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Mohr’s Circle for Plane Stress 
Transformation equations for plane stress. 
Procedure for constructing Mohr’s circle. 
Stresses on an inclined element. 
Principal stresses and maximum shear stresses. 
Introduction to the stress tensor.
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Stress Transformation Equations 
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If we vary θ from 0° to 360°, we will get all possible values of σx1 and τx1y1
for a given stress state. It would be useful to represent σx1 and τx1y1 as 
functions of θ in graphical form. 
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To do this, we must re-write the transformation equations.
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Eliminate θ by squaring both sides of each equation and adding 
the two equations together.
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Substitue for σavg and R to get 

( ) 22
11

2
1 Ryxavgx =+− τσσ

which is the equation for a circle with centre (σavg,0) and radius R.

This circle is usually referred to as 
Mohr’s circle, after the German civil 
engineer Otto Mohr (1835-1918). He 
developed the graphical technique for 
drawing the circle in 1882. 

The construction of Mohr’s circle is 
one of the few graphical techniques 
still used in engineering. It provides 
a simple and clear picture of an 
otherwise complicated analysis. 
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Sign Convention for Mohr’s Circle
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Notice that shear stress is plotted as positive downward. 

The reason for doing this is that 2θ is then positive counterclockwise, 
which agrees with the direction of 2θ used in the derivation of the 
tranformation equations and the direction of θ on the stress element.

Notice that although 2θ appears in Mohr’s circle, θ appears on the 
stress element.
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Procedure for Constructing Mohr’s Circle 

1. Draw a set of coordinate axes with σx1 as abscissa (positive to the
right) and τx1y1 as ordinate (positive downward).

2. Locate the centre of the circle c at the point having coordinates σx1
= σavg and τx1y1 = 0.

3. Locate point A, representing the stress conditions on the x face of
the element by plotting its coordinates σx1 = σx and τx1y1 = τxy. Note
that point A on the circle corresponds to θ = 0°.

4. Locate point B, representing the stress conditions on the y face of
the element by plotting its coordinates σx1 = σy and τx1y1 = −τxy.
Note that point B on the circle corresponds to θ = 90°.

5. Draw a line from point A to point B, a diameter of the circle passing
through point c. Points A and B (representing stresses on planes
at 90° to each other) are at opposite ends of the diameter (and
therefore 180° apart on the circle).

6. Using point c as the centre, draw Mohr’s circle through points A
and B. This circle has radius R.
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Stresses on an Inclined Element 
1. On Mohr’s circle, measure an angle 2θ counterclockwise from

radius cA, because point A corresponds to θ = 0 and hence is
the reference point from which angles are measured.

2. The angle 2θ locates the point D on the circle, which has
coordinates σx1 and τx1y1. Point D represents the stresses on the
x1 face of the inclined element.

3. Point E, which is diametrically opposite point D on the circle, is
located at an angle 2θ + 180° from cA (and 180° from cD). Thus
point E gives the stress on the y1 face of the inclined element.

4. So, as we rotate the x1y1 axes counterclockwise by an angle θ,
the point on Mohr’s circle corresponding to the x1 face moves
counterclockwise through an angle 2θ.



9

σx σx

σy

τxy

τyx

τxy

τyx

x
y

A (θ=0)

σx1

τx1y1

c

R

B (θ=90)
A

B

x

y

σx1

θ

y1

x1

σx1

σy1

σy1

τx y1 1
τy x1 1

τx y1 1

τy x1 1

2θ

D

D (θ)

σx1

τx1y1

σy1

-τx1y1

2θ+180E (θ+90)

E



10

Principal Stresses
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Maximum Shear Stress
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Example: The state of plane stress at a point is represented by the stress 
element below. Draw the Mohr’s circle, determine the principal stresses and 
the maximum shear stresses, and draw the corresponding stress elements.
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Example: The state of plane stress at a point is represented by the stress 
element below. Find the stresses on an element inclined at 30° clockwise
and draw the corresponding stress elements.
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Principal Stresses σ1 = 54.6 MPa, σ2 = -84.6 MPa
But we have forgotten about the third principal stress! 

Since the element is in plane stress (σz = 0), 
the third principal stress is zero.

σ1 = 54.6 MPa
σ2 = 0 MPa
σ3 = -84.6 MPa

σ1σ2σ3
This means three 
Mohr’s circles can 
be drawn, each 
based on two 
principal stresses:

σ1 and σ3

σ1 and σ2

σ2 and σ3
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Introduction to the Stress Tensor

Normal stresses on the diagonal
Shear stresses off diagaonal

τxy = τyx, τxz = τzx, τyz = τzy

The normal and shear stresses on a stress element in 3D can be 
assembled into a 3x3 matrix known as the stress tensor.
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From our analyses so far, we know that for a given stress system, 
it is possible to find a set of three principal stresses. We also know 
that if the principal stresses are acting, the shear stresses must be 
zero. In terms of the stress tensor,
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In mathematical terms, this is the process of matrix diagonaliza-
tion in which the eigenvalues of the original matrix are just the 
principal stresses.
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Example: The state of plane stress at a point is represented by the 
stress element below. Find the principal stresses.  
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We must find the eigenvalues of 
this matrix.

Remember the general idea of eigenvalues. We are looking 
for values of λ such that:
Ar = λr where r is a vector, and A is a matrix.
Ar – λr = 0 or (A – λI) r = 0 where I  is the identity matrix.

For this equation to be true, either r = 0 or det (A – λI) = 0.
Solving the latter equation (the “characteristic equation”) 
gives us the eigenvalues λ1 and λ2.



22

6.54,6.84
0462530

0)25)(25()50)(80(

0
5025

2580
det

2

−=
=−+

=−−−−−−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

−−−

λ
λλ

λλ
λ

λ

So, the principal stresses are –84.6 MPa and 
54.6 MPa, as before.

Knowing the eigenvalues, we can find the eigenvectors. These can be 
used to find the angles at which the principal stresses act. To find the 
eigenvectors, we substitute the eigenvalues into the equation (A – λI ) r
= 0 one at a time and solve for r.
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Before finding the angles at which the principal stresses act, we can 
check to see if the eigenvectors are correct. 
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To find the angles, we must calculate the unit eigenvectors:
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And then assemble them into a rotation matrix R so that det R = +1.
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The rotation matrix has the form

So θ = 10.5°, as we found earlier for one of the principal angles.
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Using the rotation angle of 10.5°, the matrix M (representing the 
original stress state of the element) can be transformed to matrix 
D’ (representing the principal stress state).

84.6 MPa

84.6 MPa

54.6 MPa

x

y

54.6 MPa

10.5o

100.5o

So, the transformation equations, 
Mohr’s circle, and eigenvectors all 
give the same result for the principal 
stress element.
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Finally, we can use the rotation matrix approach to find the stresses 
on an inclined element with θ = -30°.

Again, the transformation equations, 
Mohr’s circle, and the stress tensor 
approach all give the same result.


