Mechanics of Materials

Chapter 3

Torsion

3.1 Introduction

In many engineering applications, members are required to carry torsional loads.
\square Consider the torsion of circular shafts. Because a circular cross section is an efficient shape for resisting torsional loads. Circular shafts are commonly used to transmit power in rotating machinery.
\square Also discuss another important application - torsion of thinwalled tubes..

3.1 Torsion of Circular Shafts

a. Simplifying assumptions

\square During the deformation, the cross sections are not distorted in any manner - they remain plane, and the radius r does not change. In addition, the length L of the shaft remains constant.

Figure 3.1 Deformation of a circular shaft caused by the torque T. The initially straight line $A B$ deforms into a helix.
\square Based on these observations, we make the following assumptions:

- Circular cross sections remain plane (do not warp) and perpendicular to the axis of the shaft.
- Cross sections do not deform (there is no strain in the plane of the cross section).
- The distances between cross sections do not change (the axial normal strain is zero).
\square Each cross section rotates as a rigid entity about the axis of the shaft. Although this conclusion is based on the observed deformation of a cylindrical shaft carrying a constant internal torque, we assume that the result remains valid even if the diameter of the shaft or the internal torque varies along the length of the shaft.

b. Compatibility

\square Because the cross sections are separated by an infinitesimal distance, the difference in their rotations, denoted by the angle $d \theta$, is also infinitesimal.
\square As the cross sections undergo the relative rotation $d \theta, C D$ deforms into the helix $C D$. By observing the distortion of the shaded element, we recognize that the helix angle γ is the shear strain of the element.

(a)

異| $4|\square| D \mid$

From the geometry of Fig.3.2(a), we obtain $\mathrm{DD}^{-}=\rho d \theta=\gamma d x$, from which the shear strain γ is

$$
\begin{equation*}
\gamma=\frac{d \dot{\theta}}{d x} \rho \tag{3.1}
\end{equation*}
$$

The quantity $d \theta / d x$ is the angle of twist per unit length, where θ is expressed in radians. The corresponding shear stress, illustrated in Fig. 3.2 (b), is determined from Hookés law:

$$
\begin{equation*}
\tau=G \gamma=G \frac{d \theta}{d x} \rho \tag{3.2}
\end{equation*}
$$

(a)

Figure 3.2 (a) Shear strain of a material element caused by twisting of the shaft; (b) the corresponding shear stress.
| $|\triangle|||D|$
the shear stress varies linearly with the radial distance ρ from the axial of the shaft. $\tau=G \gamma=G \frac{d \theta}{d x} \rho$
\square The variation of the shear stress acting on the cross section is illustrated in Fig. 3.3. The maximum shear stress, denoted by $\tau_{\text {max }}$, occurs at the surface of the shaft.
\square Note that the above derivations assume neither a constant internal torque nor a constant cross section along the length of the shaft.

Figure 3.3 Distribution of shear stress along the radius of a circular shaft.

c. Equilibrium

\square Fig. 3.4 shows a cross section of the shaft containing a differential element of area $d A$ loaded at the radial distance ρ from the axis of the shaft.

Figure 3.4

Calculating the Resultant of the shear stress acting on the cross section. Resultant is a couple equal to the internal torque \mathbf{T}.
\square The shear force acting on this area is $d P=\tau d A=\mathrm{G}(d \theta / d x)$ $\rho d A$, directed perpendicular to the radius. Hence, the moment (torque) of $d P$ about the center O is $\rho d P=G(d \theta / d x) \rho^{2} d A$. Summing the contributions and equating the result to the internal torque yields $\int_{A} \rho d P=T$, or

$$
G \frac{d \theta}{d x} \int_{A} \rho^{2} d A=T
$$

Recognizing that is the polar moment of inertia of the crosssectional area, we can write this equation as $G(d \theta / d x) J=T$, or

$$
\begin{equation*}
\frac{d \theta}{d x}=\frac{T}{G J} \tag{3.3}
\end{equation*}
$$

The rotation of the cross section at the free end of the shaft, called the angle of twist θ, is obtained by integration:

$$
\begin{equation*}
\theta=\int_{o}^{L} d \theta=\int_{o}^{L} \frac{T}{G J} d x \tag{3.4a}
\end{equation*}
$$

As in the case of a prismatic bar carrying a constant torque, then reduces the torque-twist relationship

$$
\begin{equation*}
\theta=\frac{T L}{G J} \tag{3.4b}
\end{equation*}
$$

Note the similarity between Eqs. (3.4) and the corresponding formulas for axial deformation: $\delta=\int_{o}^{L}(P / E A) d x$ and $\delta=\mathrm{PL} /(\mathrm{EA})$

Notes on the Computation of angle of Twist

- 1.In the U.S. Customary system, the consistent units are G [psi], $T[l b \cdot \mathrm{in}]$, and L [in.], and J [in ${ }^{4}$]; in the SI system, the consistent units are $G[\mathrm{~Pa}], T[\mathrm{~N} \cdot \mathrm{~m}], L[\mathrm{~m}]$, and $J\left[\mathrm{~m}^{4}\right]$.
- 2.The unit of θ in Eqs. (3.4) is radians, regardless of which system of unit is used in the computation.
- 3.Represent torques as vectors using the right-hand rule, as illustrated in Fig. 3.5. The same sign convention applies to the angle of twist θ.

Positive T or θ

Negative T or θ

Figure 3.5 Sign Conventions for Torque T and angle of twist T.

d. Torsion formulas

$\square G(d \theta / d x)=T / J$, which substitution into Eq. (3.2), $\tau=G \gamma=G \frac{d \theta}{d x} \rho$ gives the shear stress τ acting at the distance ρ from the center of the shaft, Torsion formulas :

$$
\begin{equation*}
\tau=\frac{T \rho}{J} \tag{3.5a}
\end{equation*}
$$

The maximum shear stress $\tau_{\max }$ is found by replacing ρ by the radius r of the shaft:

$$
\begin{equation*}
\tau_{\max }=\frac{T r}{J} \tag{3.5b}
\end{equation*}
$$

\square Because Hook's law was used in the derivation of Eqs. (3.2)(3.5), these formulas are valid if the shear stresses do not exceed the proportional limit of the material shear. Furthermore, these formulas are applicable only to circular shafts, either solid or hollow.

The expressions for the polar moments of circular areas are :
Solid shaft : $\quad \tau_{\text {max }}=\frac{2 T}{\pi r^{3}}=\frac{16 T}{\pi d^{3}}$
Hollow shaft : $\quad \tau_{\max }=\frac{2 T R}{\pi\left(R^{4}-r^{4}\right)}=\frac{16 T D}{\pi\left(D^{4}-d^{4}\right)}$
Equations (3.5c) and (3.5d) are called the torsion formulas.
Hollow shaft

$$
J=\frac{\pi r^{4}}{2}=\frac{\pi d^{4}}{32}
$$

$$
J=\frac{\pi}{2}\left(R^{4}-r^{4}\right)=\frac{\pi}{32}\left(D^{4}-d^{4}\right)
$$

Figure 3.6 Polar moments of inertia of circular areas.

e. Power transmission

\square Shafts are used to transmit power. The power ζ transmitted by a torque T rotating at the angular speed ω is given by $\zeta=T \omega$, where ω is measured in radians per unit time.
\square If the shaft is rotating with a frequency of f revolutions per unit time, then $\omega=2 \pi f$, which gives $\zeta=\mathrm{T}(2 \pi f)$. Therefore, the torque can be expressed as

$$
\begin{equation*}
T=\frac{\zeta}{2 \pi f} \tag{3.6a}
\end{equation*}
$$

\square In SI units, ζ in usually measured in watts ($1.0 \mathrm{~W}=1.0 \mathrm{~N} \cdot \mathrm{~m} / \mathrm{s}$) and f in hertz ($1.0 \mathrm{~Hz}=1.0 \mathrm{rev} / \mathrm{s}$); Eq. (3.6a) then determines the torque T in $\mathrm{N} \cdot \mathrm{m}$.
\square In U.S. Customary units with ζ in $l b \cdot$ in./s and f in hertz, Eq.(3.6a) calculates the torque T in $l b \cdot$ in.
\square Because power in U.S. Customary units is often expressed in horsepower ($1.0 \mathrm{hp}=550 \mathrm{lb} \cdot \mathrm{ft} / \mathrm{s}=396 \times 10^{3} \mathrm{lb} \cdot \mathrm{in} . / \mathrm{min}$), a convenient form of Eq.(3.6a) is

$$
T(\mathrm{lb} \cdot \mathrm{in})=\frac{\zeta(\mathrm{hp})}{2 \pi f(\mathrm{rev} / \mathrm{min})} \times \frac{396 \times 10^{3}(\mathrm{lb} \cdot \mathrm{in.} / \mathrm{min})}{1.0(\mathrm{hp})}
$$

which simplifies to

$$
\begin{equation*}
T(\mathrm{lb} \cdot \mathrm{in})=63.0 \times 10^{3} \frac{\zeta(\mathrm{hp})}{f(\mathrm{rev} / \mathrm{min})} \tag{3.6b}
\end{equation*}
$$

f. Statically indeterminate problems

- Draw the required free-body diagrams and write the equations of equilibrium.
- Derive the compatibility equations from the restrictions imposed on the angles of twist.
- Use the torque- twist relationships in Eqs.(3.4) to express the angles of twist in the compatibility equations in terms of the torques.
- Solve the equations of equilibrium and compatibility for the torques.

Sample Problem 3.1

A solid steel shaft in a rolling mill transmits 20 kW of power at 2 Hz . Determine the smallest safe diameter of the shaft if the shear stress τ_{w} is not to exceed 40 MPa and the angle of twist θ is limited to 6° in a length of 3 m . Use $\mathrm{G}=83 \mathrm{GPa}$.

Solution

Applying Eq. (3.6a) to determine the torque:

$$
T=\frac{P}{2 \pi f}=\frac{20 \times 10^{3}}{2 \pi(2)}=1591.5 \mathrm{~N} \cdot \mathrm{~m}
$$

To satisfy the strength condition, we apply the torsion formula, Eq. (3.5c):

$$
\tau_{\max }=\frac{T r}{J} \quad \tau_{\max }=\frac{16 T}{\pi d^{3}} \quad 4 \times 10^{6}=\frac{16(1591.5)}{\pi d^{3}}
$$

Which yields $d=58.7 \times 10^{-3} \mathrm{~m}=58.7 \mathrm{~mm}$.

Apply the torque-twist relationship, Eq. (3.4b), to determine the diameter necessary to satisfy the requirement of rigidity (remembering to convert θ from degrees to radians):

$$
\theta=\frac{T L}{G J} \quad 6\left(\frac{\pi}{180}\right)=\frac{1591.5(3)}{\left(83 \times 10^{9}\right)\left(\pi d^{4} / 32\right)}
$$

From which we obtain $d=48.6 \times 10^{-3} \mathrm{~m}=48.6 \mathrm{~mm}$.
To satisfy both strength and rigidity requirements, we must choose the larger diameter-namely,

$$
d=58.7 \mathrm{~mm} . \quad \text { Answer }
$$

Sample problem 3.2

The shaft in Fig. (a) consists of a 3-in. -diameter aluminum segment that is rigidly joined to a $2-\mathrm{in}$. -diameter steel segment. The ends of the shaft are attached to rigid supports, Calculate the maximum shear stress developed in each segment when the torque $T=10$ kip in. is applied. Use $\mathrm{G}=4 \times 10^{6} \mathrm{psi}$ for aluminum and $\mathrm{G}=12 \times 10^{6} \mathrm{psi}$ for steel.

Solution
Equilibrium $\quad \Sigma M_{x}=0, \quad\left(10 \times 10^{3}\right)-T_{s t}-T_{a l}=0$
This problem is statically indeterminate.

Compatibility the two segments must have the same angle of twist; that is, $\theta_{\text {st }}=\theta_{\text {al }}$ From Eq. (3.4b), this condition between.

$$
\left(\frac{T L}{G J}\right)_{s t}=\left(\frac{T L}{G J}\right)_{a l} \frac{T_{s t}(3 \times 12)}{\left(12 \times 10^{6}\right) \frac{\pi}{32}(2)^{4}}=\frac{T_{a l}(6 \times 12)}{\left(4 \times 10^{6}\right) \frac{\pi}{32}(3)^{4}}
$$

from which

$$
\begin{equation*}
T_{\mathrm{st}}=1.1852 T_{\mathrm{al}} \tag{b}
\end{equation*}
$$

Solving Eqs. (a) and (b), we obtain

$$
T_{\mathrm{al}}=4576 \mathrm{lb} \cdot \mathrm{in} . \quad T_{\text {st }}=5424 \mathrm{lb} \cdot \mathrm{in} .
$$

the maximum shear stresses are

$$
\begin{array}{ll}
\left(\tau_{\max }\right)_{a l}=\left(\frac{16 T}{\pi d^{3}}\right)_{a l}=\frac{16(4576)}{\pi(3)^{3}}=863 p s i & \text { Answer } \\
\left(\tau_{\max }\right)_{s t}=\left(\frac{16 T}{\pi d^{3}}\right)_{s t}=\frac{16(5424)}{\pi(2)^{3}}=3450 \mathrm{psi} & \text { Answer }
\end{array}
$$

Sample problem 3.3

The four rigid gears, loaded as shown in Fig. (a), are attached to a 2-in.-diameter steel shaft. Compute the angle θ of rotation of gear A relative to gear D. Use G $=12 \times 10^{6} \mathrm{psi}$ for the shaft.

Solution
It is convenient to represent the torques as vectors (using the right-hand rule) on the

(b) FBDs

Solution

Assume that the internal torques $T_{A B}, T_{B C}$, and T_{CD} are positive according to the sign convention introduced earlier (positive torque vectors point away from the cross section). Applying the equilibrium condition $\sum M_{\mathrm{x}}=0$ to each FBD, we obtain

$$
\begin{aligned}
& \begin{array}{rcccc}
500-900+1000-T_{C D}=0 & T_{C D} & 1000 \mathrm{lb} \cdot \mathrm{ft} \quad 900 \mathrm{lb} \cdot \mathrm{ft} & 500 \mathrm{lb} \cdot \mathrm{ft} \\
500-900-T_{B C}=0 & \rightarrow-1
\end{array} \rightarrow \\
& 500-T_{A B}=0 \\
& T_{A B}=500 \mathrm{lb} \cdot \mathrm{ft} \text {, } \\
& T_{B C}=-400 \mathrm{lb} \cdot \mathrm{ft} \\
& T_{C D}=600 \mathrm{lb} \cdot \mathrm{ft} \\
& \text { (b) FBDs }
\end{aligned}
$$

The minus sign indicates that the sense of $T_{B C}$ is opposite to that shown on the FBD. A is gear D were fixed.

This rotation is obtained by summing the angles of twist of the three segments:

$$
\theta_{A / D}=\theta_{A / B}+\theta_{B / C}+\theta_{C / D}
$$

Using Eq.(3.4b), we obtain (converting the lengths to inches and torques to pound-inches)

$$
\begin{aligned}
\theta_{A / D} & =\frac{T_{A B} L_{A B}+T_{B C} L_{B C}+T_{C D} L_{C D}}{G J} \\
& =\frac{(500 \times 12)(5 \times 12)-(400 \times 12)(3 \times 12)+(600 \times 12)(4 \times 12)}{\left[\pi(2)^{4} / 32\right](12 \times 10)^{6}} \\
& =0.02827 \mathrm{rad}=1.620^{\circ} \quad \text { Answer }
\end{aligned}
$$

The positive result indicates that the rotation vector of A relative to D is in the positive x-direction: that is, $\theta_{A D}$ is directed counterclockwise when viewed from A toward D.

Sample Problem 3.4

Figure (a) shows a steel shaft of length $L=1.5 \mathrm{~m}$ and diameter $d=25 \mathrm{~mm}$ that carries a distributed toque of intensity (torque per unit length) $t=t_{B}(\mathrm{x} / L)$, where $t_{B}=200 \mathrm{~N} \cdot \mathrm{~m} / \mathrm{m}$.

(a)

(b) FBD

Figure (a) and (b) FBD

Solution

Part 1

(b) FBD

Figure (b) shows the FBD of the shaft. The total torque applied to the shaft is $\int_{0}^{t} t d x$. The maximum torque in the shaft is T_{A}, which occurs at the fixed support. From the FBD we get

$$
\begin{gathered}
\sum M_{X}=0 \quad \int_{0}^{L} t d x-T_{A}=0 \\
T_{A}=\int_{0}^{L} t d x=\int_{0}^{L} t \frac{x}{L} d x=\frac{t_{B} L}{2}=\frac{1}{2}(200)(1.5)=150 \mathrm{~N} \cdot \mathrm{~m}
\end{gathered}
$$

From Eq. (3.5c), the maximum stress in the shaft is

$$
\tau_{\max }=\frac{16 T_{A}}{\pi d^{3}}=\frac{16(150)}{\pi(0.025)^{3}}=48.9 \times 10^{6} \mathrm{~Pa}=48.9 \mathrm{MPa} \quad \text { Answer }
$$

Part 2

The torque T acting on a cross section located at the distance x from the fixed end can be found from the FBD in Fig. (c):

$$
\begin{aligned}
& \sum M_{X}=0 \quad T+\int_{0}^{x} t d x-T_{A}=0 \\
& T=T_{A}-\int_{0}^{x} t d x=\frac{t_{B} L}{2}-\int_{0}^{x} t_{B} \frac{x}{L} d x \\
& =\frac{t_{B}}{2 L}\left(L^{2}-x^{2}\right)
\end{aligned}
$$

(c) FBD

From Eq. (3.4a), the angle θ of twist of the shaft is

$$
\begin{aligned}
\theta & =\int_{0}^{L} \frac{T}{G J} d x=\frac{t_{B}}{2 L G J} \int_{0}^{L}\left(L^{2}-x^{2}\right) d x=\frac{t_{B} L^{2}}{3 G J} \\
& =\frac{200(1.5)^{2}}{3\left(80 \times 10^{9}\right)(\pi / 32)(0.025)^{4}}=0.0489 \mathrm{rad}=2.8^{\circ} \quad \text { Answer }
\end{aligned}
$$

