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Chapter 5 – Torsion 



Torsional failures 
(ductile, buckling, 
buckling): 



Bars subjected to Torsion 

Let us now consider a straight bar  
supported at one end and acted upon by 
two pairs of equal and opposite forces. 
 
 
Then each pair of forces and form a 
couple that tend to twist the bar about its 
longitudinal axis, thus  producing surface 
tractions and moments. 
 
Then we can write the moments as  
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Torsion of Circular Shafts 

• In this chapter, we will examine uniaxial bars subject to torque. 

• Where does this occur? 

Transmission Shaft 
 

Force Couples 



Torsion 

Recall: External loads (T) 
produce internal loads which 
produce deformation, strain and 
stress. 



Torsion of Circular Shafts cont’d 

• We assume 
– Bar is in pure torsion 
– Small rotations (the length and radius will not change) 

• How does the bar deform? 
– Cross-section of the bar remains the same shape, bar is simply rotating. 

– Cross-section remains perpendicular to axis of cylinder (cylinder does 
not warp). Not true for most 

non-circular bars 



Chapter 5: Torsion 

Torsional Deformation of a Circular Shaft 

Torque is a moment that twists a member about its 
longitudinal axis. 
If the angle of rotation is small, the length of the shaft 
and its radius will remain unchanged. 



’ 

Angle of Twist 
 
• Deformation of a circular shaft subjected to pure torsion 

– Fix left end of shaft 
– A moves to A 
– φ  = angle of twist (in radians) 

 
• What are the boundary conditions on φ ? x 

– φ (x) = 0 at x = 0 
– φ (x) = φ  at x = L 

 
• For pure torsion, φ  is linear. 



Shearing Strain 
 
 
• Calculate the surface shear strain in the 

cylinder. 
• Consider an element of length dx. 
• Recall we assume small φ  & small γ. 

dx 

• This equation applies to any function φ (x). 
• For pure torsion φ (x) = φ x / L, so 

C’ C 



Shearing Strain cont’d 

Maximum shear strain on surface 
 
 
• The maximum shear strain on the surface of 

the cylinder occurs when ρ=c. 

• We can express the shearing strain at any 
distance from the axis of the shaft as 



The Torsion Formula 

When material is linear-elastic, Hooke’s law applies.  
A linear variation in shear strain leads to a 
corresponding linear variation in shear stress 
along any radial line on the cross section. 



The Torsion Formula 

If the shaft has a solid circular cross section, 
 
 
 
 
 
 
If a shaft has a tubular cross section, 



Shear stress profile – YOU MUST 
UNDERSTAND THIS!!!! 

Where is shear stress max? 
zero? How does it vary 
along the length and 
circumference? 

Stress Profiles: 



Stress Profiles: 



Shearing Strain cont’d 

• We can also apply the equation for maximum 
surface shear strain to a hollow circular tube. 

c 
c 

• This applies for all types of materials: elastic, linear, non- 
linear, plastic, etc. 



Elastic Shearing Stress 

• Calculate shear stress in a bar made of linearly elastic material. 
• Recall Hooke’s Law for shearing stress: τ=Gγ 



Torque 
 
 
• We still need to relate τ to the applied torque T, which is generally 

the known, applied load. 
• First, find the resultant moment acting on a cross-section and set this 

equal to T. 

c 



Torque cont’d 
 
 
• Continuing from previous slide: 

– Where J is the polar moment of inertia of the cross section of the bar  
 
• Plug this into the equation for τmax. 



Torque cont’d 
 
 
• For a non-uniform bar 

φ  = ∑ φ  = ∑ Ti Li 
n n 

i 

• For a continuously varying bar 

=1  G J i=1 i i i 



Inclined Plane 

• Cut a rectangular element along the plane at an angle θ. 



Inclined Plane cont’d 

y x 



Inclined Plane cont’d 

  τmax occurs at θ = 0º, ±90º 
 
• σmax occurs at θ = ±45º 

τmax = σmax 

• When σθ  is max, τθ  = 0, and when τθ  is max, σθ  =0. 



Transmission Shafts 

• In a transmission, a circular shaft transmits mechanical power from 
one device to another. 

Generator 

– ω = angular speed of rotation of the shaft 
– The shaft applies a torque T to another device 
– To satisfy equilibrium the other device applies torque T to the shaft. 
– The power transmitted by the shaft is 

Turbine 



Transmission Shafts cont’d 

• Units for P=Tω 
– ω = rad/s 
– T = N·m (SI) 
– T = ft·lb (English) 
– P = Watts (1 W = 1 N·m/s) (SI) 
– P = ft·lb/s (1 horsepower = hp = 550 ft·lb/s) (English) 

 
 
• We can also express power in terms of frequency. 



Stress Concentrations in Circular Shafts 

• Up to now, we assumed that transmission shafts are loaded at the 
ends through solidly attached, rigid end plates. 

 
 

• In practice, torques are applied through flange couplings and fitted 
keyways, which produce high stress concentrations. 
 
 

Fitted keyway 

Flange coupling 
 
 
• One way to reduce stress concentrations is through the use of a 

fillet. 



Stress Concentrations in Circular Shafts cont’d 
 
 
• Maximum shear stress at the fillet 

Fillet 
 
– Tc/J is calculated for the smaller-diameter shaft 
– K = stress concentration factor 

J 
= K Tc 

max τ 



Στρέψη – περιορισμοί για άξονες 
κυκλικής διατομής 

• Το μήκος του μέλους που υπόκειται σε στρέψη είναι σημαντικά 

μεγαλύτερο από τη μεγαλύτερη διάσταση της διατομής. 

• Η περιοχή που εξετάζεται δεν περιέχει συγκεντρώσεις τάσεων. 

• Η μεταβολή της εξωτερικής στρέψης ή η μεταβολή των εμβαδών των 

διατομών είναι βαθμιαία, με εξαίρεση τις περιοχές συγκέντρωσης 

τάσεων. 

• ΟΙ εξωτερικές στρεπτικές ροπές δεν εξαρτώνται από το χρόνο, το 

πρόβλημα είναι στατικό. 

• Η διατομή είναι κυκλική, επιτρέποντας τη χρήση της συμμετρίας ως 

προς τον άξονα για τη μείωση της παραμόρφωσης. 



Στρέψη - Παραδοχές 

1. Τα επίπεδα τμήματα που είναι κάθετα στον άξονα περιστροφής 
παραμένουν επίπεδα κατά τη διάρκεια της παραμόρφωσης. 

2. Σε μια διατομή, όλες οι ακτινικές γραμμές περιστρέφονται κατά ίσες 
γωνίες κατά τη διάρκεια της παραμόρφωσης. 

3. Οι ακτινικές γραμμές παραμένουν ευθείες κατά τη διάρκεια της 
παραμόρφωσης. 

4. Οι παραμορφώσεις είναι μικρές. 
5. Το υλικό είναι γραμμικά ελαστικό. 
6. Το υλικό είναι ισότροπο. 
7. Το υλικό είναι ομογενές κατά μήκος της περιοχής της διατομής. 









ΠΑΡΑΔΟΧΕΣ 
• Το υλικό είναι ομογενές μεταξύ x1 και x2 (G=σταθερό) 
• Ο άξονας δεν λαμβάνει κωνοειδές σχήμα (J =σταθερή) 
• Η εξωτερική (και επομένως και η εσωτερική) στρέψη δεν 

μεταβάλλεται με το x μεταξύ x1 και x2 (T = σταθερό) 



NON-UNIFORM TORSION 

• Uniform/Pure torsion – torsion of prismatic bar subjected to torques 
acting only at the ends 

 
• Non-uniform torsion– the bar need not be prismatic and the applied 

torque may act anywhere along the axis of bar 
 

• Non-uniform torsion can be analysed by  
– Applying formula of pure torsion to finite segments of the bar then adding 

the results 
– Applying formula to differential elements of the bar and then integrating 



NON-UNIFORM TORSION 
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• CASE 1: Bar consisting of prismatic segments with constant torque 
throughout each segment 
 

• CASE 2: Bar with continuously varying cross sections and constant 
torque 
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NON-UNIFORM TORSION 

• CASE 3: Bar with continuously varying cross sections and continuously 
varying torque 
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NON-UNIFORM TORSION 

• Limitations 
– Analyses described valid for bar made of linearly elastic materials 
– Circular cross sections (Solid /hollow) 

• Stresses determined from the torsion formula valid in region of 
the bar away from stress concentrations (diameter changes 
abruptly/concentrated torque applied 
– For the case above, Angle of twist still valid 
– Changes in diameter is are small and gradually (angle of taper max 10o)   



SOLID NON-CIRCULAR SHAFTS 



Solid Noncircular Shafts 

The maximum shear stress and the angle of twist for solid 
noncircular shafts are tabulated as below: 



Comparison of Axial and Torsion formulae.  

AE =Axial rigidity 
Axial Stiffness 

Axial Flexibilty: 

GJ =Torsional rigidity 
Torsional 
Stiffness 

Torsional Flexibilty: 

L
AEkA =

1−= AA kf
L

GJkT =

1−= TT kf

Axial displacement 
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Torsional displacement 

Axial stress 

A
P

=σ
J

Tρτ =

Torsional stress 



Sample Problem 1 

Shaft BC is hollow with inner and outer 
diameters of 90 mm and 120 mm, 
respectively.  Shafts AB and CD are solid 
and of diameter d.  For the loading shown, 
determine (a) the minimum and maximum 
shearing stress in shaft BC, (b) the 
required diameter d of shafts AB and CD 
if the allowable shearing stress in these 
shafts is 65 MPa. 

SOLUTION: 

Cut sections through shafts AB and 
BC and perform static equilibrium 
analyses to find torque loadings. 

Given allowable shearing stress and 
applied torque, invert the elastic 
torsion formula to find the 
required diameter. 

Apply elastic torsion formulas to 
find minimum and maximum 
stress on shaft BC. 



Sample Problem 1 
SOLUTION: 
Cut sections through shafts AB and BC 

and perform static equilibrium analysis 
to find torque loadings. 
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Fig. 1  Free-body diagram for section between A and B. Fig. 2  Free-body diagram for section between B and C. 



Sample Problem 1 
Apply elastic torsion formulas to 

find minimum and maximum 
stress on shaft BC. 
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Given allowable shearing stress and 
applied torque, invert the elastic torsion 
formula to find the required diameter. 
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Fig. 3  Shearing stress distribution on cross section. Fig. 4  Free-body diagram of shaft portion AB. 



Statically Indeterminate Shafts 
Given the shaft dimensions and the applied torque, 

we would like to find the torque reactions at A and 
B. 

From a free-body analysis of the shaft, 
 
 
which is not sufficient to find the end torques.   
The problem is statically indeterminate. 
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Divide the shaft into two components which 
must have compatible deformations, 

(a) Shaft with central applied torque and fixed 
ends. (b) free-body diagram of shaft AB. (c) 
Free-body diagrams for solid and hollow 
segments. 



Example 2 
The tapered shaft is made of a material having a shear modulus G. 
Determine the angle of twist of its end B when subjected to the torque. 

Solution: 
From free body diagram, the internal torque is T. 

Thus, at x, 

For angle of twist, 



STATICALLY INDETERMINATE TORQUE-LOADED 
MEMBERS 

Procedure for analysis: 
use both equilibrium and compatibility equations 

 
Equilibrium 
Draw a free-body diagram of the shaft in order to identify 

all the torques that act on it. Then write the equations 
of moment equilibrium about the axis of the shaft. 
 

Compatibility 
To write the compatibility equation, investigate the way 

the shaft will twist when subjected to the external 
loads, and give consideration as to how the supports 
constrain the shaft when it is twisted. 



STATICALLY INDETERMINATE TORQUE-LOADED 
MEMBERS (cont) 

Express the compatibility condition in terms of the 
rotational displacements caused by the reactive 
torques, and then use a torque-displacement relation, 
such as Φ = TL/JG, to relate the unknown torques to 
the unknown displacements. 

 
Solve the equilibrium and compatibility equations for the 

unknown reactive torques. If any of the magnitudes 
have a negative numerical value, it indicates that this 
torque acts in the opposite sense of direction to that 
indicated on the free-body diagram. 

 



 EXAMPLE 3 

The solid steel shaft shown in Fig. has a diameter of 20 mm. 
If it is subjected to the two torques, determine the reactions 
at the fixed supports A and B. 



 EXAMPLE 3 (cont) 

It is seen that the problem is statically indeterminate since there is only one 
available equation of equilibrium and there are 2 unknowns 
 
 
 
 
 
Since the ends of the shaft are fixed, the angle of twist of one end of the 
shaft with respect to the other must be zero. 
 

Solution 
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 EXAMPLE 3 (cont) 

Using the sign convention established, 
 
 
 
 
 
Using Eq. 1, 
 
 
 
The negative sign indicates that acts  
in the opposite direction of that shown  
in Fig. (b) 

Solution 
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