Mohr's Circle for Plane Stress

Transformation equations for plane stress.
Procedure for constructing Mohr’s circle.
Stresses on an inclined element.

Principal stresses and maximum shear stresses.
Introduction to the stress tensor.




Stress Transformation Equations
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If we vary 8 from 0° to 360°, we will get all possible values of c,, and 1,,,,
for a given stress state. It would be useful to represent c,; and t,;,, as
functions of 6 in graphical form.




To do this, we must re-write the transformation equations.
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Eliminate 6 by squaring both sides of each equation and adding
the two equations together.
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Substitue for ., and R to get
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which is the equation for a circle with centre (c.,,,0) and radius R.
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This circle is usually referred to as

Mohr’s circle, after the German civil

engineer Otto Mohr (1835-1918). He

developed the graphical technique for

drawing the circle in 1882.

The construction of Mohr’s circle is
one of the few graphical techniques
still used in engineering. It provides
a simple and clear picture of an
otherwise complicated analysis.




Sign Convention for Mohr’s Circle

2 2 _ p2

Y, y (le ~ O'avg) + 7yxy1” =R

Gyl Tylxl Txlyl Xl
G, 20

e cTavg ‘\ le

X >

R
GXl Tylxl
TX
1yl Gyl Tlelv

Notice that shear stress is plotted as positive downward.

The reason for doing this is that 20 is then positive counterclockwise,
which agrees with the direction of 20 used in the derivation of the
tranformation equations and the direction of 6 on the stress element.

Notice that although 26 appears in Mohr’s circle, 6 appears on the
stress element.




Procedure for Constructing Mohr’s Circle

1. Draw a set of coordinate axes with ¢, as abscissa (positive to the
right) and r,,,, as ordinate (positive downward).

2. Locate the centre of the circle ¢ at the point having coordinates o,
= Gayg aNd 1,4, = 0.

3. Locate point A, representing the stress conditions on the x face of
the element by plotting its coordinates o,, = 5, and 1,,,, = 1,,. Note
that point A on the circle corresponds to 6 = 0°.

4. Locate point B, representing the stress conditions on the y face of
the element by plotting its coordinates c,, = 6, and t,,,, = -1,
Note that point B on the circle corresponds to 6 = 90°.

5. Draw a line from point A to point B, a diameter of the circle passing
through point c. Points A and B (representing stresses on planes
at 90° to each other) are at opposite ends of the diameter (and
therefore 180° apart on the circle).

6. Using point ¢ as the centre, draw Mohr’s circle through points A

and B. This circle has radius R.
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Stresses on an Inclined Element

On Mohr’s circle, measure an angle 26 counterclockwise from
radius cA, because point A corresponds to 6 = 0 and hence is
the reference point from which angles are measured.

The angle 260 locates the point D on the circle, which has
coordinates o,; and t,,,,. Point D represents the stresses on the
x1 face of the inclined element.

Point E, which is diametrically opposite point D on the circle, is
located at an angle 26 + 180° from cA (and 180° from cD). Thus
point E gives the stress on the y1 face of the inclined element.

So, as we rotate the x1y1 axes counterclockwise by an angle 6,
the point on Mohr’s circle corresponding to the x1 face moves
counterclockwise through an angle 20.
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Principal Stresses B 4%

;Tyx
AY rTXV
o, % » O,
B (6=90) ‘—» ‘
29p2 Tyy A
T |
v
G C / o) Ox1
R 20, y
A (=0 2
00 o, NA N\~
6. \ P1
c71
\/
Txlyl G,

10




Maximum Shear Stress B 40
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Example: The state of plane stress at a point is represented by the stress
element below. Draw the Mohr’s circle, determine the principal stresses and
the maximum shear stresses, and draw the corresponding stress elements.

Oy + Oy _—80+50_
2 2

R = /(50— (~15)) %+ (25)°

R=1652+252 2696 A (g=0)

C=0ayg = -15

y
80 MPa X 80 MPa
—
| A

0172 =CtR
012 =-15+69.
oy =54.6 MPa

6

O9 = —-84.6 MPa

B (6=90)

Tmax = R =69.6 MPa

os =C=-15 MPa
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25

-1 tan 26, = £ = 0.3846
y 20, = 21.0°
MP 80 MP
s0MPa X 2 20, = 21.0+180° = 201°
—J]— 25MPa 6, =100.5° 6, =10.5°
v 50 MPa
A (6
O3
y
B (6=90)
100.5° 84.6 MPa
84.6 MPa Y X /
' 20
54.6 MPa
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80 MPa

X 80 MPa

min

20, = 21.0°
205 min = — (90— 21.0) = —69.0°
95 min = —34.50

taking sign convention into
account

69.6 MPa

max

v

20, =21.0°

- Osmax =55.5°
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Example: The state of plane stress at a point is represented by the stress
element below. Find the stresses on an element inclined at 30° clockwise
and draw the corresponding stress elements.

450 MPa
o,; = C — R c0s(26,+60)
oy1 = C + R cos(20,+60)

y ‘ C (6=-30°) Tyy1= -R sin (20,+60)
80 MPa X |89 MPa G, = -26
l, Cyy = -4
A (6=0) Tyqy1= 69
1 25 MPa
v 50 MPa
y \)\ » O
y ' 20,
25.8 MPa 4'15D'V'Pa B (6=90)
-60+180°
: N
25.8 MPa D (6 = -30+90°) 20
4.15 MPa C S, 0 =-30°
68.8 MPa 20 = -60°
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Principal Stresses o, =54.6 MPa, c,=-84.6 MPa
But we have forgotten about the third principal stress!

Since the element is in plane stress (o, = 0),
the third principal stress is zero.

G, = 54.6 MPa
c,=0 MPa A (0=0
o5 = -84.6 MPa (6=0)

This means three
Mohr’s circles can

be drawn, each
based on two
principal stresses:

c, and o,
¢, and o,

G, and o,
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The stress element shown is in plane stress.
What is the maximum shear stress?
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Introduction to the Stress Tensor
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Normal stresses on the diagonal
Shear stresses off diagaonal
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The normal and shear stresses on a stress element in 3D can be
assembled into a 3x3 matrix known as the stress tensor.
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From our analyses so far, we know that for a given stress system,
It is possible to find a set of three principal stresses. We also know
that if the principal stresses are acting, the shear stresses must be
zero. In terms of the stress tensor,

(o xx Ixy Txz \ (g 0 0"
Tyx Oyy Tyz > 10 o2 O

In mathematical terms, this is the process of matrix diagonaliza-
tion in which the eigenvalues of the original matrix are just the

principal stresses.
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Example: The state of plane stress at a point is represented by the
stress element below. Find the principal stresses.

450 MPa

M—— M = Ox Txy B -80 -25
80MP:4‘ yX 4‘ 80 MPa Tyx Oy —-25 50

—1 ~ 25MPa
v 50 MPa

We must find the eigenvalues of
this matrix.

Remember the general idea of eigenvalues. We are looking
for values of A such that:

Ar = Ar where r is a vector, and A is a matrix.

Ar—Ar=0or (A—Al) r =0 where | is the identity matrix.

For this equation to be true, either r = 0 or det (A — 4l) = 0.
Solving the latter equation (the “characteristic equation”)
gives us the eigenvalues A, and A,.
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~25  50-4
(=80 — A)(50 — A) — (=25)(~25) = 0

2 _
A" +304-4625=0 So, the principal stresses are —84.6 MPa and
A =-84.6, 54.6 54.6 MPa, as before.

-80-4 =25
det( j:O

Knowing the eigenvalues, we can find the eigenvectors. These can be
used to find the angles at which the principal stresses act. To find the
eigenvectors, we substitute the eigenvalues into the equation (A— Al ) r
= 0 one at a time and solve forr.

R 9w M

(-80-54.6 -25 )(x) (0) Xx=-0.180y
. -25  50-546)y) |0 (—0.186 .

IS One eigenvector.
1
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~80—(—84.6) - 25 j{xj ) (0) X =25.388Yy
—-25 50— (-84.6) )\ y 0 (5'388j IS the other eigenvector.

1

Before finding the angles at which the principal stresses act, we can
check to see if the eigenvectors are correct.

546 0 ~0.186 5.388 ~80 -25
0 -846 1 1 _25 50
D=CiMmC
clo_1

= AT where A = matrix of co - factors
detC

ol ~0.179 0.967
| 0.179 0.033
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o —-0.179 0.967)(-80 —-25)(-0.186 5.388) (54.6 0
0179 0.033){-25 50 1 1 ) L 0 -846
To find the angles, we must calculate the unit eigenvectors:

—0.186 —0.183 5.388 0.938
— —
1 0.983 1 0.183

And then assemble them into a rotation matrix R so that det R = +1.

(0.983 —0.183
R —

det R = (0.983)(0.983) — (0.183)(~0.183) =1
0.183 O.983j (0.983)(0.983) ~(0.183)( )

The rotation matrix has the form
cosd —sind
sin@d cosd@

j D'=R'M R

So 6 = 10.5°, as we found earlier for one of the principal angles.

24




Using the rotation angle of 10.5°, the matrix M (representing the
original stress state of the element) can be transformed to matrix

D’ (representing the principal stress state).

D'=R'M R
-, _( 0983 0.183)(~80 -25)(0.983 -0.183
“1-0.183 0983)l-25 50 J|0.183 0.983

 (-846 O
D' =
0 546

>0 MPa So, the transformation equations,
;\‘ﬁﬁ wpa Mohr’s circle, and eigenvectors all
X

give the same result for the principal
10.5° stress element.

84.6 MPa

54.6 MPa
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Finally, we can use the rotation matrix approach to find the stresses
on an inclined element with 6 = -30°.

o (cos(—BOO) —sin(—BOo)j 3 (0.866 0.5 j

sin(—30°)  cos(—30°) 0.5 0.866
M'=R"M R
v 0.866 —-05)-80 -—-25)\0.866 0.5
L 05 0866){-25 50 )| —0.5 0.866 y
(-688 -415) |zyx Oy1) 258MPa 4.15 MPa
Again, the transformation equations, X

] -30°
Mohr’s circle, and the stress tensor

approach all give the same result.
4.15 MPa




