17. Annex 411

A3. Concepts of Quantum Mechanics

In this Annex the Reader is reminded of some concepts from quantum
mechanics that will be used in this book.

1) A particle can be fully described by a function, called wave function.
The wave function is noted ¥(x,y,z,#) and it contains all measurable
information about the particle.

2) To each dynamic variable corresponds a quantum-mechanic

operator:
0 To the position x corresponds the operator X = x (A3.1)
¢ To momentum py corresponds the operator py = ;' 5% (A3.2)
¢ To the total energy E corresponds the operator E=- Jé% (A3.3)
¢ To the potential energy V(ic,y,z) corresponds the operator

V = Vixyz) (A3.4)

where j = V-1 and where % = h/2m, h being Planck's constant.

3) The wave function also gives the probability of finding the particle in
a given region of space. If the wave function is real (i.e., not
complex) the probability of finding the particle between positions a
and b in one dimension (x) is given by:

b b

probability = _[‘I’*’de = J-'{’z dx if ¥ is a real function)
a a

For all space in one dimension the particle must be somewhere
between x = -00 and x = +00 and therefore, we obtain the
normalization condition:

+0o0 +0o0
[¥*wax=1 ( [¥2dx =1 if ¥is a real function) (A3.5)
-0 -00

Consider the total energy of a particle in a classical Newtonian physics
approach. If the particle has a momentum p and a potential energy V, its
total energy is given by:

2
_ D
E=5—+V (A3.6)
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2 2 2
Note that p=p(xy,z) p? =py +p, +p, and V=V(xy2)

Applying these concepts to an electron having a mass m for the one-
dimensional case one obtains Table A. 1:

Table A.l: Physical variables and operators.

Quantity Classical Quantum
mechanics mechanics
% d
Momentum p=mv jdx
N . 1 td rd B2
Kinetic energy o 2mj dx (j del g3
Potential energy 14 v
_r %
Total energy E= 2m 4 “jot
1 #?
Mass " d2E/dp? ™ = d2E/dk2
Velocity, _dE _1dE
group velocity YV dp Yk = h dk

In this Table, k is a wave vector or a wave number that corresponds to the
momentum of the particle.

The Schrodinger equation is basically the quantum mechanical equivalent
2

P~

of classical mechanics E = m + V. For the one-dimensional case the

quantum mechanical equivalent of total energy is:

n: ¥ ok d
- + V) = -J—. Y (A3.7)
and, in three dimensions:
V4 %oy
-— 2 = _——
m VeV + Vixyz) ¥ e’ (A3.8)

where V2 is the Laplacian operator defined by:

N oA d +62'I’ +an1
(2 =57 T o2 t a2
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If the potential energy function is time independent (0V/0t = 0) one is
able to construct a solution to the Schrodinger equation through the
technique of separation of variables where the wave function is written as
the product of a time-independent term, W(x,y,z) and a space-independent
term, 7(t), such that ¥(x,y,z,¢) = y(x,y,z) T(t). The introduction of these
terms into (A3.8) yields:

2
T(t) (' }_’—n— VZW(nyrz)) + V(x,y,z) W(ny:z) T(t)

% 811t
= W(x:y,z) (' ]_ _at(_)—)
or
7 7
V2 ( — Py(ryz) + Yy llf(x,y.z)) -3 ( o %5’2) (A3.9)

The left-hand term of this equation depends only on space, while the
right-hand term depends only on time, which indicates that the separation
of ¥ into the product of y and T was successful. We can now solve the
Schrodinger equation for the variables ¥ and T separately, and with this
solution find ¥ = wT. Equation A3.9 makes sense only if both terms are
equal to a constant which we shall call E, therefore, we can write:

y/] r
ET@ = -JT%;QZ = T(t)=exp(iff) (A3.10)
and therefore:
_jEt
Yy.zt) = Wiy ep (5 ) (A3.11)

Introducing Expression A3.11 into A3.8 one obtains the time-
independent Schrodinger equation:

Time-independent Schrodinger equation

72
-5 V2W(ayz) + [Vey2) - E] wy2) = 0 (A3.12)

where E is the (constant) energy of the particle, where the energy of the
particle is given by:

% 9T()

d¥(x,y,z,
BOR2D = yeyz) (-7 557) = vona) ETO) = E Wpa

_h
j ot
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