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Τοπικό Μοντέλο (Local Level Model)



ARIMA και Μοντέλα Χώρου Καταστάσεων (State Space)

Τα μοντέλα ARIMA περιγράφουν την τρέχουσα τιμή της χρονοσειράς ως συνδυασμό:

● προηγούμενων παρατηρήσεων (AR),

● προηγούμενων σφαλμάτων πρόβλεψης (MA),

● και διαφορών, οι οποίες χρησιμοποιούνται για την αντιμετώπιση της μη στασιμότητας.

Μία διαφορετική προσέγγιση είναι τα μοντέλα χώρου καταστάσεων, τα οποία εισάγουν 
λανθάνουσες (μη παρατηρούμενες) καταστάσεις που περιγράφουν την υποκείμενη δυναμική 
της διαδικασίας.

Το μοντέλο διατυπώνεται μέσω δύο εξισώσεων:

● Εξίσωση κατάστασης: περιγράφει την εξέλιξη των λανθανουσών καταστάσεων στον χρόνο.

● Εξίσωση παρατήρησης: συνδέει τις λανθάνουσες καταστάσεις με τα παρατηρούμενα 
δεδομένα.

Η δομή αυτή επιτρέπει ευέλικτη μοντελοποίηση συνιστωσών όπως τάση, εποχικότητα και 
κύκλοι.



Γένεση ενός Local Level μοντέλου

Για να μετρήσουμε την εξέλιξη της στάθμης ενός ποταμού, πηγαίνουμε κάθε χρόνο σε ένα 
συγκεκριμένο σημείο και κάνουμε τη μέτρηση. Όμως, η μέτρηση επηρεάζεται από τυχαίους 
παράγοντες που δεν γνωρίζουμε, όπως για παράδειγμα μία πιθανή βροχή που προηγήθηκε ή 
ένα σφάλμα του εργαλείου μέτρησης. Οπότε, μετρούμε τη στάθμη του νερού με μια 
πρόσθετη, μη ελεγχόμενη και τυχαία ανακρίβεια. Η κατάσταση αυτή αντιπροσωπεύεται στην 
εξίσωση:

Μέτρηση Στάθμηςt = Πραγματική Στάθμηt + εt

όπου εt το σφάλμα της μέτρησης.

Είναι επίσης λογικό να υποθέσουμε ότι η πραγματική στάθμη του νερού του ποταμού αλλάζει 
με την πάροδο του χρόνου όπως για παράδειγμα στην περίπτωση όπου χτιστεί ένα φράγμα. 
Δηλαδή, η τρέχουσα πραγματική στάθμη εξαρτάται από την στάθμη του προηγούμενου έτους 
συν την στοχαστική μεταβολή της τελευταίας περιόδου.

Συνεπώς, είναι λογικό να ενσωματώσουμε και την ακόλουθη εξίσωση:

Πραγματική Στάθμηt = Πραγματική Στάθμηt-1 + ηt

όπου ηt το σφάλμα της τιμής.



Γένεση ενός Local Level μοντέλου

Οι δύο εξισώσεις

Μέτρηση Στάθμηςt = Πραγματική Στάθμηt + εt

Πραγματική Στάθμηt = Πραγματική Στάθμηt-1 + ηt

αποτελούν ένα Local Level μοντέλο. 

(το οποίο αργότερα θα το αναγνωρίσουμε ως μία περίπτωση State Space 
μοντέλου).

Το “local” δηλώνει ότι το επίπεδο (level) δεν είναι καθολικό χαρακτηριστικό της σειράς, αλλά ένα χρονικά 
μεταβαλλόμενο, σημείο αναφοράς.



Βασική Ιδέα Local Level μοντέλου

● Υποθέτουμε ότι η χρονοσειρά κινείται γύρω από ένα λανθάνον επίπεδο (level).

● Το επίπεδο αυτό δεν είναι σταθερό, αλλά μεταβάλλεται τυχαία στον χρόνο.

● Δεν επιβάλλεται ντετερμινιστική τάση ή προκαθορισμένη μορφή εξέλιξης.

Το local level model γράφεται ως:

Xt = μt + εt,

μt = μt−1+ ηt.

Xt​: παρατηρούμενη χρονοσειρά

μt​: λανθάνουσα στάθμη (level)

εt​: σφάλμα παρατήρησης

ηt​: σφάλμα εξέλιξης του επιπέδου



Σκοπός Local Level μοντέλου

Ο σκοπός αυτού του μοντέλου είναι:

α) Να εκτιμήσει την τάσης της χρονοσειράς μt, η οποία δεν παρατηρείται άμεσα, 
επομένως το μοντέλο βοηθά στην εξαγωγή της από τα παρατηρούμενα δεδομένα.

β) Να ποσοτικοποιήσει την αβεβαιότητα που σχετίζεται με το θόρυβο μέτρησης εt 
όσο και με την εξέλιξη της υποκείμενης τάσης ηt.

Οι άγνωστες παράμετροι του μοντέλου είναι:

α) Η διασπορά του σφάλματος της μέτρησης σε
2.

β) Η διασπορά του σφάλματος της πραγματικής τιμής ση
2.

γ) Η αρχική τιμή μ0.



Local Level Model

Παρατηρήσεις

● Σε ένα Local Level μοντέλο, οι χρονοσειρές Χt και μt είναι εν γένει μη 
στάσιμες, καθιστώντας τα μοντέλα αυτού του είδους κατάλληλα για μη 
στάσιμες σειρές.

● Παρατηρούμε ότι το Local Level μοντέλο είναι ένας τυχαίος περίπατος με 
πρόσθετο Measurement Error. Ειδικότερα, αν σε = 0, τότε το μοντέλο 
γίνεται ο τυχαίος περίπατος Xt = Xt-1 + ηt. 

● Αν ση = 0, τότε το μοντέλο γίνεται ο λευκός θόρυβος με σταθερή μέση 
τιμή Xt = μ + εt.

Xt = μt + εt,
μt = μt−1+ ηt.



Local Level Model

Παρατηρήσεις

● Μεγάλο ση
2​: μεγάλη μεταβλητότητα στο πραγματικό επίπεδο μt.

● Μικρό ση
2​: σχεδόν σταθερή μέση τιμή.

● Μεγάλο σε
2​: μεγάλο σφάλμα μέτρησης.

● Λόγος σε
2/ση

2: περιγράφει την κατανομή της μεταβλητότητας μεταξύ του

➢ θορύβου παρατήρησης (εt​) και της

➢ πραγματικής μεταβολής του επιπέδου (ηt​).

● Αν σε
2/ση

2 μεγάλο, τότε οι αποκλίσεις της χρονοσειράς ερμηνεύονται ως θόρυβος.

● Αν σε
2/ση

2 μικρό, τότε οι αποκλίσεις της χρονοσειράς ερμηνεύονται ως 
πραγματικές μεταβολές του επιπέδου.

Xt = μt + εt,
μt = μt−1+ ηt.



Παραδείγματα Local Level σειρών

ll.sample.ts = function(sd.eta = 1, sd.epsilon = 1, n = 100){
  mu = numeric(n)
  xt = numeric(n)
  eta.values = rnorm(n, 0, sd.eta)
  epsilon.values = rnorm(n, 0, sd.epsilon)
  
  mu[1] = eta.values[1]
  for(i in 2:n){
    mu[i] = mu[i-1] + eta.values[i]
  }
  for(i in 2:n){
    xt[i] = mu[i] + epsilon.values[i]
  }
  return(xt)
}

library(latex2exp)
par(mfrow=c(3,2))
for(i in 1:6){
  sd.eta = 30
  sd.epsilon = 0.5
  plot(ll.sample.ts(sd.eta = sd.eta, sd.epsilon = sd.epsilon), type = 'l', 
       ylab = TeX('$x_t$'),  xlab = 't', 
       main = TeX(paste0('$Local \\, Level \\, with \\, η_t \\sim Ν(0, ', sd.eta, '^2), ε_t \\sim 
Ν(0, ', sd.epsilon, '^2)$')))
}

Xt = μt + εt,
μt = μt−1+ ηt.



Υπολογισμός ση, σε στο

Έστω η Local Level σειρά X1, X2, …, Xn. 

Από την Xt = μt + εt, έχουμε Xt-1 = μt-1 + εt-1, και

 Υt = ΔXt 

= Xt – Xt-1

= μt – μt-1 + εt – εt-1 

= ηt + εt – εt-1

Xt = μt + εt,
μt = μt−1+ ηt.



Υπολογισμός ση, σε στο

Βρήκαμε Υt = ΔXt = ηt + εt – εt-1.

Είναι εt ~ iid Ν(0, σε
2), ηt ~iid Ν(0, ση

2) και εt, ηt, ανεξάρτητα μεταξύ τους, άρα:

● Ε(Υt) = 0.

● Var(Yt) = ση
2 + 2σε

2.

● E(Υt Υt-1) = Ε[(ηt + εt – εt-1)(ηt-1 + εt-1 – εt-2)] = -σε
2.

● E(Υt Υt-k) = Ε[(ηt + εt – εt-1)(ηt-k + εt-k – εt-k-1)] = 0, k > 1.

● Αυτοδιασπορά γ(1) = E(Υt Υt-1) – E(Υt)Ε(Υt-1) = -σε
2 και γ(k) = 0, k > 1.

● Αυτοσυσχέτιση                                                            και ρ(k) = 0, k > 1.ρ(1) =−
σε

2

ση
2 + 2σε

2
=− 1

2+c
, c =

ση
2

σε
2

Xt = μt + εt,
μt = μt−1+ ηt.



Υπολογισμός ση, σε στο

Βρήκαμε ότι                                                            και ρ(k) = 0, k > 1.

Παρατηρούμε ότι η Υt = ΔXt είναι ισοδύναμή με μία MA(1) χρονοσειρά 

Υt = wt + θwt-1, wt ~ N(0, σw
2). 

Γνωρίζουμε ότι ρΥ(1) = θ/(1 + θ2). 

Εξισώνοντας, βρίσκουμε ότι:

Από τις 2 λύσεις η μία με |θ| < 1, καθιστά το MA(1) μοντέλο αντιστρέψιμο (άρα έχει 

μοναδική Wold αναπαράσταση):

θ1,2 =
−(2 + c ) ± √(2 + c )2 − 4

2
= −1 −

c
2

±
1
2

√c2 + 4c , c =
ση

2

σε
2 .

θ = −1 −
c
2

+ 1
2

√c2 + 4c , c =
ση

2

σε
2 .

ρ(1) =−
σε

2

ση
2 + 2σε

2 =− 1
2+c

, c =
ση

2

σε
2

Xt = μt + εt,
μt = μt−1+ ηt.



Υπολογισμός ση, σε στο

Με την αρχική υπόθεση w0 = 0, βρίσκουμε επακριβώς την τιμή του θ, ελαχιστοποιώντας 
με MLE την ποσότητα:  

Τώρα, αν c = ση
2/σε

2, είναι

Η επίλυση του συστήματος

οδηγεί στον υπολογισμό των διακυμάνσεων ση
2, σε

2, του αρχικού local level μοντέλου.

Xt = μt + εt,
μt = μt−1+ ηt.

∑
t=1

n−1

w t
2 =∑

t=1

n−1

(Y t − θw t−1)
2 = Y1

2⋅(Y2 − θw1)
2⋅...⋅(Yn−1 − θwn−2)

2

θ = −1 −
c
2

+ 1
2

√c2 + 4c ⇔ c = −
(1+θ)2

θ

ση
2

σε
2 = −

(1+θ)2

θ

 ση
2 + 2σε

2 = Var(Yt)



Πρόβλεψη στο

Γνωρίζουμε ότι για οποιαδήποτε τ.μ. Υ και οποιοδήποτε χώρο πληροφοριών F = σ(Χ1, .., Χk), είναι:

Στο local level model Xt = μt + εt, μt =μt−1+ ηt, είναι

● Σφάλμα πρόβλεψης για 1 βήμα:

● Σφάλμα πρόβλεψης για h βήματα:

ŶMSE = ming∈L2(F)E [(Υ − g(Χ1 , Χ2 , ... , Χk))
2] = E(Υ | Χ1 , Χ2 , ... , Χ t)

X̂ t+1 = E(Χ t+1 | Χ1 , Χ2 , ... , Χ t) = E(μt + ε t | Χ1 , Χ2 , ... , Χ t) = μt + E(ε t) = μt

Error (1) = Χ t+1 − X̂ t+1 = μt+1 + ε t+1 − μt = μt + ηt+1 + ε t+1 − μt = ηt+1 + ε t+1

X̂ t+h = E(Χ t+h | Χ1 , Χ2 , ... , Χ t) = E(μt+h + ε t+h | Χ1 , Χ2 , ... , Χ t) = E(μt+h) = μt

Error (h) = Χ t+h − X̂ t+h =∑
j=1

h

ηt+ j + ε t+h , Var(Error (h)) = hση
2 + σε

2

Var(Error (1)) = ση
2 + σε

2

Xt = μt + εt,
μt = μt−1+ ηt.



Πρόβλεψη στο

Υπολογισμός μt

Γράφουμε μt | t-1 = Ε(μt | Χ1, …, Χt-1). Αν γνωρίζουμε τα Χ1, …, Χt-1, τότε πριν παρατηρήσουμε το Xt: 

μt | Χ1, …, Χt-1 ~ Ν(μt-1 | t-1, Pt|t-1), 

όπου Pt | t-1 = Var(μt | X1, .., Xt-1) = Var(μt-1 + ηt | X1, .., Xt-1) = Pt-1 | t-1 + ση
2.

Θεωρούμε την ποσότητα (Kalman gain)

Η νέα τιμή του επιπέδου ορίζεται ως εξής:

 μt | t-1 = (1 – Kt)μt-1 | t-1 + KtXt  

= μt-1|t-1 + Kt(Xt  - μt-1 | t-1) 

Στη συνέχεια υπολογίζεται η νέα διακύμανση  

Pt | t = (1 – Kt)Pt | t-1 

Η διαδικασία συνεχίζεται επαναληπτικά.

Συνήθης αρχικοποίηση: P0 | 0 πολύ μεγάλο.

K t =
Pt | t−1

Pt | t−1 + σε
2

Xt = μt + εt,
μt = μt−1+ ηt.



Κέρδος Kalman (kalman gain)

Το κέρδος Kalman Kt είναι η ποσότητα που ελαχιστοποιεί το ​δεσμευμένο ως προς τα X1:t−1μέσο 
τετραγωνικό σφάλμα μεταξύ όλων των γραμμικών εκτιμητών της μορφής 

Είναι: 

K t =
Pt | t−1

Pt | t−1 + σε
2 , Pt | t−1 = Var(μt − μt | t−1 |Χ1: t−1)

μ̂t = μt | t−1 + K t(X t − μt | t−1) = μt | t−1 + K t(μt + ε t − μt | t−1)

μt − μ̂t = (1 − K t)(μt − μt | t−1) − K t ε t

Var(μt − μ̂t |Χ1: t−1) = (1 − K t)
2 Var(μt − μt | t−1 |Χ1: t−1) + K t

2 σε
2

0 =−2(1 − K t)Var(μt − μt | t−1) + 2K t σε
2

∂
∂K t

Var(μt − μ̂t |Χ1: t−1) = 0

K t =
Pt | t−1

Pt | t−1 + σε
2

μ̂t = μt | t−1 + K t(X t − μt | t−1)



Προσαρμογή Local Level μοντέλου

# Προσαρμογή μοντέλου και εμφάνιση τυπικών αποκλίσεων σ_ε και σ_η
dev.off()
plot.ts(Nile)
fitNile <- StructTS(Nile, type = "level")
print(fitNile$coef)
print(sqrt(fitNile$coef))

# Έλεγχος υπολοίπων
library(forecast)
checkresiduals(fitNile$residuals)

# Αναπαράσταση προσαρμογής
plot(Nile, type = "o")
lines(fitted(fitNile), lty = "dashed", lwd = 2)

Xt = μt + εt,
μt =μt−1+ ηt.



Προσαρμογή Local Level μοντέλου

# Πρόβλεψη h βημάτων μπροστά
h <- 20 
fc <- predict(fitNile, n.ahead = h) 
fc$pred # point forecasts 
fc$se # standard errors των forecasts

# 95% διαστήματα εμπιστοσύνης
lower <- fc$pred - 1.96 * fc$se 
upper <- fc$pred + 1.96 * fc$se
cbind(mean = fc$pred, lower = lower, upper = upper)

# Γραφική αναπαράσταση
ts_start <- end(Nile)[1] + (end(Nile)[2] / frequency(Nile))  
pred_ts  <- ts(fc$pred,  start = end(Nile)[1] + 1, frequency = frequency(Nile))
low_ts   <- ts(lower,    start = end(Nile)[1] + 1, frequency = frequency(Nile))
up_ts    <- ts(upper,    start = end(Nile)[1] + 1, frequency = frequency(Nile))

plot(Nile, xlim = c(start(Nile)[1], end(Nile)[1] + h),main = "Nile: Local level 
forecasts")
lines(pred_ts, lty = 1)
lines(low_ts,  lty = 2)
lines(up_ts,   lty = 2)

Xt = μt + εt,
μt =μt−1+ ηt.



Τοπικό Μοντέλο με τάση (Local Level Model with Trend)



Μοντελοποιώντας τη στοχαστική τάση

Έστω, η ευθεία y = αx και τα σημεία Α(x, yt), B(x+1, yt+1). 

Φανερά, yt+1 = yt + α.

Συμπεραίνουμε ότι η εξίσωση yt+1 = yt + α αντιστοιχεί σε χρονοσειρά που 
ακολουθεί ντετερμινιστική γραμμική τάση με κλίση α. 

Αν προστεθεί σφάλμα μέτρησης εt ~ iid N(0, σ2), τότε προκύπτει το μοντέλο:

yt+1 = yt + α + εt  

Δyt = α + εt 

yt: ARIMA(0, 1, 0) με drift.



Μοντελοποιώντας τη στοχαστική τάση

Στην περίπτωση όπου η κλίση α μεταβάλλεται, τότε στη θέση του α μπορούμε να 

θεωρήσουμε μία στοχαστική διαδικασία αt.

Στην ειδική περίπτωση όπου το αt είναι Random Walk, τότε η η σειρά yt ​γράφεται:

yt+1 = yt + αt + εt

αt = αt-1 + ζt

Αν, επιπλέον δεχθούμε ότι υπάρχει και μία τοπική μεταβολή στο επίπεδο της σειράς τότε 

το μοντέλο γράφεται: 

yt+1 = μt+1 + εt+1, 

μt+1 = μt + αt + ηt, 

αt+1 = αt + ζt,  



Local Linear Trend

yt = μt + εt, εt ~ Ν(0, σ2
ε) (measurement equation)

μt+1 = μt + αt + ηt, ηt ~ Ν(0, σ2
ξ) (state equation 1)

αt+1 = αt + ζt,  ζt ~ Ν(0, σ2
ζ) (state equation 2)

όπου:

yt​: παρατηρούμενη χρονοσειρά

μt​: τοπικό επίπεδο (local level)

αt​: τοπική κλίση / στοχαστική τάση (local slope)

ηt, ζt​: καινοτομίες του επιπέδου και της τάσης αντίστοιχα



Προσαρμογή LLT στην R

alldata_en_csv = "https://utopia.duth.gr/epdiaman/files/dpth/alldata_en.csv"
stocks.df <- readr::read_csv(alldata_en_csv)

# Local Level with Trend (Local Linear Trend)
fit <- StructTS(stocks.df$FTSE, type = "trend")

fit

# Εξομαλυμένες εκτιμήσεις (υπολογίζονται με το Kalman Smoother)

smoothed <- tsSmooth(fit)

# Οπτικοποίηση
plot(stocks.df$FTSE, ylab = "FTSE")
lines(smoothed[,1], col = "red", lty = 2)  # level
lines(smoothed[,2], col = "blue", lty = 2)  # slope (trend)
legend("topleft", legend = c("Παρατηρήσεις", "Level", "Slope"),
       col = c("black", "red", "blue"), lty = c(1, 2, 2))

# Προβλέψεις
predictions <- predict(fit, n.ahead = 10)



Τοπικό Μοντέλο με εποχικότητα

(Local Level Model with Seasonality)



Μοντελοποιώντας τη στοχαστική εποχικότητα

Έστω, μία περιοδική χρονοσειρά xt με περίοδο Τ = 4 και επίπεδο 0. Η εποχική 
συνιστώσα έχει άθροισμα 0 σε κάθε πλήρη περίοδο.

Για να περιγράψουμε την περιοδικότητα ορίζουμε 4 βοηθητικές καταστάσεις: γ1,t, γ2,t, γ3,t, 
γ4,t, όπου η γ1,t ​είναι η εποχική συνιστώσα που παρατηρείται στο χρόνο t, ενώ οι 
υπόλοιπες αποθηκεύουν τις επόμενες εποχικές φάσεις. 

Το άθροισμά τους είναι ίσο με το επίπεδο 0:

γ1,t + γ2,t + γ3,t + γ4,t = 0 ή ισοδύναμα  γ4,t = -γ1,t - γ2,t – γ3,t.

Επιπλέον, οι καταστάσεις αυτές πρέπει να επαναλαμβάνονται κυκλικά:
γ1,t+1 = γ4,t = –γ1,t – γ2,t – γ3,t

γ2,t+1 = γ1,t 
γ3,t+1 = γ2,t



Μοντελοποιώντας τη στοχαστική εποχικότητα

Συγκεντρωτικά, το σύνολο των εξισώσεων που περιγράφει την εξέλιξη της περιοδικής 
σειράς xt με περίοδο Τ = 4 είναι:

xt = γ1,t + εt

γ1,t+1 = –γ1,t – γ2,t – γ3,t

γ2,t+1 = γ1,t 
γ3,t+1 = γ2,t

Για εποχικότητα περιόδου 4 αρκούν τρία state variables, καθώς η τέταρτη προσδιορίζεται 
από τον περιορισμό μηδενικού αθροίσματος και δεν χρειάζεται ξεχωριστή εξίσωση.



Μοντελοποιώντας τη στοχαστική εποχικότητα

xt = γ1,t

γ1,t+1 =  –γ1,t – γ2,t – γ3,t

γ2,t+1 = γ1,t 
γ3,t+1 = γ2,t

t xt γ1,t γ2,t γ3,t γ4,t Άθροισμα

1 0 0 −1 0 1 0

2 1 1 0 −1 0 0

3 0 0 1 0 −1 0

4 −1 −1 0 1 0 0

5 0 0 −1 0 1 0

6 1 1 0 −1 0 0

… … … … … … …

Χρονοσειρά xt = 0, 1, 0, -1, 0, 1, 0, -1, 0, .... 

Βοηθητικές states μεταβλητές



Μοντελοποιώντας τη στοχαστική εποχικότητα

Εποχικότητα (Τ = 4)
yt = γ1,t + εt, εt ~ Ν(0, σ2

ε)
γ1,t+1 =  –γ1,t – γ2,t – γ3,t + ωt, ωt ~ Ν(0, σ2

ω)
γ2,t+1 = γ1,t 
γ3,t+1 = γ2,t

Local Level με trend και εποχικότητα (Τ = 4)

Χt = μt + γ1,t + εt,  εt ~ Ν(0, σ2
ε)

μt+1 = μt + υt + ξt, ξt ~ Ν(0, σ2
ξ)

υt+1 = υt + ζt,  ζt ~ Ν(0, σ2
ζ)

γ1,t+1 = – γ1,t – γ2,t  – γ3,t  + ωt, ωt ~ Ν(0, σ2
ω)

γ2,t+1 = γ1,t

γ3,t+1 = γ2,t 

Local Level με Εποχικότητα (Τ = 4)

yt = μt + γ1,t + εt,  εt ~ Ν(0, σ2
ε)

μt+1 = μt + ξt, ξt ~ Ν(0, σ2
ξ)

γ1,t+1 =  -γ1,t – γ2,t – γ3,t + ωt, ωt ~ Ν(0, σ2
ω)

γ2,t+1 = γ1,t, 
γ3,t+1 = γ2,t, 



Παράδειγμα LL Seasonal στην R

set.seed(123)
T <- 120
season <- rep(c(0, 1, 0, -1), length.out = T)
mu <- cumsum(rnorm(T, sd = 0.2))   
y  <- mu + season + rnorm(T, sd = 0.3)
y_ts <- ts(y, frequency = 4)
plot(y_ts, main = "Χρονοσειρά με Local Level + Εποχικότητα (T=4)")

yt = μt + γ1,t + εt,  εt ~ Ν(0, σ2
ε)

μt+1 = μt + ξt, ξt ~ Ν(0, σ2
ξ)

γ1,t+1 =  -γ1,t – γ2,t – γ3,t + ωt, ωt ~ Ν(0, σ2
ω)

γ2,t+1 = γ1,t, 
γ3,t+1 = γ2,t, 



Παράδειγμα LL Seasonal στην R

fit <- StructTS(y_ts, type = "BSM")
Fit

> fit <- StructTS(y_ts, type = "BSM")
> fit
Call:
StructTS(x = y_ts, type = "BSM")
Variances:
  level    slope     seas  epsilon  
0.02853  0.00000  0.01335  0.10186  

yt = μt + γ1,t + εt,  εt ~ Ν(0, σ2
ε), σε

2 = 0.10186.
μt+1 = μt + ξt, ξt ~ Ν(0, σ2

ξ), σξ
2 = 0.02853.

γ1,t+1 =  -γ1,t – γ2,t – γ3,t + ωt, ωt ~ Ν(0, σ2
ω), σω

2 = 0.01335.
γ2,t+1 = γ1,t, 
γ3,t+1 = γ2,t, 



Παράδειγμα LL Seasonal στην R

fit <- StructTS(y_ts, type = "BSM")
Fit

> fit <- StructTS(y_ts, type = "BSM")
> fit
Call:
StructTS(x = y_ts, type = "BSM")
Variances:
  level    slope     seas  epsilon  
0.02853  0.00000  0.01335  0.10186  

yt = μt + γ1,t + εt,  εt ~ Ν(0, σ2
ε), σε

2 = 0.10186.
μt+1 = μt + ξt, ξt ~ Ν(0, σ2

ξ), σξ
2 = 0.02853.

γ1,t+1 =  -γ1,t – γ2,t – γ3,t + ωt, ωt ~ Ν(0, σ2
ω), σω

2 = 0.01335.
γ2,t+1 = γ1,t, 
γ3,t+1 = γ2,t, 



Παράδειγμα LL Seasonal στην R

comp <- tsSmooth(fit)
plot(cbind(y_ts,
           level = comp[, "level"],
           slope = comp[, "slope"],
           sea   = comp[, "sea"]),
     plot.type = "single",
     col = c("black","blue","darkgreen","red"),
     lty = c(1,2,2,2),
     main = "Observed, Level, Slope, Seasonal (Kalman smoothing)")

legend("topleft",
       legend = c("Observed", "Level", "Slope", "Seasonal"),
       col = c("black","blue","darkgreen","red"),
       lty = c(1,2,2,2))

yt = μt + γ1,t + εt,  εt ~ Ν(0, σ2
ε, σε

2 = 0.10186.
μt+1 = μt + ξt, ξt ~ Ν(0, σ2

ξ) σξ
2 = 0.02853.

γ1,t+1 =  -γ1,t – γ2,t – γ3,t + ωt, ωt ~ Ν(0, σ2
ω) σω

2 = 0.01335.
γ2,t+1 = γ1,t, 
γ3,t+1 = γ2,t, 



State Space Models



Τα μοντέλα καταστάσεως–χώρου (state space models) βασίζονται στην υπόθεση ότι η 
παρατηρούμενη χρονοσειρά Xt​, στη χρονική στιγμή t, μπορεί να περιγραφεί ως γραμμική 
συνάρτηση ενός διανύσματος λανθανουσών μεταβλητών (states), οι οποίες εξελίσσονται 
δυναμικά στο χρόνο σύμφωνα με μία γραμμική στοχαστική εξίσωση.

 Xt = Ft αt + εt, εt ~ i.i.d. Ν(0, σ2
ε),

Όπου:

Xt: η παρατηρούμενη τιμή της χρονοσειράς στη χρονική στιγμή t.

αt: το m×1 διάνυσμα των λανθανουσών καταστάσεων στη χρονική στιγμή t.

Ft: 1xm πίνακας συντελεστών των state μεταβλητών αt 

εt: τα υπόλοιπα του μοντέλου.

Μοντέλα Καταστάσεως – Χώρου (SSM)
Χρονοσειρά μίας μεταβλητής



Η εξίσωση Χt = Ft αt + εt, εt ~ i.i.d. Ν(0, σ2
ε), αποτελεί το measurement equation του 

συστήματος. Επιπλέον, θεωρούμε και την state (ή transition) εξίσωση που περιγράφει 
τον τρόπο που εξελίσσονται στο χρόνο οι καταστάσεις αt.

αt+1 = Gt αt + Rt ηt, ηt ~ i.i.d. Ν(0, Wη),

Όπου:

αt+1: οι state μεταβλητές του μοντέλου τη χρονική στιγμή t + 1 (πίνακας m x 1).

Gt: m x m πίνακας μετάβασης των αt.

ηt: τα g (≤ m) υπόλοιπα του μοντέλου ως πίνακας g x 1.

Rt: ο g x g πίνακας συντελεστών των υπολοίπων ηt.

Wη: ο g x g πίνακας συνδιακύμανσης των υπολοίπων ηt.

Μοντέλα Καταστάσεως – Χώρου (SSM)
Χρονοσειρά μίας μεταβλητής



Οι δύο εξισώσεις

● Xt = Ft αt + εt, εt ~ i.i.d. Ν(0, σ2
ε),  (measurement equation)

● αt+1 = Gt αt + Rt ηt, ηt ~ i.i.d. Ν(0, Wη), (state equation)

προσδιορίζουν πλήρως την εξέλιξη του μοντέλου.

Τα σφάλματα εt, ηt θεωρούνται ανεξάρτητα μεταξύ τους και ανεξάρτητα με την αρχική 
κατάσταση του συστήματος α0.

Η πλήρης περιγραφή του μοντέλου ολοκληρώνεται με την υπόθεση κατανομής της 
αρχικής κατάστασης α0  N(μ∼ 0, P0), όπου μ0​ και P0​ είναι αντίστοιχα η μέση τιμή και ο 
πίνακας συνδιακύμανσης της αρχικής κατάστασης.

Στα δομικά μοντέλα χρονοσειρών, η πρόβλεψη βασίζεται αποκλειστικά στην 
εκτίμηση των διακυμάνσεων που ελέγχουν την εξέλιξη των καταστάσεων.

Μοντέλα Καταστάσεως – Χώρου (SSM)
Χρονοσειρά μίας μεταβλητής



Παράδειγμα Ι (local level model)

Υποθέτουμε ότι η χρονοσειρά Xt έχει τάση μt και δεν έχει εποχικότητα. Στην περίπτωση 
αυτή μπορούμε να γράψουμε:

Xt = μt + εt, εt ~ Ν(0, σε
2) (measurement equation)

μt+1 = μt + ηt, ηt ~ Ν(0, ση
2) (state equation)

Τότε: 

αt = [μt] (ένα μοναδικό state)

Ft = Gt = Rt = [1], 

V =  [σε
2], 

Wη =  [ση
2].

Μοντέλα Καταστάσεως – Χώρου (SSM)
Xt = Ft αt + εt, εt ~ i.i.d. Ν(0, σ2

ε),  (measurement equation)
αt+1 = Gt αt + Rt ηt, ηt ~ i.i.d. Ν(0, Wη), (state equation)



Παράδειγμα ΙΙ (local level trend model)

Υποθέτουμε ότι η χρονοσειρά Χt έχει τάση μt με μεταβαλλόμενη κλίση.

Χt = μt + εt, εt ~ Ν(0, σ2
ε) (measurement equation)

μt+1 = μt + υt + ξt, ξt ~ Ν(0, σ2
ξ) (state equation 1)

υt+1 = υt + ζt,  ζt ~ Ν(0, σ2
ζ) (state equation 2)

Παρατηρούμε, ότι οι δύο τελευταίες εξισώσεις γράφονται:

Μοντέλα Καταστάσεως – Χώρου (SSM)

(μt+1

υt+1
) = (1 1

0 1)⋅(μt

υt
) + (1 0

0 1)⋅(ξ t

ζ t
) ή αt+1 = Gt αt + Rt ηt ,

Xt = Ft αt + εt, εt ~ i.i.d. Ν(0, σ2
ε),  (measurement equation)

αt+1 = Gt αt + Rt ηt, ηt ~ i.i.d. Ν(0, Wη), (state equation)

Ft = (10), Gt = (1 1
0 1), αt = (μt

υt
), Rt = (1 0

0 1), ηt = (ξ t

ζ t
), Wη = (σξ

2 0

0 ση
2).



Παράδειγμα ΙΙΙ (local level trend model με εποχικότητα)
Υποθέτουμε ότι η χρονοσειρά yt έχει τάση μt με μεταβαλλόμενη κλίση και εποχικότητα περιόδου 4.
Χt = μt + γ1,t + εt,  εt ~ Ν(0, σ2

ε) (measurement equation)
μt+1 = μt + υt + ξt, ξt ~ Ν(0, σ2

ξ) (state equation 1)
υt+1 = υt + ζt,  ζt ~ Ν(0, σ2

ζ) (state equation 2)
γ1,t+1 = – γ1,t – γ2,t  – γ3,t  + ωt, ωt ~ Ν(0, σ2

ω) (state equation 3)
γ2,t+1 = γ1,t (state equation 4)
γ3,t+1 = γ2,t (state equation 5)

Το μοντέλο είναι της μορφής 
ΜΕ: Χt = Ft αt + εt, εt ~ i.i.d. Ν(0, σ2

ε),  SE: αt+1 = Gt αt + Rt ηt, ηt ~ i.i.d. Ν(0, W), για

Μοντέλα Καταστάσεως – Χώρου (SSM)
Xt = Ft αt + εt, εt ~ i.i.d. Ν(0, σ2

ε),  (measurement equation)
αt+1 = Gt αt + Rt ηt, ηt ~ i.i.d. Ν(0, Wη), (state equation)

Ft = (
1
0
1
0
0
), Gt = (

1 1 0 0 0
0 1 0 0 0
0 0 −1 −1 −1
0 0 1 0 0
0 0 0 1 0

), αt = (
μt

υt

γ1, t

γ2, t

γ3, t

), Rt = (
1 0 0
0 1 0
0 0 1
0 0 0
0 0 0

), ηt = ( ξ t

ζ t

ωt
), Wη = (σξ

2 0 0

0 σζ
2 0

0 0 σω
2 ).
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