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The logic of the Mechanics of Materials
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Chapter 5 — Torsion

Figure: 05-01-COC
The torsional stress and angle of twist of this soil auger depend
upon the output of the machine turning the bit as well as the
resistance of the soil in contact with the shaft.
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Torsional failures
(ductile, buckling,
buckling):
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Bars subjected to Torsion

Let us now consider a straight bar
supported at one end and acted upon by
two pairs of equal and opposite forces.

R K

Then each pair of forces and form a
couple that tend to twist the bar about its
longitudinal axis, thus producing surface
tractions and moments.

(a)
Then we can write the moments as

T1:Pld1 T2:P2d2



Torsion of Circular Shafts

In this chapter, we will examine uniaxial bars subject to torque.

Transmission Shaft s » T, = Pyd,

Force Couples



Before deformation
(a)
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Recall: External loads (T)
produce internal loads which
produce deformation, strain and
stress.

Torsion

Circles remain
circular

Longitudinal
lines become
twisted

Radial lines
remain straight

After deformation
(b)
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Torsion of Circular Shafts contd

« We assume
— Baris in pure torsion
— Small rotations (the length and radius will not change)

» How does the bar deform?

— Cross-section remains perpendicular to axis of cylinder (cylinder does
not warp). Not true for most

non-circular bars
T\




Torsional Deformation of a Circular Shaft

Torgue is a moment that twists a member about its
longitudinal axis.

If the angle of rotation is small, the length of the shaft
and its radius will remain unchanged.

The angle of twist »(x) increases as x increases

Chapter 5: Torsion



Angle of Twist

« Deformation of a circular shaft subjected to pure torsion
— Fix left end of shaft
— Amovesto A’
— ¢ = angle of twist (in radians)

 What are the boundary conditions on ¢ ?
- ¢(X)=0atx=0
- 0(X)=¢ atx=L

« [For pure torsion, ¢ is linear.

N &
_qﬁ(l)—i_




Shearing Strain

e Calculate the surface shear strain in the
cylinder.

« Consider an element of length dx.
 Recall we assume small ¢ & smally.

CC d¢

= — ! — YV = —_—
! dx C'C=pdf ' pdx
d¢

i rate of change of angle of twist along the bar
x

* This equation applies to any function ¢ (x).
* For puretorsion ¢ (X) =¢x /L, so

y P2
L




Shearing Strain contd

Maximum shear strain on surface

e The maximum shear strain on the surface of
the cylinder occurs when p=c.

c
Vmax = T,

L

* We can express the shearing strain at any
distance from the axis of the shaft as




The Torsion Formula

When material is linear-elastic, Hooke’s law applies.
A linear variation in shear strain leads to a
corresponding linear variation in shear stress
along any radial line on the cross section.

max = maximum shear stress in the shaft

_ T =shear stress

\ . T = resultant internal torque

| J = polar moment of inertia of cross-sectional area
it | ¢ = outer radius of the shaft

P = intermediate distance

Shear stress varies
each radial line of th



The Torsion Formula

If the shaft has a solid circular cross section,

Shear stress varies linearly along
each radial line of the cross section.
(a) (b}

If a shaft has a tubular cross section,




Stress Profiles: Shear stress profile — YOU MUST
UNDERSTAND THIS!H!I

Where Is shear stress max?
zero? How does It vary
along the length and
circumference?

(a)
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Shear stress varies linearly along
each radial line of the cross section.

(b)
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Stress Profiles:

Shear stress varies linearly along
each radial line of the cross section.

(a) (b)
Copyright © 2005 Pearson Prentice Hall, Inc.



Shearing Strain contd

We can also apply the equation for maximum o Yrnax
surface shear strain to a hollow circular tube. =
| —fl;ﬁ V — {12#‘5 Q
min D max
’ L | .ul' L

This applies for all types of materials: elastic, linear, non-
linear, plastic, etc.



Elastic Shearing Stress
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« Calculate shear stress in a bar made of linearly elastic material.
« Recall Hooke'’s Law for shearing stress: =Gy

G.-:*gaﬁ
L

=Gy

T:E‘r

Max
C




Torque

We still need to relate tto the applied torque T, which is generally
the known, applied load.

First, find the resultant moment acting on a cross-section and set this
equal to T.

) P e,
T = ‘IE_ T / H\\
max / o \\
{1 ; dA = *,I: p.._ = . 1"5
I-' T Ikl %
2 ! : . \ |
dM =todd=L"7 d4 . €
M =todA —?rmax ’ e e



To rque contd

Continuing from previous slide:

c C

[ =-ma [ pldg=-aa ] =
A

— Where J is the polar moment of inertia of the cross section of the bar

Plug this into the equation for 1.

rm:Gf@ } f_T{‘;ﬁ:E _ @:E
L L J G.J




To rque contd

e For a non-uniform bar

¢ ¢ A ‘__. el B &QMMMWWWEU dﬂ?ﬁ
Z_l - G ] 9 1 ]
| Lap——Lpc——Lcp J

* For a continuously varying bar

T
/ _‘[GJ(T)




Inclined Plane

r—
T'[\l « | 7{\

« Cut a rectangular element along the plane at an angle 6.
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Inclined Plane contd

+  Sum forces in x-direction. y'\\/'X
Tﬂ,AQ 5
Gydysect —rdysinf—rd, tanGcosd =0

ect
\UHA{] sec 6
G,=rsmfbcost+rsinbcost

N —
TA( v

fp————
’TA.[] tan ¢

‘crﬁ =2rsmfcosf =rsm ZH‘

« Sum forces in y-direction.
r,A,sec8—1d, cosf+ 4, tan s =0

; . 2
r,=Tcos f—rsin” &

‘rﬁ. = T COS EH‘



Inclined Plane contd

Tnax OCCUIS at 6 = 0°, £90°

Omax OCCUIS at 6 = £45°

Tmax = Gmax

When g, is max, 1, = 0, and when 14 is max, g =0.

)

Tl‘




Transmission Shafts

e In atransmission, a circular shaft transmits mechanical power from
one device to another.

Generator

Turbine

— W = angular speed of rotation of the shaft
— The shaft applies a torque T to another device

— To satisfy equilibrium the other device applies torque T to the shatft.
— The power transmitted by the shaft is

P=1w




Transmission Shafts contd

Units for P=Tw
- w=rad/s
— T=N-m (Sl
— T =ft-Ib (English)
— P =Watts (1 W =1 N-m/s) (SI)
— P =ft:lb/s (1 horsepower = hp = 550 ft-Ib/s) (English)

We can also express power in terms of frequency.
=27 f=Hz=s"

=2




Stress Concentrations in Circular Shafts

Up to now, we assumed that transmission shafts are loaded at the
ends through solidly attached, rigid end plates.

In practice, torques are applied through flange couplings and fitted
keyways, which produce high stress concentrations.

Fitted keyway

Flange coupling

One way to reduce stress concentrations is through the use of a
fillet.



Stress Concentrations in Circular Shafts contd

Maximum shear stress at the fillet

— Tcl/J is calculated for the smaller-diameter shaft
— K = stress concentration factor
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2tpedn — teploplopol yla A€oveg
KUKALKNAG dLaToUnG

To UAKOG TOU EAOULG TTOV UTTOKELTAL 0€ 0TPEYN elval onuavTikd
LEYAAUTEPO aTTO TN HEYAAUTEPN dlAoTaoT TNG OLATOUNAG.

H rteployn} mov e€etaletal deV TTEPLEXEL GUYKEVTPWOEL TATEWV.

H petafoAr] tng e€wtepknig otpePng n n LeETaBoAr Twy euPadwy Twy
dlatouwy elvat Babuuala, pe e€alpeon TIG TTEPLOYEG CUYKEVTPWONG
TACEWV.

Ol e€WTEPLKEG OTPETITIKEG POTIEG OEV € pTWVTAL ATTO TO XPOVO, TO
TPOPANuUa elvat 6TATKO.

H dtatoun elval KUKALKY], ETTLTPETTOVTAC TN XPNON TNG CLUUETPLOG WG

T(POG TOV agova yla tTn Lelwaon g mTapapop@wong.



2tpedn - Mapadoyxeg

1.  Ta em{meda Tujpata mov elval KaBeta otov d€ova TEPLOTPOPNC
TTAPAUEVOLY eTteda KATA TN SLAPKELA TNG TTAPALOPPWONG.

2. Ze [a dlatour], OAEC OL AKTIVIKEG YPOULLES TLEPLOTPEPOVTAL KATA (OEC
YwV(eg KaTd TN SLAPKELD TNG TTAPALOPPWONC.

3.  OLOKTLVIKEG YPOAUUEG TTAPALEVOUY €VOE(EC KATA TN OLdpPKELA TNG

Tapapoppwong.

OLTTOPALOPPWUTELS EIVAL LLKPEG.

To VAIKO elval ypapu UK EAQCTLKO.

To VAWKO glval LodTpoTo.

To VALKO €lval OOYEVEG KATA UKOG TNG TLEPLOXNG TNG SLATOUNG.

N v b



o = ¢(x)

A, B, —Initial position
A4, B; —Deformed position




(b)
. BB .
ansio= 2o = Jim (3 = tim (&E) o
_ do
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MAPAAOXES

e To UAKO ival opoyeveg petady x, kal x, (G=0tabepo)

e O aéovac dev AappBavel kwvoeldec oxnua (J =otabepn)

e H efwtepikn (Ko EMOUEVWCE KAl N EOWTEPLKN) oTpEPn dev
petaBaArdetal pe to x petady x, kaL x, (T = otabepo)

I(x;—xy)

b, — ¢y = G




NON-UNIFORM TORSION

« Uniform/Pure torsion — torsion of prismatic bar subjected to torques
acting only at the ends

* Non-uniform torsion— the bar need not be prismatic and the applied
torgue may act anywhere along the axis of bar

« Non-uniform torsion can be analysed by

— Applying formula of pure torsion to finite segments of the bar then adding
the results

— Applying formula to differential elements of the bar and then integrating



NON-UNIFORM TORSION

« CASE 1: Bar consisting of prismatic segments with constant torque
throughout each segment

¢:Zn:¢i :Zn: lis

a a Gi(ly),

 CASE 2: Bar with continuously varying cross sections and constant
torque




NON-UNIFORM TORSION

 CASE 3: Bar with continuously varying cross sections and continuously

varying torque

T (x)dx
Gl (x)

p-Jos-]



NON-UNIFORM TORSION

e Limitations
— Analyses described valid for bar made of linearly elastic materials
— Circular cross sections (Solid /hollow)

e Stresses determined from the torsion formula valid in region of
the bar away from stress concentrations (diameter changes
abruptly/concentrated torque applied

— For the case above, Angle of twist still valid
— Changes in diameter is are small and gradually (angle of taper max 100)



SOLID NON-CIRCULAR SHAFTS

Undeformed

Deformed




Solid Noncircular Shafts

The maximum shear stress and the angle of twist for solid
noncircular shafts are tahulated as bhelow:

ape o

. (L
cross sectlon

Square

Jd0 0l amir 7107
a a‘G

{a

Equilateral triangle

a a 20T 46 TL
a a‘G
a |
Ellipse

5 T [.:13 + I)EJ TL
wab? Tab’G

I:"I:'“I

t

il



Comparison of Axial and Torsion formulae.

AE =Axial rigidity GJ =Torsional rigidity
Axial Stiffness Torsional
AE Stiffnes
(= AE . 8
L L
Axial Flexibilty: f, =k.* Torsional Flexibilty: f. =k
Axial displacement Torsional displacement
PL T.L.
o=) L ¢ = Z#
i AiE| i 'JiGi
Axial stress Torsional stress

A J



Sample Problem 1

0.9m

\/ SR her

12(
4

| 6 \ o] B / _. |
I =14kN .1 /
(,' /
T.=26kN.m /D

T;,=6kN-m

Shaft BC is hollow with inner and outer
diameters of 90 mm and 120 mm,
respectively. Shafts AB and CD are solid
and of diameter d. For the loading shown,
determine (a) the minimum and maximum
shearing stress in shaft BC, (b) the
required diameter d of shafts AB and CD
If the allowable shearing stress in these
shafts is 65 MPa.

SOLUTION:

Cut sections through shafts AB and
BC and perform static equilibrium
analyses to find torgue loadings.

Apply elastic torsion formulas to
find minimum and maximum
stress on shaft BC.

Given allowable shearing stress and
applied torque, invert the elastic
torsion formula to find the
required diameter.



Sample Problem 1

SOLUTION:

Cut sections through shafts AB and BC
and perform static equilibrium analysis
to find torque loadings.

T,=6 kN - m

\I \B

X

Fig. 1 Free-body diagram for section between A and B.

ZMX =O:(6kN°m)—TAB
TAB :6kN-m=TCD

T,=6kN.m

Iy =14kN.m
-
o %
B \\T;;('
x

Fig. 2 Free-body diagram for section between B and C.

> M, =0=(6kN-m)+(14kN-m)-Tgc
TBC =20kN-m



Sample Problem 1
Apply elastic torsion formulas to

find minimum and maximum
stress on shaft BC.

¢ =45 mm

)
\ {
/_N
/™ ¢y =60 mm

Fig. 3 Shearing stress distribution on cross section.

3= %(Cg of)= %[(0.060)4 _(0.045)*

—13.92x10 %m?

TgcCy _ (20kN-m)(0.060m)

Given allowable shearing stress and
applied torque, invert the elastic torsion
formula to find the required diameter.

6 kN .m
\ . 6 kN - m

B |
Fig. 4 Free-body diagram of shaft portion AB.

Tc Tc 6kN-m
Tmax = — = o 65MPa = 3
J 7 7c
C =38.9><10_3m
d=2c=77.8mm

T =Tn =
T 13.92x10 Om?
=86.2MPa
Tmin _ © Tmin___ 49mMm
Tmax C2 86.2MPa  60mm

Tmin = 64.7MPa

max = 86.2MPa
Tmin = 64.7 MPa




Statically Indeterminate Shafts
Iven the shaft dimensions and the applied torque,

. \ T we would like to find the torque reactions at A and
' N .\\5111. B'
1 A/ Ty From a free-body analysis of the shaft,
ol { Ta+Tg =90Ib-ft
T, ’ which is not sufficient to find the end torques.
o The problem is statically indeterminate.
| Hw v Divide the shaft into two components which
., ®) ’ must have compatible deformations,
\ Tals Tglp _ L)y
P06 TG BT, A
@ T IB Substitute into the original equilibrium equation,
(d)
Ta+ LyJ) 127, =90Ib-ft

(a) Shaft with central applied torque and fixed
ends. (b) free-body diagram of shaft AB. (c) 2Y1
Free-body diagrams for solid and hollow

segments.



Example 2

The tapered shaft is made of a material having a shear modulus G.
Determine the angle of twist of its end B when subject~~ *~ *»~ #ov~ee

Solution:

From free body diagram, the internal torque is T.

c,—¢ €,—¢C C. —c
2 L= ::>c:cz—x[2 1}

L b L
4
Thus, atx, J(x)=2 cz_x[CZ_cl]
2 L

For angle of twist,

2T ¢ dx 2TL( cZ 4 ¢, +¢f
p=—] = ( 2 1}(Ans)

ﬂG 0 CICZ

o]




STATICALLY INDETERMINATE TORQUE-LOADED
MEMBERS

Procedure for analysis:
use both equilibrium and compatibility equations

Equilibrium

Draw a free-body diagram of the shaft in order to identify
all the torques that act on it. Then write the equations
of moment equilibrium about the axis of the shatft.

Compatibility

To write the compatibility equation, investigate the way
the shaft will twist when subjected to the external
loads, and give consideration as to how the supports
constrain the shaft when it is twisted.



STATICALLY INDETERMINATE TORQUE-LOADED
MEMBERS (cont)

Express the compatibility condition in terms of the
rotational displacements caused by the reactive
torques, and then use a torque-displacement relation,
such as ¢ = TL/JG, to relate the unknown torques to
the unknown displacements.

Solve the equilibrium and compatibility equations for the
unknown reactive torques. If any of the magnitudes
have a negative numerical value, it indicates that this
torque acts in the opposite sense of direction to that
iIndicated on the free-body diagram.



EXAMPLE 3

The solid steel shaft shown in Fig. has a diameter of 20 mm.
If it Is subjected to the two torques, determine the reactions
at the fixed supports A and B.




EXAMPLE 3 (cont)

Solution

It is seen that the problem is statically indeterminate since there is only one
available equation of equilibrium and there are 2 unknowns

>M, =0
~T, +800-500-T, =0 (1)

Since the ends of the shaft are fixed, the angle of twist of one end of the
shaft with respect to the other must be zero.

¢A/B =0




EXAMPLE 3 (cont)

Solution
Using the sign convention established,

-7,(0.2) . (800-T, )(1.5) N (300-T,)0.3)
JG JG JG
T, =645N-m (Ans)
Using Eq. 1,

T,=-345N-m

The negative sign indicates that acts
in the opposite direction of that shown
in Fig. (b)
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