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Numerical Weather Prediction-NWP

- The only way to predict the
weather and the climate are
the NWP models

- NWP models incorporate as
many physically meaningful
models of the atmospheric and . )
surface processes as possible -
given computational

Yegetation

constraints :
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atm OS p h e rE/O Ce an/l an d Education, and Training (COMET®) Website at http://meted.ucar.edu/ of the University
Corporation for Atmospheric Research (UCAR) pursuant to a Cooperative Agreement
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sophisticated to incorporate
the feedback between the
atmosphere and underlying
water surfaces
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Atmospheric model definition

- Atmospheric models are set of partial differential equations
defining the basic atmospheric variables (temperature, wind,
geopotential, humidity, pressure)

- They describe the spatiotemporal state of the atmospheric
conditions

- Atmospheric models incorporate as many physically meaningful
models of surface processes as possible (given computational
constraints) to make accurate forecasts

Solar radiation Convection .
\

Moisture fluxes Condensation \

The source of this material is the Cooperative Program for
Operational Meteorology, Education, and Training

. | (COMET®) Website at http://meted.ucar.edu/ of the
University Corporation for Atmospheric Research (UCAR)
pursuant to a Cooperative Agreement with National Oceanic
and Atmospheric Administration. ©1997-2004 University
Corporation for Atmospheric Research. All Rights Reserved.
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NWP principles

- Certain physical laws of motion and
conservation of energy (for example,
Newton's Second Law of Motion and the First
Law of Thermodynamics) govern the
evolution of the atmosphere

- Vilhelm Bjerknes first recognized that NWP
was possible in principle in 1904

- He proposed that NWP could be seen as an
initial value problem in mathematics:

A since equations govern how

meteorological variables change with time, if
we know the initial condition of the
atmosphere, we can solve the equations to
obtain new values of those variables at a later
time (i.e., make a forecast)
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NWP fundamental concept

e To mathematically represent an NWP model in its simplest form,
we write: A

— = F@&)

e AA equals the change in a forecast variable at a particular point
In space

e At equals the change in time (stands for the timestep)
e F(A) represents terms that can cause changes in the value of A

e In NWHP, future values of meteorological variables are solved for
by finding their initial values and then adding the physical forcing
that acts on the variables over the time period of the forecast.
This is stated as:

forecast initial

A A + F{A) At

e where F(A) stands for the combination of all of the kinds of
forcing that can occur
- /
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NWP primitive equations

e The five equations govern

thermodynamics of the
atmosphere and are derived
from the set of conservation

energy, and moisture

e This set of equations s
considered to be closed and
complete (meaning that we can
forecast values of all terms by | *
solving each of the equations in
the proper sequence):

e All equations use the same
basic forecast variables (u, v, w,
T, q, and z)

changes Iin the motion and]| ™

1b.

laws of momentum, mass,| :

Wind Forecast Equations

du au du du oz

— = -u -V -0 o+t = iz
a ax ay ap 9 ax x
av av av av oz
= WSS vy 0 = fu =zl 5
at ax ay ap 9 ay y
Continuity Equation

du av X

ecber ol — =0

Temperature Forecast Equation

aT arT aT aT RT H
— = -y -V —-()( - )+—
at ax ay c

Moisture Forecast Equation

2a, a . 2

=r=2u - v - o o D) o
at ax a3y ap

Hydrostatic Equation
RT
ap pg

oz

The source of this material is the Cooperative Program for

Operational Meteorology, Education, and Training

(COMET®) Website at http://meted.ucar.edu/ of the

University Corporation for Atmospheric Research (UCAR)

pursuant to a Cooperative Agreement with National Oceanic

and Atmospheric Administration. ©1997-2004 University

Corporation for Atmospheric Research. All Rights Reserved. /
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Finite differences approach

e Let the numerical solution of the moisture equation

e It only includes 1-D moisture advection terms

e Itis a simplified form of the Eq. (4)

 Its numerical solution is based on the finite differences method
e How do the terms of this equation represent on a 3-D grid?

Derivative form of simplified moisture equation

Finite difference form of simplified moisture equation

[ t+1 l) t t
q - Yy _ l:1:.-.+1_.5,l - a 1.y

At 24%

Lﬂ}{:au kern—

20%

Written more conceptually : ;
(] now - Current Moisture Value at Forecast Point

f t AL oW Q) east - ¢ west - Represents the Moisture Gradient Across
AHEsEE q now -u ( v _q ) Adjacent Grid P oints
2hx ez pE U - Represents the Average Wind Between q west and q east

k The COMET Pragrakn /
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Data Assimilation (DA)

- NWP is an initial/lboundary
value problem

s leen an eStImate Of the ERS.s o Geo-stationary Polar-orbiting satellites
= satellites
present state of the | IEES ‘»%-’!c. e
atmosphere (initial conditions) 2 TR ot

appropriate surface and lateral
boundary conditions the model
simulates or forecasts the
evolution of the atmosphere — .
.- The more accurate the Sucys - diting o308
estimate of the initial || sueazos
conditions, the Dbetter the
guality of the forecasts
- This approach is called data
assimilation
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The DA concept

- ..[the atmosphere] "is a chaotic system
introduced

destruction of knowledge and its
observations"

[

H
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into the system can grow with time...
consequence, data assimilation is a struggle between chaotic
restoration

in which errors
AsS a

by new

Leith (1993)
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The DA problem

- NWP models: elements > 107 (5xnxmxL)
 No. of obs. << No. of (unknown) elements in x

- Need to fill-in the missing information with prior knowledge

The state vector x The observation vector y
i . .}T]
§ —4 u zonal wind field i:j
v B v meridional wind field :
| n ‘, 0 potential temperature -
0 — P pressure :
] (1 g specific humidity N
P i i A longitude
) ¢ latitude
g A - [ vertical level
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Variety data combination

R Data
= assimilation

¢

(¢

Data assimilation serves as a bridge between real-world observations and computer simulations. The accuracy of
weather forecasting is greatly improved when a variety of observation data is used to help produce more realistic
simulations by means of numerical prediction models.
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““"Variational analysis. It is based on optimal control theory and the
aim is to minimize a given cost function that measures the model-
to-data misfit

* Least Squared method
* Optimal Interpolation (Ol)
* Three-Dimensional Variational assimilation (3D-Var)

* Four-Dimensional Variational assimilation methods (4D-Var)

e~ Sequential methods. The observations are assimilated as soon
as they become available

* Kalman Filter (Kalman Filter), Extended Kalman Filter and
Ensemble Kalman Filter
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How 1t works. ..

We want to measure the temperature in a room, and we have two
thermometers that measure with errors

T1=Ti+e&; T, =T + &
We assume that the errors are unbiased ¢; =&, =0
Variances e2 = g2; g2=g2
The errors of the two thermometers are uncorrelated €,6, = 0
The question is: how can we estimate the true temperature (T))
optimally? We call this optimal estimate the “analysis of the

temperature (T,)"
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How 1t works. ..

- We try to estimate the analysis from a linear combination of the
observations T,=a,T; + a,T,

. Assume that the analysis errors are unbiased T,=T,

- This implies that a; + a,=1

- T, will be the best estimate of T, if the coefficients a;, a, are

chosen to minimize the MSE of T,

. O-c% =Ty —Tp)?*=[ay (T, = Tp) + (1 — ay)(T, — T)]?

2
- Minimizing a function g% = 0 (Fermat)
1
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How 1t works. ..

2 2 2

O' o o
Mlnlmlzmg——O:al 0y =
oaq 01 +0; 01 +0;
1 1
e 2
AL =71 1,0, = 1
e o
1 2 1 2

In the first formula the weight of obs 1 is given by the variance of
obs 2 divided by the total error

In the second formula the weights of the observations are
proportional to the "precision" or accuracy of the measurements
(defined as the inverse of the variances of the observational

errors)
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How 1t works. ..

- Two measurements and an optimal linear combination (analysis)

T,=a.T; + a,T,

- Since a; + a,=1
Tq=T; + ay(T, — T;)

J22 01

. ' iCI ' 2 = —— =
Optimal coefficients (min a4 ) a4 21030 82 = 57147
1 1
2 2
__ % . __ 9
MTT TR T 1
2T 2 2Tz
1 2 1 2
- Replacing, we get
0.2 — 012022 i — i + i
@ 62+02’" o2 % o2
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How 1t works. ..

Assume that T,=T, (forecast) and T,=T, (observation)
T,=a.Ty, + a,Ty =Ty + a,(Ty — Tp)
A forecast and an observation optimally combined (analysis)

2

Ta=Ty + 2757 (To = Tp)=Ty +w (To = Tp)

%

= +
o o2  o%

If the statistics of the errors are exact, and if the coefficients are
optimal, then the "precision" of the analysis (defined as the
Inverse of the variance) is the sum of the precisions of the
measurements

Least squared method
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Summarizing the theoretical background

2

o
TIa=Tp + szaz (TO — Tb) =Tp +w [Ty — h(Tb)]
b 100
« Analysis = background + optimal weight x (observational

increment)
- Observation operator. model variables => observed variables
- Optimal weight = background error variance/total error variance
- Precision = 1/error variance

- Analysis precision=background precision + obs precision

- We assume no bias, no error correlation
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The variational approach

- We have a forecast T, (prior) and a radiance obs y, = h(T;) + &
- The new information (or innovation) is the observational
increment y, — h(Tp)

- From a 3D-Var point of view, we want to find a T, that minimizes

](T ) _ (Ta_Tb)2 + (h(Ta)_YO)Z
) =

the cost function J: > >
ZO'b 20'0

- This analysis temperature T, is closest to both the forecast T,
and the observation y, and maximizes the likelihood of T, ~T,
given the information we have

- It is easier to find the analysis increment T, -T, that minimizes

the cost function J




3DVar/4DVar

e 3D-Var based on the 3D cost function minimization

1
Japvar = minz [(xa — xb)TB‘l(xa — xb) + (Hx® — y)TR-Y(Hx® — y)]
Distance to background Distance to observations

- B s the model error covariance matrix; R is the observational
error matrix (diagonal);
- X2is the control variable; x? is the background field;

- His the observation operator (nonlinear); y is the observation

.1 — —
Japvar = min> [Cxo — xp) "B (%9 — xp) + Yi—1(Hx; — yi)TRi 1(Hxi — Y]
Distance to background Distance to observations in a
at the initial time time window interval t,-t,




| Minimizing the cost function

- The problem reduces to an optimization problem in 10/
dimensional phase space
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Schematic representation of gridded analyses

Data Assimilation Process
Fed = Ob. to follow

1B. Observations =
Blue = RADB
4 d =l = {Ftaw data “he':'ff__} Purple = Aircraft
J!EE{_ J —T— = Wind Speed (5 kt inc.)
f 2. Observation increments
=
4 Yy )
& % Quality control
ﬁ = (on increment)
I 'I\E'._'u'-'..@_.- ‘:’ |
Objnm:ummy
1A, Short-range foracast J / procedure
v o o o o o e e »
Wﬁb";v” a‘rs"r ;#gww — r:\ i 3. Analysis incremeants
ww“"‘%"#’é‘s{ﬂ‘r'@fr# or "corrections”
g/ o of of o & ’;“}‘5}“}1333 LR ,
&_u_ﬂ"v'@’fg‘rfg'nf . =N %Y % %Y ) Th(isq:r_ceﬂ?fthls
11790 P TT Cycling e . \'5 } Y% Matenal s the
Yo'y o e S i e b Cooperative Program for
ﬁ-—'ﬂh-w—ww’.@fﬁfgfif b ) \}}\;X}‘ vy Operational Meteorology,
Ve Lm““‘"%"w’# 4. Analysis r v N \ _',".\}}; ri-" :'j Education, and Training
TR EX ) e | R T N GRS U U 1 (COMET®) Website at
b b o o E e he/ ;{m"W L O ; ) http://meted_.ucar.edu/ of
-l b o 4 W 4 ad-d - - A 33 the University
" = dehv . 4 i : J 4% ) ) Corporation for
I~ Atmospheric Research
Eii'rdg s# LT T S E"E_,J_. j j j (UCAR) pursuant to a
o Cooperative Agreement
-g gﬂ | f— with National Oceanic
] and Atmospheric
& e o Administration. ©1997-
Remainder of full-length forecast (Eta to o I M 87 t&mfﬂi "rd é%?gog;'i\éir?gf
B0 or 84 hours, AVN to 126 hours, etc.) ol d Atmospheric Research.
Schlatter f HOAA | All Rights Reserved.
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Msmpuw

- Nowcasting is a form of very
short-range weather
forecasting (usually up to 6
hours) based on very fined
observational data (Kalnay,
2003)

- It usually runs every 1 hour
(analysis cycle) or even
shorter and provides 3hr
forecasts on very high
resolution (eg. 1km)

05:02:36
2017-02-20

utc

05:02
2017-02-20
0400 = 0600
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Nowcasting vs NWP forecast skill

| —Theoretical limitof predictability
__—Nowcasting methods
__ Numerical weather prediction models

Forecast skill —»

Forecast lead time —»

Golding (1998), Austin et al. (1987), Wilson et al. (1998)
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Basic components

e Data Acquisition and Quality Control

Diverse data Force geometric Reconcile Generate
sets smoothing gridded fields; analyses and
constraints to force nowcasts
interpolate data consistency
to high res. based on
grids atmospheric
scale

e Univariate Analysis of the
. Temperature

o Winds
. Water Vapor
° Clouds

»  Microphysical variables
»  Vertical motions
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Local Analysis and Prediction System (LAPS)

v NOAA's Local Analysis and Prediction System (LAPS) is an
advanced mesoscale meteorological data assimilation tool
designed to exploit all available data sources (local and global)
and produce analyzed and guessed grids (Albers, 1995)

v LAPS Incorporates a number of surface and upper air
observations (METAR/SYNOP, satellite, soundings, radar, etc) to
produce high spatial and temporal resolution analysis fields

v It is based on the traditional objective analysis scheme using the
cost function approach in order to minimize differences between
the analysis and the observational fields

v Currently, LAPS has been ported in various European institutes
and universities to support operational and research activities
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Common data formats

Formats

Description

NetCDF

Network Common Data Form i1s a set of
software  librarites and  machine-
independent data formats that support
the creation, access, and sharing of
array-oriented scientific data.

GRIB1/2

GRIdded Binary, the standard format
for the storage and interchange of
meteorological data maintained by

Maintainer:  World  Meteorological
Organization (WMO)

HDF

Hierarchical Data Format, a library
and multi-object file format for the
transfer of graphical and numerical data
between machines.
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The Binary Universal Form for the
Representation of meteorological data (BUFR)

v BUFR was created in 1988 with the goal of replacing the WMQO's

dozens of

character-based,

position-driven meteorological
codes, such as SYNOP (surface observations), TEMP (upper air
soundings) and CLIMAT (monthly climatological data)

BUFR Levels 100-SFC hPa September 2018
w0 Average number of observations decoded in 24-hour periods = 761500
30 (27 (17 (16 |15 | 11 -] 4 2 2 3 7 1 9 -1 7 7 7 7 5 L] 5 5 5 3 1 2 2 1 1] 1] 4 |13 |16 |26 |30
192 |180 |353 (216 |48 (39 |27 |30 |28 |19 |67 |139 |[153 |157 (144 |127 |94 |59 |26 |42 | 9 - 1 2 10 | 6 7 7 T 2 |22 |74 |108 (179 (156 (174
665 (1084 3007 (3244 117 (55 |40 |34 (41 54 (62 |192 (486 | 740 (1007 1072|859 |614 (697 (12161205 |40 (48 |47 |43 (25 |22 |20 | 21 9 58 (63 |150 (675 |753 (659
° 616 |494 |628 (717 |[3695|1149 |586 (322 |142 |132 (296 |381 (1164 1828 2057 (1728|1183 |6527 B139 FOZ? 1019 |433 |50 (48 | #1 81 (108 |69 (57 |79 |114 (139 |726 |577 |812 (682
452 |392 | 475 |478 |8BB pa4e7 (11220 P229 16095113159 pis22 (1222 (1455 2001 1531|760 |337 [2303 8733 EGZO 460|198 |132 |48 |44 |110 | 33 | 16 | 76 |379 (180 (116 1394|709 |718 |467
177 | 88 | 201 |965 1624 p2360 poi170 pB966 o657 (o443 pedss (1101 | 809 | 703 |362 | 70 |291 [2063 1099 1075 1904 1083 |186 |154 | 93 | 31 | 12 | 45 |330 |734 3967 8819 2615|137 (349 (281
* 298 (377 (3929(1585 |676 | 198 |992 [B617 [ives4 poves 234 1041 (558 (414 (102 | 16 (358 (27 (B8 | 35 | 14 |143 |222 [1029 |661 |BO3 |692 (713 (603 (11519 2447 (259 (206 | 79 | 114 |196
24 |143 |220 |178 |119 | 25 | 4 (148 3300(1991 1992 2603 (235 (43 (43 |88 (37 (23 |110 |[115 |33 |62 | 7 4 |216 |868 | 743 (523 (1032 (930 |748 (133 |321 |57 |29 |26
116 | 155 |165 | 98 | 49 4 1] ] 5 |[337 p692| 55 |187 | 13 |188 |152 | 6 | 45 |389 (227 (28 (66 |18 1 16 (197 170 (275 (2284 (770 |410 |55 (208 |47 |26 | 18
° 184 213 | 112 | 12 1 o 34 |552 2167|178 |199 [491 |876 |42 |24 |27 (16 |82 | 6 |69 |35 | 9 2 [53 |71 |57 | 341|235 (462 |385 |59 (20 [13 (83
11 |64 |20 | 31 L] o 1] 758|306 | 310 (3168|669 |42 |32 | 6 2 7 12 1 91 |11z | 2 6 |38 |46 |74 |212 |116 |253 |255 (21 |97 |&6
135 |52 | @ 0 o 2 5 8§29 |574 |1660BO77| 36 | 13 |10 | 5 3 " (16 (11 (36 (123 | 0 1 2 |26 |58 |45 |56 |182 |204 (219 (308 [121
= 35 3 (1] 0 1] 2472 1419 (1862 | 2 ] 3 3 2 4 1] 2 4 4 2 7 7 B8 13 | 88 |38 |161 236 |423 (379 438
14 8 5 2 2 o 46 | B9 o 1] 1 1 2 2 1 o 1] 1] 1 1 9 |548 2473
3 5 8 9 1 2 62 | 56 0 0 1] 0 0 3 3
-60
2 1 1 2 1 1 1] o 1] 1] 1] 1] 2 2
1] 1 1 1 1 1 1] ] o
-80
-180 -150 -120 -80 60 -30 1] 30 60 80 120 150 180
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LAPS nowcasting development and
evaluation

A simplified forward advection scheme has been embedded in
LAPS in order to overcome the 'spin up' period which routinely
appears in the conventional numerical weather predictions
(NWP)

This way LAPS is able to advance the meteorological
parameters in time and provide an estimation of future conditions
3 hours ahead from the analysis hour

In order to examine the capabillities of the system against
conventional NWP, the WRF model with the NMM core was run
in operational mode for the same time period

Using the model output for the same forecast window (1-3 hrs),
which is part of the model 'spin-up' time, WRF-NMM was
evaluated having as reference the same station data
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LAPS advection scheme

Simple first order advection scheme in 2 dimensions (x,y)

Solving the advection equation for various meteorological
parameters (Temperature, Precipitation, Humidity)

ou ou ov ov
E'FCUa—x—O and 6t+CV6y_O (1)

At
. . A
C is the Courant number defined as CU = u—t and CV =v—
Ax Ay
| | wtti—ut uy,  tHi-yt
Equations (1) can be written as Y Ax =0 (2

First the Courant number is calculated in order to see if the time-
step selected assures the stability of the formulation

By solving equation (2) we can find the value of the parameter at
time t+1 using information at time t
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LAPS nowecasting evaluation

* The performance assessment of the system has as reference the
surface measurements available from the WMO network

e The available surface observations from more than 500
conventional stations were used to verify and compare
categorical near to analysis forecasts for one month period

e Furthermore in order to examine the capabilities of the system
against conventional NWP, the WRF model with the NMM core
was run in operational mode for the same time period

e Using the model output for the same forecast window (1-3 hrs),
which is part of the model 'spin-up' time, WRF-NMM was
evaluated having as reference the same station data

e Spyrou C. V.M. Nomikou, A. Papadopoulos and P. Katsafados,
2017: “LAPS nowcasting — Development and evaluation”. 2nd
European Nowcasting Conference (ENC), 03-05 April 2017,

\_ DWD, Offenbach, Germany J
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LAPS-WRF configuration

e LAPS-046-13

e Horizontal resolution: 15x15km
(550x425 grid points), 43 vertical levels

e Background fields: GFS 0.25°x0.25°,
26 isobaric levels up to 50 mb,
assimilated cycles 00, 06, 12, 18UTC

(NCEP is acknowledged for the data provision)

e Assimilated data: METAR/SYNOP and

~_ 3 .
s e ¥

RAOB, EUMETSAT Multi-Sensor |EV<'J‘|U<31“0n period \
Precipitation Estimate (MPE), NOAA's 29/1-16/2/2017

QMORPH prOdUCt V Topogrphyheight(m)
e WRF-NMM (ver3.0) A ST

e Horizontal resolution: 0.09°x0.09°
(305x273 grid points), 38 vertical levels

e IC & BC: GFS 0.5°x0.5°, 26 isobaric
\_ levels up to 50 mb, cycle 12UTC

-384 0 316 666 1016 1366 1716 2066 2416 2766 3166 3466
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LAPS-WRF temperature evaluation

BIAS Temperature

2
1,5
1
0,5 ——LAPS Hourl
=-WRF Hourl
0 /\ | " B Pal | —=LAPS Hour 2
20/1/20 £11/7%

| )\ —4—WRF Hour 2
17 0:00 17/0: 1 7 . > Gl 14/2/20170:00 19/2/2017 0:00
: : A ) ‘l ' —#—=LAPSHour 3
4 wA | e \ N , 7/ —0—WRF Hour 3
‘ / 3 \‘ \ /> AN/A
| ‘ WJ
-1,5
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LAPS-WRF temperature evaluation

RMSE Temperature

4,5

3,5

0,5

0 T T T T T 1
20/1/20170:00 25/1/20170:00 30/1/20170:00 4/2/20170:00  9/2/20170:00 14/2/20170:00 19/2/20170:00

=—LAPSHourl
=—-WRF Hourl
——LAPS Hour 2
=#—=WRF Hour 2
—+—LAPSHour 3
—0—WRF Hour 3
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LAPS-WRF wind speed evaluation

BIAS Wind Speed

1,5

0,5

0

T ¥ v T ot T 1
20/1/2017 0:0 5/ 1700 30/1/2017 0:00 VZOT} 0:00 9/2/@{:00 MON' 0:00 19/2/2017 0:00
-0,5 b V

-1,5

=—LAPSHourl
=—-WRF Hourl
——LAPS Hour 2
=—=WRF Hour 2
—+—LAPSHour 3
—0—WRF Hour 3
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LAPS-WRF wind speed evaluation

RMSE Wind Speed

4,5

3,5

0,5

0 T T T T T 1
20/1/20170:00 25/1/20170:00 30/1/20170:00 4/2/20170:00  9/2/20170:00 14/2/20170:00 19/2/20170:00

=—LAPSHourl
=—-WRF Hourl
——LAPS Hour 2
=#—=WRF Hour 2
—+—LAPSHour 3
—0—WRF Hour 3
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LAPS-WRF aggregated statistics

Temperature Wind speed
LAPS ) )
Bias RMSE Bias RMSE
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LAPS temperature evolution
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LAPS precipitation evolution
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