
which gives gor = 2.405, see Table 3.7.

The optical matrix element between ¥y expressed by the above equation and an
extended plane wave in the conduction band

1 ,
L ¢, 2) = ——=e' koPth:2) 5.117
Vi, k. (0.}, 2) me ( )
becomes
a=E - (YolVI¥k,k. )= (Epkp + Ek)(VolYk,k.) (5.118)

where E,, and E, are components of the electric field E in the p and z directions,
respectively. 2 denotes the space where the plane wave extends which equals the
volume (i.e., 7r2h) of the quantum dot (wave function normalization). In writing
down Eq. (5.117) for the extended state, we have completely neglected the effect
of the quantum-dot potential Eq. (5.112). The reason behind such an approximation
is based on the fact that the extended state is expected to extend in a spatial region
much larger than the quantum dot. For g # 0, and after integration over ¢ which
gives 2, the optical matrix element becomes

h
o= Zﬁ(Epkp + Ezkz) sin <%>eik~’zdz /r /71 ei(kpp+qop Sinr)drpdp
0 J—m

Bhr? 0
(5.119)
Including the energy conservation and the density of states for free electrons in
the GaAs material, the photocurrent density spectrum is

2dk

W (5.120)

i (hw) = f la|?v,8 (hw — Ex — E)

where k = (k,, k;), Ex = 1?k*/2m*, Ey is the energy of the ground electron state
Yo(p, @, z) in the quantum dot. v, is the speed along the z direction of the electron
described by the plane wave ¢! %0243 je  fik./m*. Here we assume the normal
quantum dot photodetection configuration with an external bias applied along the z
direction.

Figure 5.20 shows the photocurrent density spectra of the four grating structures
(d =800, 1200, 1600 nm and the no-film structure) with the quantum dot positioned
at 2 um away from the metal-semiconductor surface. We can observe that for quan-
tum dots with large aspect ratios (large h/2r), extra optical grating does not help
since the total radiation transmission through the grating is far less than the no-film
case (see Fig. 5.18). However, for flat quantum dots with small aspect ratios (small
h/2r), the z component E, of the electric field is critically required for efficient
light-matter interactions inside quantum dots. For them, the mid-infrared photocur-
rents of two grating structures exceed the one without film even though the total
transmission rate is as low as only 20 % (it is about 70 % without film), as clearly
demonstrated experimentally [23-26].
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Fig. 5.20 Photocurrent density spectra of the four grating structures under investigation. Red dot-
ted lines correspond to the no-film case. From low to high photocurrent spectra: d = 800, 1200,
1600 nm. 2 =5 nm. (a) r = 10 nm; (b) » = 25 nm; (¢) r = 25 nm with E, excluded, showing
that the E, contribution is large (Reprinted with permission from S. Hellstrom, Z.-H. Chen, Y. Fu,
M. Qiu, R. Soltanmoradi, Q. Wang, and J. Y. Andersson, Increased photocurrent in quantum dot
infrared photodetector by subwavelength hole array in metal thin film, Appl. Phys. Lett., vol. 96,
p- 231110(3), 2010. Copyright 2010, American Institute of Physics)

We emphasize that a large contribution of the photocurrent for small aspect-ratio
quantum dots comes from the coupling to E,, and Fig. 5.20(c) shows the same
structure as (b) but with the £, component set to zero.

Peaks and nodes in Fig. 5.20 are due to the resonances between plane waves e*»?
and the radially confined states in the xy plane.

5.5 SiGe Heterostructure Internal Emission Infrared
Photodetector

We have thus far discussed two principal factors about the photodetector, namely,
the optical field (to be detected) and the light-matter interaction that converts the
light signal into electric signal. There are many other factors, both experimental
(such as material growth and device processing) as well theoretical (energy relax-
ation processes, effect of external biases, etc.), have to be carefully studied in order
to understand and eventually design and optimize the device operation. In this sec-
tion we study an infrared photodetector based on a p-type SiGe heterostructure, as
an example to demonstrate critical issues related to practical device design.

The photodetector is a SiGe/Si heterointerface composed of a heavily doped (nor-
mally higher than 10%° cm™3) p*-type Si;_,Ge, layer grown on an (100) p-Si sub-
strate. The value of Ge fraction x is usually between 0.2 and 0.4 [27, 28]. Valence
band offset creates a Schottky barrier so that very few thermally excited carriers
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Fig. 5.21 (a) Valence band structure of the p-Si/p*-Si;_,Ge, heterostructure internal emission
infrared detector. (b) Hole distribution at 300 K (Reprinted with permission from Y. Fu, S. C. Jain,
M. Willander, and J. J. Loferski, Valence band structure of heavily doped strained Ge, Si;_, layers,
J. Appl. Phys., vol. 74, pp. 402-407, 1993. Copyright 1993, American Institute of Physics)

can go over the barrier at low temperatures. However infrared photons can be ef-
ficiently absorbed by the free carriers. This causes an internal photon emission of
the holes over the barrier which provides us with the photodetection mechanism.
Figure 5.21(a) shows the valence bandedge of such an internal emission infrared
photodetector, where b denotes the minimal barrier height for the holes in p™-type
Sij_,Ge, to transport to the Si side. Since the effective mass of valence-band holes
is normally quite large (close to free electron mass m, see Tables 1.4 and 1.5 and
convert band parameters yi, y»2, ¥3, L, M and N to valence-band hole effective
masses) so that the tunneling probability through the barrier is small. b thus repre-
sents the minimal photon energy required to photoexcite a hole from p* Si;_,Ge,
to Si. It is referred to be the cut-off wavelength of the photodetector (above which
the photodetector will not response).

For the photodetector of Fig. 5.21(a), the experimental cut-off wavelength was
shown to be 125 meV [27] (people use both the wavelength and/or photon energy
to denote the cut-off wavelength, which are interchangeable A = 27w c/w, A is the
wavelength and fw is the photon energy). Lin et al. [28] have calculated the cut-off
wavelength of this detector by assuming that the barrier height is equal to the valence
band offset AE( between Sij_,Ge, and (001)-Si which is given by [29-31]

AEo = 840x meV (5.121)

For x = 0.42, this gives a barrier height of 353 meV. Bandedge shift AFE}y due to
heavy doping [32, 33] is quite large here because of the high doping concentration
in pT Si;_,Ge, and must be included in the calculations. Neglecting the effect of
carrier redistribution across the interface, the barrier height b is given by [32]

b= AEg+ AEn — Ey (5.122)
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The above expression gives still a value which is much higher than the exper-
imental one. The next consideration is the band bending due to the charge re-
distribution at the heterointerface. Refer to the band diagram in Fig. 5.21(a), the
one-dimensional Poisson equation can be written as

—4(NA—p) z2<0
—£<N} 0<z<a (5.123)

Z>a

d?¢
dz2

Here we have set the sample growth direction as the z axis and have neglected
the difference in the dielectric constants between Si and Sij_, Gey. a is the spatial
region where the holes in the p-Si are totally depleted due to the band bending.
N /L =10% cm™3 and Ni =5 x 107 cm™3 are the acceptor doping concentrations
in p*-SiGe and p-Si, respectively. Let the Fermi level E ¢ of the whole system as
the energy reference point, the boundary conditions for Eq. (5.123) are:

ep(z)=E;, z>0
ep(07) —ep(07) = AEg + AEna, z=0 (5.124)
ep(z)=E, z<K0

E| and E; refer to the valence bandedges on the p-Si side and p*-Si;_,Ge, side,
respectively. Since the energy is being measured from the Fermi level, E| and E;
are numerically equal to the Fermi energies E sy and E s> measured from the valence
bandedges on the two sides.

At zero temperature, free carrier states are filled between the Fermi level and
the valence bandedge. Below the Fermi level the hole states are empty. When
NZ =107 cm™3, Ni =10 cm™3, x = 0.4, we obtain Efj =4 meV and E, =
141 meV.

It is easy to solve Poisson equation Eq. (5.123) which gives a value of about
10 meV for the band bending 8. (6 is defined in Fig. 5.21(a) which is obtained
quantum mechanically and will be explained in the following text.)

Such a small band bending effect is expected because of the large doping con-
centration in the p™-SiGe side. However, the space variation of the free carriers due
to the quantum mechanical effect indicates that the classical approximation is not
valid in the region around the heterointerface (we learned this in the previous chap-
ter when we studied the nano-scale transistor). A simple effective-mass Schrédinger
equation can be written for the valence-band holes:

hr  d
( 2m?, dz ) +Vv>1/f(z) EY(z) (5.125)

where V, is the valence bandedge and m, is the carrier-concentration effective
mass. The hole distribution is now given by

pR) = AZIn[l—i—exp( )j||1ﬁ(z)| (5.126)
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Table 5.6 Different factors
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[meV] that determine the AEj (heterojunction offset) 353
effective barrier height of the A Eng (heavy doping effect) 76
17_om—3

107"-cm™ -doped E s (Fermi level) 165

Si/10%°-cm~3-doped 5t " 110

Sig.58Geg.42 heterostructure (quantum effect)

internal emission infrared Cal. effective barrier height 155

detector Observed barrier height 125
Total discrepancy 30

A is a constant which can be determined by the charge neutrality condition for
7 < 0. Eq. (5.123) is to be revised to include the wave nature of the hole wave
functions

d%¢
— = 5.127
dz? ( )

z>a

Equations (5.125), (5.127) are to be self-consistently solved for both the valence
band energy diagram V,, and free carrier distribution p(z). The numerical results are
plotted in Fig. 5.21. From V,, we can readily obtain the band bending §. We have
used the carrier-concentration effective mass m?*. of 0.6 for 102 cm™3 p*-type
doping in Sip.58Gep 42 and obtained § = 110 meV.

Different factors that determine the effective barrier height are listed in Table 5.6
together with the measured value for comparison. Now the total calculated effective
barrier height becomes 155 meV, it is still larger than the experimentally determined
value of 125 meV. There are other important factors that lower the effective barrier
height such as the precise determination of the p* doping concentration and het-
erointerface roughness. In view of these considerations, the discrepancy of 30 meV
between the current theory and experimental result is not serious.

5.6 Quantum Dot Solar Cell

Solar cell is mostly based on photovoltaic effect, and semiconductor p — n junc-
tion based solar cell is the most popular structure, which is schematically shown
in Fig. 5.22. At equilibrium, free electrons provided by donors in the n region and
free holes provided by acceptors in the p region will recombine with each other
at the junction interface, resulting in a depletion region, where donor ions and ac-
ceptor ions form the built-in electric field. Fermi level E ¢ is flat everywhere and
there is no net current and voltage output. Under light illumination, excess electrons
and holes are generated after absorbing photons in the depletion region, which will
be driven by the built-in field to drift into opposite regions. In the short-circuit case
when the Fermi level is still flat across the structure, the photocurrent output reaches
the maximal value /.. Without external connection, i.e., the open-circuit case, the
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Fig. 5.22 (a) Energy band structure of a p — n junction at equilibrium. (b) Short circuit ofa p —n
junction under illumination. /5. denotes the short-circuit current

excess carriers will accumulate, resulting in an open-circuit voltage V.. Here sub-
script “sc” and “oc” stand for short-circuit and open-circuit, respectively. Between
the open-circuit and short-circuit cases, the relationship between the output voltage
and current forms the / — V characteristics, in which there is a point corresponding
to the maximal output power output and the maximum photovoltaic efficiency nmax.

In Fig. 5.22(b) we only show photogenerations of electrons and holes in the de-
pletion region. Photogenerations of electrons and holes also occur in the n and p
regions, but with a much reduced contribution to the photovoltaic effect. First of
all, the optical transition rates are relatively low since the electron (hole) states in
the conduction (valence) band of the n (p) region are already occupied due to the
dopings (Pauli exclusion principle). Secondly, the average electric fields in the two
regions are very low (Ohm’s law). Thus, photogeneration of electrons and holes in
the depletion region is the major contribution to the photovoltaic effect.

Based on the detailed balance principle, Shockley and Queisser deduced the
bandgap-related ideal nmax of a single-junction solar cell, which is now known as the
Shockley-Queisser limit which is 31 % for bandgap range 0.95 ~ 1.6 eV [34]. Si,
GaAs, InP and CdTe are thus good candidates for solar cell applications. To further
increase the photovoltaic efficiency, novel structures are to be introduced. One struc-
ture is a multi-junction tandem solar cell. Several semiconductor p — n junctions
with different bandgaps, from the top wide-bandgap junction to the bottom narrow-
bandgap junction, are connected together in series, in order to absorb different-
energy photons in different junctions. Another intensely studied novel structure is
to use nanostructures, such as quantum wells and quantum dots, in a single junction
solar cell to improve nmax. The main idea is that except the above-bandgap photon
absorption in the bulk host semiconductor, the embedded nanostructures absorb sub-
bandgap photons. Moreover, a huge potential benefit of using nanostructures is the
impact ionization we have studied in Sect. 3.9 that a high-energy photon can gener-
ate more than one electron-hole pairs, i.e., multiple exciton generation (MEG). If we
can extract the electrons and/or holes before they recombine, we will reach a quan-
tum efficiency of more than 100 % (one photon in, more than one carrier out). And
finally, compared to multi-junction tandem cell structures, nanostructure-embedded
cells are more flexible in terms of material selection and device design.
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Table 5.7 Basic GaAs p —n

solar cell structure Layers Doping [cm ™3] Thickness [nm]
p GaAs 2x10"7 500
i GaAs undoped 140
n~ GaAs 2x1016 1860
nt GaAs 2x10'3 500
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In this section let us study a common GaAs p — n junction solar cell embedded
with InAs quantum dots. We actually study three cells, one with InAs quantum dots
embedded in the depletion region, denoted as sample A, one with InAs quantum
dots embedded in the n region, i.e., sample B, and a reference cell without embed-
ding any nanostructures, sample C. Table 5.7 lists the basic GaAs p — n solar cell
structure. There is also a top 100 nm p-doped Alpg5Gag.15As window layer and
a back n-doped Aly2Gag gAs surface field layer to prevent minority carriers from
diffusing into the surfaces, see Fig. 5.23.

2.3 monolayers (ML) of InAs for sample A and B, which eventually form one
quantum dot layer, were directly grown on GaAs at a rate of 0.1 ML/s and a 10-s
growth interruption after every 0.1 ML growth. The quantum dot layer was then
capped by GaAs spacer at a rate of 1 ML/s, followed by the next quantum dot
layer growth. The thickness of GaAs spacer is 20 nm in sample A and B. The sheet
quantum dot density on one quantum dot layer is approximately 4 x 1010 cm=2.

We approximate each quantum dot layer by an effective InAs quantum well layer
with a thickness of 2.3 ML (0.7 nm, i.e., InAs quantum dot growth condition) along
the sample growth direction (the z direction), while the density of electron and hole
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Fig. 5.24 (a) Photovoltaic (a)
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states in such a quantum well is approached by a single § function to account for the
discrete nature of the three-dimensional confined sublevels. Energy band structures
of the three solar cells at equilibrium are presented in Fig. 5.23 which were obtained
self-consistently (we have used the self-consistent calculations many times before).

I — V characteristics of the three cells under 1 sun AM1.5G were obtained by
photovoltaic measurement setup in Fig. 5.24(a) and are presented in Fig. 5.24(b).
The light intensity of the solar simulator (1 sun AM1.5G) is 100 mW/cm? calibrated
by a standard Si cell. Compared with the reference sample C, both quantum-dot-
embedded solar cells, A and B, have lower open-circuit voltages (V,.). Moreover,
sample A has the highest short-circuit photocurrent /i while sample B has the low-
est /.

The understanding of the experimental results in Fig. 5.24(b) is basically straight-
forward by the physics we have so far learned. The photocurrent in sample B is
reduced due to the scattering of electrons by the quantum-dot-induced potential bar-
riers, see Fig. 5.23, which, on the other hand, provides a better accumulation of the
photogenerated excess carriers in the n and p regions, resulting in a higher open-
circuit voltage. The photocurrent /. of sample A consists of not only the contribu-
tion of above-GaAs-bandgap photon absorption in the GaAs region, i.e., the major
photocurrent of the reference sample C, it also includes the sub-GaAs-bandgap pho-
ton absorption in the InAs quantum dots. The reduced open-circuit voltage in sample
A can be caused by the interband tunneling in the depletion region.
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Fig. 5.25 (a) Photocurrent spectra at 300 K under a xenon lamp. (b) Photocurrent spectra normal-
ized with respect to the Si photodiode (Reprinted with permission from X.-J. Shang, J.-F. He, M.-F.
Li, F. Zhan, H.-Q. Ni, Z.-C. Niu, H. Pettersson, and Y. Fu, Quantum-dot-induced optical transition
enhancement in InAs quantum-dot-embedded p-i-n GaAs solar cells, Appl. Phys. Lett., vol. 99,
p. 113514, 2011. Copyright 2011, American Institute of Physics)

Further experimental characterization of the three samples reveals more physics.
Photocurrent spectra shown in Fig. 5.25 were measured by a Keithley multimeter
under a xenon lamp with a monochromator, where a Si photodiode was used as
reference. Two main spectral differences are observed between the three samples.
The first one is the sub-GaAs-bandgap photocurrent (A > 900 nm), and the second
is the photocurrent enhancement in sample A and reduction in sample B above the
GaAs bandgap (A < 900 nm).

The decrease of sample B’s photocurrent can be largely attributed to the reduced
carrier mobility in the n region, as aforementioned. The most interesting thing about
Fig. 5.25(b) is the enhancement of photocurrent in the above-GaAs-bandgap wave-
length range of A < 900 nm. As shown in Fig. 5.24, the short-circuit current Iy
of sample A is about 30 % higher than sample C. The same 30 % enhancement
is also obtained here in Fig. 5.25(b) by integrating and comparing the relative pho-
tocurrents. Contribution to the observed photocurrent enhancement from sub-GaAs-
bandgap absorptions due to InAs quantum dots is very small, see Fig. 5.25(b) when
A > 900 nm.

The most possible mechanics of the photocurrent enhancement above the GaAs
bandgap in sample A is the increased photon absorption due to quantum-dot induced
reflections of the wave functions of an incident conduction-band electron from one
side of the depletion region and an incident valence-band hole from the other side.
Refer to Fig. 5.26, for simplicity, we model the quantum-dot potential variations in
the conduction and valence bands as one-dimensional quantum wells. The incident
conduction-band electron, with an energy above the GaAs conduction bandedge,
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Fig. 5.26 Wave functions of conduction-band (CB) electron and valence-band (VB) hole with a
transition energy hw = 1.593 eV (above the GaAs bandgap). Also presented are the schematic
CB and VB of GaAs embedded with InAs quantum dots modeled as one-dimensional quan-
tum wells (Reprinted with permission from X.-J. Shang, J.-F. He, M.-F. Li, F. Zhan, H.-Q. Ni,
Z.-C. Niu, H. Pettersson, and Y. Fu, Quantum-dot-induced optical transition enhancement in
InAs quantum-dot-embedded p-i-n GaAs solar cells, Appl. Phys. Lett., vol. 99, p. 113514, 2011.
Copyright 2011, American Institute of Physics)

-

comes to the quantum-dot layers in a plane wave form

eikl b4
it is partially reflected
rlefiklz
and partially transmitted
t 1eik' <

Similarly the wave function components for the valence-band hole are

e*ikzz’ rZeikzz’ t2efl.kzz
Note that there are other transmission cases such as both the conduction-band elec-
tron and the valence-band hole incident to the quantum-dot regions from the same

side but they do not contribute to the photocurrent. Without quantum dots,
ri=r =0, tH=rn=10

The amplitudes of such wave functions are shown as dotted lines in Fig. 5.26. The
optical interband transition matrix element between these two wave functions is
proportional to

We = (e*12]e~h%) = [ emitith)zg, (5.128)
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Fig. 5.27 Room-temperature
photocurrent spectra of the
three samples (Reprinted with
permission from X.-J. Shang,
J.-F. He, M.-F. Li, F. Zhan,
H.-Q. Ni, Z.-C. Niu, H.
Pettersson, and Y. Fu,
Quantum-dot-induced optical
transition enhancement in
InAs quantum-dot-embedded
p-i-n GaAs solar cells, Appl.
Phys. Lett., vol. 99,

p. 113514, 2011. Copyright
2011, American Institute of
Physics)
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The wave functions are modified when QDs are embedded. As shown in Fig. 5.26,
the conduction-band electron transmits relatively well due to the small electron ef-
fective mass, while the much heavier valence-band hole is greatly affected. For the
two wave functions presented in Fig. 5.25, we can neglect the transmitted valence-
band hole so that its wave function on the right side of the structure is

e*ikzz + eikzz

We further approximate the conduction-band electron as a perfect transmission so
that its wave function on the right side of the structure is

eiklz
The optical transition matrix element becomes now
Wa = (e™1%]e™H2% 4 o™h2%) = W + / e kg, (5.129)

Wc oscillates while the second term in W can be very large when k1 = k;. The
condition of k| = kj can easily be fulfilled which explains the photocurrent enhance-
ment of sample A over the whole optical range above the GaAs bandgap. Note that
the Wa enhancement in the above analysis is very large as compared with experi-
mental data due to the approximation of the three-dimensionally confined quantum-
dot potentials by one-dimensionally confined quantum-well potentials, leading to a
strongly exaggerated wave function reflection.

The full photocurrent spectra of all samples at room temperature are compared in
Fig. 5.27. Sample A and B show sub-GaAs-bandgap photocurrents (900 ~ 1300 nm)
related to quantum-dot absorption. The peak around 920 nm comes from the absorp-
tion in quantum-dot wetting layers (WL) (the general self-assembled quantum dot
structure is shown in Fig. 1.16); the extended profile in 950 ~ 1300 nm comes from
the absorption in quantum dots. Sample C has no such features.
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excited
lossy

Fig. 5.28 Schematic quantum-dot dimer lattice for lossless negative epsilon in a primitive cubic
lattice structure. R| and R; denote the radii of the quantum dots and a is the lattice constant of the
primitive cubic lattice (Reprinted with permission from Y. Fu, Photonic energy band structure of
excitonic quantum dot dimer system, J. Appl. Phys., vol. 106, p. 054302(5), 2009. Copyright 2009,
American Institute of Physics)

Sample A has the highest quantum-dot induced photocurrent while sample B
has the lowest one. It is related to the quantum-dot location in the p — n structure.
Sample A has five closely-stacked quantum-dot layers (spaced by 20 nm GaAs) in
the depletion region, the light absorption in InAs quantum dots and the photocarrier
extraction from quantum dots and transport (mostly drift under the built-in electric
field) are effective. Sample B has totally fifteen 20-nm GaAs-spaced quantum dot
layers in the flat-band n region, photocarrier extraction from quantum dots is a big
problem due to potential variation.

5.7 Exciton-Polariton Photonic Crystal

As we learned in Sect. 3.7 that the electric polarization of an exciton in a nanostruc-
ture will modify the optical properties of the nanostructure significantly in terms of
exciton polariton. The dielectric coefficient of the nanostructure in which the exci-
ton is confined will be different due to the exciton polariton from its surrounding
material, resulting in a dielectric contrast. In this section, we construct a quantum-
dot photonic crystal by utilizing such a dielectric contrast. We position two types of
spherical quantum dots, having radii R; and R, respectively, in a face-centered cu-
bic (fcc) lattice having a lattice constant a, see Fig. 5.28. Note that Fig. 5.28 shows a
primitive cubic lattice for the sake of simple visualization. Type-I quantum dots (ex-
citon energies are hwp), which are lossy, occupy the normal fcc lattice sites, while
the already excited quantum dots, i.e., type-II quantum dots (hw;) are displaced
from the type-I quantum dots by t.

Let c4; be the occupation of the ground state of quantum dot i positioned at
lattice site a, i.e., the valence band is completely filled and the conduction band is
completely empty, the contribution of an excited exciton state i in this quantum dot
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denoted by the spatial position of the quantum dot and the exciton state index i, ai,
to the dielectric polarization is given by

& peyRleail* — 1)
Mwgi — o+ iy)a)iim

P,i(r)= zwa,-(r,r)/.w;‘i(r/,r’)pw-E(r/)dr’ (5.130)
0

see Sect. 3.7, where Vi (r,r) = Yai (e, ¥i)lr,=r,=r» Yai(re,rp) is the exciton
wave function, r, and rj denote the electron and hole, respectively. hwg; is the
excitonic energy and y denotes the damping rate of the exciton state. We first intro-
duce a few physical parameters relevant to the quantum-dot structure

mim’} drreh? 3 e?p?,
n=—— ag = , €oray = ———
m¥ 4+ m} we? B whadmd
(5.131)
eorrag 2leail® — 1)
Thi(w) =

Wgi — @+ iy

where m* and m} are electron and hole effective masses so that p is the reduced
effective mass of the exciton. ag and wrr are the exciton Bohr radius and the
longitudinal-transverse splitting, respectively. For all the quantum dots under dis-
cussion, R; is in the order of ap so that one may neglect the internal motion of the
electron-hole pair inside the quantum dot and the exciton ground state is described
by as

i ) 1 . (nlr—al) 1 _lrenyl 5.132)
Fo,Fp) = sin e ¢ .
altfeTh V2T R{|r —a| Ry rad

V7B

for |r — a| < Ry, where r = (m}r, + mjry)/(m} + m}) is the exciton center of
mass, see Eq. (3.245). For type-II quantum dots of i = 2, the wave function of the
exciton is expressed similarly by replacing a with @ + t and R; with R;. Using these
physical quantities, the Maxwell equations describing the incident electromagnetic
field in such a quantum dot dimer lattice which is free of charges and free of drift-
diffusion current are written as

V x [V x E(r)] = joo*D(r)
(5.133)
V-D(@r)=0

in the MKS unit system [units based on meters (m), kilograms (kg), and seconds (s)],
where E (r) is the electric field, D(r) is the displacement vector, and w is the angular
frequency of the electromagnetic field. Here we have assumed that the quantum dot
is composed of uniform isotropic linear media, for which D = €¢FE and B = uoH.
H is the magnetizing field and B is the magnetic field. ¢ is the magnetic constant
(permeability of free space). The nonlocal material equation relating D(r) and E(r)
is

D(r)=€E(r) +2Pai(r) (5.134)

ai
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We have neglected the overlap of exciton envelope functions centered at different
quantum dots so that excitons in different quantum dots are assumed to be coupled
only via the electromagnetic field.

It follows from the second Eq. (5.133) and Eq. (5.134) that

V.E(r)z—év.P(r) (5.135)

so that the first Eq. (5.133) can be rewritten as

2

2 2 kg 1
VE(r)+k E(r)=—a{P(r)+k—2v[v.P(r)]} (5.136)
where kg = w/c, k =kon = wn/c and n = \/€ /€.
Equations (5.130) and (5.136) are our master equations about the electric field in
the excitonic quantum-dot lattice.
We now seek for Bloch-like solutions of Eq. (5.136) satisfying

E (r+a)=¢TE,(r) (5.137)

By this, we, in principle, assume that the system is lossless. This is artificially
achieved by letting y = 0 in Eq. (5.130). We expand the vector function Eg(r)
in the Fourier series

E, (r) = Ze“ﬁg)"Eﬁg (5.138)
8

g are the reciprocal lattice vectors. Denote a; = v/2|c1]|? — 1, ap = +/2|c2|? — 1,

vo = a3 /4 is the volume of the primitive unit cell of the fcc lattice, ¢; = a;y; and
t= ea)LTna%, the excitonic polarization becomes

Pr=Y %iyasai(r, r) / o5 (' ) E(r)dr’ (5.139)

Wi —w
Note that the excitonic wave function is real so that we have dropped off the complex

conjugation of the wave function in the integrals in Eq. (5.130). The two integrals
in the above equation can be transformed into

/ $La(NEF)dr =9 "I 44 Eqrg =" A,
g

(5.140)
/¢2,a+r P E(r)dr =1 Z DygigEqrg=e'"1"A
g

where

Lgtg= / $1,0(r)e" IO dr (5.141)
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12,q+g=/¢2,0(r)ei(q+g)'('+r)dr

The sums ", ¢1,4(r)e'?® and Y, . ¢2.a+7 (r)e'? satisfy the translational sym-
metry and can be presented as

*

Z¢l a(r)e't® = Z gi(q+g)-r11,qi
a ’ 2 UO

(5.142)

. I*
Z (%) a+r(r)ei‘1'“ = Zez(q+g)~rﬂ

att P vo
The linear equations for the space harmonics E ¢ can thus be written

(Ig +g* —k*)Eqig
*

S | B2 A 2 S PP VY
v raTE w)—w+iy ! wy—w+iy 2

Let S(Q)up = up — Qu Qﬁ/kz, a, B=x,y,z, 0qp is the Kronecker symbol. Divid-
ing Eq. (5.143) by (g + g|*> — k?), multiplying it by I1,4+¢ and summing over g:

le,qugEqug =4

g
kzt :§ I 2 11, 4 I*
~y S4rE 2[ Marel_,,  ZLate z‘q.*gAz}
Vo 3 |¢I+g| —k o] —w+iy wr—w+iy
=M (0, q)A1 + Ma(w, q) Az (5.144)
where
Mi(0,q) = kot ) S(g+g T
1o, (w1 —w+iy)vo el fel—k2 Lg+g
k2 S (5.145)
M- ! S(g+g)
M CL), = 0 I*
2@, q) (02— o+ iy)vo Z 7+ gl — k2 tarelge

g

Similarly, dividing Eq. (5.143) by (|q + gl? — k3, multiplying it by /5 41, and
summing over g,

Z hg+gEqig = A2
g

_kitz Siqg+g) [I2>q+gll*,q+gA " |h.q1gl Az}

v S g +gl>?—k?|w) —w+iy w)—w+1iy

= M3(0, @)A1 + Ma(w, q) Az (5.146)



5.7 Exciton-Polariton Photonic Crystal 327

where
— k2t Sg+g)
Mi(w,q) = 0 I
=7, —w+iy)v02g: g + g2 — k2 2OTE ke
) R (5.147)
— kgt Sqg+g) 2
My(w.q) = L |D.g+g]
(w2 — @ +iy)vo Xg: lg +gl2—k2 1€
We arrive at the vector equations
[1- Mi(0,9)]A1 = Mz (0, q)A> (5.148)
[1- Ma(o, )] A2 = M3 (0, @) A
where [ is a 3 x 3 unit matrix. We can rewrite the above equations as
1-Minn —Mi12 —My 13 —M; 11 —M 12 —M3 13
My 1—Min —Mi —M3 —M>3 2 —M>3 23
D— —Mj 31 —Mi3 1—-My3 —M3 —M> 32 —M3 33
M3 11 M3 12 M3 13 My —1 My 12 My 13
M35 M3 2 M3 3 My 2 My —1 My 3
M3 31 M3 3 M3 33 My 3 My 3 M43z —1
(5.149)
8 wirRial?
M 22,)=———— $2,
1,ap(82,9) v (@1 _w+iy)011,a,3( q)
8 oLr(RiR)?ara}
M $2,q) = — $2,
2.08(82,9) v (@r—otiy) 012.08(£2, q)
8 wrr(RiR2)Y atar
M 2,9) = — o 2,
3,08(82,q) 0 (@ —otiy) 21,08(82, q)
8 wirR3laz)?
My op(2,q) = ﬂ_mm@z’aﬂ(g’ q)
(5.150)

R; R:)S .
Ust,aﬂ(g,q)zzf(|g+q| 3)2f(|g+q| z)zaﬁ(ngq)e,(s_,)(gﬂ),,
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where s, = 1, 2. The exciton-polariton dispersion w(q) satisfies the equation
Det|D| =0 (5.151)

Note that by setting |c{|?> = 0 and |c2|? = 0.5 (type-II quantum dots are totally
transparent) we retrieve the case of the quantum dot lattice composed of only type-I
quantum dots. By setting |c1|> = |c2|? = 0 and w; = wy we retrieve the case of a
compound quantum-dot lattice.

The dispersion relationship w(q) for the quantum-dot fcc lattice is presented
in Fig. 5.29. The lattice is denoted by its lattice constant a, which is set to be
0.95aBragg (Which is 116 nm for GaAs), where apragg = cw/win. The lossy type-1
quantum dots (hw; = 1.5 eV) occupy the normal fcc lattice sites, while the ex-
cited type-II quantum dots (hwy = 1.503 eV) are displaced by 7 = (a/2,a/2,a/?2).
howrr = 5 meV. Here we observe the modification of the photonic band struc-
ture of the quantum-dot dimer lattice by pumping one type of the quantum dots
(type-1I quantum dots), which evolves from the one of only type-I quantum dots
(le11*> =0, i.e., at their ground exciton state) when type-II quantum dots are trans-
parent [|c2|? = 0.5, Fig. 5.29(d)] to the compound system [|c2|*> = 1.0, Fig. 5.29(a)].
We can observe modified but still characteristic features of the photonic dispersions
of individual type-I and type-II quantum dots in their separate lattice formats in the
compound system. More specifically, the resonance features of type-I quantum dots
around (w — w1)/wrr = 0.3 in Fig. 5.29(d) becomes compressed by the radiative
interaction between type-I quantum dots and type-II quantum dots, they are also
shifted down to around 0.18 in Fig. 5.29(a).

The numerical solutions of Eq. (5.151) are symmetric with respect to lc2|? and
1 — |c2|? when ¢; = 0. Thus, Fig. 5.29(a) represents also the photonic dispersion
of the quantum dot dimer lattice when type-I and type-II quantum dots are all ini-
tially at their ground exciton states, i.e., |c1|> = |c2|> = 0. It is concluded that the
modification of the excitonic state (from ground state to excited state) in one type
of quantum dots in the dimer lattice does not affect the feature of the dispersion
structure of the dimer lattice. Moreover, Fig. 5.29 shows that the effect of the ex-
cited type-II quantum dots at (@ + T) persists even when the excitation rate is as
close as to be 0.4995. This is due to the periodic boundary conditions. Furthermore,
Fig. 5.29(d) remains exactly the same when type-II quantum dots located at (a 4 7)
are physically removed.

Figure 5.29 suggests that the propagation of the electromagnetic field is strongly
affected, especially in the wavelength ranges where the dispersion curves are flat,
such as (w — w1)/wrT € (0.2,0.4) in Fig. 5.29(d). In these wavelength ranges, the
relationship between k and w is very dispersive and light will be strongly diffracted.
One simple way to check such a dispersion relationship is to measure the trans-
mission and reflection of electromagnetic field through a quantum-dot embedded
dielectric layer schematically shown in Fig. 5.30. The quantum dot has a radius of
R, the square array has a period of L, and the dielectric film has a thickness of 2R.
Periodic boundary conditions are imposed on the four surfaces perpendicular to the
dielectric film, while perfect matched layers are imposed at the top and bottom sur-
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faces. An incident electromagnetic field is initiated at one side of the dielectric layer
and its transmission is detected at the other site.

We can calculate the transmission and reflection of the electromagnetic field
through this dielectric layer very similar to the electron transmission through elec-
tronic structure such that we import an incident radiation, which will be reflected
and transmitted. The electromagnetic field inside the dielectric layer consists of
eigen states, i.e., states in Fig. 5.29 if the quantum dots in the dielectric layer form a
fcc lattice. Here we try to calculate the transmission by adopting the FDTD method
briefly introduced in Sect. 5.3, which requires a few steps of physical and mathe-
matical treatments. As we learned before, the dielectric polarization of the exciton
induced by the electromagnetic field is expressed as

P(r,t)= T(a))w(r,r)/Ip*(r/,r’)E(r/,t)dr/ (5.152)
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Fig. 5.30 (a) Schematic drawing of a dielectric film embedded with a square array of quantum
dots. (b) A cross section of the FDTD computational domain consisting of a single unit cell of the
quantum-dot array

see Eq. (3.237). where ¥ (r¢, rp)|r,=r, 1s the ground-state wave function of the
exciton excited in the quantum dot centered at a

Y(re.rn) : i (”'“”') e (5.153)
Fe,Fp) = Sin e “Br .

¢ |r —al|v/27 R R /na%

T

Here

reml +rpm’

* *
my +m;j

In addition, the coefficient T (w) is given by

3
2w epewrTWwOaR,

T(w) = .
w% —w? —2iwd

(5.154)

Here wrr and ap; are the exciton longitudinal-transverse splitting and exciton Bohr
radius, respectively. € is the dielectric index of the semiconductor material that
makes the quantum dot, § is a phenomenological parameter describing the decay
of the quantum dot exciton wy is the ground-state exciton resonance frequency of
the quantum dots.

The interaction between light and nonlocal quantum dots is described by the
time-dependent Maxwell’s equations that are coupled to an equation for the light-
induced excitonic polarization current in the quantum dot

oH oE aP

VxE=—u—, VxH=¢—+J, J

5.155
ot ot ot ( )

Here E is the electric field, H is the magnetic field, J is a current density due to the
nonlocal polarization P of the quantum-dot exciton. To solve the above curl equa-
tions, Yee’s discretization scheme is here employed. All field variables are defined
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on a cubic grid. Electric and magnetic fields are temporally separated by one-half
time-step and spatially interlaced by half a grid cell. Based on this scheme, center
differences in both space and time are applied to approximate Maxwell’s equations.

In order to obtain the relation between the current J and the polarization P,
Eq. (5.152) is rewritten as

P(r,o)= E ey (r, ) (5.156)

a)(z) —w? —2iwd

where A = megewrTwy, and the new variable E ey (w) is defined as

— r__ d /
Enew(w)Esinc<y)/sinc<¥)E(r’,w)R—‘; (5.157)

with sinc(x) = sin(x)/x. It should be emphasized that such a dielectric permittivity
is very similar to that of a Lorentz-type medium. The polarization current density
J (w) is introduced as
) —Aiw
J@r,w)=—ioP(r,0) = ——————FEnw(r, o) (5.158)
wy — w? —2iws

Fourier transforming the above equation, its time-domain analog can be written as

) dJ(1) | d?J@) | dEpey(1)
g () +20 ==+ — 5= = A— (5.159)

With the discrete time step Af, and notation J" = J(nAt), a time-difference ex-
pression is then found

T =a ]+ b 4 c[Eney? — Enew”’] (5.160)
where
2 — W A2 SAt—1 AAt
_ (Ol e c= (5.161)
1+8At 14+ 06At 1+8At

On the other hand, following Ampere’s law,

dE(t
V x H = €€ dt()+J (5.162)
the finite-difference expression can be written as
En+3/2 — En+1/2 + ﬁ[v X HI’Z-‘rl _ Jn—H] (5163)
€0€

Equations (5.160), (5.163) can therefore can be utilized to simulate the nonlocal

polarization of the quantum dots in two steps: (1) From J", H" and E"~'/? to

obtain E"1/2; (2) From E"~'/2 and E"*'/2 to obtain E'w/? and E"+Y? and
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thereafter J"*!, meanwhile, from E"*!/2 and H" to obtain H"*!. Figure 5.31
shows the transmission spectrum through quantum dot embedded dielectric film of
Fig, 5.30. A strong reflection is observed due to the exciton-polariton resonance
close to the quantum-dot exciton state, as can be expected by referring to Fig. 5.29.

We now turn to experiments in order to verify Fig. 5.31, a multiple-layer quan-
tum dot structure was formed, where each layer consisted of a 2 nm Ing ;5Gag gsAs
buffer layer, InAs quantum dots, 6 nm Ing.15Gag g5As cap layer, and a 33 nm GaAs
barrier. From atomic-force microscopic (AFM) measurement the quantum dot den-
sity was estimated to 9.4 x 10'% cm~2, and the average width and height to be 16 and
3.5 nm, respectively. Edge polished samples were used for the reflection measure-
ment, enabling multiple reflection in the sample, and the transmitted intensity was
measured at the second polished edge of the sample. An absorption layer was added
to the quantum dot sample in order to minimize the signal from the light which is
not reflected by the quantum dot layers but transmitted and reflected at the GaAs/air
interface. An edge polished GaAs sample with identical geometry as the quantum
dot sample (but the quantum dot layers and the absorption layer were omitted) was
used as reference. The transmitted intensity through the quantum dot sample was di-
vided by the transmitted intensity through the reference sample in order to account
for the variation in the light source spectrum and the reflection at the first interface.

The reflection measurement was performed at room temperature with a Fourier
transform spectrometer using a quartz halogen lamp as excitation source, a quartz
beam splitter, and an InGaAs-detector. For the room temperature photolumines-
cence measurements a HeNe laser (632.8 nm) was used as the excitation source
and the photoluminescence was detected by an InGaAs detector with conventional
lock-in technique. The results are presented in Fig. 5.32 where a broad reflectance
peak is observed at the wavelength of the photoluminescence peak. Figure 5.32 con-
firms well the theoretical expectation presented by Fig. 5.31.

As shown in Fig. 3.7, €’ of the quantum dot exciton polariton can be negative,
which can be utilized for many potential applications such as left-handed photonic
materials. However, a practical problem is €”, which is a measure of optical loss,
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Fig. 5.32 Reflectance and photoluminescence (PL) spectra of the ten-layer InAs/InGaAs/GaAs
quantum dot sample. Inset shows the geometry of the edge polished sample (Reprinted with per-
mission from Y. Fu, H. Agren, L. Hoglund, J. Y. Andersson, C. Asplund, M. Qiu, and L. Thylen,
Optical reflection from excitonic quantum-dot multilayer structure, Appl. Phys. Lett., vol. 93,
p. 183117(3), 2008. Copyright 2008, American Institute of Physics)

see Sect. 3.7. For perfect waveguiding or imaging, we require €” = O for which
we consider distributions of two types of quantum dots, one providing an absorp-
tive resonance and the other gain through either optical or electrical pumping. Con-
sider a PbSe/ZnSe quantum-dot assembly immersed in a medium of dielectric con-
stant €;. The macroscopic dielectric constant € for the quantum-dot ensemble can
be described by the dielectric theory of Maxwell-Garnet [35-37], which for two
quantum-dot species can be written as

€—€ €QD1 — € €QD2 — €;

= X1 2
€+ 2¢; €QD1 + 2¢; €Qp2 t+ 2¢;

(5.164)

where x; is the volume fraction of the ith quantum-dot species.

We consider two types of the background medium, semiconductor material with
€; about 10 and polymer around 2. Furthermore, we assume a quantum-dot radius
of 10 nm. Consider first the distribution of one type of quantum dots (i.e., x; # 0
and x; = 0), the spectra of € for two quantum-dot densities and two background
dielectric constants are shown in Fig. 5.33. Both ¢’ and €” increase with increasing
quantum-dot density and decreasing €;. A low background dielectric constant is thus
important in reducing the quantum-dot concentration.

For the combination of two types of quantum dots, one type is lossy, and the
other has been pumped for optical gain, immersed in €; = 1.8, the optical spectrum
is presented in Fig. 5.34. Figure 5.34(a) depicts the spectra of eéD and 66]) of the
two quantum dots. Note that gain is at the higher energy, a condition we have found
necessary in order to achieve ¢ < 0 and ¢” = 0, which are given in Fig. 5.34(b).
By combining lossy quantum dots with pumped quantum dots, the macroscopic
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Fig. 5.33 Effective dielectric constant € (w) = €' (w) + i€”(w) for an ensemble of quantum dots
immersed in a medium of dielectric constant ¢; (w). The quantum-dot density are 5 x 10'® and
1 x 107 cm~3, respectively, correspond to volume percentages of 20.5 % and 41 %. (a) Quantum
dots embedded in semiconductor substrate ¢; = 12.8. (b) Quantum dots immersed in a medium
with €; = 1.8, e.g., a conducting polymer (Reprinted with permission from Y. Fu, L. Thylen, and
H. Agren, A lossless negative dielectric constant from quantum dot exciton polaritons, Nano Lett.,
vol. 8, pp. 1551-1555, 2008. Copyright 2008, American Chemical Society)

permittivity of our structure is approximately in the form of

i -y 0 — Wy

(5.165)

— = +i
w—w,—iy (@-0)?+y?  (w—w)*+y?

where w, denotes the macroscopic resonance frequency of the dimer lattice and y
is the damping rate. The loss is minimal when w approaches w,. The expression fol-
lows exactly the Kramers-Kronig relations as required by the stability of the system.
Such a spectrum is fundamentally different from

1 wr —w y

— = +i 5.166
Wy —w—1y (a)r_w)z"‘)/z (wr_w)2+)/2 ( )

for which y is to be reduced in the form of y =0, 3y /8w =0 and 3y /dw? > 0
in order to become lossless, which results in a pole in the upper half-plane and
hence violates causality [38]. ¢’ = —8.5 and €” = 0 is achieved in Fig. 5.34(b) at
hw, = 1.5015 eV with a total quantum-dot density of 1.4 x 10'7 cm™3, which is
58 % in terms of volume fraction.

Figure 5.29 is obtained under the periodic boundary condition of Eq. (5.137).
In other words, the photonic dispersion relationship is rigorous for a three-
dimensionally extended system, thus optical loss or gain has to be infinitely small.
The quantum-dot dimer lattice in Fig. 5.34 for lossless negative dielectric constant
by using the Maxwell-Garnett formalism, could amount to a mean-field approxi-
mation. The combination of the two figures indicates that at the wavelength of zero
loss, the propagation of the electromagnetic field in the quantum-dot dimer lattice
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Fig. 5.34 (a) One type of quantum dots at 1.50 eV and |a®|> = 1.0 (solid lines), the other quan-
tum-dot type at 1.503 eV and |a@|?> = 0.0 (dashed lines). (b) The two types of quantum dots are
immersed in ¢; = 1.8. The densities of two type of quantum dots are 7 x 10'® cm=3 (Reprinted
with permission from Y. Fu, L. Thylen, and H. Agren, A lossless negative dielectric constant from
quantum dot exciton polaritons, Nano Lett., vol. 8, pp. 1551-1555, 2008. Copyright 2008, Ameri-
can Chemical Society)

will be normal even the dielectric constant of the dimer lattice becomes effectively
negative.

5.8 Resonant Tunneling Light Emitting Diode

Electron transitions occur due to the fact that electrons occupy stationary (eigen
values and eigen functions of the system). When exposed to radiation, interaction
between the photons of the radiation field and electrons occurs, resulting in radia-
tive or non-radiative electron transitions between two energy levels. Absorption is a
transition induced by incident photons that the electron is raised from a lower state
E; to a higher state E, after absorbing a photon having an energy that equals the
energy difference between the two electron states, see Fig. 5.35(a). This forms the
basis for photodetection that has been studied in the previous sections. If an electron
is initially in an excited state E;, it may fall to the lower energy state E; sponta-
neously, see Fig. 5.35(b). When doing so, the electron releases its excess energy in
the form of a photon of random direction, i.e. the light emitted is incoherent. The
energy of the emitted photon corresponds to the energy difference between the two
energy states is

hws = E» — Eq (5.167)

The process is called spontaneous emission because the transition is not triggered by
external controlling intervention. This forms the basis for the light emitting device,
which will be studied closely in this section. The third transition is the stimulated
emission. Initially the electron is in an excited state. As it interacts with an incident
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Fig. 5.35 Electron transitions between two energy levels £ and E;. (a) Absorption, (b) sponta-
neous emission, (¢) stimulated emission. In all cases hwg = Ey — E|

photon, it is stimulated to emit a photon when it undergoes a downward transition,
see Fig. 5.35(c). This phenomenon forms the basis of laser action that the emitted
photon has exactly the same characteristics as the stimulating photon; it has the same
energy, phase, polarization and direction of propagation, which will be studied in the
next section.

All of the processes in Fig. 5.35 take place when the electron interacts with the
radiation with appropriate energy. Which process is dominating depends on the in-
tensity of the radiation and on whether the electron is at thermal equilibrium. At
thermal equilibrium, the number of electrons, N3, in the excited state E5 is smaller
than the number of electrons N; at a lower energy state E£1. The occupation of state
E; is in the form of Fermi-Dirac distribution

1
f(E) = B

—_ (5.168)
14+exp( ;qu)

where E ¢ is the Fermi level. At this thermal equilibrium, a photon is more likely to
be absorbed by electrons at the low energy levels.

For spontaneous and stimulated emissions, a population inversion is needed in
which N5 is larger than Nj. In this situation, the total emission rate becomes larger
than the absorption rate.

When a p-type and an n-type semiconductor material are brought in contact, a
p — n junction is formed. At thermal equilibrium, the Fermi level must be aligned
across the p — n junction by the diffusions of electrons from the n side to the p
side and of holes in the opposite direction. When a steady state is reached, further
diffusion is prevented by the so-called built-in electric field. See Sect. 4.1 about the
functioning of the p — n junction.

When applying an external positive voltage to the p side of the junction, the built-
in field is reduced, and the junction is said to be forward biased. The electric field
reduction in the depletion region induces further diffusion of electrons and holes
across the junction and an electric current begins to flow. In the narrow depletion
region of the junction, both electrons and holes are present simultaneously. They
can recombine either radiatively or non-radiatively. The photons, that are emitted
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Fig. 5.36 A p —n homojunction (a) at thermal equilibrium, and (b) forward biased

during radiative emission (spontaneous or stimulated emission), have an energy of
hw ~ E,, where E, is the energy bandgap, see Fig. 5.36. These photons can be
absorbed through a reverse process that generates electron-hole pairs. When the ex-
ternal voltage exceeds a critical value a sufficient population inversion is achieved in
the depletion region and the rate of photon emission exceeds that of absorption. Un-
der these circumstances the p — n junction is capable of optically emitting radiation
at certain wavelength.

The p — n junction is a so-called homojunction, which means that the junction
is formed between p and n variants of the same semiconductor material. Because
the excess electrons and holes distribute extensively in the depletion region which
is relatively wide, it is thus difficult to achieve the high carrier densities in order to
obtain a sufficiently high optical gain.

Moreover, the optical spectrum of the light emitted from a p — n homojunction
can be rather wide. Since the carrier concentrations in the depletion region is very
low, let us first study the optical transitions in an intrinsic or lightly-doped bulk
semiconductor from a valence-band state (E,, k, m}) to a conduction-band state
(E¢, k, m}) in the forms of

h2k? h2k?
Ec(k)ZEc‘i‘—*’ Ey(k)=Ey — —— (5.169)
2m¥ 2m

where n = ¢, v, E, is the bandedge, E. — E, = E, is the bandgap, and m; is the
effective mass of carriers in band n. The occupations of the two states can be ex-
pressed by the Fermi distribution function

FlEn(k)] = O E (5.170)

E? is the Fermi level of band n. At thermal equilibrium and without external ex-
citation, E; = E}i = Ey. In an n-type material, the number of conduction-band
electrons is larger than the valence-band holes so that E f is close to the conduction
bandedge. E ¢ is close to the valence bandedge in a p-type material since the number
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of valence-band holes is larger than conduction-band electrons. Under an optical ex-
citation, electrons in the valence band will transit to the conduction band to become
photoexcited electrons, leaving holes (known as photoexcited holes) in the valence
band. Electrons in the conduction band and holes in the valence band will reach their
respective quasi equilibrium states, characterized by quasi Fermi levels £ ; and £ }i
In intrinsic or lightly-doped materials, the densities of electrons and holes are all
low so that E ¢ locates close the middle of the bandgap. Under weak photoexcita-
tion, E s splits into E% and E'; and the distance between them is much smaller than
E,. Under these conditions, E. (k) — ch > kgT, and E; — Ey(k) > kpT so that
the Fermi distribution can be approximated by Boltzmann distribution

E.(k)— E(;c
flEc(k)] = exp[—T‘}
1

expl Tf]‘i‘l

E;’, - Ev(k)i|

= > I exp[—
E%—Ey(k)
exp[_ kaT ]+1 kBT

By Eq. (5.169),

h2k?
am—mm=%+2

=F (5.172)
-

is the optical transition energy, 1/m, = 1/m} + 1/m} which is normally referred to
as the reduced effective mass. As mentioned before, the difference between E } and

E l)i is very small under weak photoexcitation, i.e., E ; — E; ~ 0 so that

EC(k) —ES+EY — Ev(k)
{1-fIE.®]}fIEH)] = exp|:— kaT f ]

Eg + I°k*/2m

A exp _Eg WK /2m, (5.173)
kT

Insert it into the expression of optical transition

neles - pel? B2k E, + Rh2k*/2m,\ 2dk
mz———JL/SE — hw St 4
g 2 [ T om, ]eXp< knT (273

moa)e
(5.174)

Moreover, by Eq. (5.172)

2k _ 1 ak= (P 3/2,/E E.dE = N3(E — E,)dE (5.175
an ~ i =\ e ~ EgdE S N(E = EgdE (.17)

where N3(E) is the three-dimensional density of states. The condition for the valid-
ity of the above equation is £ > E,, i.e., |k| be real. We introduce a step function
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0(x) such that when x > 0, 6§ = 1, otherwise 8 = 0. By this, the three-dimensional
density of states can be expressed as

1 [2m,\?
N3(E—Eg):2n—2< h2’> VE —Ez0(E — Ey) (5.176)

And finally, the optical spectrum of the inter-band transition is

2les - pel? E-E
g(hw) = ”e|e;—p“|/6(E — o) exp(——g>N3(E — Eo)dE
mywe kpT

m%a)e kpT

hew — E
0(1/ha)—EgeXp(—%>9(fw)—Eg) (5.177)

The optical spectrum of the above equation is presented in Fig. 5.37, indicating that
the bandwidth can be rather wide. The reader may also refer back to the optical
spectra of Fig. 3.4 which shows that the bandwidth of a three-dimensionally ex-
tended system is the widest, and the bandwidth decreases with the dimension of the
electron system.

The problems can be partially solved by using heterojunctions, which are junc-
tions formed by different semiconductor materials. A large amount of both theoret-
ical and experimental works has been published concerning the resonant tunneling
diode leading to a broad range of electric [39, 40] as well as optical [41, 42] applica-
tions. Photoluminescence characterization of the resonant-tunneling light-emitting
diode (RTLED) consists of the recombination of electrons and holes that each tun-
nel from the opposite contact layers into the central active layer. There are two types
of commonly investigated light-emitting tunneling diode.

21, . 2 ho — E
_ melles  pol p<_u>N3(hw—Eg)9(hw_Eg)

1. Electrons or holes. If the two contact layers are both n*-type, the electrons are
majority carriers and holes are photogenerated minority carriers (if the contacts
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Fig. 5.38 (a) Schematic resonant tunneling light emitting diode. E, is the energy bandgap of
GaAs. (b) The first electron and hole quasi states E.; and Ej;. (¢) Transition energy E.; — Ep
and transition matrix element (.1 (z)|¥p1(2)) as functions of the external bias Vp

are pT-type, the roles of electrons and holes are exchanged) [43]. The sample is
prepared in the sequence of an n™-type (pT-type) GaAs substrate as the emitter,
followed by an n-type (p-type) or not-intentionally doped GaAs spacer, AlAs
barrier, GaAs well, AlAs barrier, n-type (p-type) or not-intentionally-doped
GaAs spacer, and finally n*-type (p™-type) GaAs cap as the collector.

2. Electrons and holes. if one contact is n"-type and the other p™-type, both elec-
trons and holes are majority carriers [44]. The emitter is an n™"-type GaAs sub-
strate followed by an n-type or not-intentionally-doped GaAs spacer, then AlAs
barrier, GaAs well, AlAs barrier, p-type or not-intentionally-doped GaAs spacer,
and finally p*-type GaAs cap as the collector.

The energy band structure of the resonant tunneling light-emitting diode is de-
scribed by the combination of the Schrodinger and Poisson equations which was
presented early when we describe the double barrier resonant tunneling diode. The
general features are exactly the same as in Fig. 4.10. The idea of light emitting here
is to inject electrons (holes) from the emitter (collector) to the electron (hole) quasi
state in the central GaAs well between the two barriers where the injected electrons
and holes will radiatively recombine to emit photons, see Fig. 5.38(a).

Let us discuss the radiative recombination of the electrons and holes in the quasi
states between the two barriers. As in Sect. 4.3, let the sample growth direction
be the z direction. As mentioned in the previous chapter, the wave functions of
carriers in both the emitter and the collector are described by propagating waves in
the z direction, and the envelope function in the xy plane is in the form of e/ki'®
because of the translational symmetry there, where k; and p are the wave vector
and coordinate in the xy plane, respectively. In the central active region including
the double barriers the envelope wave function of the quasi states is denoted as
¥ (z), where i is the quantum index of the quasi states, and the total wave function
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Vi (Qui (r)e*? (5.178)
where u; (r) and k; are Bloch function and wave vector in the xy plane associated
with quasi state i. p is the spatial coordinate of the electron (or hole) in the xy plane.
Note that for all quasi states in the conduction band (valence band), u; (r) will be
the same u.(r) (uy,(r)).

We have studied light-matter interaction in Sect. 3.2 where the light-matter inter-
action is generally described as

eA-p

mo

where A is the vector field of the electromagnetic field, p the momentum of the elec-
tron, and m the free electron mass. Things become more complicated when study-
ing electrons in nanostructures with photons. Following detailed steps in Chap. 3,
we can obtain the following expression to describe electron and hole recombination,

r
WO(;(EJ—Ei+hw)2+F2‘<

Vi@ @) i = ) (5.179)

It is easy to understand that when wave function overlapping is zero, W = 0. By
Fig. 4.10 we see that the wave function overlapping in the region outside the quan-
tum well between the two barriers can then be neglected so that we only need to
focus our attention on the quantum well between the two barriers.

For the GaAs quantum well embedded between two AlAs barriers, the electron
and hole states in the quantum well are well approximated as

h2 d2
[_%d_zz + Ve(z):|wei (2) = Eeiei (2)

2 €d2 (5.180)
[ +Vh(Z)i|th(Z)=Ethhj(z)

2my dz2

where V,(z) and V},(z) are potential energies of electrons and holes, which are func-
tions of the external bias Vp. In Figs. 5.38(b) and (c) we show the numerical results
of E.1, E;1 and the matrix element |{¥.1(z)|¥n1(2)).

The energy difference between the ground electron and hole states slightly de-
creases when we increases Vp, so does the recombination probability (v; (2)|¥(2)).
However, the modifications are relatively small. As compared with homojunction,
the tunneling light-emitting diode offers a better control over the bandwidth of the
emitted photons. Moreover, the photon wavelength can be easily tuned by varying
the width of the central GaAs quantum well.
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5.9 Nanostructure Laser

The laser structure is basically a light-emitting device, whose function principle has
been discussed in the previous section. However, the function of a laser is much
more complicated than a common light-emitting device, since the light from a laser
is more specific. The laser, which is an acronym of “Light Amplification by Stimu-
lated Emission of Radiation”, is an optical resonator containing a medium that am-
plifies light generated by stimulated emission. The laser beams have several unique
features compared with other light beams:

1. they produce intense coherent monochromatic induced radiation;

2. the incoherent spontaneous radiation component in the beams, called noise, is
negligible;

. the beams can be highly collimated;

4. the beams can be focused very sharply.

(98]

A laser consists principally of three key elements. One is the laser medium that
generates and amplifies the light. The second is the power supply, which delivers
energy to the laser medium to excite light emission. The third is an optical cavity,
or resonator, which acts as a spectral filter and concentrates the light to the laser
medium.

Laser amplification can take place in a great variety of media including solids,
gases, liquids and plasmas. What material is used depends mainly on which wave-
lengths to be produced and for which application. To obtain laser radiation, stimu-
lated emission must occur in the laser medium. This means that if a radiation with
appropriate energy passes through the material, the radiation that leaves, as a re-
sult of stimulated emission, has more photons than the incident radiation. The result
is thus a coherent amplification of radiation of this frequency, since the stimulated
emission has the same characteristics as the stimulating radiation, i.e., the same fre-
quency, phase, polarization and direction of propagation.

When the medium, in which a population inversion has been created, is placed
in an optical cavity (resonator), radiations at certain resonance frequencies will be
confined and amplified in the cavity. There are several construction configurations
for laser resonators. The simplest is the plane-parallel or Fabry-Perot resonator, in
which two flat mirrors are placed at opposite ends of the cavity aligned parallel to
each other and perpendicular to the cavity axis, see Fig. 5.39. One of the mirrors, or
both, is slightly transparent so that part of the radiation can transmit through it.
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Light rays perpendicular to the mirrors are reflected back and forth without es-
caping, but if they are inclined they will eventually escape. Most of the radiation that
comes from spontaneous emission and thus travels in all directions will therefore
escape from the open sides of the cavity. The exception is the radiation that travels
along the direction normal to the cavity mirrors. This radiation will be amplified
until the power emitted as laser radiation is balanced by the power input to sustain
the population inversion. Since the amplification occurs only for one specific direc-
tion, the emitted radiation is confined to a very narrow, coherent and uni-directional
beam, so that the unique features of a laser beam are fulfilled.

Semiconductor laser was invented 1962. Today it is widely used in a broad spec-
trum of applications. It serves a central role in fiber-optic communication and data
storage, primarily because of major advances in laser power, spectral purity, effi-
ciency, wavelength range, ability to be modulated at extremely rapid rates and long
lifetimes despite its pinhead size.

In the so-called double heterojunction structure, a thin layer of a semiconductor
material with a narrower bandgap is grown between the p-type and n-type layers.
Because of the bandgap difference among the layers, the injected charge carriers
are confined within the thin layer of the narrower bandgap material. This struc-
ture makes it easier to obtain sufficient inversion of the carrier population in order
to produce optical gain by the stimulated radiative recombination. Because of the
light generation within the thin narrow-bandgap layer, this layer is normally denoted
as the active layer, whereas the surrounding layers of larger-bandgap materials are
called cladding layers. The refractive index of the active layer is larger than that
of the cladding layers because of its narrower bandgap. Due to the refractive in-
dex difference, the active layer acts as a wave guide. The light emitted parallel to
the active layer will be guided along the active layer, so that the light intensity will
be the highest in the middle of the active layer, where the gain is the largest. This
mechanism is often referred as the index guiding. Consequently, the use of a double
heterojunction structure results in both the carrier and the optical confinement, see
Fig. 5.40.

As a result of the bandgap difference, electrons that are injected from the n-type
region during the forward bias is prevented from diffusing beyond the energy barrier
at the opposite heterojunction. Similarly, holes injected from the p side can not dif-
fuse beyond their opposite heterojunction. The charge carriers will thus be trapped
in the active region where they recombine either radiatively or non-radiatively. The
light emitted along the active layer will be guided along the layer because of the
difference in refractive index, and a spatially confined beam of radiation is created.
Because the semiconductor laser is based on a diode structure, it is often called a
diode laser.

The heterojunction structure is crucially important for the development of semi-
conductor lasers. The first person who successfully produced a heterojunction struc-
ture with clear borders among layers was a Russian professor Zhores 1. Alferov in
1969. In 1970 the research group submitted its report about a double heterostruc-
ture laser operating at room temperature. Alferov and a German professor Herbert
Kroemer were awarded the Nobel Price in Physics 2000, for the development of
semiconductor heterostructures for high-speed electronics and optoelectronics.
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A buried heterostructure semiconductor laser consists of a core active layer with
cladding material around it. Normally the two materials are lattice-matched to avoid
strain, since strain causes defects and dislocations which cause nonradiative recom-
binations. The cladding material has a wide bandgap and a low refractive index than
the active layer in order to confine carriers and light respectively to the active layer.

In Fig. 5.41 we show a combination of InGaAsP active layer which is lattice-
matched to the InP cladding. When we forward bias the p —i —n structure it behaves
a little like a forward biased p — n junction with a hole in the middle where the
carriers are trapped for recombination. It is much due to the confinement of the
carriers in the i region that makes it possible to get inversion and net gain at a
moderate forward bias.

The resonant-tunneling-injection hot-electron laser was proposed by Tolstikhin
and Willander [45]. It is just a resonant-tunneling hot-electron transistor, with an ac-

(a) (b)
p-InP i-InGaAsP n-InP

Fig. 5.41 Energy band structure of InP/InGaAsP/InP (a) without external bias and (b) with a
bias Vp



5.10 Light Emission from Highly Strained Ing3Gag 7 As/GaAs 345

Fig. 5.42 Schematic
conduction band profile of a
portion of the GalnAs/AllnAs
quantum cascade laser under
positive bias

Optical active layer
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Emitter and reflector
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tive layer and a waveguiding structure inserted between the base and collector. The
basic idea is that we shall be able to control both the number of injected electrons
via Vp, the base-emitter bias (which is proportional to the intensity of the optical
field) and the kinetic energy that the electrons carry into the active layer via V., the
collector-base bias (the output optical energy is the sum of this kinetic energy and
the energy bandgap).

In a quantum cascade laser, the population inversion between states of laser ac-
tion is designed by tailoring the electron intersubband transition [46]. Since the
initial report of the quantum cascade laser in 1994, the emission wavelengths in
the 4-8.5 pm range have been demonstrated using AllnAs/GalnAs heterostructures
[47]. Figure 5.42 schematically represents the energy band profile of a quantum cas-
cade laser. To prevent electron escape into the continuum, which will largely reduce
the vertical transition, a superlattice is placed as an effective reflector for electrons
in the excited state while simultaneously ensuring a swift escape from the low state
to the high state in the next cascade period via the miniband.

More recently, improvement of the quantum cascade laser has been reported
with a thin barrier, inserted between the injector layer and the optical active re-
gion, to increase tunneling injection efficient. This improvement and substituting
the AllnAs cladding layers with InP layer of higher thermal conductivity, have led
to room-temperature high peak power of 200 nW pulse-operation at 5.2 um [48].
Continuous wave single-mode operation was also reported up to 140 K, as well as
room-temperature pulse-operation at 8.5 um. This is the first semiconductor laser
operating at room-temperature in the mid-infrared regime. The current performance
of the quantum cascade laser makes them a candidate for applications such as en-
vironmental sensing and pollution monitoring in the 3—5 and 8—13 um atmospheric
windows.

5.10 Light Emission from Highly Strained Ing 3Gag.7As/GaAs
Quantum Wells by Dipole § Doping

GaAs-based telecom lasers emitting at 1.3 and 1.55 pm, aiming at replacing the
commercial InP-based counterparts, have attracted great attention. The common
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Fig. 5.43 (a) Schematic dipole § doping (DDD) structure for photoluminescence measurement.
Except the two DDD layers, the sample is basically intrinsic. (b) DDD laser structure (Reprinted
with permission from Y. Fu, S.-M. Wang, X.-D. Wang, and A. Larsson, Redshift of the light emis-
sion from highly strained Ing 3Gag7As/GaAs quantum wells by dipole d-doping, J. Appl. Phys.,
vol. 98, p. 043501(5), 2005. Copyright 2005, American Institute of Physics)

strategy is to find gain materials like InGaAs quantum dots or GaInNAs(Sb) quan-
tum wells. One way to reduce the interband transition energy below the bandgap of
the host materials is the dipole 6 doping (DDD) because of the Stark shift induced
by the internal field of the 5-doped layers [49, 50]. Figures 5.43 show schematically
the sample structures, which contains a 7-nm-thick Ing3Gag 7As quantum well em-
bedded in the center of the 0.4-um-thick GaAs barrier further sandwiched between
two 0.1-um-thick Alg,GaggAs barriers. The n- and p-type §-doping are placed
3 nm from each side of the InGaAs quantum well, respectively, using Si and Be as
dopants.
The spatial distributions of dopants in the two §-doped layers are modeled as

Nb.A (z—2p A)z]
N(z,t)) = ————exp| ——— 7 5.181

D=3 p[ a2 ©.181)

where Np and N4 are sheet densities of dopants, za = —3 and zp = 10 nm. The
diffusion coefficient is

E,
D=D — 5.182
0 eXp < kBT> ( )

For Be, E, = 1.95 eV and Dy = 2 x 1075 cmz/s, and for Si, E, = 2.45 eV,
Do =4 x 107* cm?/s [49]. Since the growth temperature of the DDD layers in
the samples is T = 580 °C, it is easy to obtain that Lp = 2.50 nm for Be and 0.38
nm for Si. Because of the thin layers between the 6-doped layers and the InGaAs
quantum well, it is expected that the carriers from dopants are transferred to the
quantum well region. The electric fields and Coulombic potential energies in the
region of z > 10 and z < —3 nm are zero, which are the boundary conditions for
the Poisson equation to be self-consistently calculated with Schrodinger equation
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(see Sect. 1.6). It can be expected that the spatial distributions of the dopants at zp a
are unimportant to the numerical solution of the Poisson equation as long as the
spreading of the dopants is small compared with the distance of 3 nm between the
doping layer and the InGaAs quantum well. Figure 5.44 shows that due to the high
Be concentration, the quantum well is effectively p-type. By increasing the doping
level, an electric field is induced in the InGaAs quantum well region, so that the
energy separation between the electron and the hole ground states decreases. At the
same time, the overlap between the wave functions of the two sublevels decreases,
as can be expected in the Stark effect.

We now modify the sample into laser structures by placing the DDD active layers
between p- and n-type cladding layers, and applying an external bias across the
whole system. The active Ing36GagesaAs quantum well was placed between two
91.5-nm GaAs confined layers, which are positioned between z = —3 nm and the
p-type cladding layer, and the other from z = 10 nm to the n-type cladding layer.
The two p- and n-cladding layers were 1.2-um-thick Alp5Gag sAs. Finally, 100-
nm-thick highly Be-doped GaAs was grown as a contact layer. The doping levels
in the cladding layers are 5.0 x 10'7 cm™3. The laser structure is schematically
represented in Fig. 5.43(b).

Figure 5.45 shows that the electric field induced by the external bias across the
InGaAs quantum well partially cancels the electric field induced by the DDD. The
reduced total electric field in the quantum well decreases the transition wavelength
redshift. At a bias of 0.67 V, the transition energy shift is 0.298 eV. At a bias of
0.92 V, it becomes 0.201 eV. Figure 5.45(c) presents the optical transition energy
shift and wave function overlaps as functions of the external bias. The redshift is
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Fig. 5.45 Bandedge profiles and ground-state wave functions at different biases. The arrows in-
dicate the increase of the bias Vp from 0.67 to 0.92, 1.17 and 1.42 V. (c¢) Optical transition en-
ergy shift and wave-function overlaps as functions of the external bias. Np = 4.5 x 10'? cm™2
and Np = 5Np (Reprinted with permission from Y. Fu, S.-M. Wang, X.-D. Wang, and A. Lars-
son, Redshift of the light emission from highly strained Ing3Gag7As/GaAs quantum wells by
dipole d-doping, J. Appl. Phys., vol. 98, p. 043501(5), 2005. Copyright 2005, American Institute
of Physics)

much reduced by the external bias. However, the overlap between the ground-state
wave functions, i.e., the optical transition intensity, is enhanced at the same time.
Figure 5.46 shows the below-threshold electroluminescence signals measured
from the broad area laser. Together with the electroluminescence spectrum from a
similar laser structure which is not dipole §-doped (dotted curve in Fig. 5.46), the
electroluminescence spectra shows a much reduced redshift in the wavelength, as
compared with the interband transition energy modification shown in Fig. 5.45(c).

5.11 Quantum Dot Biomarker

The fundamental cause of the astonishing properties of nanostructures we have
studied thus far is the quantum confinement. In a three-dimensionally quantum dot
where the quantum dot radius is smaller than the exciton Bohr radius, the electron
and hole are forced to stay close to each other. Such an electron-hole pair, i.e., the
exciton in a quantum dot radiatively recombines efficiently at room temperature,
which is only observable in bulk materials at low temperature.

As we learned in Sect. 3.8, exciton in quantum dot can be optically excited
by light with basically any photon energy hw, while the radiative recombination
of the exciton is characterized by the transition energy hwgp between the ground
conduction- and valence-band states in the quantum dot. Furthermore, quantum dot
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Fig. 5.46 Experimental electroluminescence spectra. Np = 7.5 x 10'2 ¢cm=2 (Na = 5Np). The
dotted electroluminescence spectrum comes from a similar laser structure which is not double
8-doped (Reprinted with permission from Y. Fu, S.-M. Wang, X.-D. Wang, and A. Larsson, Red-
shift of the light emission from highly strained Ing 3Gap 7 As/GaAs quantum wells by dipole ddop-
ing, J. Appl. Phys., vol. 98, p. 043501(5), 2005. Copyright 2005, American Institute of Physics)

Fig. 5.47 Schematic diagram
of the confocal principle
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is normally about tens nm in diameter so that even the wavelength of the emitted
photon due to the exciton radiative recombination is in the visible range in many
applications, i.e., 400 ~ 700 nm, and the spatial size of an optical imaging of the
quantum dot due to the exciton radiative recombination is in the similar range, we
can theoretically identify the exact location of the quantum dot to the center of its
optical imaging, i.e., down to tens nm, reaching a super imaging resolution. Quan-
tum dot has therefore been studied and developed vastly since late 1990’s as an
optical contrast element.

The most common used imaging technique is the confocal microscope, see
Fig. 5.47, which eliminates out-of-focus information by means of a confocal “pin-
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25 um

Fig.5.48 (a) Reconstructed three-dimensional confocal imaging. A cross section of an endothelial
progenitor cell is shown in the upper left corner. Quantum dots (red) are located in the middle of the
EPC surrounded by the cell membrane. (b) Transmission-electron-microscopy image of quantum
dots inside of membrane-boarded compartments of the cytoplasmic region

hole” situated in front of the detection which acts as a spatial filter and allows only
the in-focus portion of the light to be detected and imaged. Light from above and
below the plane of focus, i.e., the confocal plane, of the object is eliminated from
the final image. A three-dimensional image can thereafter be easily re-constructed
from a series of confocal images.

Figure 5.48(a) shows a reconstructed three-dimensional confocal imaging of col-
loidal CdSe-based biomarkers in endothelial progenitor cells (EPCs). Each CdSe
quantum dot was coated with one monolayer CdS shell. The CdSe-CdS core-shell
quantum dot has a nominal diameter 5.5 nm and an emission wavelength of 625 nm.
EPCs are heterogeneous groups of endothelial cell precursors which are circulating
in the blood vessel. These cells play an important role in atherogenesis and cardio-
vascular regeneration [51, 52]. The EPC cells were incubated with quantum dots
(for more details about the bio conjugation between quantum dots and EPC cells,
see Ref. [53]). Figure 5.48(a) shows that the red quantum dots (emission wave-
length 625 nm) are up-taken by the EPC cells, they locate in the middle of the
cell surrounded by the cell membrane. Figure 5.48(b) is a transmission-electron-
microscopy image of quantum dots inside of membrane-boarded compartments of
the cytoplasmic region.
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Chapter 6
Numerical Recipes

Abstract In this chapter we present key FORTRAN codes that calculate and simu-
late fundamental physical properties of electrons in nanostructures based on Bloch
theorem and Schrodinger equation for the envelope function of electrons presented
in Chap. 1. We first calculate the Fermi level as a function of the doping concen-
tration, then the transmission of an electron wave through a potential barrier. Nu-
merical calculations of localized states in one-, two-, and three-dimensionally con-
fined nanostructures are presented. Finally we present the code to simulate time-
dependent wave packet transmission through nanostructures. All these codes are
used extensively through the book to study and discuss electron transport and light-
matter interactions in nanostructures.

6.1 Fermi-Dirac Integral

The occupation of conduction-band state k by a conduction-band electron is given
by the Fermi-Dirac distribution, and the concentration of free carriers in the con-
duction band can be calculated by

. =/ 1 2dk ©.1)

JAE®—Ef1/ksT 1 (277)3

where E 7 is the Fermi energy. The integration is limited to the first Brillouin zone.
We consider electrons in a single parabolic conduction band

h2k?
2m*

c

E(k)=E.+ (6.2)

where E. is the conduction bandedge and m is the effective mass of the electron
in the conduction band. By using the above energy dispersion relationship, denoting
x=E/kpT as the electron energy in unit of kg7, n = E¢/kpT as the Fermi level
in unit of kT, E. as the energy reference, it is easy to obtain

2m*kpT 32 poo y1/2qx 2N3p
n = d (— ) f Fipa(n) 63)
0

h2 1 Jw
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Naw 2 2em*kpT \*/? F ()_/“” x2dx
3D = h2 9’ 1/2 77 - 0 ex*”—i—l

where Njp is the three-dimensional density of states in the conduction band. F1/2(n)
is the Fermi-Dirac integral of order of 1/2.

It is known that the Fermi-Dirac integral cannot be integrated analytically. It is
only for the two extreme cases, namely, for n < —1 and 1 >> 1 that the integral can
be expressed in the form of a rapidly converging series:

LT expln(l — 2732 4 .)] ifn < —1
Fip(m) = (6.4)
I32(140.1257272 +0.26Tn 4 +---) if > 1

It was shown that the function [1]

27
3/ma=3/8 4+ 4e=n

approximates the Fermi-Dirac integral of order of 1/2 with a relative error not ex-
ceeding 0.4% for the value of 1 included in the range from —oo to 400, where

Fipm)~ (6.5)

a=n*+33.6y[1 — 0.68e~0170+D*] 4 50 (6.6)

The following Fortran program is designed to use the above expressions for cal-
culating the Fermi level F in unit of eV for an n-type material, with a donor concen-
tration DN in unit of cm™3, with respect to the conduction bandedge, at temperature
T in unit of K. The conduction band of the material is described by a conduction-
band effective mass DM in unit of free electron mass. EB is the excitation energy of
the donor and D is the donor concentration at Mott transition.

PROGRAM TEST

DOUBLE PRECISION DM,DN,D,EB,T,F
T=300.0

DM=0.067

DN=1.0D14

EB=8.0D-3

D=1.0D17

F=-0.5

T=T/1.1604D4

CALL FERMI (DN,DM,D,EB,T,F)
PRINT *,DN,DM,T,F

STOP

END

SUBROUTINE FERMI (DN,DM,D,EB, T, F)
DOUBLE PRECISION DM,DN,D,EB,F,T,S,X,Y,Z2
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0.4

Fermi \evel eVl

Fig. 6.1 Fermi level F [eV] as a function of temperature T [K] and doping concentration DN in
the unit of cm™3. (a) n-type GaAs; (b) n-type Si

X=DN/ (1.0+DEXP (EB/T) )/ ((T+*DM) **x1.5%6.037E21)

IF (DN.GE.D) X=DN/ ((T*DM)+*x1.5%6.037E21)
S=1.0E-3/T

F=F/T

DO 100 I=1,10

S=S5%0.5

DO 110 J=1,5000

F=F+S

Y=0.0

IF (-F.GT.90.0) GOTO 110
Y=Fxx4+33.6*Fx(1.0-0.68*DEXP(-0.17%(1.0+F) *%2))

Y=1.0/(DEXP(-F)+1.32934038675/(50.0+Y) *x0.375) -X
IF (I+J.EQ.2) Z=Y

110 IF (Y+*Z.LE.0.0) GOTO 100
100 F=F-S

F=(F+0.5xS) «T

RETURN

END

In Fig. 6.1 we plot the Fermi level as a function of the sample temperature and
doping concentration. We have assumed here that the impurities are completely ion-
ized (we neglect the Mott transition effect). For n-type GaAs we use the effective
mass of 0.067. The results of Fermi level higher than 0.3 eV are artificial because
we have neglected other conduction band valleys, e.g., the nearby X-valleys. The
n-type Si is described by six ellipsoids which are grouped into: (1) the longitudinal
effective mass is mz‘ = 0.98, the transverse effective mass is m; = 0.19 and the de-
generacy g =4; (2) mj =0.19, my = 0.98, g = 2. The computer code listed above

needs some modifications to take into account the occupations of electrons in the
six ellipsoids.
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The difference between the Fermi levels in n-type GaAs and n-type Si is due to
the difference in the corresponding effective masses of the two types of materials.

6.2 Amplitude of Transmitted Wave

Refer to Fig. 6.2, we now discuss a wave transmission in a one-dimensional structure
V (z) along the 7 axis, z € (0, L), which is meshed into sublayers marked with index
£ € (1, N), and the mesh size is A. We call the left side of the system (z < 0, £ < 0)
the emitter and the right side (z > L, £ > N) the collector. The potential energy is
constant in each sublayer, such as V¢ at sublayer £ in Fig. 6.2. A wave is injected
from the left with an energy E along the z axis and wave vector (ky, ky) in the xy
plane. E, k, and k, are conserved during the quantum wave transport.

At sublayer ¢, the eigen states are obtained from the k - p theory including the
spin-orbital interactions and strain [2—4]. The eigen states are expressed as

0 = Z Ct,In) 6.7)

where 7 is the index of orbitals, [x 1), |y 1), [z 1), |x |), |x |) and |x |) used in
the k - p theory.
The total wave function and its first-order derivative at sublayer £ are

€ ilkex+kyy) 00
vi=e D V6
J

(6.8)
¢ 4
A7 _ itk 3 W e
dz —~ dz /
j
where
Wl = AL 4 Blem (6.9)

Since the phase factor ¢/ ®=**Xy¥) is the same for any wave functions (momentum
conservation in the xy plane), it is neglected. At the interface between sublayer £
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and ¢ + 1, the wave function and its first-order derivative are continuous

54+ B0t = (A + 8ok
1 m

SR (A — B)0) = Sk (af — B el
j m

from which we obtain

Afn+] + B’l;l+] ZXK—H 14 A@ + BK)

k’f/j‘l (Afn+1 _ Bﬁ:—] ZXE+1 lkf Bf)

where

X = (05|

mj

By careful mathematical manipulations,

¢
41 erref e /3 AV
v =] (et + B S

l[/€+l 0

— ZXZ-H l( k€+1’3€+]w +a Z+] d;ﬁ >9€+]
4

where

eikn A 4 e—ik A ﬂl+1 ekt A _ =ikt A
m =

+1 _
a, = 2 ;

2i
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(6.10)

6.11)

(6.12)

(6.13)

(6.14)

A is the thickness of sublayers. Here we have to emphasize that wf and dwf /dz are

envelope function and its first-order derivative at the right edge of sublayer £.

We can reorganize the above equation in the following matrix form

£+1 t

Y Y

) ()
_ pl+10

vil =T v

v, 4

(6.15)

By the above equations, we can obtain the wave function and its first-order derivative

at sublayer £ 4 1 from the ones at sublayer £.
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Consider now a problem of carrier transport. The carrier is injected into the sys-
tem at £ = 1 (z = 0) in the form of an initial state

71
D ajetro]
J
By including the reflection wave
Z —iklz g!
rje ;
J
the total wave function and its first-order differentiation are
1 ik! —iklzy A1 1
wl=) (a;e"s" +rje"0)0] =3 (aj +1))6]
j J

dy! x! ik! .
——sz a kit rje ’/Z)O}zzm}(aj—rj)e}

J

(6.16)

The transmitted wave at £ = N (z = L) is expressed as
zk L
Z e

(6.17)
dLI/N
— Zlth/ zk L

The above two wave functions are related by

N
a+ri ettt

ar+nr etk L
o1 =T TN (6.18)
ik (ay —r1) ithle’k L

-7 1
iky(az —r2) lkNl‘ze‘lk L

where
T =17,T! ¢

Reflection and transmission are easily obtained from the above relation.
Finally, the transmitted current density at E, k,, and k, is obtained by

ie(E,kx,ky)=%(<'J/N d lI/N>—c ) Zan, (6.19)
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And the total current density from the emitter to the collector is
le= / J(E, Ege)ie(E, ke, ky)N(E)AE (6.20)

where Ef. is the local Fermi level in the emitter where the electron waves are in-
jected from.

Similar expressions can be written down for electron wave transmission from the
collector to the emitter. The total current density of the carrier transport through the
one dimensional system is

I=1—1 (6.21)

The following Fortran program calculates the amplitude of the transmitted wave,

A = |t|?, at z = L when a wave exp (ik'z) is injected from z = 0, as a function of
the kinetic energy of the incoming wave, E = h?(k')2/2m*. The mesh size is 1 A.
The system is an n-type AlGaAs/GaAs double barrier resonant tunneling diode. The
structure is represented by the conduction band offset DE (N) , the energy potential
is V (N), and the electron effective mass m* is denoted as AM. The wave function

W (N) is also an output. Because of the much simplified single-band structure, the
envelope function and its first-order differentiation are

a-+r -7 te”‘NL (6.22)
ikl a—r) |~ " | ikNseik"L ‘

N . . .
Re-define r = re!*" L. And because of the wave function normalization, we can put
a = 1, thus the above equation becomes

1+r Pl P2\ [ 1t
|:ik1(1—r)i|=(P3 P4) (isz> (6.23)

from which it is easy to obtain

2

C PL+ikN . P2+ £3 4 K pg

t

(6.24)

Note that in the above equations, we have expressed the wave function and its
first-order differentiation at z = 0 in terms of the ones at z = L. We can move
the transfer matrix T from the right side to the left side in Eq. (6.22) so that the
wave function and its first-order differentiation at z = L are expressed in terms of
the ones at z = 0. The expression for ¢ becomes a little bit more complicated than
Eq. (6.24).

PROGRAM TEST

DOUBLE PRECISION DE(8500),Vv(8500),G,A,AM,E
DOUBLE COMPLEX W(8500)

G=0.1
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AM=0.065
N=1000
DO 106 I=1,85
N=N+1
106 DE(N)=0.6%x1.247%x0.4
DO 102 I=1,56
N=N+1
102 DE(N)=0.0
DO 107 I=1,85
N=N+1
107 DE(N)=0.6%1.247x0.4
N=N+1000
DO 300 I=1,1000
300 V(I)=0.0
A=-G/DFLOAT (N-2000)
DO 301 I=1000,N-1000
301 V(I)=A*«DFLOAT(I-1000)
DO 302 I=N-1000,N
302 V(I)=-G
DO 200 I=1,N
200 V(I)=V(I)+DE(I)
E=0.0
DO 210 I=1,1000
E=E+1.0D-3
CALL IW(AM,V,N,E,A,W)

210 PRINT *,E,A
STOP
END

c

SUBROUTINE IW(AM,V,N,E,A,W)

DOUBLE PRECISION A,E,AM,R,S,V(8500),Y,%Z,P1,P2,
1 P3,P4,P5,P6

DOUBLE COMPLEX G1,G2,W(8500)

P1=1.0

P2=0.0

P3=0.0

P4=1.0

DO 210 L=1,N

S=DSQRT (0.262464913312*AM*DABS (E-V (L) ))

IF (S.NE.0.0) GOTO 30

P1=P1+P3

P2=P2+P4

P5=P3

P6=P4

GOTO 60
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30 IF (E.GT.V(L)) GOTO 40
Y=DSINH (S)
Z=DCOSH (S)
R=S
GOTO 50

40 Y=DSIN(S)
Z=DCOS (S)
R=-S

50 P5=P1*R*Y+P3%Z
P6=P2*RxY+P4*Z
P1=P1*Z+P3%*Y/S
P2=P2*Z+P4xY/S

60 P3=P5

210 P4=P6
R=DSQRT (0.262464913312+xAM*DABS (E-V (N) ) )
S=DSQRT (0.262464913312+AM*DABS (E-V(1)))
G1=2.0/DCMPLX (P1+P4%*S/R,P2xS-P3/R)
G2=DCMPLX (0.0, S) »G1
A=CDABS (G1l) x*2
P1=1.0
P2=0.0
P3=0.0
P4=1.0
DO 211 L=1,N
S=DSQRT (0.262464913312*AM*DABS (E-V (L) ))
IF (S.NE.0.0) GOTO 31
P1=P1+P3
P2=P2+P4
P5=P3
P6=P4
GOTO 61

31 IF (E.GT.V(L)) GOTO 41
Y=DSINH (S)
Z=DCOSH (S)
R=S
GOTO 51

41 Y=DSIN(S)
Z=DCOS (S)
R=-S

51 P5=P1*R*xY+P3%7Z
P6=P2*xR*Y+P4xZ
P1=P1*Z+P3*Y/S
P2=P2*Z+P4*xY/S

61 P3=P5
P4=P6
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Fig. 6.3 Amplitude of the
transmitted wave through an
n-type Alp4Gag eAs/GaAs
double barrier resonant
tunneling structure
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We now apply the above computer code to calculate the amplitude of the transmit-
ted wave through an n-type Alg4GaggAs/GaAs double-barrier resonant-tunneling
structure. The barrier is 85 A thick and the thickness of the central well is 56 A. We
use a uniform effective mass of AM=0. 067 in the unit of free electron mass. The

conduction-band offset between Al,Gaj_,As and GaAs is 0.6 x
0.6 is the ratio between conduction-band offset and valence-ban
the energy-bandgap difference. The result is presented in Fig.

1.247x eV, where
d offset, 1.247x is
6.3 which clearly

demonstrates the resonance of electron wave transmission through the double-

barrier structure.

Another important boundary condition is the so-called Bloch type for multiple

quantum well structures, such as an AlGaAs/GaAs superlattice

, see Fig. 6.4. For

E above the AlGaAs bandedge, we write the envelope function and its first-order

differentiation

V(@) =u(@)e' "

%S) =[u'(2) +iqu(z)]e'"
which are to fulfill the following Bloch boundary conditions

u(0) =u(L), u'(0) =u'(L)

d d
v =y, W@ _WE

dz z=0 dz z=L

(6.25)

(6.26)
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Fig. 6.4 Dispersion 0.8
relationship in an n-type

Alg4Gap 6As/GaAs (a) (b)
superlattice. (a) The
superlattice period

L =W + B; (b) The
superlattice period
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The relationship between E and ¢, i.e., E(q), is called the dispersion relation.
Apply the above transfer matrix method,

Pl P2 1(0) _ u(L)etl 627)
P3 P4)|u'(0)4+iqu©) |~ | [u' (L) +iqu(L)]e1- :
By Eq. (6.26), and denote u(0) = u(L) = u and v’ (0) = u’(L) = u’, the above equa-

tion becomes

P1 P2 u ueldt
(PS P4> <u’ +iqu> - [(u/ +iqu)eiqLi| (62%)

There are three unknown parameters in the above equation, ¢, u and u’. However,
we can simply set # = 1 because of the wave function normalization condition.
Thus, we obtain the following equations

G=Pl+ P2(u/ —i—iq)
(6.29)
(u’ + iq)G =P34+ P4(u’ + iq)

where G = ¢'9L. By the first equation, u’ + iqg = (G — P1)/P2. Insert it into the
second equation

G — P1 G — PI
G=P3+ P4

(6.30)

from which we obtain

G Pl+ P4+ ./(P1— P4)2+4P2. P3

> (6.31)

Knowing G, the wave function is easily obtained. Note the boundary condition
requires that the Bloch wave vector ¢ must be real. The following Fortran subroutine
calculate the Bloch wave function.
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SUBROUTINE IIW1l(E,AM,V,W,N)

C Bloch wave
DOUBLE PRECISION T,E,AM,R,S,V(1050),Y,7Z,P1,P2,

30

40

50

60
210

P3,P4,P5,P6

DOUBLE COMPLEX A,G,W(1050)
A=DCMPLX(0.0,1.0)

P1=1.0

P2=0.0

P3=0.0

P4=1.0

DO 210 L=1,N

W(L)=0.0DO

6 Numerical Recipes

S=DSQRT (0.262464913312*AM*DABS (E-V (L) ) )

IF (S.NE.0.0) GOTO 30
P1=P1+P3

P2=P2+P4

P5=P3

P6=P4

GOTO 60

IF (E.GT.V (L)) GOTO 40
Y=DSINH (S)

Z=DCOSH (S)

R=S

GOTO 50

Y=DSIN(S)

Z=DCOS (S)

R=-S

P5=P1*R*Y+P3%Z
P6=P2*xR*Y+P4*Z
P1=P1*Z+P3xY/S
P2=P2*7Z+P4*xY/S

P3=P5

P4=P6

R=(P1-P4) x*x2+4.0xP2%P3
IF (R.GE.0.0) THEN
G=0.5* (P1+P4+DSQRT (R) )
ELSE

G=0.5% (P1+P4+AxDSQRT (DABS(R) ) )
END IF

IF (DABS (DIMAG (CDLOG (G) /DFLOAT (N)*A)) .GT.1.0D-5)

RETURN
G=(G-P1) /P2
P1=1.0
P2=0.0
P3=0.0
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P4=1.0
T=0.0
DO 211 L=1,N
S=DSQRT (0.262464913312xAM*DABS (E-V (L) ))
IF (S.NE.0.0) GOTO 31
P1=P1+P3
P2=P2+P4
P5=P3
P6=P4
GOTO 61

31 IF (E.GT.V(L)) GOTO 41
Y=DSINH (S)
Z=DCOSH (S)
R=S
GOTO 51

41 Y=DSIN(S)
Z=DCOS (S)
R=-S

51 P5=P1*R*Y+P3%xZ
P6=P2xRxY+P4%Z
P1=P1xZ2+P3%Y/S
P2=P2*Z+P4*Y/S

61 P3=P5
P4=P6
W(L)=P1+P2%G

211 T=T+ (CDABS (W(L) ) ) **2

T=2.0/DSQRT (T)
DO 212 L=1,N

212 W(L)=W (L) *T
RETURN
END

We apply the above computer code to calculate the dispersion relationship of
E(q) of an n-type Alp.4Gap ¢As/GaAs superlattice. The barrier is B = 85 A thick
and the thickness of the GaAs well is W = 56 A. We use a uniform effective mass
of AM=0.067 in the unit of free electron mass. The conduction-band offset be-
tween Al,Gaj_,As and GaAs is 0.6 x 1.247x eV, where 0.6 is the ratio between
the conduction-band offset and the energy-bandgap difference, 1.247x is the energy-
bandgap difference. The result is presented in Fig. 6.4 which clearly demonstrates
the formation of minibands in the energy above the Aly4Gag ¢As bandedge.
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6.3 Localized State

In this section we present the Fortran program to calculate localized state in an
arbitrary one-dimensional confinement potential V (N) . The output of the program
is the eigen energy E (I) and the corresponding wave function W (I, N) of state I.
The wave functions of the localized state at two ends, i.e., z =0 and z = L, are zero,
i.e., ¥ (0) = ¢ (L) = 0. The first-order differentiation of the wave function at z =0
can be set to be 1 due to the wave function normalization, i.e., ¥'(0) = 1. Thus, we
have the following relation

vy | _(P1 P2\ (0
I:I//‘/(L) “\P3 P4 1 (6.32)
i.e., ¥ (L) = P4.1Itis found that when E scans across one eigen energy, P4 changes
its signs through 0. This gives us the criterion to determine the eigen energy.

PROGRAM TEST
DOUBLE PRECISION V(2000),W(10,2000),E(10),AM
AM=0.065
N=0
DO 106 I=1,500
N=N+1

106 V(N)=0.6%x1.247%x0.4
DO 102 I=1,100
N=N+1

102 V(N)=0.0
DO 107 I=1,500
N=N+1

107 V(N)=0.6%x1.247%0.4
CALL WAVE (AM,V,N,E,W)
STOP
END

SUBROUTINE WAVE (AM,V,N,Q,W)
DOUBLE PRECISION V(2000),w(10,2000),0(10),
1 8B,C,D,E,AM,R,S,X,Y,2
DO 99 J=1,10
DO 99 L=1,N
99 W(J,L)=0.0
E=0.0
DO 100 L=1,N
100 IF (E.GT.V(L)) E=V(L)
Cc=1.0
DO 556 J=1,10
DE=1.0D-4
DO 666 M=1,6000
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30

40

50

200

666

77

211
123

210

240

556
88

E=E+DE

IF (E.GE.V(1)) GOTO 88
D=0.0

B=1.0D-10

DO 200 L=1,N

S=SQRT (0.262464913312*AM*DABS (E-V (L) ))

IF (S.NE.0.0) GOTO 30
D=D+B

GOTO 200

IF (E.GT.V (L)) GOTO 40
Y=DSINH (S)

Z=DCOSH (S)

R=S

GOTO 50

Y=DSIN(S)

Z=DCOS (S)

R=-S

X=Dx*xZ+BxY/S
B=D*R*xY+B*Z

D=X

W(J,L)=D

IF (C+*D.GT.0.0) GOTO 666
E=E-DE

DE=DE=*0.1

IF (DE.LE.1.0D-8) GOTO 77
CONTINUE

GOTO 88

C=-C

E=E+1.0D1*DE

Q(J)=E

DO 211 L=N,1,-1

IF (CxW(J,L).LT.0.0) GOTO 123
W(J,L)=0.0

B=0.0

DO 210 L=1,N
B=B+W(J,L) *W(J, L)
B=1.0/DSQRT (B)

DO 240 L=1,N
W(J,L)=W(J,L)*B
CONTINUE

RETURN

END

367

We apply the above computer program to study the Stark effect in an n-type
GaAs quantum well embedded in the n-type Aly4GageAs material. The quantum
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well is 100 A thick. The left and right AlGaAs barriers are 500 A thick. We assume
that an external bias Vp applies linearly across the structure. In Fig. 6.5 we plot the
energy sublevels, Eqg the ground state, E| the first excited state, and so on, localized
in the quantum well as functions of the bias Vp (it is easy to convert the bias into the
electric field strength in the quantum well). The electrical potential is approached as

V(z) = _VD% (6.33)

where L is the total thickness of the system. Numerical results are shown in Fig. 6.5
where we observe here clearly the Stark effect, and the peaks of the wave functions
move toward the right boundary of the quantum well.

The program is readily applicable to any one-dimensional system, e.g., the inver-
sion layer in a metal-oxide-semiconductor field-effect transistor, when the Poisson
equation is taken into account.

6.4 Local Density of States: Recursion Method

When we study the electronic properties of systems which do not have the transla-
tional symmetry in more than one direction, e.g., semiconductor surface, quantum
wire, quantum dot, nano-scale MOSFETSs, we have to solve the two- and three-
dimensional Schrédinger equations, which is proven to be a very difficult task. In
many cases however we do not need to know all the details about the eigen solu-
tions of the multiple-dimensional Schrodinger equation. We only need to know the
amplitude of the wave function, i.e., || when we calculate, self-consistently the
potential energy from Poisson’s equation.

In this case, the recursion method provides us precisely the information we need.
We calculate the local Green’s function, g(r, E), as we determined in the threshold
voltage in a nano-scale MOSFET. Let us mark the spatial positionby £ (£ =1,2,...)
which denotes a spatial position r = (x,y,z), £+ 1 as (x + A, y,z) and so on.
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Denoting the Hamiltonian of the system as H, we construct a base |1), |2), ... of
0
=f1]--- K;l (6.34)
0 £+1

where lattice site £ corresponds to a spatial coordinate of r. |2) and higher |n) are
defined by

12) = H|1) —ai1]1)

(6.35)
In+1) = H|n) — ap|n) — /bp—1ln — 1)

In this base H becomes tri-diagonalized with diagonal H,, = a, and off-diagonal
elements H,_1 , = H, -1 =by—1,
_ (nlH]|n) (n|n)

5 bn—zi 6.36
TR T (6.36)

(n|n)

The local density of states is obtained from local Green’s function

1
g(r,E)= 3 (6.37)
B - S
2 E*ll3*?
The local density of states is then calculated
1. .
v(r,E):—;élmo{Im[g(r,E+lﬂ)]} (6.38)

From the theory of Green’s function [5], we know that

v, E) =Y | ()| 8e 1 (6.39)
J

where E; is the ith energy state and j is the index of degenerate states at E;.

We take a two-dimensional (2D) quantum well (three-dimensional quantum
wire) as an example. The width of the 2D quantum well is defined as LX and LY in
x- and y-directions, respectively. We take GaAs/AlGaAs as the hetero-material so
that the effective mass AM=0. 067 (in unit of free electron mass m). The barrier
height is defined as B. The following computer program calculates the local density
of states W at (IX,IY) in the energy range (E1,E2), the GaAs quantum well is
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located within (-LX/2:1LX/2,-LY/2:LY/2). Inthe program, the unit of length
is A and eV for energy.

We discretize the xy plane into unit square cells of A x A (in the computer code,
A =1 A). The two-dimensional effective-mass Schrodinger equation

hZ 82 82
T <ﬁ+a—y2)W(x,y)+V(x,y)¢(x,y)=E1ﬂ(x,y) (6.40)
7 [w<x+A,y>—2w<x,y)+w(x—A,y>
2m* A2
,y+A4)—2 L)+ ,y—A
RLCSEZORD JORIRS 1CH: )}W(x’w(x’y):w(x’y)
(6.41)
Let
h2
= (6.42)
Equation (6.41) becomes
4
4D+ VO )y =D yPen = Byt (6.43)
n=1

Here E(¢, n) is the correlation function among discretized lattice sites. For a two-
dimensional square lattice, each lattice £ = (x, y) site has four nearest neighbors.
Neighbor 1 is (x + A, y), noted as n = 1 and its lattice index is E(¢, 1). Neighbor 2
is (x — A, y), noted as n = 2 and its lattice index is E(¢, 2). Neighbor 3 is (x, y+ A),
noted as n = 3 and its lattice index is E(¢, 3). Finally, neighbor 4 is (x, y — A), noted
as n =4 and its lattice index is E(¢, 4).

PROGRAM TEST

DOUBLE PRECISION AM,B,E1,E2,W(1000),Vv(319201)

INTEGER A(4,2),E(319201,4),1,J,JJ3(400),K,M,M1,
1 M2,M3,N,P(319201,2),X,Y

COMMON E,JJ,AM,V

OPEN (UNIT=21, STATUS='UNKNOWN’,FILE='al0.dat’)

AM=0.067

B=0.3

E1=0.0

E2=0.3

LX=100

LY=100

IX=20

IY=20

A(1,1)=1
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A(1,2)=0
A(2,1)=-1
A(2,2)=0
A(3,1)=0
A(3,2)=1
A(4,1)=0
A(4,2)=-1
M1=1

M2=1

M3=1

J=1
JJ(1)=J
P(1,1)=0
P(1,2)=0

DO 100 K=2,400

DO 110 M=M1,M2

DO 200 N=1,4

X=P(M,1)+A(N,1)

Y=P(M,2)+A(N,2)

DO 210 I=M3,J

IF (P(I,1).NE.X) GOTO 210

IF (P(I,2).EQ.Y) GOTO 220
210 CONTINUE

J=J+1

IF (J.GE.319201) GOTO 777
P(J,1)=X

P(J,2)=Y

E(M,N)=J

GOTO 200

220 E(M,N)=I
200 CONTINUE
110 CONTINUE
M3=M1
JJ (K)=J
M1=M2+1
M2=J
100 CONTINUE
777 DO 400 I=1,0
V(I)=B
400 IF ((P(I,1)+IX+LX/2)+*(LX/2-IX-P(I,1)).GE.O0.AND.
1 (P(I,2)+IY+LY/2)*(LY/2-IY-P(I,2)).GE.0) V(I)=0.0
CALL CARRIER(E1l,E2,W)
DO 500 I=1,1000
500 WRITE (21,77) (E2-E1)*1.0D-3%*DFLOAT(I),W(I)
77 FORMAT (2(E10.4,1X))
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200
100
111
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99
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STOP
END

SUBROUTINE CARRIER(E1l,E2,W)
DOUBLE PRECISION W(1000),A(400),B(400),E1,E2,
DE,E

DOUBLE COMPLEX C,D

II=395

CALL aANDb (II,A,B)

DO 210 I=1,1II

B(I)=B(I)=*B(I)

E=El

DE=(E2-E1)*1.0D-3

DO 100 I=1,1000

E=E+DE

D=DCMPLX (E,DE*1.0D-2)

C=0.5% (D-A(II)-CDSQRT((D-A(II))**2-4.0xB(II)))/
B(ITI)

DO 200 J=II1,1,-1

C=1.0D0/ (D-A(J)-B(J) *C)
W(I)=DABS (DIMAG(C))/3.14159265
CONTINUE

RETURN

END

SUBROUTINE aANDb(II,A,B)

DOUBLE PRECISION A(400),B(400),C,D
U(319201),Vv(319201) ,W(319201) ,AM,P(319201)
INTEGER E(319201,4),JJ(400)

COMMON E,JJ,AM, P

DO 99 I=1,319201

V(I)=0.0
W(I)=0.0
U(I)=0.0
U(l)=1.0
D=3.81/AM
DO 100 K=1,II
A(K)=0.0
B(K)=0.0

DO 110 I=1,JJ(K+2)

C=4.0xD+P(I)
W(I)=C+U(I)-Dx(U(E(I,1))+U(E(L,2))+U(E(I,3))

+U(E(I,4)))

A(K)= ( )+U(I) »W(I)

DO 140 I=1,JJ(K+2)
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W(I)=W(I)-A(K)=*U(I)
IF (K.NE.1) W(I)=W(I)-B(K-1)*V(I)
V(I)=U(I)
U(I)=W(I)

140 B(K)=B(K)+U(I)=*U(I)
B(K)=DSQRT (B (K) )

DO 150 I=1,JJ(K+2)
150 U(I)=U(I)/B(K)
100 CONTINUE

RETURN

END

When LX=LY=100 A and B=0.3 eV, we find three localized energy sublevels
confined in the quantum well, namely, Eg = 67.2, E1 = 162.9 and E> = 255.0 meV.
In the infinitely high barrier approximation, we know that for a square quantum well,

Ei = (n}+n})eo (6.44)
where n, and ny are quantum numbers in the x- and y-directions.

72h?

€0

when L, = LX =100 A. 1t is then expected that Eg = 2e9 = 112.2, E1 = 5¢9 =
281.0 and E, = 8eg = 448.8 meV when the barrier is infinitely high. These re-
sults are higher than what we have obtained numerically when the barrier height
is finite. When we increase the barrier height to B=0.93 eV, Eg = 82.2 meV,
E{ =204.6 meV and E; = 326.2 meV. For B=19.3 eV, Eg = 102.8 meV, E| =
256.5 meV, and E; = 410.5 meV, which are much closer to the ones of infinitely
high barrier approximation.

By slightly modifying the above Fortran program we can calculate the local den-
sity of states in an xy plane at certain energy E1. For the following program we
calculate the local density of states (LDOS) in a plane of (—8 : 8, —8 : 8) in the unit
of nm. Note that the quantum well is located within (-5:5, -5:5) nm. Subroutine
aANDD is not changed so is not repeated.

PROGRAM TEST

DOUBLE PRECISION AM,B,E1,W(0:20),V(319201)

INTEGER A(4,2),E(319201,4),I,J,JJ(400),K,M, M1,
1 M2,M3,N,P(319201,2),X,Y

COMMON E,JJ,AM,V

OPEN (UNIT=21,STATUS='UNKNOWN',FILE='al0.dat"’)

AM=0.067

B=0.3

LX=100

LY=100
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210

220
200
110

100
777

400

E1=67.2D-3
A(1,1)=1
A(1,2)=0
A(2,1)=-1
A(2,2)=0
A(3,1)=0
A(3,2)=1
A(4,1)=0
A(4,2)=-1
M1=1

M2=1

M3=1

J=1
JJ(1l)=J
P(1,1)=0
P(1,2)=0

DO 100 K=2,400

DO 110 M=M1,M2

DO 200 N=1,4
X=P(M,1)+A (N, 1)
Y=P(M,2)+A (N, 2)

DO 210 I=M3,J

IF (P(I,1).NE.X) GOTO 210
IF (P(I,2).EQ.Y) GOTO 220
CONTINUE

J=J+1

IF (J.GE.319201) GOTO 777
P(J,1)=X

P(J,2)=Y

E(M,N)=J

GOTO 200

E(M,N)=I

CONTINUE

CONTINUE

M3=M1

JJ (K)=J

M1=M2+1

M2=J

CONTINUE

DO 300 IX=0,80,4

DO 310 L=0,20

IY=4x*L

DO 400 I=1,J0

V(I)=B

6 Numerical Recipes

IF ((P(I,1)+IX+LX/2)*(LX/2-IX-P(I,1)).GE.0.AND.
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/T /T

(a) E,=67.2 meV (b)E,=162.9 meV

Fig. 6.6 Local densities of states in the region of (—8:8, —8:8) nm? at (a) Eg = 67.2 and
(b) E1 =162.9 meV. B = 0.3 eV. Note that the quantum wire size is (=5 : 5, —5 : 5) nm?

1 (P(I,2)+IY+LY/2)*(LY/2-IY-P(I,2)).GE.0Q0) V(I)=0.0
CALL CARRIER (E1l,WW)
310 W (L) =Ww
WRITE (21,77) (W(I),I=0,20)

77 FORMAT (21(E10.4,1X))
300 CONTINUE
STOP
END
c

SUBROUTINE CARRIER(E, W)
DOUBLE PRECISION W,A(400),B(400),E
DOUBLE COMPLEX C,D
II=395
CALL aANDb(II,A,B)
DO 210 I=1,II
210 B(I)=B(I)=*B(I)
D=DCMPLX (E,1.0D-4)
C=0.5% (D-A(II)-CDSQRT((D-A(II))**2-4.0%xB(II)))/
1 B(II)
DO 200 J=II1,1,-1
200 C=1.0D0/ (D-A(J)-B(J) *C)
100 W=DABS (DIMAG(C)) /3.14159265
77 RETURN
END

Figure 6.6 shows the local densities of states in the region of (—8 : 8, —8 : 8) nm?
when B = 0.3 eV. The ground state is what we can expect:

Y E, = sin (ax) sin (ory) (6.46)
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/T /T

(a) E,=102.8 meV (b) E,=256.5 meV

Fig. 6.7 Same as Fig. 6.6 but B =19.3 eV

where o = /L. The first excited state is two-fold degenerate

YE,,1 = sin (ax) sin 2ay)

(6.47)
Vg, .2 = sin 2ox) sin (ay)
and the local densities of states provide us with the information of
Vel + Ve o (6.48)

As mentioned before, when B is relatively small, the confined energy levels in
the quantum wire is low. This is reflected in the penetration of the wave function
into the barrier region. Figure 6.7 shows the local densities of the ground state and
the first excited state in a quantum wire of (=5 : 5, —5 : 5) nm?, just as in Fig. 6.6.
However, the quantum wire has a much higher barrier potential of B = 19.3 eV so
that the penetrations of the wave functions into the barrier regions are almost zero.

Information about the phase factors in the wave functions can also be obtained
from the local Green’s function. For example, we can construct the base for tri-
diagonalized from

0
I -1
1 0 .
0+1
) = — (6.49)
V2|
0 0 —1
i g
0 ¢ +1
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where lattice site £’ corresponds to a spatial coordinate of ’. We then have the
following local Green’s function [5, 6]

(rr', E) ZwE S)E (e E, (6.50)

where E; is the ith energy state and j is the index of degenerate states at E;. The
phase factor can be easily deduced from the comparison between v(rr’, E) and
v(r, E).

The extension of the computer program to three-dimensional structures is rather
straightforward. The method is well used in the theoretical frame of tight-binding
approximation [7].

6.5 Time-Dependent Wave Packet Transmission

As we learned in Sect. 2.1, the motion of the electron state is governed by the time-
dependent Schrédinger equation

ihalll(r,t)

o7 =HW¥(r,t) (6.51)

Discretizing the time ¢ by step 8¢ so that = ndt, where n is a positive integer. The
wave function of the electron becomes ¥ (r, ndt) which is further denoted as " (r),
and the time-dependent Schrodinger equation employs the Cayley form

iét n+1 __EL n
<1+2hH>w r)= (1 2hH)lP r) (6.52)

with which we have studied time-dependent electron transport through nanostruc-
tures in Chap. 2.

The following FORTRAN codes calculate an electron wave packet transmitting
through a square quantum wire, y € (-LY : LY) and z € (-LZ : LZ), along the x
axis, x € (1 : LX). Mesh size is 2 A (2 AA denoted in the code). The effective
mass of the electron can be anisotropic, denoted as AMX, AMY, AMZ. Actually
the codes were used to calculate the motion pictures, Fig. 4.43, of a wave packet
transporting through a quantum wire having an ionic scattering center in Sect. 4.6.5.

PROGRAM wavepacket

PARAMETER (LX=5000,LY=13,LZ=13)

DOUBLE PRECISION AMX,AMY,AMZ,C,F,Q,G,T,E,
1 V(LX,-LY:LY,-LZ:LZ)

DOUBLE COMPLEX B,D,SO(LX,-LY:LY,-LZ:LZ),
1l S(LX,-LY:LY,-LZ:LZ),
1 AX,AY,AZ

INTEGER X,Y,Z
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OPEN (UNIT=22, STATUS='UNKNOWN',6FILE='x600ep.dat’)
OPEN (UNIT=23, STATUS='UNKNOWN',6FILE='x600gp.dat’)
D=DCMPLX (0.0D0,1.0DO0)

AMX=0.067D0

AMY=0.067D0

AMZ=0.067D0

C initial Gaussian wave packet E eV at (1050,0,0) along
C x axis

153

154

155

E=0.12D0

C=2.0D0*DSQRT (E+xAMX/3.81D0)
DO 153 X=2,2100
AX=CDEXP (D* (X-1050) *C)

DO 153 Y=-LY,LY

DO 153 Z=-Lz,LZ
S(X,Y,Z)=AX

Q=0.0D0

DO 154 X=2,2100

DO 154 Y=-LY,LY

DO 154 Z=-Lz,LZ
S(X,Y,Z2)=S(X,Y,Z)*S(1,Y,2)
Q=0+ (CDABS (S (X,Y,Z)) ) **2
Q0=1.0D0/DSQRT (Q)

DO 155 X=1,LX

DO 155 Y=-LY,LY

DO 155 Z=-LZz,LZ
S(X,Y,Z2)=S(X,Y,Z)*Q

IF ((X-1)* (X-LX)* (Y-LY) = (Y+LY) * (Z-LZ) * (Z+LZ) .

1 EQ.0) S(X,Y,z)=0.0D0

C temporal evolution (step 2.0D-2 fs, mesh 2 AA) of 3D
C wave packet

AX=2.0D-2%D%2.8941722D0/4.0D0/AMX
AY=2.0D-2%Dx2.8941722D0/4.0D0/AMY
AZ=2.0D-2%Dx2.8941722D0/4.0D0/AMZ
B=2.0D-2%D*0.75962696D0

C potential energy definition, ionic scattering center

C at

(2250,MY, 0)

MY=13

DO 160 X=1,LX

DO 160 zZ=-LZ,LZ

DO 160 Y=-LY,LY

C=0.0D0

IF ((Y-LY)=*(Y+LY)~* (Z-LZ) * (Z2+LZ) .EQ.0) C=3.5DO0
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QO=DSQORT (1.0D0* (X-2250) »*2+ (Y-MY) **x2+Z*Z)
160 V(X,Y,Z)=C-0.6D0*DEXP(-Q/1.0D3)/(1.0D-2+0Q)

DO 333 I=1,6000
DO 200 Z=-Lz+1,LZ-1
DO 200 Y=-LY+1,LY-1
DO 200 X=2,LX-1
200 SO0(X,Y,Z)=(1.0D0-B*V(X,Y,Z)-2.0D0* (AX+AY+AZ) ) *
1 S(X,Y,Z)+AX* (S(X-1,Y,Z)+S(X+1,Y,Z))+AYx*
(S(X,Y-1,2)+S(X,Y+1,Z2))+AZ* (S(X,Y,Z-1)+
1 5(X,Y,z2+1))
DO 201 L=1,100
DO 201 Z=-Lz+1,LZ-1
DO 201 Y=-LY+1,LY-1
DO 201 X=2,LX-1
D=(S0(X,Y,Z)+AX* (S(X-1,Y,Z2)+S(X+1,Y,2))+
1 AY*(S(X,Y-1,Z)+S(X,Y+1,2))+AZ*(S(X,Y,Z2-1)+
1 S(X,Y,2+1)))/(1.0D0+B*V(X,Y,Z)+2.0D0* (AX+AY+AZ))
S(X,Y,2)=0.5D0* (D+S(X,Y,Z))
201 CONTINUE
Q0=0.0DO0
F=0.0DO
C=0.0D0
DO 203 Z=-Lz+1,LZ-1
DO 203 Y=-LY+1,LY-1
DO 203 X=2,LX-1
D=(S0(X,Y,Z)+AX* (S(X-1,Y,Z)+S(X+1,Y,2))+
1 AY*(S(X,Y-1,7Z2)+
S(X,Y+1,Z))+AZ*(S(X,Y,Z-1)+S(X,Y,z+1)))/
1 (1.0D0+2.0D0* (AX+AY+AZ)+B*V(X,Y,Z))
IF (CDABS(D-S(X,Y,Z)).GT.Q) Q=CDABS(D-S(X,Y,Z))
S(X,Y,2)=0.5D0*D+0.5D0*S(X,Y,Z)
T=CDABS (S (X,Y,Z))
C=C+T~*T
203 IF (T.GT.F) F=T
C=1.0D0/DSQRT (C)
DO 206 Z=-Lz+1,LZ-1
DO 206 Y=-LY+1,LY-1
DO 206 X=2,LX-1
206 S(X,Y,Z2)=S(X,Y,Z)*C
IF (I.NE.10x(I/10)) GOTO 332

=

=

C T/C are currents in x direction
T=0.0DO
C=0.0DO
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DO 211 Z=-Lz+1,LZ-1
DO 211 Y=-LY+1,LY-1
DO 211 X=2,LX/2
IQ=X+LX/2
C=C+DIMAG (DCONJG(S(IQ,Y,Z))*(S(IQ,Y,Z)-
1 S(IQ-1,Y,2)))
211 T=T+DIMAG (DCONJG(S(X,Y,Z))*(S(X,Y,Z2) -
1 S(X-1,Y,2)))
PRINT ,I,T,C,Q/F
WRITE (22,%) I,T,C
332 IF (I.NE.1.AND.I.NE.1000*«(I/1000)) GOTO 333
DO 4000 X=1,LX
0=0.0D0
DO 4001 Z=-LZ,LZ
DO 4001 Y=-LY,LY
4001 Q=0+ (CDABS(S(X,Y,Z)))**2
0=0+1.0D-15
4000 WRITE (23,%*) Q
333 CONTINUE
STOP
END
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Appendix A

Fundamental Constants

Table A.1 Fundamental constants

Quantity & symbol CGS MKS (SI)
Speed of light in vacuum ¢ 2.997925 10'° cm sec™! 103 ms~!
Magnetic constant wg = 4w x 1077 1.25664 100*Hm™!
(permeability of free space)
Electric constant €y = 1/10c> 8.8541853 1072 Fm™!
(permittivity of free space)
Electron charge e 1.60219 10-1° ¢
4.80324 10710 esu
Electron volt eV 1.60219 1072 ergev! 10719 Jev—!
Electron rest mass mg 9.10956 10728 gm 10731 ke
Planck’s constant & 6.626196 10727 erg sec 10737
Planck’s constant h = h /27 1.05459 10727 erg sec 107375
Bohr radius ag = 4 egh?/moe* 0.529177 10~8 cm 10710 m
Rydberg constant Ry = h?/2moa? 13.6058 eV eV
Fine structure constant 7.297351 1073 1073
o =e?/2ephc
Avogadro’s constant L, N4 6.022169 102 mol ! 102 mol ™!
Loschmidt’s constant Ny, 2.68719 102 m—3
Boltzmann’s constant kg = R/L 1.380622 10716 erg K~! 10723 yK!
Faraday constant F = Le 9.64867 10* C mol~!
Universal gas constant R = Lkp 8.31435 107 erg K~! mol~! JK~'mol~!
Mechanical equivalent of heat 4.184 107 erg cal™! Jcal™!
Bohr magneton g = eh/2moc 9.2741 10721 erg G™! 10724y 1!
Proton rest mass m 1.67251 1072* gm 10727 kg
Nuclear magneton uy = eh/2mpc 5.0508 10724 erg G 10727 71!
Neutron rest mass 1, 1.67492 10-%* gm 10-27 kg
Stefan-Boltzmann constant 5.6697 1078 Wm=2 K™

o =27k} /15h3?
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Table A.1 (Continued)

Quantity & symbol CGS MKS (SI)
Gravitational constant G 6.6732 107" N m? kg=2
Acceleration of free fall g, 9.80665 ms~2

1.0 [eV] = 2.41796 x 10'* [Hz] = 8.0655 x 10° wavenumber [cm~!] =
1.1604 x 10* [K] = 1.239855 wavelength [um]
W: watt, G: gauss, T: tesla, N: newton, C: coulomb



Appendix B
Quantum Physics

B.1 Black Body Radiation

Planck’s law for the energy density distribution for the radiation from a black body
at temperature 7 is

8hf3 1
w(f. 1) = —3— ST —1 (B.1)

where & is the Planck’s constant, and f is the frequency. Note that @ = 27 f is the
angular frequency, and i = h/2x. The low-frequency Rayleigh-Jens law

87 kT
w(f’T)anTB

is obtained when i f < kpT . Stefan-Boltzmann’s law for the total radiation energy
per unit volume can be derived

87 ks, o

4
Gl =T (B.2)

W(T)=/O w(f, Tdf =

where o = 2715k4B /15h3c? is the Stefan-Boltzmann constant. Wien’s law for the
wavelength An,x at which the energy density has its maximum value can be derived

from Eq. (B.1)
b
Amax = ? (B~3)

where b = 0.2898 cm-K is a universal constant. Note A =c¢/f.

B.2 The Compton Effect

A photon with initial wavelength A incident upon an electron at rest with a rest mass
my. After the collision, the photon has a wavelength of A’ scattered into a direction
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at an angle 6 with respect to its initial propagation direction, which is also referred
to be the photon scattering angle.

h
AM=r+—( —cosf) =i+ rc(l —cosb) (B.4)
moc

where Ac = h/mgc is called the Compton wavelength of the electron.

B.3 Electron Diffraction

Diffraction pattern of electron from a crystal can be explained by the dual particle-
wave nature of matter. A particle having a momentum p is associated the so-called
de Broglie wavelength

h

A= (B.5)

B.4 Operators in Quantum Physics

In quantum mechanics, classical physical quantities are translated into quantum op-
erators. The measurement of a physical quantity (A) is described quantum mechan-
ically by

(A) Z/Wf‘Alﬁzdrz/(Alﬂl)*Wzdr (B.6)

where v is the wave function that describes the quantum mechanical state of the
system under measurement. The only possible values that can be obtained when
measuring a physical quantity (A) are the eigen values of the quantum operator A.
Thus, the operator is hermitian and its eigen values are real, i.e., Au, = a,u,,, where
uy is the eigen function, a, is the eigen value which is real. Subscript n denotes the
index of the eigen functions, i.e., operator A may have multiple eigen functions and
eigen values.

B.5 The Schrodinger Equation

The momentum operator is given by p = —ihV, and the position operator is r =
ihVp. The energy operator is

0
E=ih—
ot
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The Hamiltonian of a particle with mass m and potential energy V is given by

2
p
H=—+V
2m +
From the eigen equation Hyr = E follows the time-dependent Schrodinger equa-
tion

2
e+ v =int D
2m ot

where Y (r, t), which is a function of space r and time ¢, is the wave function that
describes the quantum mechanical state of the particle. The wave character of a par-
ticle is described by 1 (r, ¢), and can be interpreted as a measure for the probability
p(r,t) to find the particle at r and ¢

(B.7)

p(r,t)=|w(r, 0l (B.8)

The normalizing condition for the wave function is

<w|w>=/w*wdr=1

At steady state,

TN (B.9)
a1
so that
Y(r 1) =y e E/h (B.10)

we have the time-independent Schrédinger equation

h2
—gvzwrwvw(nr) = Ey(r) (B.11)

for yr(r).
The probability flus s is given by

h
s(r,t) = ﬁ[w*(r, DVY(r, 1) — Y (r, OVY*(r, 1)] (B.12)

which is related to the current density of the particle j = gs. Here ¢ is the electric
charge of the particle (for electron g = —e).
The following conservation law holds

do(r) _ o
=V (B.13)
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The time dependence of an operator A is given by (Heisenberg):

dA 0A [A, H]

dr ot ih
where H is the Hamiltonian and [A, B] = AB — B A is the commutator of A and B.
For hermitian operators the commutator is always complex. If [A, B] = 0, the oper-
ators A and B have a common set of eigen functions. By applying this to p and r it
follows (Ehrenfest)

(B.14)

d*(r);
"Tar

which is the classical Newton’s second law of motion.
A classical product A B becomes %(AB + BA) in quantum mechanics.

— —(VV) (B.15)

B.6 The Uncertainty Principle
The uncertainty AA in A is defined as
2
(AAP =(y|A — (A)]y)= (%) = (A)?
it follows
1
AA~AB2§|<W|[A,B]|w)| (B.16)

from which it follows:

AE - At >

, Apy - Ax > B.17)

| >

h
2

B.7 Parity

The parity operator in one dimension is given by Py (x) = ¥ (—x). If the wave
function is split into even and odd functions, it can be expanded into eigen functions
of P:

1 1
Y(x)= E[Iﬂ(X) + Y (=x0)]+ E[%#(X) — ¥ (=x)] (B.18)

even: lﬁ+ odd: ¥~
with
1 1
w+=5<1 +PW@, Y =50 =P)x)

both of which satisfy the Schrodinger equation. Hence, parity is a conserved quan-
tity. Moreover, [P, H] =0.
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B.8 The Tunneling Effect

The wave function of a particle in a one-dimensional infinitely high potential step
from x =0 to x =a is given by

2
Yn(x) =/ — sin(kpx) (B.19)
a
where k, =nm/a, n is an integer. The energy levels are given by

n?h’n

" 2ma2

where m is the mass of the particle.

If the wave function with energy E meets a potential barrier of W, while E < W,
the wave function will, unlike the classical case, be non-zero within the potential
barrier. Consider a one-dimensional system along the x axis. Denote the potential
barrier as

0 forx<0O
Vix)=q4 W for0<x<a (B.20)
0 forx >a
For an wave Ae’** running into the potential barrier from x = —oo, we express the

total wave function as

Aetk* 4 Be~ikx forx <0
U(x) =14 Cel%" + De™ 4%  forO0<x <a (B.21)
Alelkx forx >a

with g2 = 2m(E — W)/h? and k*> = 2mE /h*. Boundary conditions require that
¥ (x) and 9y (x)/dx continuous at x = 0 and x = a, which give B, C and D and A’

in terms of A. The transmission coefficient 7' of the incident wave Ae’** through
the potential barrier is defined by
AP L+k/@)? — (1 —k/g)> |
N I 7 S e 20 522

AR (Lt k/g)?emiae — (1 — k/q)%eia

which is not zero even when E < W. The nonzero transmission coefficient is the
tunneling effect. Moreover, T = 1 is not always true when the energy of the incident
wave is higher than the potential barrier (i.e., E > W). T = 1 occurs only when
€?9% =1, i.e., 2qa = 2nm, n is an integer.
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B.9 Harmonic Oscillator

For the one-dimensional potential energy
1 2
Vix)= be (B.23)
Let w? = b/m, the Hamiltonian H is then given by:
1 , 1 t
H=—+4+ -—mwx =§hw+(oA A (B.24)

with

Ao [y P at= |1 ip (B.25)
=./—x , = /—x - — .
2w 2mw 2w A 2mow

A # AT is non hermitian. [A, AT] = /i and [A, H] = hiwA. A is a so called cre-
ation operator, and A an annihilation operator. HAug = (E — hw)Aug. There is
a ground-state ug such Aug = 0. The energy in this ground state is %hw, which is
normally known as the zero-point energy. Let n be a positive integer, normalized
eigen functions and corresponding eigen values are

1 AT\ Jmo mawx? E 1+ 5
up=—=\ — 1 uo, uo= Y —expl| — , = =+n|ho
Ja\/n) " Ve P\ o 2

(B.26)
B.10 Angular Momentum and Spin
The orbital angular momentum operator is defined as
L=—ihrxV (B.27)

[L:,L*]=[L;, H]=[L?* H]=0,[Ly,Ly]=ihL;, [Ly,L;] =ihLy,[L;, Ly] =
ihLy. Not all components of L can be known at the same time with arbitrary accu-
racy

h
ALyALy> S L (B.28)

L. in spherical polar and Cartesian coordinates is

., 0 ) a a
Lzzxpy—ypx—lhﬁz—lfl(x@—ya—x> (B.29)

The creation and annihilation operators L+ are defined by: L+ = Ly £ iLy. L? =
LiL_+L?-hL.



B.10 Angular Momentum and Spin 389

Eigen value relations of angular momentum L with eigen function Yy,
LYy =06 + DR Y,
(B.30)
LYo =mhYe
where £ > 0 and 2¢ + 1 is an integer, —¢ < m < £ and can take on the values
m=—,—C+1,—0+4+2,....,0—1,¢
Yem 1s the spherical harmonics

Yom (0, %) = New P (cos 6)e™V (B.31)

where Péml (cos®) is the associated Legendre polynomials.
For integral values of ¢, we discuss orbit angular momentum,

LyYom =€+ 1) —m@m + DhYemi1

(B.32)
L Yy =yLE+1) —m(m — Yo
Addition theorem for angular momentum:
L=L +L, (B.33)

L has eigen functions Yy, with
=18y =L, 161 — 2] +1,..., 61+ Lo, m=—£,—0+1,...,£ (B.34)

When ¢ takes on the values of half-odd integral, i.e., £ =1/2,3/2, ..., we discuss
spin. Spin operators are defined by their commutation relations: [S,, S,] = iAS,,
they do not act in the physical space (x, y, z). Furthermore, [L, ST = 0 so that spin
and angular momentum operators do not have a common set of eigen functions. The
spin operators are given by S = %ha, where

01 0—i 10
ax=<10), ayz(l. O>’ 0Z=<0_1) (B.35)

are Pauli spin matrices. Denote the eigen function of spin as y,

1
S X, =50 + DI X, 5= (B.36)

We normally denote x1 1 =« and X1 1= B.
2°2 2

Addition of two spins § = S| + Sz,

X1,1 =Qq0
triplet, parity = 1 X1.0=—=(a182 + Braa)
piet, pantty V2 (B.37)
X1,—1=PB1B2

singlet, parity = —1  x0,0 = ﬁ(alﬂz - Braz)
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The electron has an intrinsic magnetic dipole moment M due to its spin, M =
—egsS/2m, with gg = 2(1 + /2w + ---) is the gyromagnetic ratio. In the pres-
ence of an external magnetic field this gives a potential energy V = —M - B. The
Schrodinger equation then becomes (because d x /dx; = 0):

dx (1) egsh
ot 4m

ih o-Bx(@) (B.38)

with 0 = (0,,0y,0;). If B = Be, there are two eigenvalues for th_is equati_on,
+egshB/4m = +hw, and the general solution is given by x (t) = Ae %" 4 Be'“!,
From these,

(Sy) = %hcos@a)t), (S,) = %hsin(Za)t) (B.39)

Thus the spin precesses about the z axis with frequency 2w. This causes the Zeeman
splitting of spectral lines.

B.11 Hydrogen Atom

The hydrogen atom contains one proton and one electron. The Schrodinger equation
becomes a one-particle equation after the center-of-mass motion is separated out. In
spherical coordinate, the potential energy is

2
V(ir)=— (B.40)
dmer
hZ
[——V2+ V(r)}//(r)=1/f(f) (B.41)
2m

where m is the reduced mass which is approximately the same as the electron mass
mo.

The solutions of the above Schrédinger equation in spherical coordinates if the
potential energy is a function of r can be written as

Y(r,0,0) =Ruye(r)Ye, (0, )

Yem 1s the spherical harmonics in Eq. (B.31). Let u,¢(r) = r R (r), the equation
that determines u;¢(r) is

dzu,,g(r) 2m

2
2, v DR

2mr?

dr2 B2 ]Mne (r)=0 (B.42)

Solution of the above equation for V (r) in Eq. (B.40) when € = €p and m = my

E,=——2 (B.43)
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where Ry = h%/2mgal = 13.6058 eV is Rydberg, ag = 4meoh? /moe* = 0.529 A is
Bohr radius. The parity of these solutions is (—1)¢, and the functions are

n—1

2> @e+1) =20

=0

fold degenerated.

B.12 Interaction with Electromagnetic Fields

The Hamiltonian of an electron in an electromagnetic field is given by:

2

1 h
H=—(p+eA)? —ep=——V>+ (A V+V. A)+—A2—e¢> (B.44)
21 21 21

where p is the reduced mass of the system, A is the vector field and ¢ is the scalar
field of the electromagnetic field. The term ~ A? can usually be neglected, except
for very strong fields or macroscopic motions.

B.13 Time-Independent Perturbation Theory

Consider a time-independent perturbation V' so that the Schrodinger equation be-
comes (Hy + AV, = E,W,. Let ¥, be the complete set of eigen functions of the
non-perturbed Hamiltonian Hy, i.e., Hyy,, = E,?lpn. We write

Wy =Y+ Y (M (B.45)
k#n

Expanding ¢, and E,, into A

Cnk = Ac,(l}() + )»zc,(i) + .-
(B.46)
E,=E}+ E" + 32 EP + -

inserting them into the Schrodinger equation result in the first-order correction

(Yl V' 1Ym)

n (¢"| i(b") an,k;én E,? _ E]({)

(B.47)

Wl V' 19
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where m # n, and the second-order correction of the energy

E® _ Z (k| V'[9 ) 12
§ EO— E?
k#n n k

B.14 Time-Dependent Perturbation Theory

(B.48)

When the perturbation is time-dependent, i.e., V'(¢), the Schrodinger equation is

110
at

=[Ho+1V'()]¥ @)

and

_;EO
W(r>=2cn(r>exp( 'f”t)wn

with ¢, (t) = 61 + kc,(,l) (t) + - - -. The first-order correction follows

1 ! ,
o= | <wn\v<z>|m>exp[ .

B.15 N-Particle System

: EO_EO
HEy — BT k)ti|dr

(B.49)

(B.50)

(B.51)

Identical particles are indistinguishable. For the total wave function of a system of

identical particles,

1. Particles with a half-odd integer spin (Fermions): Yo, must be anti-symmetric
with respect to interchanges of the coordinates (spatial and spin) of each pair of
particles. The Pauli principle results from this: two Fermions cannot exist in an

identical state because then Yia = 0.

2. Particles with an integer spin (Bosons): Yo must be symmetric with respect to

interchange of the coordinates (spatial and spin) of each pair of particles.

For a system of two electrons there are 2 possibilities for the spatial wave func-

tion. When a and b are the quantum numbers of electron 1 and 2,

Vs(1,2) = ¥ (DYp(2) + ¥a (2) ¥ (1)
Va(l,2) = (DY (2) = Ya(2) (1)

Following spin wave functions are possible:

1
XA = —2[X+(1)X—(2) — x+@x-(D]

(B.52)

(B.53)
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x+(Dx+(2)
xs =1 e x=@ + x+@x-(D)]
1= x-(2)

Because the total wave function must be anti-symmetric, Wiotal = ¥s XA, OF Yiotal =

VAXS-
For N particles the symmetric spatial function is given by:

Ys(l,...,N)= Zw(all permutations of 1, ..., N) (B.54)

The anti-symmetric wave function is given by the Slater determinant

ve (D) Y (2 - Y (N)

a Ny L [PED YR@ Y 555
All, ...y —W . .

Ven () Ve, @) o YEy(N)

B.16 Quantum Statistics

If a system exists in a state in which one has not the disposal of the maximal amount
of information about the system, it can be described by a density matrix p. If the
probability that the system is in state ¥; is given by c¢;, one can write for the expec-
tation value a of A

a=(A)=) ci(WilAI%) (B.56)

If ¥ is expanded into an orthonormal basis {y} as ¢ = >k c,ii)qbk,

(A) =) (Ap)k =Ti(Ap) (B.57)
k

where pgr = ch[. p is hermitian, with Tr(p) = 1. Further holds

p=_rilyi) (il

The probability to find eigenvalue a,, when measuring A is given by p,, if one
uses a basis of eigen vectors of A for {¢}. For the time-dependence holds (in the
Schrodinger image operators are not explicitly time-dependent):

dp
ih— =[H, B.58
th [H, p] ( )
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For a macroscopic system in equilibrium holds [H, p] = 0. If all quantum states with

the same energy are equally probable: P; = P(E;), one can obtain the distribution:
e_En/kB T

Py(E) = ppn = — with the state sum Z = ZG_E"/]‘BT (B.59)

n

The thermodynamic quantities are related to these definitions as follows:

F=—kgTIn(Z)

U=(H)= ZpE =—35,7 @ (B.60)

S=—kg Z P, In(P,)
n

For a mixed state of M orthonormal quantum states with probability 1/M follows:
S =kpIn(M).

The distribution function for the internal states for a system in thermal equi-
librium is the most probable function. This function can be found by taking the
maximum of the function which gives the number of states with Stirling’s equation:

In(n!) ~nln(n) —n

and the conditions ), nx = N and ), ng Wy = W. For identical particles which
obey the Pauli exclusion principle the possible number of states is given by:

-1 8! (B.61)

L (g —np)!

This results in the Fermi-Dirac statistics. For indistinguishable particles which do
not obey the exclusion principle the possible number of states is given by:

p=NT]% (B.62)

This results in the Bose-Einstein statistics.

The distribution functions which explain how particles are distributed over the
different one-particle states k which are each gi-fold degenerate depend on the spin
of the particles. They are given by:

1. Fermi-Dirac statistics: ny = exp[(Ek—gf)/kgTHl

2. Bose-Einstein statistics: n; =

8k
expl(Ex—Ef)/kpT]-1

where E y is the Fermi-energy.



Appendix C
Electricity & Magnetism

C.1 The Maxwell Equations

The classical electromagnetic field is described by electric displacement D, polar-
ization P, electric field strength E, magnetic field strength H, the magnetization M
and the magnetic flux density B, via the Maxwell equations, in integral and differ-
ential forms:

#D-dS:///pd.Q V-D=p
S 2
#B~ds=0 V-B=0
S
d JB
%E-dl:——//B-dS VXE=——
at
oD
%H d(—//(1—|——)-d5 VXH_J—'—W

In the first two integral equations, §2 is the volume totally enclosed by surface S;

(C.1)

In the last two integral equations, S is the surface totally enclosed by line £. In the
above equations, p is the density of free electric charge and j is the electric current
density. D, P and E depend on each other according to D = €pE + P = € E, while
H, M and B depend on each other according to B = uo(H + M) =uH

There is the law of charge conservation which is implicit in the above Maxwell
equations (also in its integral and differential forms)

3 9
#j-dS+—#D~dS:O, v+ 2o (C2)
S ot JIs ot
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C.2 Force and Potential

The vector fields from a particle of charge O and velocity v are

_ o

v? noQrvxr v?
E| = —=(1—-=, B, = 1-— C3
! 41 e 3( c%) ! 47 3 < C(2)> €3

The force between two stationary (or quasi stationary, i.e., their velocities are far
less than the speed of light) point charges Q1 and Q; in a homogeneous space with
a dielectric constant € are given by:

_ 010 r

- 47T60 r3

F=0)E, (C4)

A particle with charge QO experiences the so-called Lorentz force when moving
at an instantaneous velocity v in a B field

F=QivxB (C5)

The electromagnetic field can be described by a vector potential A and a scalar
potential ¢
0A
EZ_V(]&_E’ B=VxA (C.6)

The magnetic field, resulting from an electric current j = jd£ is given by the law
of Biot-Savart, also known as the law of Laplace.

j d€
o [Loidexr

C.7
4 r €D
where r is the spatial vector from the current jd¢ to the location at which B is being
calculated. If the current is time-dependent one has to take retardation into account
that the substitution j () — j(t — r/c) has to be applied.

C.3 Electromagnetic Waves

By introducing a vector potential, A, and a scalar potential, ¢, the electric and mag-
netic fields can be obtained from the relations of
0A
E=-V¢— —

ot (C.8)

B=VxA

The first and last Maxwell equations are automatically satisfied by the definitions.
By the relation of

Vx(VxA)=V(V-A) — VA
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and in the Lorentz gauge of

1 9
1viate (C.9)

7 ot

we have the following equations for the vector and scalar potentials

32A
VA —ep—s =— C.10
N3 wJ (C.10)
V2¢—E/,L82—¢=—£ (C.11)
a2 € '
The wave equation LW (r, t) = — f (r, t) has the following general solution
d—|r=r
wiry= [ LEIZIT =V (C.12)

A |r —r'|

where ¢ =1/, /ew. When J(r,t) and p(r,t) can be expressed as J (r) exp(—iwt)
and p(r)exp(—iwt), respectively, A(r,t) and ¢(r,t) have the similar forms of
A(r)exp(—iwt) and ¢ (r) exp(—iwt) with:

A(r)— /J ~explik-(r—r )]dr/

Ir—r|

1 explik - (r —r')] (€13)
¢(r)= Tre /P("/)Wdr/
An ideal dipole that oscillates in time
p(t) = pycos(wt) (C.14)

The electric and magnetic fields, the Poynting flux, and angular distribution of this
oscillating dipole are

w?
E=-0 — sin@ cos(wt —k - r)
4neor o
B =—¢, Hopo @ sinf cos(wt — k - r)
dnr co
2 4
_ Pp @
S W 3 sin GCOS (a)t k- r) (CIS)
17() sin26 o*

= ro— —_—
32m2¢pr? 3
pisin?6 o*
T 32n2epr? 3
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in spherical coordinate, where rg, 6p and ¢, are the three unit vectors. Note that
the above expressions are valid for the following conditions: the dipole dimension
is much less than the distance to the dipole, it is also very small compared with
the wavelength of radiation. The distance to the dipole is much longer than the
wavelength.

The wave equations in matter, with cpar = (ep0)™
are:

172 the light speed in matter,

5 (C.16)
V2oeut B2V _g
o> p ot
give, after substitution of monochromatic plane waves:
E=Egexp|itk-r —owt)] and B=Bgexp[ik-r—wt)]
the dispersion relation:
2= epa? + £2 (C.17)
I

The first term arises from the displacement current, the second from the conductance
current. If k is written in the form k =k’ + ik” it follows that:

/1 1 /1 1
kK = —€ 1 1+ —— and k'= —€ —1 14—
w 2 o + + (pew)? w > nw + + (pew)?

(C.18)

This results in a damped wave:

E = Egexp(—k"n-r)expli(k'n-r — wt)] (C.19)



Appendix D
Solid State Physics

D.1 Crystal Structure

A lattice is defined by the 3 translation vectors a;, so that the atomic composition
looks the same from each point r and ' = r + R, where R is a translation vector
givenby: R =u1a; +usa, +uzas with u; are integers. A lattice can be constructed
from primitive cells. As a primitive cell one can take a parallelepiped, with volume

Rcen =ay - (a2 x az) (D.1)

Because a lattice has a periodical structure the physical properties n which are con-
nected with the lattice have the same periodicity (neglecting boundary effects):

n(r+ R)=n(r) (D.2)

This periodicity is suitable to use Fourier analysis: n(r) is expanded as:

n(r)=> ngexp(iG-r) (D.3)
G
with
ng = / n(r)exp(—iG - r)dr (D.4)
Q¢el Jeel

G is the reciprocal lattice vector. If G is written as G = v1by + voby + v3b3 with
v; as integers, it follows for the vectors b;, cyclically:

Ai+1 X A2

bj=27r—m—————
a;-(ajy1 X ajy2)

(D.5)
The set of G-vectors determines the Rontgen diffractions: a maximum in the re-
flected radiation occurs if: Ak = G with Ak =k — k'. So: 2k - G = G?. From
this follows for parallel lattice planes (Bragg reflection) that for the maxima holds:
2d sin(6) = nA.

The Brillouin zone is defined as a Wigner-Seitz cell in the reciprocal lattice.
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D.2 Crystal Binding

A distinction can be made between 4 binding types:

. van der Waals bond

. Ton bond

. Covalent or homopolar bond
. Metallic bond

B W =

The interaction in a covalent bond depends on the relative spin orientations of
the electrons constituting the bond. The potential energy for two parallel spins is
higher than the potential energy for two antiparallel spins. Furthermore the potential
energy for two parallel spins has sometimes no minimum. In that case binding is not
possible.

D.3 Crystal Vibrations

For a lattice with one type of atoms and only nearest-neighbor interactions are taken
into account, the force on atom s with mass M can then be written as:
d?u;

Fs=M Fr Clust1 —ug) + Clus—1 —us) (D.6)

Assuming that all solutions have the same time-dependence exp(—iwt) this results
in:

_szus = C(us+l +us_1 —2uy) (D.7)

Further it is postulated that: us;11 = uexp(isKa)exp(£iKa). This gives: us; =
exp(i Ksa). Substituting the latter two equations in the first results in a system of
linear equations, which has only one solution if their determinant is 0. This gives:

4C 1
= m sin2<§Ka> (D.8)

Only vibrations with a wavelength within the first Brillouin Zone have a physical
significance. This requires that —7 < Ka < . The group velocity of these vibra-

tions is given by:
do Ca? cos ! K (D.9)
Vg=—— =,/ — ~Ka .
£ dK M 2

and is 0 on the edge of a Brillouin Zone. Here, there is a standing wave.
For a lattice with two types of atoms, the solutions are:

) 1 1 1 1\? 4sin®(Ka)
o =Cl—+—)zxCc/[—+—) - =~ (D.10)
M, M, M, M, MM,
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Connected with each value of K are two values of w. The larger value describes the
optical vibrational mode, the lower value the acoustical mode. In the optical mode,
both types of ions oscillate in opposite phases, in the acoustical mode they oscillate
in the same phase. This results in a much larger induced dipole moment for optical
oscillations, and also a stronger emission and absorption of radiation. Furthermore
each vibrational mode has three polarization directions, one longitudinal and two
transversal.

D.4 Free Electron Fermi Gas

D.4.1 Thermal Heat Capacity

The solution with period L of the one-dimensional Schrodinger equation is:

. (271x)
Yn(x) =Asin| —
An

with n), = 2L. From this follows

2 2
E=2h—(%> (D.11)
m

In a linear lattice the only important quantum numbers are n and m. The Fermi level
is the uppermost filled level, which has the Fermi-energy Ey. If ny is the quantum
number of the Fermi level, it can be expressed as: 2ny = N so Ey = W22 N?/8mL.
Here N is the total number of electrons. In three dimensions holds:

372N\ 12 302N\
kp= . Ej=-— (D.12)
- 2 77w\ @2

The number of states with energy < E is then: N = 3:7’72_2(2%;5)3/ 2, and the density
of states becomes

D(E) = (D.13)

AN 2 (2m\? 3N
Y i E=""
dE 272\ B2 2F

The heat capacity of the electrons is approximately 0.01 times the classical ex-
pected value %N kp. This is caused by the Pauli exclusion principle and the Fermi-
Dirac distribution: only electrons within an energy range ~ kpT of the Fermi level
are excited thermally. There is a fraction ~ T /T excited thermally. The internal
energy then becomes:

oUu T

T
U~ NkgT—,  C=—=~ Nkp— D.14
T, aT 51, (D-14)
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A more accurate analysis gives:
1,
Celectrons = 577 NkpT/ Tf ~T

Together with the 73 dependence of the thermal heat capacity of the phonons the
total thermal heat capacity of metals is described by

C=yT+AT?

D.4.2 Electric Conductance

The equation of motion for the charge carriers is:

dv dk
F=m—=h— (D.15)
dr dt

The variation of k is given by

—eEt

ok =k(1) —k(0) = —

If 7 is the characteristic collision time of the electrons, §k remains stable if r = 7.
(v)=uE (D.16)

with u = et /m the mobility of the electrons. The current in a conductor is given by:

E
J=nqv=0E =— =nenkE (D.17)
0

D.5S Energy Bands
In the tight-bond approximation it is assumed that
¥ = " (x — na)
from this follows for the energy:
(E) = (V|H|Y) = Eqt — o — 2 cos(ka)

This gives a cosine superimposed on the atomic energy, which can often be approx-
imated by a harmonic oscillator. If it is assumed that the electron is nearly free one
can postulate

I/f — eik-r



D.5 Energy Bands 403

i.e., a traveling wave. This wave can be decomposed into two standing waves:
Y (+) =exp(imx/a) 4+ exp(—imx/a) =2cos(wx/a)
Y (—) =exp(inx/a) —exp(—imx/a) =2isin(wx/a)

The probability density |y (+)|> is high near the atoms of the lattice and low in
between. The probability density |1/ (—)|? is low near the atoms of the lattice and
high in between. Hence the energy of ¥ (+) is also lower than the energy of {(—).
Suppose that V (x) = V cos(2rwx /a), than the bandgap is given by:

1
E, =/0 v[lr@ = g =v (D.18)
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