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Σύνοψη των αποτελεσμάτων
(1η και 2η διάλεξη)



ΜΑ(q): Χt = μ + θ(Β)εt, εi ~ i.i.d. N(0, σ2), θ(z) = 1 – θ1z – θ2z2 – … – θqzq. 

Μία σειρά ΜΑ(q) είναι πάντα στάσιμη. Αν οι ρίζες του θ(z) είναι εκτός του μοναδιαίου δίσκου τότε η 
MA(q) είναι αντιστρέψιμη, δηλαδή είναι δυνατόν τα υπόλοιπα να εκφραστούν από τις τιμές της 
χρονοσειράς.

AR(p): φ(Β)Χt = δ + εt, εi ~ i.i.d. N(0, σ2), φ(ω) = 1 – α1ω – α2ω2 – … – αpωp. 

Μία σειρά AR(p) είναι πάντα αντιστρέψιμη. Αν οι ρίζες του φ(z) είναι εκτός του μοναδιαίου δίσκου τότε 
η AR(p) γράφεται στη μορφή MA(∞), ειδικότερα είναι στάσιμη. 

ARMA(p, q): φ(Β)Χt = δ + θ(Β)wt

Είναι στάσιμο αν-ν το AR(p) μέρος του είναι. Είναι αντιστρέψιμο αν-ν το MA(q) είναι.

Augmented Dickey-Fuller (ADF): 

Η0: Στο AR(p) υπάρχει μοναδιαία ρίζα vs Η1: Δεν υπάρχει μοναδιαία ρίζα. 

KPSS Level: Η0,Level: Xt = μ + ut, ut στάσιμη vs Η1,Level: Xt = μ + rt + ut.

KPSS Trend: Η0,Trend: Xt = μ + bt + ut vs Η1,Trend: Xt = μ + bt + rt + ut.

Στασιμότητα και Αντιστρεψιμότητα



AR(1):  Χt = δ + φ1 · Χt – 1 + wt.
● ρh = φh

1 , h ≥ 0.

AR(2):  Χt = δ + φ1 · Χt – 1 + φ2 · Χt – 2 + wt.
● ρ1 = φ1 / (1 – φ2). 
● ρ2 = φ2

1 / (1 – φ2) + φ2.  
● ρ3 = (φ3

1 + φ1·φ2)/ (1 – φ2) + φ1·φ2.

ARMA(1, 1): Χt = φΧt-1 + wt – θwt-1.
● ρ1 = (φ + θ)(1 + φθ) / (1 + 2φθ + θ2). 
● ρh = φh-1ρ1, h ≥ 2.

AR(p): ρk​  C∼ 1​λ1
k ​ +  + C⋯ m​λm

k​, |λi| < 1, λi: αντίστροφοι των ριζών του φ(z).

ARMA(p, q): Τα ρk έχουν μορφή που προκύπτει από το συνδυασμό των επιρροών του 
AR και του MA μέρους του μοντέλου.

Αποτελέσματα για τα στάσιμα ARMA μοντέλα

MA(1): Χt = μ + wt + θwt-1.
● ρ1 = θ / (1 + θ2) και ρh = 0, h ≥ 2.

MA(2): Χt = μ + wt + θ1wt-1 + θ2wt-2.
● ρ1 = (θ1 + θ1·θ2)/ (1 + θ2

1 + θ2
2),  

● ρ2 = θ2 / (1 + θ2
1 + θ2

2),  
● ρh = 0, h ≥ 3.

 Σημείωση: wt i.i.d. και wt ~  Ν(0, σ2)



Θεωρητικά Αποτελέσματα: Γενική Εξίσωση ARIMA (p. d. q)

ARIMA(p, d, q): φ(Β)ΔdΧt = δ + θ(Β)wt, Δ = Ι – Β.

π.χ.

ARIMA(1, 1, 1): Zt = μ + αZt - 1 + θεt – 1 + εt, Ζt = Xt – Xt – 1 ή

 Xt – Xt-1 = μ + α(Xt-1 – Xt-2) + θεt-1+ εt 

ARIMA(2, 0, 1): (1−φ1​B−φ2​B2)Xt​ = (1+θ1​B)εt​ ή

Xt​ = φ1​Xt−1​ + φ2​Xt−2​ + εt​ + θ1​εt−1



WN       ts.sim <- arima.sim(list(order = c(0,0,0)), n = 500)

AR(2)    ts.sim <- arima.sim(list(order = c(2,0,0), ar = c(0.4, 0.5)), n = 500)

AR(1)    ts.sim <- arima.sim(list(order = c(1,0,0), ar = 0.8), n = 500)

MA(1)    ts.sim <- arima.sim(list(order = c(0,0,1), ma = 0.7), n = 500)

MA(2)    ts.sim <- arima.sim(list(order = c(0,0,2), ma = c(0.4, 0.5)), n = 500)

ARIMA(0,1,0)   ts.sim <- arima.sim(list(order = c(0,1,0)), n = 500)

Σημείωση: Παρατηρούμε την αναμενόμενη δομή στα διαγράμματα ACF και  PACF.
par(mfrow=c(3, 1))
plot.ts(ts.sim)
acf(ts.sim)
pacf((ts.sim))

Προσομοίωση ARIMA με τη γλώσσα R



WN (4)

AR(2) (3)

ΜΑ(2) (2)

ARIMA(0,1,0) (RW)
Διάγραμμα 1 Διάγραμμα 2

Διάγραμμα 3 Διάγραμμα 4

Δραστηριότητα

Αντιστοιχίστε τα 4 
χρονοδιαγράμματα με τα
αντίστοιχα μοντέλα. 



Θεώρημα Αποσύνθεσης του Wold



Θεώρημα Ι
Έστω η στάσιμη ARMA(p, q) σειρά φ(B)Xt = θ(B)εt (ρίζες φ(z) = 0 εκτός του δίσκου). Τότε υπάρχει 
μοναδική ακολουθία {bj} є l2 τέτοια ώστε

Επιπλέον, οι συντελεστές ικανοποιούν την εξίσωση:
bj = φ1bj−1 +  + φ⋯ pbj−p, j ≥ p.

Η γενική λύση της τελευταίας ομογενούς γραμμικής εξίσωσης διαφορών είναι 
bj = C1λ1

j +  + C⋯ mλm
j, όπου λ1,…, λm είναι οι αντίστροφοι των ριζών της φ(z) = 0.

Συνάγουμε το
Πόρισμα
Οι συντελεστές της MA(∞) μορφής του ARMA(p, q) είναι της μορφής bj = C1λ1

j +  + C⋯ mλm
j, όπου λ1,…, 

λm είναι οι αντίστροφοι των ριζών της φ(z) = 0.

Στάσιμο ARMA(p, q) → ΜΑ(∞)

Brockwell & Davis (1991), Time Series: Theory and Methods

X t =∑
j=0

∞

b j ε t − j .



Παρατηρήσεις

1. Κάθε MA(∞) σειρά είναι στάσιμη. Πράγματι, αν

από την ανεξαρτησία των εt συνάγουμε άμεσα τη στασιμότητα.

2. Θεώρημα Ι: Κάθε στάσιμη ARMA(p, q) σειρά μπορεί να γραφεί και στη μορφή MA(∞).

3. Κάθε ΜΑ(∞) σειρά δεν είναι απαραίτητα ARMA(p, q),

ΜΑ(∞) → Στάσιμο ARMA(p, q)

Y t =∑
j=0

+∞

b j ε t − j , ε t : WN, b j ∈ l2 ,

π. χ . Y t =∑
j=0

+∞
1

j + 1
ε t − j , ε t : WN.



Θεώρημα (Wold)

Κάθε στάσιμη χρονοσειρά μπορεί να γραφτεί ως άθροισμα ενός ντετερμινιστικού μέρους 
και ενός στοχαστικού μέρους που έχει μοναδική αναπαράσταση MA(∞):

Το Dt, είναι ντετερμινιστικό υπό την έννοια πως προσδιορίζεται πλήρως ως γραμμικός 
συνδυασμός των προηγούμενων τιμών 

(π.χ. Dt =  AR(p) χωρίς το σφάλμα ή Dt = Acos(ωt)+Bsin(ωt) )

Καθώς κάθε στάσιμο ARMA(p, q) έχει αναπαράσταση σε MA(∞) μορφή, τα μοντέλα αυτά 
αναδεικνύονται ως καλές επιλογές για την αναπαράσταση κάθε στάσιμης σειράς.

Θεώρημα Αποσύνθεσης του Wold

Y t = Dt + ∑
j=0

+∞

b j ε t − j , ε t : WN, b j ∈ l2 .

Απόδειξη: https://math.stackexchange.com/questions/703246/i-have-trouble-understanding-the-proof-of-the-wold-decomposition-theorem



George Box: “All models are wrong, but some are useful.”

"...in applying mathematics to subjects such as physics or statistics, we make 
tentative assumptions about the real world which we know are false but which we 
believe may be useful nonetheless." 
George E. P. Box. (1976). Science and Statistics. Journal of the American Statistical Association, 71(356), 791–799. https://doi.org/10.2307/2286841 

Ένα μοντέλο ARMA μπορεί να είναι ή να μην είναι ο πραγματικός μηχανισμός 
πίσω από τη γέννεση μίας σειράς. Ωστόσο, είναι::

● αρκετά ευέλικτο για short-memory σειρές.

● αρκετά απλό για estimation.

● αρκετά αποδοτικό για πρόβλεψη.

Επιλογή Υποδείγματος - Μέθοδος Box–Jenkins



Η μεθοδολογία Box – Jenkins περιγράφεται από τρία βασικά στάδια, τα οποία είναι:

● Η ταυτοποίηση (identification)

Στο στάδιο της ταυτοποίησης γίνεται ο καθορισμός των τιμών p, d και q του υποδείγματος ARIMA (p,d,q) με βάση τις πληροφορίες 
που προέρχονται από το δείγμα (ACF, PACF).

● Η εκτίμηση (estimation)

Μετά το στάδιο της ταυτοποίησης, ακολουθεί το στάδιο της εκτίμησης των συντελεστών του υποδείγματος ARIMA(p,d,q). 

● Ο διαγνωστικός έλεγχος (diagnostic checking)

Το υπόδειγμα ελέγχεται για την καταλληλότητά του με βάση τους παρακάτω άξονες:
● Σημαντικότητα των συντελεστών του υποδείγματος
● Ιδιότητες των υπολοίπων
● Προβλεπτική ικανότητα του υποδείγματος

Αν το υπόδειγμα θεωρηθεί κατάλληλο, δηλαδή περιγράφει ικανοποιητικά τη διαδικασία από την οποία προέρχονται τα δεδομένα, τότε 
τα υπόλοιπα θα πρέπει να συμπεριφέρονται ως μια διαδικασία λευκού θορύβου.

● Αν αποτύχει ο διαγνωστικός έλεγχος, επιστρέφουμε στο στάδιο της ταυτοποίησης και τροποποιούμε το μοντέλο.

Επιλογή Υποδείγματος - Μέθοδος Box–Jenkins



Επιλογή Υποδείγματος - Μέθοδος Box–Jenkins

1ο Στάδιο: Ταυτοποίηση. 
Σε αυτό γίνεται μια προσπάθεια να αναγνωριστούν τα πιθανά 
υποδείγματα που ταιριάζουν με τα δεδομένα. Η αναγνώριση γίνεται μέσα 
από τα διαγράμματα αυτοσυσχέτισης και μερικής αυτοσυσχέτισης. 

2ο Στάδιο: Εκτίμηση και δοκιμή.
Στο στάδιο αυτό γίνεται η εκτίμηση των παραμέτρων του υποδείγματος 
που αναγνωρίστηκε. Στη συνέχεια γίνεται η δοκιμή, ο έλεγχος 
προσαρμογής και ικανότητας πρόβλεψης του υποδείγματος.  Σε 
περίπτωση μη αποδοχής του υποδείγματος, επαναλαμβάνεται η 
διαδικασία για να επιλεγεί ένα πιο κατάλληλο υπόδειγμα. 

3ο Στάδιο: Χρήση.
Σε περίπτωση που το υπόδειγμα γίνει αποδεκτό ακολουθεί το τρίτο 
στάδιο, δηλαδή η χρήση του μοντέλου για πρόβλεψη.



Η αναγνώριση του μοντέλου μίας χρονοσειράς, δεν είναι εύκολη υπόθεση. Υπάρχει 
περίπτωση το μοντέλο να έχει δομή ARIMA αλλά η ανταγωνιστική φύση των όρων τους να 
προσδιορίζει τη σειρά ως Λευκό Θόρυβο.

Ενδεικτικά, παρουσιάζεται το παρακάτω παράδειγμα ενός μοντέλου ARIMA(1, 0, 1) το 
οποίο όμως δεν μπορεί να αναγνωριστεί από τα διαγράμματα ACF και PACF.

x = arima.sim(list(order = c(1,0,1), ar = 0.6, ma = c(-0.5)), n = 500)
par(mfrow=c(3, 1))
plot.ts(x)
acf(x)
pacf(x)

Ταυτοποίηση: Ένα δύσκολο πρόβλημα



Πριν την προσαρμογή ενός μοντέλου, πρέπει να ελέγξουμε ότι η σειρά δεν αποτελείται 
από τυχαίες τιμές χωρίς εξάρτηση μεταξύ τους.

Για το σκοπό αυτό, μπορούμε να εφαρμόσουμε τη δοκιμασία Box–Pierce, την όμοια 
Ljung–Box ή ακόμα και την Breusch-Godfrey. 

Με αυτές ελέγχεται η στατιστική υπόθεση:

Η0: Οι τιμές της χρονοσειράς είναι NWN. 

έναντι της ερευνητικής υπόθεσης:

Η1: όχι η Η0. 

Έλεγχος ότι η σειρά αποτελείται από εξαρτημένες παρατηρήσεις



set.seed(112)
sample.wn = ts(rnorm(100))
plot(sample.wn, type = 'l')
Box.test(sample.wn, lag = 20, type = "Ljung-Box")
Box.test(sample.wn, lag = 20, type = "Box-Pierce")

ts.value = c(-0.43,-0.92,-0.31,0.09,-0.54,3.35,-3.43,2.32,0.37,-2.65,-0.6,-0.43,0.27,-0.63,0.52,-
0.25,0.78,2.12,-1.06,-0.44,-1.91,1.97,-1.18,-0.73,-0.95,2.9,-0.21,-2.39,1.04,-0.45,1.95,-0.64,0.02,-
0.71,1.3,-0.61,0.86,-1.87,0.77,-0.14,1.88,-0.93,-0.62,0.59,-1.26,2.66,-1.52,0.88,-0.74,-0.51,2.39,-0.48,-
1.01,0.15,-0.68,1.78,0.2,-2.4,2.32,-2.97,1.66,0.46,0.47,2.05,-2.41,-0.84,1.48,0.18,-0.99,0.6,-0.31,1.92,-
2.72,1.7,1.02,-0.13,-0.68,1.18,-1.79,0.21,0.57,1.28,-0.72,-0.42,0.66,-0.12,0.81,-2.21,1.09,-0.24,0,-
0.37,0.72,-1.48,0.68,0.54,-1.13,1.07,-0.81)
plot(ts.value, type = 'l')
Box.test(ts.value, lag = 20, type = "Ljung-Box")
Box.test(ts.value, lag = 20, type = "Box-Pierce")

Έλεγχος ότι η σειρά αποτελείται από εξαρτημένες παρατηρήσεις



Η συνάρτηση auto.arima της βιβλιοθήκης forecast προσφέρει τη δυνατότητα αυτόματης επιλογής ενός 
μοντέλου βάσει των δεικτών προσαρμογής AIC, AICc και BIC. Είναι ένα σημαντικό εργαλείο, ωστόσο 
δεν αποδίδει πάντα τα σωστά αποτελέσματα, όπως δείχνουν τα επόμενα παραδείγματα:

Παράδειγμα: Σειρά ARMA(1, 1) που αναγνωρίζεται ως ARMA(1, 5)

set.seed(11101)
ts.sim = arima.sim(list(order = c(1,0,1), ar = 0.6, ma = c(1.4)), n = 500)
auto.arima(ts.sim)

Παράδειγμα: Σειρά ARMA(0, 3) που αναγνωρίζεται ως ARMA(3, 2)
set.seed(11101)
ts.sim = arima.sim(list(order = c(0,0,3), ma = c(1.4, 1, 0.5)), n = 500)
auto.arima(ts.sim)

# Γραφική Αναπαράσταση
par(mfrow=c(3, 1))
plot.ts(ts.sim)
acf(ts.sim)
pacf((ts.sim))

Η συνάρτηση forecast::auto.arima



Ωστόσο, είναι επίσης πιθανό να αναγνωρίσει την πραγματική δομή της σειράς, όπως στο 
παρακάτω παράδειγμα

set.seed(1234)

ts.sim = arima.sim(list(order = c(1,0,1), ar = 0.6, ma = c(0.4)), n = 500)
auto.arima(ts.sim)

# Γραφική Αναπαράσταση
par(mfrow=c(3, 1))
plot.ts(ts.sim)
acf(ts.sim)
pacf((ts.sim))

Η συνάρτηση forecast::auto.arima



Για την προσαρμογή ενός ARMA(p, q) μοντέλου σε μία χρονοσειρά, θα αξιοποιηθεί η 
συνάρτηση Arima από τη βιβλιοθήκη forecast. Στα πλαίσια της βιβλιοθήκης αυτής, όταν 
αναφέρεται σταθερά ενός μοντέλο AR(p) τότε υποτίθεται ότι η σταθερά αφαιρείται από την 
τιμή της χρονοσειράς κάθε φορά.

Για παράδειγμα, ένα μοντέλο AR(1) με σταθερά, έχει την εξής εξίσωση:

(xt − c) = φ(xt−1 - c) + et 

Στην περίπτωση ενός MA(q) μοντέλου η σταθερά είναι η μέση τιμή.

Ο λόγος για την συγκεκριμένη επιλογή διαχείρισης της σταθεράς είναι πως καθιστά πιο 
εύκολη την ερμηνεία της στην περίπτωση όπου υπάρχουν και άλλες επεξηγηματικές 
μεταβλητές στο μοντέλο (όπως π.χ. σε ένα μοντέλο XARIMA).

Ο δημιουργός της βιβλιοθήκης forecast επεξηγεί τις θεωρητικές λεπτομέρειες στο blog του: 
https://robjhyndman.com/hyndsight/arimax/

Η συνάρτηση forecast::Arima

https://robjhyndman.com/hyndsight/arimax/


Με την εντολή print, το output της εντολής Arima μεταξύ άλλων αναφέρει:

Τη διακύμανση sigma^2 της ακολουθίας wt.

Το λογάριθμο της πιθανοφάνειας log likelihood.

και τους παρακάτω δείκτες προσαρμογής:

Τον δείκτη AIC (Akaike information criterion).

Τον δείκτη AICc, ο οποίος είναι μια διορθωμένη ως προς το μέγεθος του δείγματος εκδοχή του AIC.

Τον δείκτη BIC (Bayesian information criterion).

Σημείωση: Δεν υπάρχει βέλτιστος δείκτης απόδοσης ενός μοντέλου. Περισσότερα σχόλια μπορούν να 
βρεθούν εδώ: 
https://stats.stackexchange.com/questions/577/is-there-any-reason-to-prefer-the-aic-or-bic-over-the-ot
her
 

Η συνάρτηση forecast::Arima

https://stats.stackexchange.com/questions/577/is-there-any-reason-to-prefer-the-aic-or-bic-over-the-other
https://stats.stackexchange.com/questions/577/is-there-any-reason-to-prefer-the-aic-or-bic-over-the-other


Το κριτήριο πληροφοριών Akaike (AIC) (Hirotugu Akaike(1927 – 2009)) 
είναι ένας εκτιμητής του σφάλματος πρόβλεψης ενός μοντέλου. Το AIC 
εκτιμά την ποιότητα ενός μοντέλου σε σχέση με άλλα υποψήφια 
μοντέλα, λαμβάνοντας υπόψη τόσο την καλή προσαρμογή (fit) όσο και 
την πολυπλοκότητα (complexity) του μοντέλου. Ο τύπος είναι:

 AIC = −2ln(L) + 2k

όπου:

L: Η μέγιστη πιθανότητα (likelihood) του μοντέλου.

k: Ο αριθμός των παραμέτρων του μοντέλου.

Μεγαλύτερη τιμή πιθανοφάνειας, αντιστοιχεί σε μικρότερη τιμή του AIC.

Κριτήριο AIC (Akaike information criterion)

Hirotugu Akaike(1927 – 2009)



Το AICc (Akaike information criterion – corrected) είναι μια διορθωμένη έκδοση του AIC 
που λαμβάνει υπόψη μικρά δείγματα. Ο τύπος του είναι: 

Για μεγάλα δείγματα το AICc συγκλίνει στο AIC. Είναι προτιμότερο από το AIC όταν το 
μέγεθος δείγματος n είναι συγκρίσιμο ή μικρότερο από τον αριθμό των παραμέτρων k.

Το BIC (Bayesian Information Criterion)  βασίζεται σε μια Bayesian προσέγγιση και 
περιλαμβάνει έναν αυστηρότερο όρο για την πολυπλοκότητα του μοντέλου. Ο τύπος του 
είναι: 

BIC = −2ln(L) + k·ln(n)

Όσο μικρότερη η τιμή του BIC τόσο καλύτερη η προσαρμογή του μοντέλου στα 
δεδομένα.

AICc και BIC

AICc = AIC +
2k (k+1)
n − k − 1



Παράδειγμα

set.seed(1234)

ts.sim <- arima.sim(list(order = c(1,0,1), ar = 0.7, ma = -0.6), n = 
300)

model1 = Arima(ts.sim,order=c(1,0,0))

model2 = Arima(ts.sim,order=c(2,0,0))

model3 = Arima(ts.sim,order=c(1,0,1))

model4 = Arima(ts.sim,order=c(0,0,2))

print(model1$aic)

print(model2$aic)

print(model3$aic)

print(model4$aic)

> print(model1$aic)

[1] 854.7152

> print(model2$aic)

[1] 854.8835

> print(model3$aic)

[1] 854.2488

> print(model4$aic)

[1] 855.5619



Αν εκτελεστεί με την εντολή summary, παρουσιάζει επιπλέον τα παρακάτω στατιστικά που 
περιγράφουν την ποιότητα προσαρμογής του μοντέλου στα ίδια τα δεδομένα.

● Το μέσο σφάλμα (ME: Mean Error)

● Το μέσο τετραγωνικό σφάλμα (RMSE: root mean squared error)

● Το μέσο απόλυτο σφάλμα (MAE: mean absolute error)

● Το μέσο ποσοστιαίο σφάλμα (MPE: mean percentage error)

● Το μέσο απόλυτο ποσοστιαίο σφάλμα (MAPE: mean absolute percentage error)

● Το μέσο απόλυτο τυποποιημένο σφάλμα (MASE: mean absolute scaled error)

● Την αυτοσυσχέτιση 1ης τάξης (ACF1).

Η συνάρτηση Arima



Αξιολόγηση της προσαρμογής

Μεσο Σφάλμα ΜΕ = 1
n
∑
i = 1

n

εi

Μεσο Απόλυτο Σφάλμα ΜAΕ = 1
n
∑
i = 1

n

|εi|

Μεσο Ποσοστιαίο Σφάλμα ΜPΕ = 1
n
∑
i = 1

n εi

x i

100

Μεσο Απολυτο Ποσοστιαίο Σφάλμα ΜΑPΕ = 1
n
∑
i = 1

n |εi|
xi

100

Ρίζα Μέσου Τετραγωνικού Σφάλματος RMSE = √ 1
n
∑
i = 1

n

εi
2

Μετά τον υπολογισμό των συντελεστών του μοντέλου υπολογίζονται τα in-sample σφάλματα ε t. 
Από αυτά υπολογίζονται τα παρακάτω μέτρα προσαρμογής:

Μεσο Απολυτο Τυποποιημένο (Scaled) Σφάλμα ΜΑSΕ =
MAEmodel

MAEnaive

, ΜAΕnaive = 1
n − 1

∑
i = 1

n

|ΔΧ t|



Πρόβλεψη



Πρόβλεψη

Γνωρίζοντας τα στοιχεία Χ1:n = Χ1, Χ2, …, Χn, θα εκτιμήσουμε την Χn+k. Την πρόβλεψη 

της επόμενης τιμής τη συμβολίζουμε Χn+k|n και προσδιορίζεται μοναδικά ως συνάρτηση 

των τιμών Χ1:n = (Χ1, Χ2, …, Χn).

Ως βέλτιστη πρόβλεψη επιλέγουμε εκείνη που ελαχιστοποιεί το μέσο τετραγωνικό 

σφάλμα:Ε[(Χn+k – Χn+k|n)2
 | Χ1:n]. 

Είναι

Ε[(Χn+k – Χn+k|n)2
 | Χ1:n] = Ε[Χn+k

2 –2 Χn+kΧn+k|n + Χn+k|n
2 | Χ1:n] 

  = Ε(Χn+k
2 | Χ1:n) – 2 Ε(Χn+kΧn+k|n | Χ1:n)+ Ε(Χn+k|n

2 | Χ1:n) 

 = Ε(Χn+k
2 | Χ1:n) – 2 Χn+k|nΕ(Χn+k | Χ1:n)+ Χn+k|n

2 



Πρόβλεψη

Χn+k|n
2 – 2 Χn+k|n Ε(Χn+k| Χ1:n) + Ε(Χn+k

2| Χ1:n) = Ε[(Χn+k – Χn+k|n)2
 | Χ1:n]

Η τελευταία σχέση είναι τριώνυμο ως προς Χn+k|n.

Υπολογίζοντας την παράγωγο (ως προς Χn+k|n) και εξισώνοντας με το 0, 

βρίσκουμε ότι η ελάχιστη τιμή του λαμβάνεται όταν:

Χn+k|n = Ε(Χn+k |Χ1:n).

Δηλαδή, ο MSE εκτιμητής της τιμής Χn+k είναι η τιμή Ε(Χn+k | Χ1:n)



Σφάλμα Πρόβλεψης

Το σφάλμα της πρόβλεψης είναι:  

Error(k) = Χn+k – Χn+k|n 

Το σφάλμα Error(k) είναι μία τυχαία μεταβλητή. Παρατηρούμε ότι 

Ε(Χn+k – Χn+k|n | Χ1:n) =  Ε(Χn+k | Χ1:n) – Χn+k|n = 0

Var(Χn+k – Χn+k|n | Χ1:n) =  Var(Χn+k | Χ1:n)



Πρόβλεψη AR(1)

Με MLE (ή LS) διαδικασία εκτιμώνται από τα δεδομένα τα δ, φ και σ2 του AR(1) 
μοντέλου 

Xt = δ + φXt-1 + wt, wt​  WN(0,σ∼ 2). 

Η βέλτιστη (MSE) πρόβλεψη της n+1 τιμής από τις πρώτες n είναι η 

Χn+1|n = Ε(Χn+1 | Χ1:n)  

 = Ε(δ + φXn + wn+1 | Χ1:n)  

 = δ + φE(Xn | Χ1:n) 

 = δ + φXn   

Το σφάλμα της πρόβλεψης είναι Χn+1 – Χn+1|n = wn+1 και η διακύμανσή του είναι σ2. 



Πρόβλεψη AR(1)

Η εκτίμηση της n+2 τιμής από τις πρώτες n είναι 

Χn+2|n = Ε(Χn+2 | Χ1:n)  = Ε(δ + φXn+1 + wn+2 | Χ1:n)  = δ + φ Χn+1|n = δ(1+ φ) + φ2Xn  

Το σφάλμα της εκτίμησης είναι wn+2 + φwn+1 με διακύμανση (1 + φ2)σ2. 

Αντίστοιχα, ακολουθεί ο υπολογισμός των Χn+k|n = δ(1 + φ + φ2 + … + φk-1) + φkΧn., k ≥ 2.
Παρατηρούμε ότι:

● Το AR(1) έχει μη τετριμμένες προβλέψεις για όλα τα k.

● Η επίδραση της τελευταίας παρατήρησης φθίνει γεωμετρικά.

● Οι προβλέψεις συγκλίνουν στη μέση τιμή μ.



Πρόβλεψη ΜΑ(1)

Με την MLE διαδικασία από τα δεδομένα εκτιμώνται τα δ, θ και σ2 του ΜΑ(1) μοντέλου

Χt = δ + θwt-1 + wt, wt​  WN(0,σ∼ 2). 

Στη συνέχεια, από το μοντέλο εκτιμούνται αναδρομικά οι wt, t = 1, 2, …, n.

Η εκτίμηση της n+1 τιμής από τις πρώτες n είναι η 
 

Χn+1|n = Ε(Χn+1 | Χ1:n)  

 = Ε(δ + θwn + wn+1 | Χ1:n)  

 = δ + θE(wn | Χ1:n) + E(wn+1 | Χ1:n) 

 = δ + θwn   

Το σφάλμα της πρόβλεψης είναι  Χn+1 - Χn+1|n = wn+1 και η διακύμανσή του είναι σ2. 



Πρόβλεψη ΜΑ(1)

Η πρόβλεψη της n+2 τιμής από τις πρώτες n είναι η Χn+2|n = δ + θwn+1.

Δεν υπάρχει πληροφορία για το wn+1, άρα η πιο απλή εκτίμησή του είναι η  Ε(wn+1) = 0.

Δηλαδή, τελικά: Χn+2|n = δ. 

Αντίστοιχα, Χn+k|n = δ για κάθε k ≥ 2.



Πρόβλεψη ΜΑ(2)

Με την MLE διαδικασία από τα δεδομένα εκτιμώνται τα δ, θ1, θ2 και σ2 του ΜΑ(1) 
μοντέλου

Χt = δ + θ1wt-1 + θ2wt-2 + wt, wt​  WN(0,σ∼ 2). 

Στη συνέχεια, από το μοντέλο εκτιμούνται αναδρομικά οι wt, t = 1, 2, …, n.

Η βέλτιστη (MSE) πρόβλεψη της n+1 τιμής από τις πρώτες n είναι η Χn+1|n = δ + θ1wn  



Πρόβλεψη ΜΑ(2)

Πρόβλεψη Χn+2.

Δεν υπάρχει πληροφορία για το wn+1, άρα η πιο απλή εκτίμησή του είναι η  Ε(wn+1) = 0.

Αντίστοιχα, η πρόβλεψη της n+2 τιμής από τις πρώτες n είναι η 

Χn+2|n = δ + θ1wn+1 + θ2wn = δ + θ2wn 

Ανάλογα, Χn+k|n = δ για κάθε k ≥ 3.

Γενικότερα: 

Ένα MA(q) παράγει μη τετριμμένες εκτιμήσεις για τις πρώτες q προβλέψεις.



Πρόβλεψη ARΜΑ(p, q)

Με την MLE διαδικασία από τα δεδομένα εκτιμώνται τα δ, φi, θj, σ2 του ARΜΑ(p, q) 
μοντέλου

Χt = δ + ΣφiXt-i +Σθjwt-j + wt, wt​  WN(0,σ∼ 2). 

Στη συνέχεια, από το μοντέλο εκτιμούνται αναδρομικά οι wt, t = 1, 2, …, n.

Η βέλτιστη (MSE) πρόβλεψη της n+1 τιμής από τις πρώτες n είναι η 

Χn+1|n = δ + ΣφiXt-i +Σθjwt-j.

Στη συνέχεια:

● Το MA(q) μέρος επηρεάζει τη μέση πρόβλεψη μόνο μέχρι q βήματα μπροστά.

● Το AR(p) μέρος επηρεάζει τη μέση πρόβλεψη για όλα τα μελλοντικά βήματα.



ts.value = c(-0.43,-0.92,-0.31,0.09,-0.54,3.35,-3.43,2.32,0.37,-2.65,-0.6,-0.43,0.27,-0.63,0.52,-0.25,0.78,2.12,-1.06,-
0.44,-1.91,1.97,-1.18,-0.73,-0.95,2.9,-0.21,-2.39,1.04,-0.45,1.95,-0.64,0.02,-0.71,1.3,-0.61,0.86,-1.87,0.77,-
0.14,1.88,-0.93,-0.62,0.59,-1.26,2.66,-1.52,0.88,-0.74,-0.51,2.39,-0.48,-1.01,0.15,-0.68,1.78,0.2,-2.4,2.32,-
2.97,1.66,0.46,0.47,2.05,-2.41,-0.84,1.48,0.18,-0.99,0.6,-0.31,1.92,-2.72,1.7,1.02,-0.13,-0.68,1.18,-
1.79,0.21,0.57,1.28,-0.72,-0.42,0.66,-0.12,0.81,-2.21,1.09,-0.24,0,-0.37,0.72,-1.48,0.68,0.54,-1.13,1.07,-0.81,-0.28,-
1.33,1.19,-0.2,0.94,0.36,1.7,-3.26,0.96,-0.87,1.23,0.33,-0.06,0.18,-0.25,-1.27,1.29,-0.48,2.04,-1.31,0.69,-
0.17,1.38,0.32,-1.64,0.3,-0.02,-1.37,0,0.24,-0.37,-2.33,2.05,0.51,-0.16,-0.27,0.07,0.92,-0.57,-1.16,1.01,-0.85,-
0.55,0.51,0.57,0.02,-1.2,1.63,-0.92,-1.27,1.55,-1.59,1.41,1.73,-2.39,1.63,-0.53,1.87,0.07,-2.63,0.65,-0.01,0.97,-
1.59,1.55,0.67,0.49,-1.1,-0.31,1.49,-0.73,-0.75,-1.24,1.97,0.23,0.69,-0.83,-0.04,-1.46,-1.36,0.55,1.46,1.29,-2.16,-
2.26,1.15,0.37,-1.13,2.84,-2.6,0.68,1.6,-0.56,-0.35,-0.11,0.11,0.67,-1.15,-1.03,0.54,-0.15,-1.12,1.2,0.46,-1.58,1.08,-
1.98,-0.29,0.97,1.91,-0.24,-0.03,-0.62,-1.22,0.6,1.35,-1.28,0.86,-1.19,-0.35,-0.15,2.02,-0.56,0.72,-2.6,1.59,-0.18,-
1.33,2.84,-1.09,-0.48,1.53,-1.6,-1.87,1.45,-0.06,0.08,1.01,-0.92,-2.51,2.03,-1.06,0.52,1.2,-0.2,-0.5,-1.07,2.44,-
1.33,1.28,-1.63,-0.22,-0.43,1.61,-1.07,1.5,1.42,-1.61,-0.52,1.49,-0.03,-0.28,-0.71,1.26,-0.79,0.9,1.19,-
2.46,1.51,0.19,0.55,-1.14,-0.24,0.53,0.61,-0.22,1.36,0.05,-0.77,0.08,0.24,-0.13,1.46,-1.83,1.42,-1.55,-
0.43,0.02,0.66,1.05,-2.06,4.25,-3.06,1.57,-1.45,1.68,-0.26,-1.64,0.85,1.59,-1.26)

Παράδειγμα Ι



par(mfrow=c(3, 1)); plot.ts(ts.value); acf(ts.value); pacf(ts.value)

Παρατηρούμε ότι μόνο η αυτοσυσχέτιση 1ης τάξης είναι στατιστικώς σημαντική (ρ1 = -
0.470), ενώ όλες οι υπόλοιπες δεν διαφέρουν σημαντικά από το 0. 

Στα πλαίσια ενός μοντέλου ARIMA, η παρατήρηση αυτή υποδεικνύει το μοντέλο MA(1) ως 
ένα μοντέλο που μπορεί να προσαρμοστεί καλά στη χρονοσειρά.

Προχωρούμε στον υπολογισμό του μοντέλου με την εντολή:

library(forecast)
my.model = Arima(ts.value, order = c(0, 0, 1))
print(my.model)

Παράδειγμα Ι



Το ΜΑ(1) μοντέλο που υπολογίζεται είναι το:

Χt = 0.0074 + wt - 0.7331 wt-1.

Σε ένα μοντέλο ΜΑ(1) η σταθερά είναι η μέση τιμή της χρονοσειράς. Παρατηρούμε ότι Ε(Xt) 
= 0.0074 ≈ 0. Επιδιώκοντας ένα απλούστερο μοντέλο, υπολογίζουμε εκ νέου το μοντέλο 
χωρίς την σταθερά:

library(forecast)
my.model = Arima(ts.value, order = c(0, 0, 1), include.constant = FALSE)
print(my.model)

Παρατηρούμε, ότι το ΜΑ(1) μοντέλο χωρίς σταθερά που υπολογίζεται είναι το:

Χt = wt - 0.7319 wt-1.

Παράδειγμα Ι



Έχουμε τη δυνατότητα να δημιουργήσουμε προβλέψεις για τις επόμενες τιμές της χρονοσειράς με την 
εντολή:

my.forecast = forecast(my.model)
summary(my.forecast)

Μία γραφική αναπαράσταση των προβλέψεων μπορούμε να αποκτήσουμε με την εντολή:

plot(my.forecast, showgap = FALSE)

Παράδειγμα Ι



Φανερά, οι προβλέψεις δεν είναι πολύ ικανοποιητικές. Ωστόσο, αυτό είναι που μπορεί να 
μας δώσει ένα τόσο απλό μοντέλο.

Επαληθεύουμε την καλή προσαρμογή του στη σειρά, εξετάζοντας τα υπόλοιπα των 
προβλέψεων, με την εντολή:

checkresiduals(my.model)

Παρατηρούμε, ότι τα υπόλοιπα είναι κανονικά κατανεμημένα και πως δεν έχουν μεταξύ τους 
αυτοσυσχέτιση, γεγονός που επιβεβαιώνει πως το ΜΑ(1) μοντέλο προσαρμόζεται 
ικανοποιητικά στα δεδομένα της σειράς.

Παράδειγμα Ι



ts.value = c(0,-1.23,-0.37,-1.3,-1.7,-1.36,-2.3,-1.55,-1.46,-2.83,-0.77,-4.43,-3.2,-3.75,-3.82,-4.98,-3.9,-4.34,-4.07,-
3.11,-5.23,-1.98,-4.83,-3.37,-4.9,-4.21,-4.41,-3.38,-6.26,-3.23,-6.13,-1.85,-5.28,-2.75,-5.3,-4.34,-5.72,-3.74,-5.48,-
4.41,-5.09,-3.02,-4.08,-3.15,-3.97,-2.42,-3.12,-3.69,-2,-3.82,-3.96,-3.03,-3.98,-2.85,-3.07,-3.08,-3.65,-3.77,-5.29,-
6.35,-4.59,-6.73,-3.44,-5.98,-4.07,-6.35,-4.41,-5.31,-3.96,-5.15,-5.76,-3.91,-4.61,-5.49,-5.28,-6.18,-5.8,-6.29,-5.39,-
6.29,-6.61,-5.11,-4.41,-3.36,-4.89,-4.09,-4.33,-2.66,-3.3,-3.81,-3.78,-2.64,-4.77,-3.12,-4.6,-3.28,-5.29,-2.48,-4.73,-
3.65,-3.85,-3.04,-3.81,-5.01,-3.52,-5.41,-4.75,-3.66,-5.13,-3.71,-4.91,-2.18,-5.36,-2.79,-5.78,-2.62,-3.88,-3.57,-4.05,-
3.3,-4.34,-3.76,-3.07,-3.8,-3.81,-5.11,-3.09,-4.86,-4.19,-5.71,-3.31,-5.29,-1.91,-4.85,-3.49,-4.68,-3.29,-3.71,-2.78,-
3.88,-1.61,-3.61,-1.54,-3.7,-1.39,-2.4,-1.32,-0.28,-2.67,-1.02,-3.64,0.1,-3.63,0.58,-4.48,0.66,-2.61,-0.94,-2.57,-1.72,-
0.74,0.23,0.58,0.28,0.61,2.05,0.92,1.45,0.14,0.19,0.37,-1.01,-1.22,-1.3,-2.82,-1.21,-2.75,-1.75,-2.58,-0.52,-3.35,-
1.52,-1.48,-0.94,-0.03,0.25,-0.4,-1,0.23,-0.44,1.71,-0.95,1.64,1.38,0.96,2.5,0.39,2.5,0.27,2.05,0.73,1.03,0.19,1.61,-
0.51,0.14,-0.72,-0.54,-1.81,-2.5,-1.91,-2.06,-1.89,-3.32,-1.13,-4.16,-1.02,-3.28,-2.07,-2.75,-2.5,-2.19,-1.61,-0.41,-2.2,-
2.97,-2.55,-4.27,-4.23,-4.54,-5.38,-3.36,-6.76,-3.61,-6,-4.44,-7.21,-2.91,-6.53,-3.96,-7.04,-3.25,-5.66,-3.31,-6.06,-
6.17,-5.96,-5.73,-5.03,-6.12,-4.71,-7.42,-4.05,-7.25,-3.54,-4.45,-4.09,-4.18,-6.42,-3.92,-5.66,-2.62,-4.15,-3.07,-4.99,-
3.87,-4.65,-3.93,-4.7,-1.71,-5.45,-2.03,-3.25,-3.56,-4.13,-2.08,-2.6,-0.97,-1.26,-1.04,-0.35,0.36,-0.75,-0.88,-1.7,-0.52,-
0.76,-0.17,0.21,1.15,0.51,2.41,-0.14,2.86,0.08,2.3,-0.32,3.33,-0.61,2.73,0.66)

Υπόδειξη: Δοκιμάστε την προσαρμογή τόσο χωρίς όσο και με διαφοροποίηση.

Δραστηριότητα Ι



Μέθοδοι Υπολογισμού των Συντελεστών



Για τον υπολογισμό των συντελεστών ενός μοντέλου που προσαρμόζεται σε μία 
χρονοσειρά, υπάρχουν πολλές μέθοδοι. Οι κυριότερες είναι οι εξής:

• Μέθοδος ελαχίστων τετραγώνων (Least Squares - LS).

• Εκτιμητής μέγιστης πιθανοφάνειας (Maximum Likehood Estimator – MLE).

Μέθοδοι Υπολογισμού των Συντελεστών



Μέθοδος των ελαχίστων τετραγώνων



Υπολογισμός συντελεστών 1/3

Έστω (xi, yi), i = 1, 2, …, n τα n ζεύγη παρατηρήσεων και έστω 

η εξίσωση της ευθείας που αναζητούμε. Τα σφάλματα της εκτίμησης για κάθε ένα x i, i = 1, 2, …, n, 
είναι:

Αναζητούμε την εξίσωση ευθείας που ελαχιστοποιεί το άθροισμα τετραγώνων αυτών των 
σφαλμάτων.

Για τον υπολογισμό των α, b, αρκεί να βρούμε τις κρίσιμες τιμές:

Είναι:

Και: 

Σημείωση 
Από την τελευταία σχέση προκύπτει ειδικότερα ότι το σημείο             ανήκει στην ευθεία ελαχίστων τετραγώνων.

ŷ = α̂ + b̂ x

residi(α̂ , b̂) = y i− ŷi = yi − α̂ − b̂ x i

α̂ ,b̂ = ; , ώστε S(α̂ ,b̂) = ∑
i = 1

n

resid i
2(α̂ , b̂) = ∑

i = 1

n

(y i − α̂ − b̂ xi)
2 = Minimum

∂S
∂ α̂

= ∑
i = 1

n

−2 (y i − α̂ − b̂ x i) =−2[∑
i =1

n

yi − ∑
i = 1

n

α̂ − b̂∑
i = 1

n

xi ] =−2 [n ȳ − nα̂ − b̂n x̄ ]

∇ S(α̂ , b̂) = 0 ⇔ ∂S
∂ α̂

= 0 και
∂S

∂ b̂
= 0

∂S
∂ α̂

= 0 ⇔ ȳ − α̂ − b̂ x̄ = 0 ή α̂ = ȳ − b̂ x̄

( x̄ , ȳ)



Υπολογισμός συντελεστών 2/3

Περαιτέρω, από την σχέση               παίρνουμε:

∑
i = 1

n

xi(y i − α̂ − b̂ x i) = 0 ⇔ ∑
i = 1

n

x i(y i − ȳ + b̂ x̄ − b̂ x i) = 0 ⇔ ∑
i = 1

n

x i(y i − ȳ) − b̂∑
i = 1

n

xi (xi − x̄) = 0

∂S

∂ b̂
= 0

b̂ =
∑
i = 1

n

xi(yi − ȳ )

∑
i = 1

n

xi(xi − x̄ )



Υπολογισμός συντελεστών 3/3

Εύκολα, αποδεικνύεται ότι

Από τις τελευταίες δύο ισότητες, συνάγεται ότι μία ισοδύναμη έκφραση των συντελεστών είναι:

∑
i = 1

n

(x i − x̄ )⋅(yi − ȳ ) = ∑
i = 1

n

xi (y i − ȳ ) − ∑
i = 1

n

x̄ y i + n x̄ ȳ = ∑
i = 1

n

xi(y i − ȳ )

∑
i = 1

n

(x i − x̄ )⋅(x i − x̄ ) = ∑
i = 1

n

x i(x i − x̄) − ∑
i = 1

n

x̄ x i + n x̄ x̄ = ∑
i = 1

n

xi(xi − x̄)

α̂ = ȳ − b̂ x̄ , b̂ =
∑
i = 1

n

(x i − x̄ )(y i − ȳ )

∑
i = 1

n

(x i − x̄ )2

=
sXY

2

sX
2

= rXY

sY

sX



Σημαντικά αθροίσματα τετραγώνων

Αποδεικνύεται ότι:

Βασικά βήματα απόδειξης:

∑
i = 1

n

(y i − ȳ)2 = ∑
i = 1

n

( ŷ i − ȳ)2 + ∑
i = 1

n

(y i − ŷ i)
2

(y i − ȳ)2 = (y i − ŷ i + ŷ i − ȳ)2 = ( ŷ i − ȳ)2 + (y i − ŷ i)
2 + 2( ŷ i − ȳ)(y i − ŷ i)

ŷ i − ȳ = b̂(x i − x̄), από ȳ = α̂ + b̂ x̄ και ŷ i = α̂ + b̂ xi

∑
i = 1

n

( ŷ i − ȳ )(y i − ŷi) = b̂∑
i = 1

n

(xi − x̄ )(y i − ŷ i) = b̂∑
i = 1

n

(xi − x̄ )[(y i − ȳ) −
∑
i = 1

n

(xi − x̄ )(y i − ȳ )

∑
i = 1

n

(x i − x̄)2

(x i − x̄)] = 0

y i − ŷ i = (y i − ȳ) + ( ȳ − ŷ i) = (y i − ȳ) − b̂(x i − x̄) = (y i − ȳ) −
∑
i = 1

n

(x i − x̄)(y i − ȳ)

∑
i = 1

n

(x i − x̄)2

(x i − x̄)

Σημείωση: Η απόδειξη είναι διαθέσιμη εδώ: https://en.wikipedia.org/wiki/Explained_sum_of_squares 

https://en.wikipedia.org/wiki/Explained_sum_of_squares


Στα πλαίσια της γραμμικής παλινδρόμησης τα παραπάνω αθροίσματα τετραγώνων έχουν ιδιαίτερη 
σημασία και ονομασία. 

Το συνολικό άθροισμα τετραγώνων (TSS) εκφράζει τη συνολική μεταβλητότητα της εξαρτημένης 
μεταβλητής.

Το επεξηγημένο άθροισμα τετραγώνων (ESS) είναι το μέρος της μεταβλητότητας της εξαρτημένης 
μεταβλητής που εξηγείται από τις επεξηγηματικές μεταβλητές του γραμμικού μοντέλου.

Το άθροισμα τετραγώνων υπολοίπων (RSS) εκφράζει το μέρος της μεταβλητότητας της 
εξαρτημένης μεταβλητής που δεν εξηγείται από τις επεξηγηματικές μεταβλητές του γραμμικού 
μοντέλου.

β ) ESS = ∑
i = 1

n

( ŷ i − ȳ )2 : επεξηγημένο άθροισμα τετραγώνων (explained sum of squares)

α ) ΤSS = ∑
i = 1

n

(y i − ȳ)2 : συνολικό άθροισμα τετραγώνων (total sum of squares)

γ ) RSS = ∑
i = 1

n

(y i − ŷ i)
2 : άθροισμα τετραγώνων υπολοίπων (residual sum of squares)

∑
i = 1

n

(yi − ȳ)2 = ∑
i = 1

n

( ŷi − ȳ)2 + ∑
i = 1

n

(yi − ŷi)
2



Η σχέση                                                                    γράφεται:

TSS = ESS + RSS

Διαιρώντας, με το συνολικό άθροισμα τετραγώνων (TSS) παίρνουμε:

∑
i = 1

n

(y i − ȳ)2 = ∑
i = 1

n

( ŷ i − ȳ )2 + ∑
i = 1

n

(y i − ŷ i)
2

ESS
TSS

= 1 − RSS
TSS



Συντελεστής Προσδιορισμού (R2) 1/2

Το πόσο καλά προσαρμόζεται το γραμμικό μοντέλο στα δεδομένα ποσοτικοποιείται και από το 
συντελεστή προσδιορισμού (coeffficient of determination) ο οποίος ορίζεται ως:

Αν το μοντέλο προβλέπει χωρίς σφάλμα όλες τις παρατηρήσεις, τότε  

Αν τα σφάλματα προβλέψεων του μοντέλου είναι όσο η διαφορά από την μέση τιμή (baseline 
model),  τότε 

Αν τα σφάλματα προβλέψεων ξεπερνούν την απόσταση των παρατηρήσεων από τη μέση τιμή, 
τότε  R2 < 0.

R2 = 1 –
RSS
TSS

= 1 −
∑
i = 1

n

(y i – ŷi)
2

∑
i = 1

n

(yi – ȳ )2

y i – ŷ i = 0 ⇔ R2 = 1 = 100% .

y i – ŷ i = y i – ȳ ⇔ R2 = 0 = 0% .



Συντελεστής Προσδιορισμού (R2) 2/2

Ο συντελεστής R2 συνήθως παρουσιάζεται ως ποσοστό με μεγαλύτερες τιμές να καταδεικνύουν 
καλύτερη προσαρμογή στα δεδομένα. Τα όρια αποδοχής της αποτελεσματικότητας του μοντέλου 
ποικίλουν ανάλογα με την επιστημονική περιοχή.

Στην απλή γραμμική παλινδρόμηση αποδεικνύεται ότι ο συντελεστής προσδιορισμού είναι το 
τετράγωνο του συντελεστή συσχέτισης Pearson μεταξύ των x i και των yi.

R2 = r2

Ειδικότερα: Στην απλή γραμμική παλινδρόμηση είναι αδύνατον για το R2 να πάρει αρνητικές τιμές.

Σημείωση
Μία απόδειξη μπορεί να βρεθεί εδώ: 
https://math.stackexchange.com/questions/129909/correlation-coefficient-and-determination-coefficient 

R2 = 1 –
RSS
TSS

= 1 −
∑
i = 1

n

(y i – ŷi)
2

∑
i = 1

n

(yi – ȳ )2

https://math.stackexchange.com/questions/129909/correlation-coefficient-and-determination-coefficient


Τυπικό Σφάλμα Συντελεστών

Αποδεικνύεται ότι το τυπικό σφάλμα των παραπάνω υπολογισμών δίνεται από τους 
τύπους

α̂ = ȳ − b̂ x̄ , b̂ =
∑
i = 1

n

(xi − x̄)(y i − ȳ)

∑
i = 1

n

(x i − x̄)2

=
sXY

2

sX
2 = rXY

sY

sX

SE(b̂)= √ 1
n − 2 ∑

i = 1

n

(y i − ŷ )2/∑
i = 1

n

(x i − x̄)2 = √n − 1
n − 2

⋅ RSS
sx

2

SE(α̂)= √ 1
n(n − 2)∑i = 1

n

x i
2 ∑

i = 1

n

(y i − ŷ)2/∑
i = 1

n

(x i − x̄)2 = √ n − 1
n(n − 2)∑i = 1

n

x i
2⋅ RSS

sx
2



Τυπικό Σφάλμα Συντελεστών

Η γνώση του τυπικού σφάλματος του γραμμικού μοντέλου, μας επιτρέπει:

(α) Να ελέγχουμε αν απορρίπτεται ή όχι η υπόθεση Η
0
: b = 0 (αντ. η Η

0
: α = 0) 

υπολογίζοντας το στατιστικό 

(β)  Να υπολογίζουμε το 95% διάστημα εμπιστοσύνης για τους συντελεστές του 
μοντέλου

Σημείωση: 
Μία απόδειξη για το γεγονός ότι οι συντελεστές ακολουθούν την κατανομή t μπορεί να βρεθεί εδώ: 
https://stats.stackexchange.com/questions/117406/proof-that-the-coefficients-in-an-ols-model-follow-a-t-distribution-with-n-k-d  

Η0 : b=0: t = b̂

SE(b̂)
~ tn − 2, p = P(|t|> |t0|)

(b̂ − tn − 2 ;0.025 SE(b̂), b̂ − tn − 2 ;0.025SE(b̂))

https://stats.stackexchange.com/questions/117406/proof-that-the-coefficients-in-an-ols-model-follow-a-t-distribution-with-n-k-d


Υπολογισμός συντελεστών – Γενική Περίπτωση 1/3

Η γενική περίπτωση μπορεί να περιέχει πολλές επεξηγηματικές μεταβλητές.

Ορίζουμε:

Με το νέο συμβολισμό, η αρχική εξίσωση γράφεται:

Με β συμβολίζεται το διάνυσμα των άγνωστων παραμέτρων και με ε το διάνυσμα 
των σφαλμάτων που αντιστοιχούν σε κάθε μία παρατήρηση.



Υπολογισμός συντελεστών – Γενική Περίπτωση 2/3

Αν το διάνυσμα b είναι η εκτίμηση του β, τότε μπορούμε να γράψουμε:

Στην εξίσωση αυτή, e δηλώνει τις παρατηρήσιμες διαφορές, δηλαδή τα σφάλματα 
εκτίμησης του γραμμικού μοντέλου. Ειδικότερα:

Στο σημείο αυτό ορίζουμε τη συνάρτηση:



Υπολογισμός συντελεστών – Γενική Περίπτωση 3/3

Με λίγη άλγεβρα πινάκων, βρίσκουμε ότι:

Η ελάχιστη τιμή ως προς b, λαμβάνεται όταν η παράγωγος είναι ίση με 0. 
Συμπεραίνουμε, ότι, ο εκτιμητής ελαχίστων τετραγώνων ικανοποιεί την εξίσωση:

Λύνοντας ως προς b βρίσκουμε:

Η μόνη προϋπόθεση υλοποίησης της παραπάνω διαδικασίας είναι ο πίνακας Χ’Χ 
να είναι αντιστρέψιμος ή ισοδύναμα το πλήθος παρατηρήσεων να είναι μεγαλύτερο 
ή ίσο από το πλήθος των αγνώστων συντελεστών του μοντέλου.



Η μέθοδος αυτή είναι δυνατόν να εφαρμοστεί σε μοντέλα της μορφής:
Xt = M(t, θ) + εt

όπου:
● Μ(t, θ)  είναι  μία γνωστή συνάρτηση που εξαρτάται από το t, 
● θ είναι το διάνυσμα των αγνώστων παραμέτρων και 
● εt iid ~ N(0, σ2), το τυχαίο σφάλμα της πρόβλεψης.

Ελαχιστοποιώντας το άθροισμα τετραγώνων των εt:

είναι   δυνατόν  να υπολογίσουμε εκτιμητές ελαχίστων τετραγώνων για τις παραμέτρους 
του διανύσματος θ.

Εφαρμογή ελαχίστων τετραγώνων σε μοντέλα της μορφής Xt = M(t, θ)

∑
t = 1

n

[X t − M(t , θ)]2



Παράδειγμα 1

Στον πίνακα παρουσιάζεται η παραγωγή ζαχαρότευτλου (σε τόνους) σε μία περιοχή ανά 
έτος. Να γίνει γραμμικό μοντέλο πρόβλεψης της εξέλιξης της παραγωγής στο χρόνο.

Τυπολόγιο:

Έτος t 2010 2011 2012 2013 2014 2015 2016

Παραγωγή 40 45 46 42 47 50 46

b̂ =
∑
i=1

ν

(t i – t̄ )(y i – ȳ)

∑
i=1

ν

(t i – t̄ )2

ŷ = α̂ + b̂ t α̂ = ȳ − b̂ t̄

Μέθοδος των ελαχίστων τετραγώνων στις χρονοσειρές



Παράδειγμα 1

Στον πίνακα παρουσιάζεται η παραγωγή ζαχαρότευτλου (σε τόνους) σε μία περιοχή ανά 
έτος. Να γίνει γραμμικό μοντέλο πρόβλεψης της εξέλιξης της παραγωγής στο χρόνο.

Τυπολόγιο:

Αν οι υπολογισμοί γίνονται με το χέρι, τότε είναι πρακτικό το έτος t να αντικατασταθεί με 
[Έτος – Μέση τιμή] = {-3, -2, -1, 0, 1, 2, 3}, καθώς τότε η μέση τιμή του t είναι 0 και οι τύποι 
απλοποιούνται:

Έτος t 2010 2011 2012 2013 2014 2015 2016

Παραγωγή 40 45 46 42 47 50 46

b̂ =
∑
i=1

n

(t i – t̄ )(y i – ȳ)

∑
i=1

n

(t i – t̄ )2

ŷ = α̂ + b̂ t α̂ = ȳ − b̂ t̄

b̂ =∑
i=1

n

ti y i / ∑
i=1

n

t i
2 α̂ = ȳ

Μέθοδος των ελαχίστων τετραγώνων στις χρονοσειρές



Παράδειγμα 1

b̂ =∑
i=1

n

ti y i / ∑
i=1

n

t i
2 = 29/28 = 1,036 α̂ = ȳ = 316 /7=45,143

Έτος Παραγωγή (y) t =Έτος – 2013 ty t2

2010 40 -3 -120 9

2011 45 -2 -90 4

2012 46 -1 -46 1

2013 42 0 0 0

2014 47 1 47 1

2015 50 2 100 4

2016 46 3 138 9

'Άθροισμα 316 0 29 28

Μέθοδος των ελαχίστων τετραγώνων στις χρονοσειρές



Μέθοδος των ελαχίστων τετραγώνων

Παράδειγμα 1

Εξίσωση πρόβλεψης: 

Παραγωγή = 1,036 · (Έτος – 2013) + 45,143.

Συμπεραίνουμε ότι:

Για κάθε έτος που περνάει αναμένουμε αυξημένη παραγωγή κατά 1,036 τόνους.

b̂ =∑
i=1

n

ti y i / ∑
i=1

n

t i
2 = 29/28 = 1,036 α̂ = ȳ = 316 /7=45,143



Μέθοδος των ελαχίστων τετραγώνων

Παράδειγμα 1

Υλοποίηση στο Excel / Calc

Συναρτήσεις SLOPE(y, x) και INTERCEPT(y, x) (ακολουθεί επίδειξη)

Υλοποίηση στη γλώσσα R

years = c(-3, -2, -1, 0, 1, 2, 3)

production = c(40, 45, 46, 42, 47, 50, 46)

lm(production ~ years)

(ακολουθεί επίδειξη)



Η μέθοδος αυτή είναι δυνατόν να εφαρμοστεί σε μοντέλα AR(p):
όπου εn ~ N(0, σ2). 
Αν x1, x2, …, xN, είναι οι τιμές της χρονοσειράς που έχουμε παρατηρήσει, τότε μπορούμε 
να βρούμε τους συντελεστές, λύνοντας το σύστημα των M = N + 1 – p εξισώσεων: 

Ο εκτιμητής ελαχίστων τετραγώνων είναι: 

Εφαρμογή ελαχίστων τετραγώνων σε AR(p) μοντέλα



Παράδειγμα AR(1)
Αρκεί να ελαχιστοποιήσουμε το άθροισμα τετραγωνικών σφαλμάτων:

Υπολογίζουμε τις μερικές παραγώγους:

Εφαρμογή ελαχίστων τετραγώνων σε AR(p) μοντέλα



Παράδειγμα AR(1)
Για να βρούμε τα ακρότατα, αρκεί να εξισώσουμε τις δύο εξισώσεις με το 0:

Παίρνουμε το σύστημα:

Η λύση του είναι:

Εφαρμογή ελαχίστων τετραγώνων σε AR(p) μοντέλα

= 0

= 0



Εκτιμητές μέγιστης πιθανοφάνειας



Εκτιμητές μέγιστης πιθανοφάνειας

Στην Στατιστική, η εκτίμηση μέγιστης πιθανότητας (MLE) είναι μια μέθοδος 
εκτίμησης των παραμέτρων μιας άγνωστης κατανομής πιθανότητας, από ένα 
σύνολο παρατηρούμενων δεδομένων. 

Αυτό επιτυγχάνεται με τη μεγιστοποίηση μιας συνάρτησης πιθανότητας, έτσι 
ώστε, σύμφωνα με το υποτιθέμενο στατιστικό μοντέλο, τα παρατηρούμενα 
δεδομένα να είναι πιο πιθανά να εμφανιστούν. 

Το σημείο στο χώρο των παραμέτρων που μεγιστοποιεί τη συνάρτηση 
πιθανότητας ονομάζεται εκτιμητής μέγιστης πιθανότητας.

Η διαδικασία είναι εφικτή τόσο για συνεχείς όσο και για διακριτές τμ. Η μέθοδος 
προτάθηκε από τον Fisher το 1912.



Έστω ότι τα δεδομένα x = (x
1
, …, x

n
), προέρχονται από μία κατανομή της οποίας 

γνωρίζουμε το είδος της κατανομής αλλά όχι τις παραμέτρους αυτής. Έστω επίσης πως οι 
παρατηρήσεις είναι ανεξάρτητες.

Ορίζουμε τη συνάρτηση πιθανοφάνειας L ως εξής :

L(θ) = L(X, θ) = f(x
1
, …, x

n
|θ)

Αναζητούμε την τιμή της παραμέτρου θ που μεγιστοποιεί τη συνάρτηση L. Η τιμή που 
βρίσκουμε με την παραπάνω διαδικασία ονομάζεται 

Εκτιμητής Μέγιστης Πιθανοφάνειας (Maximum Likelihood Estimation (MLE)).

Εκτιμητές μέγιστης πιθανοφάνειας



Οι παρατηρήσεις θεωρούνται ανεξάρτητες, άρα

f(x
1
, …, x

n
|θ) = f(x1|θ)·f(x2|θ)·...·f(xn|θ)

Η συνάρτηση πιθανοφάνειας L γράφεται:

L(θ) = L(X, θ) = f(x1|θ)·f(x2|θ)·...·f(xn|θ)

Για να βρούμε την τιμή της παραμέτρου θ που μεγιστοποιεί τη συνάρτηση L, αρκεί να 
βρούμε την τιμή που μεγιστοποιεί την
 

l(θ) = ln(L(θ)) = Σ  ln(f(x1|θ)). 

Ο εκτιμητής μέγιστης πιθανοφάνειας προκύπτει από την επίλυση της εξίσωσης

d/dθ l(θ) = 0

Εκτιμητές μέγιστης πιθανοφάνειας



Άσκηση 1. Έστω Χ μία ΤΜ με κατανομή

Για να εκτιμήσουμε την άγνωστη παράμετρο θ, υλοποιούμε δειγματοληψία 10 
ανεξάρτητων τιμών και παίρνουμε το δείγμα (3, 0, 2, 1, 3, 2, 1, 0, 2, 1). Να βρεθεί η τιμή 
της παραμέτρου θ με τη μέθοδο του Εκτιμητή Μέγιστης Πιθανοφάνειας.

x 0 1 2 3

fΧ(x) 2θ/3 θ/3 2(1 – θ)/3 (1 – θ)/3

Εκτιμητές μέγιστης πιθανοφάνειας



Λύση Άσκησης 1. 

L(X, θ) = f( (3, 0, 2, 1, 3, 2, 1, 0, 2, 1) | θ) 
     
     = f(3|θ) · f(0|θ) · f(2|θ) · f(1|θ) · f(3|θ) · f(2|θ) · f(1|θ) · f(0|θ) · f(2|θ) · f(1|θ)
     
     = [f(0|θ)]2 · [f(1|θ)]3 · [f(2|θ)]3 · [f(3|θ)]2 
     
     = [2θ/3]2 · [θ/3]3 · [2(1 – θ)/3]3 · [(1 – θ)/3]2 

     =  θ5 · (1 – θ)5 · 25/ 310.

l(θ) = lnL(Χ, θ) = 5 ln θ + 5 ln(1 – θ) + c.

Η συνάρτηση l(θ) μεγιστοποιείται για θ = ½. Αυτή είναι η τιμή του εκτιμητή μέγιστης 
πιθανοφάνειας. Δηλαδή, η τιμή θ = ½ είναι αυτή που μεγιστοποιεί την πιθανότητα το 
δείγμα που έχουμε να έχει προέλθει από την υποτιθέμενη κατανομή.

Εκτιμητές μέγιστης πιθανοφάνειας



Άσκηση 2. Έστω ότι η τ.μ. Χ μετράει το χρόνο μεταξύ αφίξεων σε μία διαδικασία Poisson και πως Χ ~ 
Exp(λ). Παρακολουθούμε δείγμα 4 τιμών της Χ και βρίσκουμε τις τιμές 1.23, 3.32, 1.98, 2.12. Να 
βρεθεί ο Εκτιμητής Μέγιστης Πιθανοφάνειας της παραμέτρου λ.

Λύση Άσκησης 2
Από την υπόθεση έχουμε πως Χ ~ Exp(λ), δηλαδή ότι f(x) = λe-λx, x ≥ 0.

Ορίζουμε L(X, θ) = f( (1.23, 3.32, 1.98, 2.12) | λ) 
     
     = f(1.23|λ) · f(3.32|λ) · f(1.98|λ) · f(2.12|λ)
     
     = λe-1.23λ · λe-3.32λ · λe-1.98λ · λe-2.12λ  
     
     = λ4 e-8.65λ .

Είναι l(θ) = lnL(Χ, θ) = 4 ln λ – 8.65 λ.

Η συνάρτηση l(θ) μεγιστοποιείται για λ = 0.46, τιμή που μεγιστοποιεί την πιθανότητα το δείγμα που 
έχουμε να έχει προέλθει από την κατανομή Exp(λ).

Εκτιμητές μέγιστης πιθανοφάνειας



Αμερόληπτοι και συνεπείς εκτιμητές

Πόσο καλές είναι οι εκτιμήσεις των παραμέτρων που προκύπτουν από τους 
τύπους που χρησιμοποιούμε;

Στην Στατιστική είναι επιθυμητό ο εκτιμητής θ
n 
να είναι 

● αμερόληπτος (unbiased)  

Bias(θ
n
, θ) = Ε

x|θ
(θ

n
 – θ) = 0.

(ανεξάρτητα από το μέγεθος του δείγματος, ο εκτιμητής δίνει τη σωστή τιμή της παραμέτρου ως αναμενόμενη τιμή)

● συνεπής (consistent)  

plim
n→∞

θ
n
 = lim

n→∞
P(|θ

n 
– θ| > ε) = 0, για κάθε ε > 0.

(η αύξηση του μεγέθους του δείγματος οδηγεί σε καλύτερη πρόβλεψη της παραμέτρου)

Και οι δύο έννοιες αποκτούν νόημα με την προϋπόθεση πως γνωρίζουμε το είδος της 
κατανομής που ακολουθεί ο πληθυσμός από τον οποίο πήραμε το δείγμα. 



Μέγιστη Πιθανοφάνεια          Αμεροληψία

Παράδειγμα 1 (με αφορμή την άσκηση 2)
Έστω Χ μία μεταβλητή που γνωρίζουμε ότι ακολουθεί την Exp(λ) αλλά δεν γνωρίζουμε το λ (= πλήθος αφίξεων 
/ μονάδα χρόνου). Για το λόγο αυτό παρατηρούμε n διαφορετικές διάρκειες μεταξύ αφίξεων X1, X2, …, Xn και 
εκτιμούμε τον ρυθμό λ από τον τύπο:

Ο εκτιμητής αυτός δεν είναι αμερόληπτος. Πράγματι, για n = 1, είναι

ενώ για n > 1 είναι X1 + X2 + …+ Xn ~ Γάμμα(n, λ), άρα 1/(X1 + X2 + …+ Xn) ~ Inverse Γάμμα(n, λ) και

Ιδιαίτερα, συμπεραίνουμε, ότι ο                                                 είναι ένας αμερόληπτος εκτιμητής του λ.

Σημείωση: Αν Χ ~ Inverse Γαμμα(α, β) τότε E(Xk) = βk Γ(α – k) / Γ(α).

λ̂ = n
Χ1 + Χ2 + ... + Χn

Ε( λ̂) = Ε( 1
Χ1

)= ∫
0

+∞ λ
x

e−λ /x dx =+∞

Ε( λ̂) = Ε( n
Χ1 + X2 + ... +Xn

)=n
λ

n − 1
≠ λ .

λ̂ = n − 1
Χ1 + Χ2 + ... + Χn



Μέγιστη Πιθανοφάνεια           Συνέπεια

Παράδειγμα 2
Έστω Χ τμ για την οποία γνωρίζουμε ότι                                                      .Χ ~ 1 /2N(0,1) + 1/2N( t , e

− 2

t
2 )

Πηγή: https://radfordneal.wordpress.com/2008/08/09/inconsistent-maximum-likelihood-estimation-an-ordinary-example/



Μέγιστη Πιθανοφάνεια            Συνέπεια

Παράδειγμα 2
Για t = 0,6, και {xi}i≤n, n = 10 ή 30 ή 100 
παρατηρήσεις της Χ, ο Ε.Μ.Π. της 
παραπάνω κατανομής δεν είναι συνεπής.

Πηγή: https://radfordneal.wordpress.com/2008/08/09/inconsistent-maximum-likelihood-estimation-an-ordinary-example/



Μέγιστη Πιθανοφάνεια            Μοναδικότητα

Παράδειγμα 3
Αν Χ ~ Laplace(μ, β) με                                                  , με άγνωστες παραμέτρους μ, β 

και x1, x2, …, xn, ένα δείγμα τιμών, τότε αποδεικνύεται ότι ο εκτιμητής μέγιστης 
πιθανοφάνειας για την παράμετρο μ είναι η διάμεσος του δείγματος(1). 

Καθώς η διάμεση τιμή δεν είναι μοναδική όταν το n είναι άρτιος, καταλαβαίνουμε ότι ο 
εκτιμητής δεν ορίζεται με μοναδικό τρόπο.

(1) Μία απόδειξη είναι διαθέσιμη εδώ: 
https://math.stackexchange.com/questions/240496/finding-the-maximum-likelihood-estim
ator
 

f(x) = 1
2β

exp(−
|x − μ|

β
)

https://math.stackexchange.com/questions/240496/finding-the-maximum-likelihood-estimator
https://math.stackexchange.com/questions/240496/finding-the-maximum-likelihood-estimator


Εκτιμητές μέγιστης πιθανοφάνειας

Εκτίμηση AR(1): MLE

Μία στάσιμη χρονοσειρά που ακολουθεί ένα AR(1) μοντέλο Xt = δ + φXt-1 + wt , wt ~ N(0, σ2) 
αποτελείται από εξαρτημένες παρατηρήσεις. 

Ωστόσο, τα σφάλματα wt, είναι iid ακολουθία με σ.π.π.

Άρα, αν  W = (w1, w2, …, wn) η ακολουθία των σφαλμάτων, τότε η κοινή συνάρτηση πυκνότητας θα 
είναι το γινόμενο των επιμέρους

L(W, σ) = f( (w1, w2, …, wn | σ) =  f(w1 | σ) f(w2 | σ) … f(wn | σ) = 

Όμως, wt  = Xt – δ – φXt-1 και η τελευταία σχέση ξαναγράφεται

L(Χ, σ) = f( (x2, x3, …, xn) |x0, σ) =

Συμπεραίνουμε, ότι η συνάρτηση πιθανοφάνειας είναι

1

(√2πσ)n exp(− 1

2σ2 ∑
i=1

n

w i
2)

fw(x ) = 1

√2 πσ
e

− x2

2σ2

.

1

(√2πσ)n exp(− 1

2σ2 ∑
i=1

n

(x i − δ − φx i−1)
2)

l(σ ) =−lnL (Χ,σ) = n
2

ln(σ2) + 1

2σ2 ∑
i=1

n

(x i − δ − φx i−1)
2 + c



Εκτίμηση AR(1): MLE

Η βελτιστοποίηση της

οδηγεί στη λύση: 

όπου

Σημείωση: Η παραπάνω διαδικασία γενικεύεται στην περίπτωση των AR(p) μοντέλων.

l(σ)=−lnL(Χ, σ) = n
2

ln(σ2) + 1
2σ2 ∑

i = 1

n

(x i − δ − φxi−1)
2 + c

φ̂ =
∑
i = 1

n

(x i−1 − x̄)(x i − x̄+)

∑
i = 0

n − 1

(x i − x̄)2

, δ̂ = x̄+ − φ̂ x̄ , σ̂2 = 1
n ∑

i = 1

n

(x i − δ̂ − φ̂ x i − 1)
2

x̄ = 1
n ∑

i = 0

n − 1

x i, x̄+ = 1
n ∑

i = 1

n

x i

Εκτιμητές μέγιστης πιθανοφάνειας



Εναλλακτική Εκτίμηση AR(1): Exact MLE 

Από τη θεωρία πιθανοτήτων γνωρίζουμε ότι για θ = (δ, φ, σ2) είναι:

Καθώς η χρονοσειρά Xt = δ + φXt-1 + wt  είναι στάσιμη, είναι X0 ~ N(μ, Var(Xt)). 

Όμως, μ = δ / (1 – φ), και Var(Xt) = σ2 / (1 – φ2), δηλαδή X0 ~ N(δ / (1 – φ), σ2 / (1 – φ2)) με 

Περαιτέρω, xn | xn-1, xn-2, …, x1 = xn | xn-1 = N(δ + φxt-1, σ2) και 

f(x0 |θ) = √1 − φ2

√2π σ
exp(−(x0 − δ /(1 − φ))2

2 σ2 /(1 − φ2) )

f(xn | xn−1 , xn−2 , ... , x1 , σ) = f(xn | xn−1 ,σ) = 1

√2 πσ
exp(−(xn − δ − φ xn − 1)

2

2σ2 )

f(x0 , x1 , x2 , ..., xn |θ) = f (x0 |θ) f (x1 | x0 ,θ) ... f(xn | xn−1 , xn−2 , ..., x0 ,θ) = f(x0 |θ)∏
i = 1

n

f(xi | x i−1 , xi−2 , ... , x0 ,θ)

Εκτιμητές μέγιστης πιθανοφάνειας



Εναλλακτική Εκτίμηση AR(1): Exact MLE 

Η συνάρτηση πιθανοφάνειας είναι η:

Ο εντοπισμός των ακρότατων στην περίπτωση αυτή γίνεται με αριθμητικές – προσεγγιστικές 
μεθόδους.

l(σ ) =−lnL (σ | Χ) = 1
2

ln
σ2

1 − φ2 + 1
2

nlnσ2 +
(x0 − δ /(1 − φ))2

2σ2(1 − φ2)
+ 1

2σ2 ∑
i=1

n

(xi − δ − φxi−1)
2 + c

Εκτιμητές μέγιστης πιθανοφάνειας



Σχέση μεταξύ MLE και Least Squares

Για το παράδειγμα AR(1), η συνάρτηση πιθανοφάνειας προέκυψε να είναι, μία από τις παρακάτω:

Παρατηρούμε πως οι συναρτήσεις αυτές αποκτούν ελάχιστη τιμή της όταν ελαχιστοποιείται το

Το τελευταίο άθροισμα το αναγνωρίζουμε ως το άθροισμα των τετραγωνικών σφαλμάτων το οποίο 
ελαχιστοποιείται στην μέθοδο των ελαχίστων τετραγώνων.

Συμπεραίνουμε πως, όταν wi ~ N(0, σ2), τότε οι μέθοδοι μέγιστης πιθανοφάνειας και ελαχίστων 
τετραγώνων, οδηγούν στο ίδιο αποτέλεσμα.

l(σ ) =−lnL (σ | Χ) = 1
2

ln
σ2

1 − φ2 + 1
2

nlnσ2 +
(x0 − δ /(1 − φ))2

2σ2(1 − φ2)
+ 1

2σ2 ∑
i=1

n

(xi − δ − φxi−1)
2 + c

∑
i=1

n

(xi − δ − φxi−1)
2

l(σ ) =−lnL (Χ,σ) = n
2

ln(σ2) + 1

2σ2 ∑
i=1

n

(x i − δ − φx i−1)
2 + c



ARIMA με περιοδικότητα (ή SARIMA)



Η αναγνώριση της περιοδικότητας σε μία σειρά μπορεί να γίνει:

(α) Από το χρονοδιάγραμμα των τιμών με απλή παρατήρηση.

(β) Από το διάγραμμα αυτοσυσχετίσεων ACF: Θετική αυτοσυσχέτιση σε σταθερό πλήθος διαφορών 
δείχνει περιοδικότητα αντίστοιχης περιόδου.

Στην περίπτωση όπου υπάρχει περιοδικότητα στη χρονοσειρά τότε αυτή δεν είναι στάσιμη καθώς η 
μέση τιμή δεν είναι διαχρονικά σταθερή. Καθώς η προσαρμογή ενός μοντέλου ARMA προϋποθέτει τη 
στασιμότητα, η πρώτη ενέργεια στην περίπτωση αυτή είναι ο εντοπισμός της εξίσωσης που θα 
εξαλείψει από τα δεδομένα την περιοδικότητα.

Μοντέλα SARIMA(p, d, q)(P, D, Q)m





Ένας τρόπος για την αντιμετώπιση της εποχικότητας σε μια χρονοσειρά είναι η 
εφαρμογή εποχιακής διαφοροποίησης, η οποία αποτελεί ενσωματωμένο στοιχείο 
των εποχικών ARIMA μοντέλων (SARIMA).

Με την εποχιακή διαφορά αφαιρούμε την τιμή ενός σημείου από την αντίστοιχη 
τιμή της προηγούμενης περιόδου, δηλαδή:

Δsxt = xt − xt−s​.

Με τον τρόπο αυτό εξαλείφεται το επαναλαμβανόμενο εποχικό μοτίβο.

Μοντέλα SARIMA(p, d, q)(P, D, Q)m



Παράδειγμα 1

x = (x1, x2, x3, x4, x5, x6, x7, x8, …) = (1, 2, 3, 4, 1, 2, 3, 4, ...), 

Παρατηρούμε ότι Τ = 4 και

Δ4x = (x5 – x1, x6 – x2, x7 – x3, x8 – x4,…) = (0, 0, 0, 0, ….)

Παράδειγμα 2  

x = (1, 2, 3, 3, 2, 1, 1, 2, 3, 3, 2, 1,...), 

Παρατηρούμε ότι Τ = 6 και

Δ6x = (x7 – x1, x8 – x2, x9 – x3, x10 – x4,…) = (0, 0, 0, 0, ….)

Μοντέλα SARIMA(p, d, q)(P, D, Q)m

x = rep(c(1, 2, 3, 4), 20)
plot.ts(x)
library(Hmisc)
D4x = Lag(x, 4) - x
plot.ts(D4x)



Στην περίπτωση που η εποχικότητα έχει μεταβαλλόμενα χαρακτηριστικά, τότε 
μπορεί να χρειαστεί εποχική διαφοροποίηση 2ης ή μεγαλύτερης τάξης.

π.χ. αν 

x = (x1, x2, x3, x4, x5, x6, x7, x8, …) = (1, 2, 3, 4, 2, 3, 4, 5, 4, 5, 6, 7, ...), 

Τότε

Δ4x = (x5 – x1, x6 – x2, x7 – x3, x8 – x4,…) = (1, 1, 1, 1, 2, 2, 2, 2,….)

Και

Δ4
2x = (Δ4x5 – Δ4x1, Δ4x6 – Δ4x2, Δ4x7 – Δ4x3, Δ4x8 – Δ4x4,…) = (1, 1, 1, 1, ….)

Μοντέλα SARIMA(p, d, q)(P, D, Q)m



Για τη μοντελοποίηση της εποχικότητας μπορούν να χρησιμοποιηθούν εποχικοί 
αυτοπαλινδρομικοί όροι (πλήθος P), εποχιακές διαφορές (πλήθος D) και εποχικοί 
όροι κινούμενου μέσου (πλήθος Q).

Το αντίστοιχο εποχικό ARIMA μοντέλο συμβολίζεται:

SARIMA(p, d, q)(P, D, Q)m, 

όπου m η περίοδος της χρονοσειράς.

Μοντέλα SARIMA(p, d, q)(P, D, Q)m



Εξίσωση SARIMA(p, d, q)(P, D, Q)m.

Συμβολίζουμε με

● φ(ω) = 1 – φ1ω – φ2ω2 – … – φpωp, το πολυώνυμο της AR(p).

● Φ(ω) = 1 – Φ1ω – Φ2ω2 – … – ΦPωP, το πολυώνυμο της Seasonal AR(P).

● θ(ω) = 1 – θ1ω – θ2ω2 – … – θqωq, το πολυώνυμο της ΜΑ(q).

● Θ(ω) = 1 – Θ1ω – Θ2ω2 – … – ΘQωQ, το πολυώνυμο της Seasonal ΜΑ(Q).

Τότε: 

Εξίσωση ARMA(p, q)(P, Q)m: φ(Β)Φ(Βm)Χt = θ(Β)Θ(Βm)wt.

Εξίσωση ARIMA(p, d, q)(P, D, Q)m: φ(Β)Φ(Βm)Δd Δm
D Χt = θ(Β)Θ(Βm)wt.

ΔΧt = Χt – Χt-1, ΔdΧt = Δ·Δ·Δ·...·ΔXt, ΔmΧt = Χt – Χt-m, Δm
DΧt = Δm·Δm·Δm·...·ΔmXt.

Μοντέλα SARIMA(p, d, q)(P, D, Q)m



Η πρόβλεψη των τιμών ακολουθεί τους ίδιους κανόνες με αυτές των ARIMA(p, d, 
q) μοντέλων.

● Το SΜΑ(Q)m μέρος επιδρά μέχρι τις επόμενες m·Q εκτιμήσεις.

● Το SAR(P)m μέρος επιδρά στο σύνολο των μελλοντικών προβλέψεων.

Πρόβλεψη SARIMA(p, d, q)(P, D, Q)m



Η εποχικότητα περιόδου m αντανακλάται σε σημαντικές συσχετίσεις στα lags m, 2m, 3m,…

Η αναγνώριση των εποχικών AR(P)m και MA(Q)m όρων γίνεται με την εξέταση του PACF 
και ACF αντίστοιχα, λαμβάνοντας υπόψη μόνο τα lags που είναι πολλαπλάσια του m.

Ενδεικτικά:

● SAR(1)m​: το PACF εμφανίζει σημαντική αιχμή στο lag m, ενώ το ACF φθίνει γεωμετρικά 
στα lags m, 2m, 3m,…

● SMA(1)m​: το ACF εμφανίζει απότομο cutoff στο lag m, ενώ το PACF φθίνει στα lags m, 
2m, 3m,….

Η εποχική αναγνώριση γίνεται πάντα μετά την εφαρμογή της εποχικής διαφοράς D. Πριν 
από αυτήν, τα ACF/PACF διαγράμματα είναι παραπλανητικά.

Αναγνώριση ACF και PACF στο SARIMA(p, d, q)(P, D, Q)m



Προσομοίωση SARIMA με τη γλώσσα R

library(astsa)

# SARIMA(0,0,0)(1,0,0)12

ts.sim = sarima.sim(D=0, sar = 0.6, S=12, n=300)
plot.ts(ts.sim)
acf(ts.sim, lag.max = 30)  # ή acf(as.numeric(ts.sim), lag.max = 30)
pacf(ts.sim, lag.max = 30)



Προσομοίωση SARIMA με τη γλώσσα R

library(astsa)

# SARIMA(0,0,0)(0,0,1)12 
ts.sim = sarima.sim(D=0, sma = 0.6, S=12, n=300)
plot.ts(ts.sim)
acf(ts.sim, lag.max = 30)  # ή acf(as.numeric(ts.sim), lag.max = 30)
pacf(ts.sim, lag.max = 30)



Προσομοίωση SARIMA με τη γλώσσα R

library(astsa)

# SARIMA(0,0,0)(0,0,2)12 
ts.sim = sarima.sim(D=0, sma = c(-0.45, -0.45), S=12, n=300)
plot.ts(ts.sim)
acf(ts.sim, lag.max = 50)  # ή acf(as.numeric(ts.sim), lag.max = 50)
pacf(ts.sim, lag.max = 50)



SARIMA(0,0,0)(0,0,1)12

SARIMA(0,0,0)(1,0,0)12

Διάγραμμα 1 Διάγραμμα 2

Διάγραμμα 3 Διάγραμμα 4

Δραστηριότητα

Αντιστοιχίστε τα 4 
χρονοδιαγράμματα με τα
αντίστοιχα μοντέλα. 

SARIMA(0,0,0)(0,0,2)12



Παράδειγμα: Ένα SARIMA(0, 0, 0)(0, 1, 0)12 μοντέλο, χωρίς σταθερά, έχει εξίσωση της μορφής

​Δ12Χt = wt ή (1 – Β12)Χt = wt ή Xt ​- ​Xt-12 ​= wt. 

temp = c(-2, 7, 3, 8, 20, 26, 25, 26, 16, 16, 8, 0, 9, 1, 12, 16, 22, 21, 28, 14, 16, 10, 0, 13, 5, 14, 16, 18, 25, 26, 18, 20, 14)

Οι διαφορές των παραπάνω ανά 12 είναι οι εξής: 

X13 ​- X1 ​= 11, X14 ​- X2 ​= -6,...   9,   8,   2,  -5,   3, -12,  0,  -6,  -8,  13,  -4,  13,   4,   2,   3,   5, -10,  6,  -2.

SARIMA(0, 0, 0)(0, 1, 0)12



Παράδειγμα: Ένα SARIMA(0, 0, 0)(0, 0, 1)12 μοντέλο, χωρίς σταθερά, έχει εξίσωση της 
μορφής

Χt = (I + ΘΒ12)wt ή 

Χt = (I + ΘΒ12)wt ή ​

Xt ​​= wt + Θwt-12 .

SARIMA(0, 0, 0)(0, 0, 1)12



Παράδειγμα: Ένα SARIMA(0, 0, 0)(0, 1, 1)12 μοντέλο, χωρίς σταθερά, έχει εξίσωση της μορφής

Δ12Χt = (I + ΘΒ12)wt ή (1 – Β12)Χt = (I + ΘΒ12)wt ή ​Xt ​- Xt-12 ​= wt + Θwt-12 .

temp2 = c(-2, 7, 3, 8, 20, 26, 25, 26, 16, 16, 8, 0, -1, 9, 5, 10, 22, 29, 27, 27, 17, 19, 12, 5, 1, 11, 8, 15, 26, 32, 28, 28, 18, 19, 13, 7)

Οι διαφορές των παραπάνω ανά 12 είναι οι εξής: 

X13 ​- X1 ​= 1,  X14 ​- X2 ​= 2,...   2, 2, 2, 3, 2, 1, 1, 3, 4, 5, 2, 2, 3, 5, 4, 3, 1, 1, 1, 0, 1, 2

SARIMA(0, 0, 0)(0, 1, 1)12



Παράδειγμα

Ένα SARIMA(1, 0, 0)(0, 1, 1)12 μοντέλο, χωρίς σταθερά, έχει εξίσωση της μορφής

​(1 – Β12)Χt = ​φ(1 – Β12)Χt-1 + (1 + ΘΒ12)wt 

ή 

Xt ​- Xt-12 ​= φΧt-1 – φΧt-13 + wt + Θwt-12 ,

SARIMA(1, 0, 0)(0, 1, 1)12



Παράδειγμα

Ένα SARIMA(0, 2, 1)(0, 0, 1)12 μοντέλο, χωρίς σταθερά, έχει εξίσωση της μορφής

(1 – Β)2Χt = (1 + θΒ)(1 + ΘΒ12)wt, 

ή

Χt – 2Χt-1  + Χt – 2 = wt + Θwt – 12 + θwt – 1 + θΘwt – 13.

SARIMA(0, 2, 1)(0, 0, 1)12



Παράδειγμα

Χt – 2Χt-1  + Χt – 2 = εt – 0.2εt – 12 + 0.1εt – 1 – 0.02εt – 13.

SARIMA(0, 2, 1)(0, 0, 1)12

library(astsa)
x = sarima.sim(ar = 0, d=2, ma=0.1, sar = 0, D=0, sma=-0.2, S=12, n=100)
my.plot.ts.simple(x)



Παράδειγμα

Ένα ARIMA(2, 1, 0)(0, 2, 2)12  μοντέλο, χωρίς σταθερά, έχει εξίσωση της μορφής

SARIMA(2, 1, 0)(0, 2, 2)12

Πηγή: https://stats.stackexchange.com/questions/69407/how-do-i-write-a-mathematical-equation-for-arima-2-1-0-x-0-2-2-period-12 

https://stats.stackexchange.com/questions/69407/how-do-i-write-a-mathematical-equation-for-arima-2-1-0-x-0-2-2-period-12


SARIMA(2, 1, 0)(0, 2, 2)12

library(astsa)
x = sarima.sim(ar = c(0.1, -0.3), d=1, ma=0, sar = 0, D=2, sma=c(-0.2, 0.1), S=12, n=100)
my.plot.ts.simple(x)



ts.value = c(1661980, 1357840, 1678840, 1859050, 1859540, 1814700, 2280190, 2240690, 2072170, 
1872380, 1693170, 1857710, 1609670, 1523130, 1919710, 1879330, 1723990, 2160040, 2318030, 
2308970, 2092730, 1975510, 1907070, 1904990, 1686480, 1511710, 1840750, 2083950, 1946310, 
1917100, 2315390, 2393510, 2087530, 1961500, 1807630, 1877010, 1709370, 1621490, 1946690, 
2010600, 2069190, 2031980, 2318730, 2451960, 2213610, 2196030, 1880220)

Από το χρονοδιάγραμμα είναι εμφανής η ύπαρξη τάσης και περιοδικότητα με περίοδο 12. Άρα, θα 
προχωρήσουμε σε διαφορά με lag 12.

ts.value.D1 <- diff(ts.value, lag = 12, differences = 1)

Παράδειγμα Ι



Από το νέο ACF διάγραμμα των διαφορών Δ12Xt = Xt+12 - Xt = (I - B12)Xt παρατηρούμε μία αρνητική 
αυτοσυσχέτιση σε lag 12, πρότυπο που ταιριάζει σε μοντέλο MA(1) και θα μπορούσε να εξηγηθεί από 
έναν ΜΑ(12) όρο στην αρχική χρονοσειρά. Δηλαδή, υποδεικνύεται πως ένα μοντέλο που πιθανώς να 
ταιριάζει στη χρονοσειρά είναι το

Δ12Xt = wt + Θwt−12.

Εφαρμόζουμε το μοντέλο με τον κώδικα:

library(forecast)
my.model = Arima(ts.value, order = c(0, 0, 0), seasonal = list(order = c(0, 1, 1), period = 12))
print(my.model)

checkresiduals(my.model)

Παράδειγμα Ι



Η εφαρμογή του παραπάνω μοντέλου, οδηγεί στην εξίσωση:

Xt+12 − Xt = wt−0.3507wt−12

Ωστόσο, φαίνεται πως τα υπόλοιπα εξακολουθούν να έχουν κάποια αυτοσυσχέτιση σε lag 12. 
Πειραματιζόμενοι, καταλήγουμε πως μία αποδεκτή προσαρμογή παρουσιάζει ένα 

ARIMA(1,0,0)(0,1,1)12 μοντέλο: (1–B12)Xt = φ(1–B12)Xt−1 + (1+ΘB12)wt

ή

Xt − Xt−12 = φXt−1 – φXt−13 + wt + Θwt−12,

library(forecast)
my.model = Arima(ts.value, order = c(0, 0, 1), seasonal = list(order = c(0, 1, 1), period = 12))
print(my.model)
checkresiduals(my.model)

Παράδειγμα Ι



Παρατηρούμε, ότι το ARIMA(1,0,0)(0,1,1)12 μοντέλο που υπολογίζεται είναι το:

Xt − Xt−12 = 0.3855(Xt−1 – Xt−13) + wt − 0.7336wt−12

Δημιουργούμε τα διάγραμματα ACF, PACF των υπολοίπων του μοντέλου.

acf(my.model$residuals, lag.max = 55)
pacf(my.model$residuals, lag.max = 55)

Μία γραφική αναπαράσταση των προβλέψεων μπορούμε να αποκτήσουμε με τις εντολές:

my.forecast = forecast(my.model)
summary(my.forecast)

plot(my.forecast, showgap = FALSE)

Παράδειγμα Ι



ts.value = c(-0.25,1.82,0.13,3.27,-2.44,-2.77,-1.32,-0.44,3.61,3.31,1.78,-0.1,-2.71,1.29,0.2,2.9,-2.55,-4.96,-1.11,-
0.68,4.09,1.99,2.28,0.02,-2.83,2.64,0.58,2.7,-1.06,-5.09,1.04,-1.21,1.56,1.15,1.04,0.24,-0.61,3.94,0.86,0.7,-0.73,-
1.38,2.12,-2.78,-1.22,1.38,0.97,0.02,-1.07,2.23,2.55,-1.47,-1.24,-0.47,1.54,-1.8,-2.14,0.67,-0.51,0.31,-2.74,-0.38,4.7,-
1.46,-0.94,-0.91,2.24,0.53,-1.85,0.71,-3.4,0.31,-3.3,-2.06,2.96,-1.26,-2.28,-2.21,3.22,1.16,-3.45,0.39,-3.17,0.73,-
3.83,-1.11,0.36,1.24,-3.57,-3.46,3.33,0.01,-4.51,-1.33,-1.6,1.31,-2.9,0.98,-1.19,1.95,-1.18,-3.35,0.9,-1.01,-3.71,-2.29,-
1.49,0.72,-0.65,1.14,-2.36,1.29,1.79,-4.67,-1.34,2.12,-3.42,-3.14,-0.28,1.92,-0.27,-0.17,-1.63,2.07,2.41,-5.52,-
4.06,1.87,-4.26,-3.66,-0.01,2.46,-0.48,0.58,-0.91,2.48,2.12,-5.39,-5.7,0.97,-4.93,-2.46,-1.13,0.27,-1.27,0.47,-
0.31,2.08,0.72,-3.81,-5.14,-0.11,-2.93,-2.17,-0.94,-1.35,-2.24,-0.14,0.58,2.2,-0.53,-2.19,-2.71,-1.78,0.08,-1.46,-2.33,-
1.98,-2.26,0.88,2.81,0.78,-1.28,-2.08,-1.13,-1.06,0.63,-2.33,-1.01,-1.4,-2.38,0.24,2.22,-0.01,-1.38,-2.37,-1.89,-
0.53,0.24,-3.08,-0.51,0.58,-2.76,-1.62,2.98,0.11,0.33,-0.57,-2.38,1.25,-1.19,-2.34,-0.56,0.15,-0.43,-1.78,3.67,-
0.31,0.1,-0.04,-2.68,1.18,-2.2,-1.16,-0.34,-1.03,1.08,-0.59,4.89,-0.62,-2.02,-2.27,-1.26,-0.39,-1.66,-0.57,-1.12,-1.8,-
0.76,-0.17,5.43,-0.26,-1.95,-3.47,1.16,-0.15,-2.1,-0.42,-2.88,-1.87,-0.98,1.19,2.62,-0.18,-0.92,-4.05,1.88,-0.87,-3.32,-
0.46,-4.36,-0.94,-1.69,2.5,0.47,-2.99,-1.26,-3.57,1.71,-0.37,-4.65,1.23,-3.61,-1.53,-1.88,0.94,0.46,-4.96,-1.87,-
0.62,1.23,0.04,-4.65,2.56,-2.74,-0.88,0.49,0.09,1.29,-3.51,-2.14,1.86,0.6,-0.65,-4.66,1.56,-0.53,-0.45,2.23,2.44,1.6,-
2.82,-1.15,1.34,-0.09,-1.23,-4.8,1.09,1.31,1.54)

Δραστηριότητα Ι



rainXanthi = c(8, 4.4, 9.4, 29.4, 135.6, 65, 70.9, 15.2, 38.8, 87.2, 5.2, 0.2, 7.8, 46.4, 35.9, 77.4, 34.2, 157.4, 46.4, 19, 
43.8, 41.2, 96.8, 25.6, 40.2, 111.8, 111.8, 49.8, 39.4, 9.6, 11.6, 8.6, 44.2, 41, 4.6, 36.2, 12.4, 45.8, 0, 30.8, 134.6, 
167.2, 13.8, 56.6, 112.3, 13.6, 18.8, 18.2, 7, 40.4, 30.8, 130.2, 234.6, 106.2, 87.2, 15, 7.6, 63, 18, 2.6, 28, 24, 153.2, 
24.4, 69.6, 27, 134, 181.6, 46, 85.4, 18.6, 32, 83.6, 42.6, 32.8, 127.5, 92.8, 122, 129.6, 35.4, 20.6, 88, 14.8, 12.8, 
33.8, 58.6, 104.2, 0.2, 86.8, 35.6, 64.8, 7.8, 65, 76.6, 8.8, 1.2, 9.8, 21.2, 46, 4.6, 25, 44.4, 66.8, 29.4, 72.4, 7.8, 29.2, 
4.6, 29.4, 54.6, 82.6, 103.6, 13, 51.2, 94, 1.2, 17.6, 180.4, 170.2, 0, 25.8, 46.8, 119.4, 123.6)

Πηγή δεδομένων: https://www.meteo.gr/ClimaticDataGR.xls

Δραστηριότητα ΙΙ

https://www.meteo.gr/ClimaticDataGR.xls


Προσπαθήστε να δημιουργήσετε μοντέλο πρόβλεψης της κατανάλωσης μπύρας στην Αυστραλία, 
αξιοποιώντας ιστορικά δεδομένα ανά τρίμηνο από το 1992 έως το 2008:

library(fpp2)
data(ausbeer)
ts.value <- window(ausbeer, start=1992)
head(ts.value)

Δραστηριότητα ΙΙI



Δεύτερη εργασία μαθήματος

Δίνονται τα δεδομένα

st1 = c(1196, 2795, 2959, 2868, 2953, 2724, 2349, 1930, 2217, 2163, 1441, 2192, 2045, 3331, 4546, 
3697, 3438, 3118, 2582, 2515, 2727, 1950, 1187, 836, 1023, 2410, 3274, 3510, 3143, 3700, 2820, 
1780, 2980, 2175, 1616, 1260, 1672, 2795, 3255, 3946, 2094, 1850, 1730, 1490, 1665, 2120, 1747, 
1388, 1660, 1970, 1560, 2440, 1890, 1690, 2397, 1718, 2600, 1770, 580, 365, 1232, 2561, 2935, 
3479, 3289, 2966, 2940, 3451, 3001, 1866, 1028, 1590, 1877, 1687, 3037, 2342, 4315, 3199, 2266, 
1677, 1668, 1835, 1188, 1093, 1203, 2423, 2060, 2150, 1911, 2203, 2230, 2185, 2421, 1975, 1391, 
2196, 1571, 1745, 1377, 1343, 1515, 1761, 2371, 2260, 2534, 1716, 1576, 1155, 1353, 1623, 1790, 
1414, 1210, 1330, 1016, 1460, 1570, 1097, 1543, 1664, 1684, 1472, 1608, 1841, 2101, 1662, 1390, 
1106, 1355, 1564, 1586, 1635, 1842, 1445, 1038, 1172, 1114, 934, 823, 1195, 1621, 1996, 1652, 1421, 
2340, 1656, 1310, 1726, 1482, 1207, 816, 775, 897, 2202, 1577, 1951, 1834, 1408, 1452, 1542, 1563, 
1029, 710, 698, 1145, 1617, 1590, 1812, 1549, 1245, 1202, 1183, 1379, 889, 515, 622, 1101, 1327, 
1468, 1706, 1628, 1344, 1038, 1487, 1436, 984, 749, 726, 1007, 2727, 1588, 1723, 1768, 1404, 1728, 
1369, 2728, 1589, 1723, 1769, 1404, 1373, 2035, 1722, 1279, 788, 888, 1526, 1804, 1836, 3461, 
2323, 1070, 1013, 894, 1553, 916, 701, 374, 1175, 1804, 1834, 1116, 1758, 1441, 1260, 1565, 1897, 
983, 469, 234, 1392, 3259, 1557, 2400, 2211, 1803, 1312, 1338, 2126, 1384, 733, 84, 587, 1868, 1438, 
1897, 1970, 1352, 1013, 1051, 1987, 1267, 650, 432, 492)



Δεύτερη εργασία μαθήματος

(α) Αναπαραστήστε τη σειρά σε χρονοδιάγραμμα.
plot(st1, type = 'l')

(β) Χρησιμοποιήστε τη δοκιμασία Box–Pierce και επιβεβαιώστε πως πρόκειται για χρονοσειρά 
εξαρτημένων τιμών.
Box.test(st1, lag = 10, type = "Ljung-Box")

Διατυπώστε το αποτέλεσμα ακολουθώντας το υπόδειγμα:
“Η δοκιμασία Box–Pierce κατέδειξε πως το δείγμα των τιμών της χρονοσειράς προέρχεται από 
χρονοσειρά εξαρτημένων μεταβλητών (χ2(_____________) = _____________, p = _____________)”

(γ) Δημιουργήστε το συσχετόγραμμα και προσδιορίστε τυχόν περιοδικότητα.
acf(st1, lag.max = 100) 

(δ) Υπολογίστε τη διαφοροποιημένη σειρά και επαληθεύστε ότι η περιοδικότητα αφαιρέθηκε.
st1.D1 <- diff(st1, lag = 12, differences = 1)
plot(st1.D1, type = 'l')
acf(st1.D1, lag.max = 100) 



Δεύτερη εργασία μαθήματος

Βάσει των θεωρητικών προβλέψεων για την αυτοσυσχέτιση ενός ΜΑ(1) μοντέλου, τι μπορείτε να 
συμπεράνετε για τη διαφοροποιημένη σειρά από το τελευταίο ACF;

(ε) Προσαρμόστε κατάλληλο μοντέλο SARIMA(p, d, q)(P, D, Q)m και ελέγξτε την ποιότητα της 
προσαρμογής του.  

Ενδεικτικός κώδικας:
library(forecast)
my.model = Arima(st1, order = c(1, 0, 0), seasonal = list(order = c(0, 1, 1), period = 12))
print(my.model)
checkresiduals(my.model) 

(στ) Πειραματιστείτε με τους δείκτες και βρείτε ένα μοντέλο που προσαρμόζεται όσο το δυνατόν 
καλύτερα στα δεδομένα, ελαχιστοποιώντας το δείκτη AIC.

(ζ) Προχωρήστε σε πρόβλεψη με τις εντολές:
my.forecast = forecast(my.model)
summary(my.forecast)
plot(my.forecast, showgap = FALSE)
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