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Design Procedure 1: Critical 
Section and Loading  

 
To establish the critical section and the critical loading, 
the designer: 

 
1. Considers the external loads applied to a machine 

(e.g., a gyroscope) 
2. Considers the external loads applied to an element 

within the machine (e.g., a ball bearing) 
3. Locates the critical section within the machine 

element (e.g., the inner race) 
4. Determines the loading at the critical section (e.g., 

contact stresses) 



Example 1: Simple Crane 

Figure 1:  A schematic of a simple crane and applied forces considered in 
Example 1. (a) Assembly drawing; (b) free-body diagram of forces acting on the 
beam. 



Load Classification 
Any applied load can be classified with 
respect to time in the following ways: 
 
1. Static load - Load is gradually 

applied and equilibrium is reached 
in a relatively short time. The 
structure experiences no dynamic 
effects. 

2. Sustained load - Load, such as the 
weight of a structure, is constant 
over a long time. 

3. Impact load - Load is rapidly applied. 
An impact load is usually attributed 
to an energy imparted to a system. 

4. Cyclic load - Load can vary and even 
reverse its direction and has a 
characteristic period with respect to 
time. 

 

The load can also be classified 
with respect to the area over 
which it is applied: 
 
1. Concentrated load - Load is 

applied to an area much 
smaller than the loaded 
member.  

2. Distributed load - Load is 
spread along a large area. An 
example would be the 
weight of books on a 
bookshelf. 



Load Classification 

Figure 2:  Load classified as to location and method of application. (a) Normal, 
tensile; (b) normal, compressive; (c) shear; (d) bending; (e) torsion; (f) combined. 



Sign Conventions 

Figure 3:  Sign conventions used 
in bending. (a) Positive moment 
leads to a tensile stress in the 
positive y-direction; (b) positive 
moment acts in a positive 
direction on a positive face. The 
sign convention shown in (b) will 
be used in this book. 



Supports and 
Reactions 

Table 1:  Four types of support with 
their corresponding reactions.  



Example 3 

Figure 4:  Lever assembly and results. (a) Lever assembly; (b) results showing (1) 
normal, tensile, (2) shear, (3) bending, (4) torsion on section B of lever assembly.  



Example 4 

Figure 5:  Ladder in contact with a house and 
the ground while having a painter on the 
ladder. 
 



Example 5 

Figure 6:  Sphere and applied forces. (a) Sphere supported with wires 
from top and spring at bottom; (b) free-body diagram of forces acting 
on sphere. 



Example 6 

Figure 7:  External rim brake and applied forces, considered in Example 2.6. (a) 
External rim brake; (b) external rim brake with forces acting on each part. (Linear 
dimensions are in millimeters.) 



Beam Supports 

Figure 8:  Three types of beam support. (a) Simply supported; (b) cantilevered; (c) 
overhanging. 



Design Procedure 2: Drawing Shear 
and Moment Diagrams by the 

Method of Sections 
The procedure for drawing shear and moment diagrams by the method of 
sections is as follows: 
 
1. Draw a free-body diagram and determine all the support reactions. 

Resolve the forces into components acting perpendicular and parallel to 
the beam's axis. 

2. Choose a position, x, between the origin and the length of the beam, l, 
thus dividing the beam into two segments. The origin is chosen at the 
beam's left end to ensure that any x chosen will be positive. 

3. Draw a free-body diagram of the two segments and use the equilibrium 
equations to determine the transverse shear force, V, and the moment, M. 

4. Plot the shear and moment functions versus x. Note the location of the 
maximum moment. Generally, it is convenient to show the shear and 
moment diagrams directly below the free-body diagram of the beam. 

5. Additional sections can be taken as necessary to fully quantify the shear 
and moment diagrams. 



Example 7 

Figure 9:  Simply supported bar. (a) Midlength load and reactions; (b) free-body 
diagram for 0 < x < l/2; (c) free-body diagram for l/2 ≤ x ≤ l; (d) shear and moment 
diagrams. 



Example 8 

Figure 10:  Beam for Example 8. (a) Applied loads and reactions; (b) Shear diagram 
with areas indicated, and moment diagram with maximum and minimum values 
indicated. 



Design Procedure 3: Singularity Functions 

Some general rules relating to singularity functions  are: 

1. If n > 0 and the expression inside the angular brackets is positive (i.e., x ≥ a), then 
fn(x) = (x – a)n. Note that the angular brackets to the right of the equal sign in 
Eq.~(2.6) are now parentheses. 

2. If n > 0 and the expression inside the angular brackets is negative (i.e., x < a), then 
fn(x) = 0. 

3. If n < 0, then fn(x) = 0. 

4. If n = 0, then fn(x) = 1 when x ≥ a and fn(x) = 0 when x < a. 

5. If n ≥ 0, the integration rule is  

 

 

Note that this is the same as if there were parentheses instead of angular brackets. 

6. If n < 0, the integration rule is  

 

 

7. When n ≥ 1, then 



Design Procedure 4: Shear and Moment 
Diagrams by Singularity Functions 

The procedure for drawing the shear and moment diagrams by making 
use of singularity functions is as follows: 
1. Draw a free-body diagram with all the applied distributed and 

concentrated loads acting on the beam, and determine all support 
reactions. Resolve the forces into components acting perpendicular 
and parallel to the beam's axis. 

2. Write an expression for the load intensity function q(x) that 
describes all the singularities acting on the beam. Use Table 2.2 as 
a reference, and make sure to “turn off” singularity functions for 
distributed loads and the like that do not extend across the full 
length of the beam.  

3. Integrate the negative load intensity function over the beam length 
to get the shear force. Integrate the negative shear force 
distribution over the beam length to get the moment, in 
accordance with Eqs. (2.4) and (2.5). 

4. Draw shear and moment diagrams from the expressions 
developed. 



Singularity 
Functions 

Table 2:  Singularity and load 
intensity functions with 
corresponding graphs and 
expressions. 



Example 9 

Figure 11:  Beam for Example 8. (a) Applied loads and reactions; (b) Shear diagram with 
areas indicated, and moment diagram with maximum and minimum values indicated. 



Example 
10 

Figure 12:  Simply supported beam examined in Example 10. (a) Forces acting on beam 
when P1 = 8 kN, P2 = 5 kN; wo = 4 kN/m; l = 12 m; (b) free-body diagram showing 
resulting forces; (c) shear and (d) moment diagrams. 



Example 11 

Figure 13:  Figures used in Example 11. (a) Load assembly drawing; (b) free-body 
diagram. 



3D Stress Element 

Figure 14:  Stress element showing general 
state of three-dimensional stress with origin 
placed in center of element. 

Normal stress: 

Stress tensor: 



2D Stress Element 

Figure 15:  Stress element showing two-dimensional state of stress. (a) Three-
dimensional view; (b) plane view. 



Equivalent Stress States 

Figure 16: Illustration of equivalent stress states; (a) Stress element oriented in the 
direction of applied stress; (b) stress element oriented in different (arbitrary) direction.   



Stress on an Oblique Plane 

Figure 17:  Stresses in an oblique plane at 
an angle φ. 

Stress transformation equations: 



Design Procedure 5: Mohr’s Circle 
The steps in constructing and using Mohr's circle in two dimensions 
are as follows: 
1. Calculate the plane stress state for any x-y coordinate system so 

that σx, σy, and τxy are known. 
2. The center of the Mohr's circle can be placed at 

 
 

3. Two points diametrically opposite to each other on the circle 
correspond to the points (σx, -τxy) and (σy, τxy). Using the center 
and either point allows one to draw the circle. 

4. The radius of the circle can be calculated from stress 
transformation equations or through geometry by using the center 
and one point on the circle. For example, the radius is the distance 
between points (σx, -τxy) and the center, which directly leads to 

 
 
 
 
 

 



5. The principal stresses have the values σ1,2 = center ± radius. 
6. The maximum shear stress equals the radius. 
7. The principal axes can be found by calculating the angle 

between the x-axis in the Mohr's circle plane and the point 
(σx, -τxy). The principal axes in the real plane are rotated one-
half this angle in the same direction relative to the x-axis in 
the real plane. 

8. The stresses in an orientation rotated φ from the x-axis in the 
real plane can be read by traversing an arc of 2φ in the same 
direction on the Mohr's circle from the reference points      
(σx, - τxy) and (σy, τxy). The new points on the circle 
correspond to the new stresses (σx’, - τxy) and (σy’, τxy), 
respectively.  

 

Design Procedure 5: Mohr’s Circle (cont.) 



Mohr’s Circle 

Figure 18:  Mohr's circle diagram of Eqs.  

Center at: 

Radius: 



Example 14 

Figure 19:  Results from Example 14. (a) 
Mohr's circle diagram; (b) stress element 
for principal normal stress shown in x-y 
coordinates; (c) stress element for 
principal shear stresses shown in x-y 
coordinates. 



Mohr’s Circle for Triaxial Stresses 

Figure 20:  Mohr's circle for triaxial stress state. (a) Mohr's circle representation; (b) 
principal stresses on two planes. 



Example 15 

Figure 21:  Mohr's circle diagrams for Example 15. (a) Triaxial stress state when σ1 = 
234.3 MPa, σ2 = 457 MPa and σ3 = 0; (b) biaxial stress state when σ1 = 307.6 MPa and σ2 = 
-27.6 MPa; (c) triaxial stress state when σ1 = 307.6 MPa, σ2 = 0, and σ3 = -27.6 MPa. 



Octahedral Stresses 

Figure 22:  Stresses acting on octahedral planes. (a) General state of stress. (b) normal 
stress; (c) octahedral shear stress. 

Octahedral stresses: 



Normal Strain 

Figure 23:  Normal strain of cubic element subjected to uniform tension in x-direction. 
(a) Three-dimensional view; (b) two-dimensional (or plane) view. 

Normal strain: 



Shear Strain 

Figure 24:  Shear strain of cubic element subjected to shear stress. (a) Three-
dimensional view; (b) two-dimensional (or plane) view. 



Plane Strain Element 

Figure 25:  Graphical depiction of plane strain element. (a) Normal strain εx; (b) normal 
strain εy; and (c) shear strain γxy. 



Example 18 

Figure 26:  Strain gage rosette used in Example 18. 


