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Solving Sparse Systems
of Linear Equations

Solving systems of linear equations is at the core of many problems in engineering and
scientific computing. In Chapter 5 we addressed the problem of solving dense systems of
linear equations—that is, solving a system of linear equations in which most coefficients
are not zero. In this chapter we focus our attention on solving large sparse systems of
equations in which a majority of the coefficients are zero. It is important to study sparse
systems not only because we encounter them frequently in scientific computing problems,
but also because they involve more complex algorithms and data structures than their dense
counterparts.

Most scientific computing problems represent a physical system by a mathematical
model. To make it suitable for computer solution, the continuous physical domain of the
system being modeled is discretized by imposing a grid or a mesh over the domain. Either
the grid points or the partitions of the domain dictated by the grid are then regarded as
discrete elements. Solving the mathematical model over this discretized domain involves
obtaining the values of certain physical quantities at every grid point. For example,
Figure 11.1 shows a grid imposed over a sheet of metal insulated on two opposite sides and
exposed to temperatures U0 and U1 on the other two sides. The steady-state temperature
of the entire surface of the sheet is modeled by computing the temperature at each grid
point. The same basic approach is used in modeling much more complex systems, such as
weather patterns in the atmosphere, ocean currents, and stress on mechanical parts, just to
name a few.

Each grid point of a discretized physical domain is simulated based on the influence of
the neighboring elements and the surroundings of the domain. For example, in Figure 11.1,
the temperature at point 24 is influenced by the temperature at points 16, 17, 18, 23, 32,
31, 30, and 25, and the temperature at point 0 is influenced by the value of U0 as well as
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Figure 11.1 Example of a grid imposed over a physical domain consisting of a
metal sheet. The temperature of the surface is modeled by computing its value at
points 0 through 48.

the temperature at points 1, 12, and 13. Typically, the simulation of a single grid point
yields a linear equation that relates the value of a desired physical quantity at the grid point
to the values at its neighbors. Since there many grid points in the discretized domain, the
task of solving the mathematical model is equivalent to that of solving the set of linear
equations associated with all these points. The value of the physical quantity being modeled
is represented by a variable at each grid point. The value of a variable in the system of
equations depends on only a few other variables—those that correspond to neighboring
grid points. As a result, only the coefficients of these variables are nonzero in a typical
equation. Most of the coefficients in the system of equations are zero; hence the system is
sparse.

As discussed in Section 5.5, a system of n linear equations can be represented in
matrix form by Ax = b, where A is the n × n matrix of coefficients, b is an n × 1 vector,
and x is the n × 1 solution vector. However, as discussed in Sections 11.3 and 11.5,
solving the mathematical model does not always require that the coefficients be explicitly
assembled in matrix form. In this chapter, we deal with systems for which, if explicitly
assembled, the coefficient matrix A is a sparse matrix; that is, a majority of its elements
are zero. More precisely, the matrix A is considered sparse if a computation involving it
can utilize the number and location of its nonzero elements to reduce the run time over the
same computation on a dense matrix of the same size.
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Figure 11.2 A 6 × 6 sparse matrix and its representation in the coordinate storage
format.

11.1 Basic Operations

Since this chapter deals primarily with sparse matrices, we first introduce efficient storage
schemes for sparse matrices and some simple linear algebra operations using them.

11.1.1 Storage Schemes for Sparse Matrices

It is customary to store an n × n dense matrix in an n × n array. However, if the matrix
is sparse, storage is wasted because a majority of the elements of the matrix are zero
and need not be stored explicitly. For sparse matrices, it is a common practice to store
only the nonzero entries and to keep track of their locations in the matrix. A variety
of storage schemes are used to store and manipulate sparse matrices. These specialized
schemes not only save storage but also yield computational savings. Since the locations
of the nonzero elements (and hence, the zero elements) in the matrix are known explicitly,
unnecessary multiplications and additions with zero can be avoided. There is no single best
data structure for storing sparse matrices. Different data structures are suitable for different
operations. Also, some data structures are more suitable for a parallel implementation
than others. In the following subsections we briefly describe some common sparse-matrix
storage schemes.

Coordinate Format

Given a sparse matrix with q nonzero entries, the coordinate format stores these entries
in a q × 1 array VAL in any order. Two additional q × 1 arrays I and J store the i and
j coordinates (row and column numbers) of the entries. A 6 × 6 square matrix and the
corresponding coordinate storage format are shown in Figure 11.2. In this figure, as in the
remainder of the chapter, we number the rows and columns starting from 0.
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Compressed Sparse Row Format

The compressed sparse row (CSR) format uses the following three arrays to store an n × n
sparse matrix with q nonzero entries:

(1) A q × 1 array VAL contains the nonzero elements. These are stored in the order
of their rows from 0 to n − 1; however, elements of the same row can be stored
in any order.

(2) A q × 1 array J that stores the column numbers of each nonzero element.
(3) An n × 1 array I , the i th entry of which points to the first entry of the i th row in

VAL and J .

Figure 11.3 shows the sparse matrix of Figure 11.2(a) in CSR format. A related
scheme is the compressed sparse column format (CSC), in which the roles of rows and
columns are reversed. Another variation of CSR is the modified sparse row (MSR) format,
in which the principal diagonal (which is often fully nonzero) is stored separately and the
remaining elements are stored in the regular CSR format.

Diagonal Storage Format

The diagonal storage format is suited to sparse matrices whose nonzero entries are arranged
in a few diagonals. Consider an n×n matrix consisting of d diagonals with nonzero elements
(all other entries are zero). These nonzero diagonals are stored in an n × d array VAL.
A d × 1 array OFFSET stores the offset of each diagonal with respect to the principal
diagonal. The order in which the diagonals are stored is not important. Figure 11.4 shows
a sparse matrix stored in this fashion. Since all diagonals other than the principal diagonal
have fewer than n elements, there will be unused locations in the array VAL. Any zeros
within the d diagonals are stored explicitly.

Sometimes all the nonzero diagonals of a sparse matrix form a band around the
principal diagonal. In this case, a variation of the diagonal format called banded format
can be used. An n × n matrix with a band of u diagonals above the principal diagonal and
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Figure 11.3 CSR storage of the 6 × 6 sparse matrix of Fig-
ure 11.2(a).
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Figure 11.4 A sparse matrix stored in the diagonal format.

l diagonals below it is stored in an n × (u + l + 1) array. Instead of the OFFSET array,
banded format uses two parameters to indicate the thickness of the band and its lower or
upper limit.

Ellpack-Itpack Format

The Ellpack-Itpack format is suitable for general sparse matrices in which the maximum
number of nonzero elements in any row is not much larger than the average number of
nonzero elements per row. In this scheme, an n × n sparse matrix in which the maximum
number of nonzero elements in any row is m, is stored using two n × m arrays VAL and
J . Each row of VAL contains the nonzero entries of the corresponding row of the sparse
matrix, and the array J stores the column numbers of the corresponding entries in VAL.
Figure 11.5 shows a sparse matrix stored in the Ellpack-Itpack format. All rows of VAL
and J that have fewer than m nonzero elements in the original matrix have empty spaces.
These empty spaces store some sentinel value (−1 in Figure 11.5(b)) that denotes the end
of a row.
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Figure 11.5 A sparse matrix stored in Ellpack-Itpack format.
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Figure 11.6 The jagged-diagonal storage scheme.

Jagged-Diagonal Format

To store a sparse matrix in the jagged-diagonal format, the rows of the matrix are ordered
in the decreasing number of nonzero entries. The first nonzero entry of each row is stored in
contiguous locations of a q ×1 array VAL, where q is the total number of nonzero elements
in the sparse matrix. These entries constitute the first jagged diagonal. Then the second
nonzero entry of each row is stored in VAL (that is, the second jagged diagonal is assembled),
and so on. Another q × 1 array J stores the column numbers of the corresponding entries
in VAL. A third array I of size m × 1 contains pointers to the beginning of each jagged
diagonal; m is the maximum number of nonzero entries in any row, which gives the total
number of jagged diagonals. Figure 11.6 illustrates the jagged-diagonal storage scheme.

11.1.2 Vector Inner Product

Although not a sparse matrix operation, the inner product of two dense vectors is commonly
used in iterative methods for solving systems of linear equations (Section 11.2). The inner
product often determines the overall communication complexity and scalability of the
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1. procedure INNER PRODUCT (x , y, a, n)
2. begin
3. a := 0;
4. for i := 0 to n − 1 do
5. a := a + x[i] × y[i];
6. end INNER PRODUCT

Program 11.1 An algorithm for computing the inner product of two dense n × 1 vectors
x and y.

entire algorithm of which it is a part. As Program 11.1 shows, the inner product is a
simple operation in which the corresponding elements of two vectors are multiplied and
the resulting products are added together.

If the two n×1 vectors to be multiplied are uniformly partitioned among p processors,
each processor performs n/p multiplications and (n/p)−1 additions. The sums of the n/p
products at each processor must be accumulated to obtain the inner product. Assume that
the underlying architecture is a hypercube and that it takes time ts + tw ≈ ts (assuming tw to
be small compared to ts) to communicate one word of data between two directly-connected
(by bidirectional links) processors. Whether the final inner product must be distributed
to all processors (Example 3.7) or is required at only one processor (Example 4.1), the
total communication time on a p-processor hypercube is approximately ts log p. If the
underlying architecture is a square mesh with cut-through routing, the communication time
is approximately ts log p + 2th

√
p (Section 3.2.2).

Recall from Section 3.7.3 that, in addition to the standard data network, some parallel
computers have a fast control network that can perform certain global operations in a small,
almost constant, time. One such operation is reduction, which starts with a different value
on every processor and ends with a single value in each processor that is the result of
applying an associative operator (such as logical OR, logical AND, addition, maximum,
or minimum) on all the initial values. Section 3.7.3 shows how this operation can be used
to accumulate the partial sums and to distribute the value of the inner product to all the
processors in the ensemble. As shown in Section 11.2, the presence of a fast reduction
operation has a significant effect on the efficiency of iterative algorithms for solving sparse
systems of equations.

11.1.3 Sparse Matrix-Vector Multiplication

The multiplication of a sparse matrix with a dense vector is one of the key operations in
solving systems of linear equations using iterative methods (Section 11.2). It is, therefore,
important to perform this operation efficiently in parallel. The sparse matrices resulting
from linear systems of equations often have their nonzero elements distributed according
to some pattern. Whenever possible, the parallel implementation of sparse matrix-vector
multiplication is tuned according this pattern to attain maximum efficiency. In this sec-
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Figure 11.7 A 16 × 16 block-tridiagonal matrix. The nonzero elements are repre-
sented by the symbol ×. Zeros are not shown.

tion, we discuss matrix-vector multiplication for three types of sparse matrices that occur
commonly in the context of linear systems of equations: (1) matrices in which all nonzero
elements are arranged in a few diagonals parallel to and including the principal diagonal;
(2) unstructured sparse matrices, in which the location of nonzero elements does not con-
form to any well-defined structure; and (3) banded sparse matrices, in which the nonzero
elements are confined within a band around the principal diagonal; however, inside the
band the nonzero elements are distributed in an unstructured manner.

Block-Tridiagonal Matrices

This subsection discusses multiplication of a vector by a sparse matrix that has all its nonzero
elements distributed along five diagonals. Furthermore, the diagonals have very specific
locations, as illustrated in Figure 11.7 for a 16×16 matrix. One of the five diagonals of the
n ×n matrix is the principal diagonal. There are two diagonals immediately adjacent to the
principal diagonal on each side. Finally, there are two diagonals at a distance of

√
n from

the principal diagonal on each side. Systems of linear equations with a coefficient matrix of
the type shown in Figure 11.7 occasionally arise in scientific computing. Such systems are
also pedagogically popular, as they facilitate the exposition of certain key concepts without
too many intricacies. Before we discuss matrix-vector multiplication involving this matrix,
we will briefly describe how such a matrix originates.

As mentioned earlier, sparse systems of equation often arise from models of phys-
ical systems. The finite difference method is one of the techniques used to obtain an
approximate solution to a partial differential equation governing the behavior of a physical
system. The finite difference method imposes a regular grid on the physical domain. It
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then approximates the derivative of an unknown quantity u at a grid point by the ratio
of the difference in u at two adjacent grid points to the distance between the grid points.
For example, consider a square domain discretized by

√
n × √

n grid points, as shown in
Figure 11.8. Assume that the grid points are numbered in a row-major fashion from left
to right and from top to bottom, as shown in the figure. This ordering is called natural
ordering. Given a total of n points in the

√
n × √

n grid, this numbering scheme labels the
immediate neighbors of point i on the top, left, right, and bottom points as i − √

n, i − 1,
i + 1 and i + √

n, respectively.
Assume that the partial differential equation governing the value of u over the do-

main is

δ2u

δX2
+ δ2u

δY 2
= f. (11.1)

Further assume that the values of u at the n grid points are stored in an n × 1 vector x and
that x[i] is the value of u at point i . Let h be the distance between any two neighboring
grid points. The finite difference approximation of Equation 11.1 yields the following:

1

h

(
x[i + 1] − x[i]

h
− x[i] − x[i − 1]

h

)
+

1

h

(
x[i + √

n] − x[i]

h
− x[i] − x[i − √

n]

h

)
= f
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x[i − √
n] + x[i − 1] − 4x[i] + x[i + 1] + x[i + √

n] = h2 f

In general, the equation relating the values of the physical quantity at point i to its
value at i’s neighbors is of the form

ai x[i − √
n] + bi x[i − 1] + ci x[i] + di x[i + 1] + ei x[i + √

n] = fi , (11.2)

where ai , bi , ci , di , ei , and fi are constants. Each point on the grid yields one such equation,
and hence, one row in the matrix of coefficients. If the equations are ordered from 0 to
n − 1, and variables are ordered from x[0] to x[n − 1] in each equation, the resulting
coefficient matrix resembles the one shown in Figure 11.7. In the i th row of the matrix,
the four nonzero entries other than the principal diagonal correspond to the four nearest
neighbors of the i th point in the grid shown in Figure 11.8. The rows corresponding to the
boundary points have fewer nonzero elements because these points have fewer than four
neighbors.

The matrix shown in Figure 11.7 is a special case of a block-tridiagonal matrix.
A block-tridiagonal matrix consists of three consecutive diagonals composed of matrix
blocks along the principal diagonal. We refer to these diagonals of matrix blocks as block
diagonals. The block diagonals of the block-tridiagonal matrix we are considering here
are composed of blocks of size

√
n × √

n. The blocks of the principal block diagonal are
tridiagonal matrices with three consecutive diagonals in the center. The two outer block
diagonals are composed of blocks that are simple diagonal matrices with only a nonzero
principal diagonal. The principal block diagonal contains

√
n blocks and each of the outer

block diagonals consists of
√

n − 1 blocks.
We will use the type of matrix shown in Figure 11.7 as the model block-tridiagonal

matrix in the remainder of this chapter. However, all algorithms using a matrix with this
structure are valid for a somewhat more general block-tridiagonal structure. In general,
the size of the matrix is l1l2 × l1l2 for some integers l1 and l2 (Problem 11.7). It consists
of a principal block diagonal composed of l2 × l2 tridiagonal matrices, and two adjacent
block diagonals on either side composed of l2 × l2 diagonal matrices. The principal block
diagonal consists of l1 blocks and the outer block diagonals contain l1 − 1 blocks each.
Such a matrix results if the underlying finite difference grid is an l1 × l2 rectangle.

Parallel Implementation with Striped Partitioning of the Block-Tridiagonal
Matrix Consider the multiplication of an n × n matrix of the type shown in Figure 11.7
with an n×1 vector using p processors. Figure 11.9 shows that the matrix and the vector are
partitioned among p processors so that every processor gets n/p elements of the vector and
each diagonal of the matrix. The diagonal storage scheme is the natural choice for this case.
The array VAL is distributed among the processors by using block-striped partitioning, and
the array OFFSET is not required because the offsets −√

n, −1, 0, 1 and
√

n are implicit.
Each row of the matrix requires five vector elements for multiplication. The vector

element with which the principal diagonal entry of a row is multiplied has the same index
as the number of the row, and is available at the same processor as the row. The vector
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Figure 11.9 Data communication in matrix-vector multiplication with block-striped
partitioning of a block-tridiagonal matrix.

elements with which the two inner diagonal entries are multiplied are also available on the
same processor, except for the rows that lie on processor boundaries (for example, row
number (n/p)− 1 is the last row on processor P0 and needs vector elements (n/p)− 2 and
n/p; the latter resides on processor P1). Each processor exchanges its boundary elements
with its neighboring processors, and thus, all vector elements required for multiplication
with the inner diagonals are now available at each processor. This communication takes
2(ts + tw) time at each processor.
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The entries in each row belonging to the outer diagonals must be multiplied with
vector elements whose indices are greater or smaller than the index of the row by

√
n.

The communication for this step depends on the number of vector elements stored in each
processor. If the number of elements per processor (n/p) is greater than or equal to

√
n

(that is, p ≤ √
n), then the required communication can be accomplished by each pair

of neighboring processors exchanging
√

n vector elements at partition boundaries in time
2(ts + tw

√
n). This exchange subsumes the exchange of the boundary elements for the

multiplication of the inner diagonals. Thus, the total communication time is 2(ts + tw
√

n).
If the number of elements per processor is less than

√
n (that is, p >

√
n), then

processor Pj needs portions of the vector located at processors numbered j ± p/
√

n to
multiply with the matrix elements belonging to the outer diagonals. As a result, each
processor exchanges all its n/p elements with processors located at a distance of p/

√
n

from it on either side (Figure 11.9). This is a shift operation (without circulation) of the
vector elements in both directions by a distance of p/

√
n processors. The shift operation

is described in Section 3.6. Assume that the underlying architecture is a hypercube with
cut-through routing. As discussed in Section 3.6.2, the communication time for each shift
is at most ts + twn/p + th log p. Thus, the total communication time (for the exchange
of boundary elements and for the shifts) when p >

√
n is approximately 4ts + 2twn/p +

2th log p.
Except for the first and last

√
n rows, there are five nonzero entries in each row of

the matrix. Assuming that it takes time tc to perform one multiplication and addition,
the computation time is 5tcn/p. The overall parallel execution time for matrix-vector
multiplication with the block-tridiagonal matrix and its mapping shown in Figure 11.9 is
given by the following equations:

Case 1: p ≤ √
n

TP =
computation︷ ︸︸ ︷

5tcn/p +
exchange with neighboring processors︷ ︸︸ ︷

2(ts + tw
√

n) (11.3)

Case 2: p >
√

n

TP =
computation︷ ︸︸ ︷

5tcn/p +
exchange of boundary elements︷ ︸︸ ︷

2(ts + tw) +
shift operations︷ ︸︸ ︷

2ts + 2twn/p + 2th log p

(11.4)

From Equation 11.4 it follows that the isoefficiency function of this parallel im-
plementation of sparse matrix-vector multiplication is �(p log p). Although this parallel
formulation appears quite scalable, there is an upper limit on the efficiency for p >

√
n.

The efficiency expression for this case is

E = 5tc
5tc + 4ts p/n + 4tw + (2th p log p)/n

. (11.5)

Equation 11.5 shows that efficiency cannot exceed 5tc/(4tw +5tc). This upper bound
on efficiency depends only on the ratio of computation speed to communication bandwidth.



11.1 Basic Operations 419

P3

P8

P5P4

P2P1P0

P7

. .

. .

. .

. .
. .
. .

. .

. .

. .

. .
. .
. .

. .

. .
. .
. .

. .

. .

P6

0 1 2 3 4 5

6 7 8 9 10 11

1918

12 13 14 15 16 17

20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

Figure 11.10 Partitioning a 6 × 6
grid on nine processors.

Therefore, higher efficiency cannot be obtained unless the problem size is increased so
that p ≤ √

n, in which case the efficiency and isoefficiency function are determined by
Equation 11.3. If fewer than

√
n processors are used, the isoefficiency function due to both

concurrency and communication is �(p2) (Problem 11.12).
If the communication and computation speeds are not balanced, the performance of

this parallel formulation of matrix-vector multiplication can be poor. However, we can
overcome this upper bound on efficiency by using a better mapping of the matrix onto the
processors. We discuss this mapping in the following subsection.

A Faster Parallel Implementation for Matrices Arising from Finite Difference
Grids While multiplying the block-tridiagonal matrix of the type shown in Figure 11.7
with a vector, the i th row of the matrix requires an element x[ j] of the vector if and only if
A[i, j] �= 0. The element A[i, j] is nonzero if and only if points i and j are neighbors in
the grid. Thus, the processor storing the i th row of the matrix requires only those elements
of the vector whose indices are the same as the indices of the grid points neighboring the
i th point.

Now consider the mapping shown in Figure 11.10, which partitions the grid in a
block-checkerboard fashion. This partitioning allocates rows of the matrix corresponding
to the grid points within a partition to a single processor. The vector is partitioned similarly;
the elements with indices corresponding to the grid points in a partition are allocated to
a single processor. Using this partitioning, each processor stores

√
n/p clusters of

√
n/p

matrix rows each (as well as vector elements with the same indices). The starting points of
successive clusters are

√
n rows apart.

To perform matrix-vector multiplication, each processor exchanges the vector el-
ements corresponding to its

√
n/p boundary points with each of its four neighboring

processors. The communication time is 4ts + 4tw
√

n/p for both the mesh and hypercube
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architectures. The total parallel run time is

TP = 5tc
n

p
+ 4ts + 4tw

√
n/p. (11.6)

The expression for efficiency is

E = 5tc
5tc + 4ts p/n + 4tw

√
p/n

. (11.7)

A comparison of Equations 11.4 and 11.6 shows that the second data distribution
scheme for the block-tridiagonal matrix is strictly superior to the first when p >

√
n.

Moreover, in the second scheme, there is no upper bound on efficiency. Thus, efficiency
can be increased by increasing the problem size for a given number of processors.

Note that the way the grid points are numbered does not affect the communication
overhead in this parallel implementation of matrix-vector multiplication. For a given grid
and parallel computer, the communication overhead depends only on the way the grid
is partitioned among the processors. If the grid is partitioned as shown in Figure 11.10
and vector elements and matrix rows with identical indices are mapped onto the same
processor, then Equation 11.6 holds for any square grid whose points have four neighbors
each. Hence, the partitioning illustrated in Figure 11.10 is useful not only for natural
ordering and the resulting block-tridiagonal matrix, but also for other ordering schemes
such as red-black and multicolored orderings (Section 11.2.2). In general, any l1l2 × l1l2

matrix arising out of an rectangular l1 × l2 finite difference grid can use the partitioning
illustrated in Figure 11.10 to minimize communication in matrix-vector multiplication.

Unstructured Sparse Matrices

Consider the multiplication of an n × n unstructured sparse matrix A with an n × 1 vector
x . Assume that the average number of nonzero elements per row in A is m, and hence, the
total number of nonzero elements in the entire matrix is mn. Recall that if A is a matrix of
coefficients resulting from the model of a physical system, then each row of A contains the
coefficients of a linear equation corresponding to one grid point. The number of nonzero
coefficients in this equation is equal to the number of neighbors of this grid point. Thus,
m is the average number of neighbors that a grid point has. As a result, m is essentially
a constant independent of the size of the domain (or the size of the array A) and depends
only on the nature of the grid imposed on the domain. The Ellpack-Itpack format is an
appropriate storage scheme for A because the number of nonzero elements in different rows
of A is not expected to vary over a wide range.

A Simple Parallel Implementation Since the Ellpack-Itpack format is row oriented,
we partition the arrays VAL and J among p processors such that each processor receives
n/p rows, or mn/p nonzero elements of matrix A. The vector x is partitioned uniformly
so that each processor initially stores n/p elements.

Recall from Section 5.3 that for dense matrix-vector multiplication, each row of the
matrix must be multiplied with the vector. Hence, the vector must be aligned with the rows
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Figure 11.11 Data communication in matrix-vector multiplication with block-
striped partitioning of an unstructured sparse matrix.

of the matrix in all the processors. Even in the sparse case, if the distribution of nonzero
elements is random, then a row can have a nonzero entry in any column. The entire vector
must be accessible to each row so that any of its nonzero entries can be multiplied with
the corresponding element of the vector. Thus, matrix-vector multiplication requires an
all-to-all broadcast among the processors as shown in Figure 11.11(a). The broadcast is
followed by the computation phase, in which each processor performs an average of mn/p
multiplications and additions. Since each processor is responsible for n/p rows of the
matrix, after the computation step, every processor has n/p elements of the result vector,
which is distributed among the processors in the same mapping as the starting vector x .

Assuming that the underlying architecture is a hypercube, the all-to-all broadcast of
messages containing n/p vector elements among p processors takes ts log p + twn time. If
each multiplication and addition takes time tc, then the parallel run time is

TP = tcm
n

p
+ ts log p + twn. (11.8)

Equation 11.8 shows that the communication time, and hence the overall parallel run
time, for this implementation of matrix-vector multiplication is �(n). Assuming that m, the
average number of nonzero elements per row, is constant, the sequential time complexity
of multiplying a sparse n × n matrix with a vector is also �(n). Thus, this parallel
implementation does not lead to any asymptotic reduction in run time. Hence, the parallel
implementation is non-cost-optimal and unscalable.

The only way to reduce the parallel run time of this algorithm is to reduce commu-
nication time. However, this is not possible if the matrix is partioned into stripes—either
along the rows or along the columns. If the vector is distributed among all the processors,
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and a storage scheme is used in which a matrix element at a processor can potentially be
in any column, then an all-to-all broadcast of the vector elements is unavoidable. This is
true for the coordinate format (an entry in the array VAL can have any column number),
the jagged-diagonal format (for instance, in Figure 11.6(c), the first six elements of VAL
span columns 0 to 5 while storing a 6 × 6 array), and any row-based storage scheme such
as CSR.

Now consider storing the matrix in compressed sparse column format and partitioning
it among the processors such that each processor gets n/p columns. The vector is partitioned
uniformly among the processors. As shown in Figure 11.11(b), the vector is already aligned
with the rows, and hence, no communication is necessary to perform the multiplication.
However, to have the product vector stored in the same format as that of the starting
vector, the products of the elements of the i th row with the elements of the vector must be
accumulated on the processor that stores the i th column (Problem 5.6). Thus, as shown in
Figure 11.11(b), a multinode accumulation operation has to be performed with messages
of size n/p. Recall from Chapter 3 that the communication time for this operation is
ts log p + twn, which is the same as the communication time for rowwise striping.

A Faster Parallel Formulation for Unstructured Sparse Matrices First consider
the parallel formulation independent of the storage scheme. Assume that the n × n sparse
matrix is block-checkerboarded onto a logical

√
p × √

p mesh of processors embedded in
a physical hypercube. Also assume that the vector is partitioned uniformly among the

√
p

processors of the last column. This is the same scenario as in Figure 5.9, except that the
matrix is now sparse. Regardless of the type of matrix, communication is the same as in
Figure 5.9, and the total communication time on a hypercube with cut-through routing is
approximately ts log p + (twn log p)/(

√
p) (Problem 5.7).

Assume that nonzero elements are uniformly distributed over the sparse matrix.
Checkerboard partitioning divides the matrix into blocks of size n/

√
p × n/

√
p. If each

row contains an average of m nonzero elements, then the average number of such elements
in each block is m/

√
p × n/

√
p (a block has the (1/p)th portion of n/p rows). Thus, on

an average, every processor performs approximately mn/p multiplications and additions.
Assuming that it takes time tc to perform a single addition and multiplication, the average
time that a processor spends in computation is mtcn/p. Note that this is only the average
computation time per processor, and the actual time varies depending on the number of
nonzero elements that fall in the block stored in the processor. For simplicity, we ignore
this fact and assume a uniform computation time (mtcn/p) on each processor. The more
realistic case, in which the processor containing the maximum number of nonzero elements
determines the effective computation time, is discussed in Problem 11.4. Under this uniform
workload assumption, the expressions for parallel run time, speedup, and efficiency are as
follows:

TP = mtc
n

p
+ ts log p + 3

2
tw

n√
p

log p (11.9)

S = mtc pn

mtcn + ts p log p + (3twn
√

p/2) log p
(11.10)
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E = mtc
mtc + (ts p log p)/n + (3

√
p log p)/2

(11.11)

From the preceding equations, we see that even this parallel formulation of matrix-
vector multiplication is non-cost-optimal and unscalable, but its parallel run time is
�(log p) + �((n/

√
p) log p), which is asymptotically smaller than the sequential run

time.
A convenient format for storing the sparse matrix for this formulation is to store each

block in a separate data structure. For example, if the Ellpack-Itpack format is used, then
p separate sets of VAL and J arrays need to be maintained—one for each block residing on
a separate processor.

A Scalable Parallel Implementation for Unstructured Sparse Matrices We
now briefly discuss a scalable formulation of matrix-vector multiplication for a special
class of unstructured sparse matrices. Let A be an n ×n unstructured sparse matrix that has
a symmetric structure. Let G(A) be a graph with n nodes such that there is an edge between
the i th and the j th nodes of G(A) if and only if A[i, j] �= 0 (or A[ j, i] �= 0). The matrix
A is thus a weighted adjacency matrix of graph G(A) in which each node corresponds to
a row of A. A scalable parallel implementation of matrix-vector multiplication exists for a
sparse matrix A provided that it is the adjacency matrix of a planar graph G(A). A graph
is planar if and only if it can be drawn in a plane such that no edges cross each other. Note
that planarity of G(A) is a sufficient, but not a necessary condition for the multiplication
of matrix A with a vector to be scalable.

If the graph G(A) is planar, it is possible to partition its nodes (and hence, the rows
of A) among processors to yield a scalable parallel formulation for sparse matrix-vector
multiplication. The amount of computation that a processors performs is proportional
to the total number of nodes in that processor’s partition. If G(A) is planar, the total
number of words that a processor communicates is proportional to the number of nodes
lying along the periphery of that processor’s partition. Furthermore, if G(A) is planar, the
number of processors with whom a given processor communicates is equal to the number of
partitions with whom that processor’s partition shares its boundaries. Hence, by reducing
the number of partitions (thus, increasing the size of the partitions) it possible to increase
the computation to communication ratio of the processors.

Figure 11.12 shows a structurally symmetric randomly sparse matrix and its associ-
ated graph. The vector is partitioned among the processors such that its i th element resides
on the same processor that stores the i th row of the matrix. Figure 11.12 also shows the
partitioning of the graph among processors and the corresponding assignment of the matrix
rows to processors. While performing matrix-vector multiplication with this partitioning,
the i th row of A requires only those elements of the vector whose indices correspond to
the neighbors of the i th node in G(A). The reason is that by the construction of G(A), the
i th row has a nonzero element in the j th column if and only if j is connected to i by an
edge in G(A). As a result, a processor performs communication for only those rows of
A that correspond to the nodes of G(A) lying at the boundary of the processor’s partition.
If the graph is partitioned properly, the communication cost can be reduced significantly
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Figure 11.12 A 16 × 16 unstructured sparse matrix with symmetric structure and its
associated graph partitioned among four processors.

both in terms of the number of messages and the volume of communication (Problems 11.8
and 11.9).

Partitioning an arbitrary graph G(A) to minimize interprocessor communication
is a hard combinatorial problem. However, there are several good heuristics for graph
partitioning. These partitioning techniques are described in detail in Section 11.3. Often,
the origin of the unstructured sparse matrix A lies in a finite element problem. In such a
case, the graph G(A) can be derived from the finite element graph directly.

The technique described here can also be adapted for randomly sparse matrices
that are non-symmetric in structure. In such cases, a directed graph results, and the
communication takes place in the direction opposite to the direction of an edge crossing a
partition boundary. For example, if A[i, j] �= 0, then there is a directed edge from node i
to node j in G(A). If nodes i and j belong to different partitions, then the j th element of
the vector must be sent to the processor storing the i th row of matrix A.

Banded Unstructured Sparse Matrices

We often encounter linear systems in which the nonzero elements of the sparse matrix
of coefficients occur only within a band parallel to the principal diagonal. Even if the
nonzero elements are scattered throughout the matrix, it is often possible to restrict them to
a band by using certain reordering techniques. In this subsection we discuss matrix-vector
multiplication for banded unstructured sparse matrices.
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Figure 11.13 Matrix-vector multiplication with a block-striped partitioning of a banded
unstructured sparse matrix.

For simplicity of analysis, we assume that the width of the band is w and that it
spreads evenly to a width of (w − 1)/2 on both sides of the principal diagonal. The n × n
matrix is stored in Ellpack-Itpack format, and the average number of nonzero elements
per row is m. The matrix and the vector are distributed among the processors as shown in
Figure 11.13. Each of the p processors initially stores the nonzero entries of n/p rows of
the matrix and n/p elements of the vector. We consider only the case in which neither the
width of the band nor the number of processors is trivially small. Hence, we assume that
n/p � w.

Given the distribution of nonzero elements just described, the maximum column
index of a nonzero element in the i th row of the matrix is i + (w − 1)/2, and its minimum
column index is i − (w − 1)/2. Thus, the i th row requires those elements of the vector that
have indices between i − (w − 1)/2 and i + (w − 1)/2. Furthermore, the indices of the
rows that require the i th vector element lie between i − (w−1)/2 and i + (w−1)/2. Since
each processor stores n/p matrix rows, the half band of (w − 1)/2 rows is spread among
�(w − 1)p/2n� processors. Hence, a processor needs to send all its n/p vector elements to
�(w−1)p/2n� processors on either side. A typical processor Pj communicates with all the
processors with labels between j −�(w−1)p/2n� and j +�(w−1)p/2n�. From now on,
we will assume that wp/2n is a whole number and �w(p−1)/2n� is rounded off to wp/2n.
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Thus, each processor sends all its vector elements to approximately wp/n processors (see
Figure 11.13 for an illustration). Contrast this with the case of an unstructured sparse
matrix, in which each processor sends its vector elements to all other processors.

Assuming that the processors are connected in a linear array, communication takes
wp/n steps, wp/2n in each direction in the linear array. In the first step, all processors
(except those at the ends of the linear array) send vector elements to their neighbors in one
direction. In subsequent steps, each processor stores the data received from one neighbor
and forwards them to the other neighbor. After performing wp/2n communication steps in
one direction, each processor performs another wp/2n similar steps in the other direction.
The total communication time is (ts + twn/p) × wp/n = tswp/n + tww. Since there is
an average of m nonzero elements per row of the matrix, and each processor stores the
nonzero elements of n/p rows, the average number of scalar multiplication-addition pairs
that each processor performs is mn/p. If we assume a uniform workload, the parallel run
time is

TP = tc
mn

p
+ ts

wp

n
+ tww. (11.12)

The processor-time product is tcmn + tswp2/n + twwp. For cost-optimality, the
processor-time product should not exceed the serial time complexity of the algorithm,
which is �(mn). Consider the term associated with ts first. If this term is not to exceed
�(mn), then p2w/n = O(mn), or p = O(n

√
m/w). Similarly, if the tw term is not to

exceed �(mn), then wp = O(mn), or p = O(mn/w). Since m < w, we have m/w < 1
and m/w <

√
m/w. Therefore, the overall (most restrictive) condition for cost-optimality

is p = O(mn/w).
Thus, matrix-vector multiplication with unstructured sparse matrices is cost-optimal

and scalable if the nonzero elements are confined to a band rather than scattered over the
entire matrix (Problems 11.10 and 11.11). The number of processors that can be used
cost-optimally is directly proportional to the number of nonzero elements in each row of
the sparse matrix, and inversely proportional to the width of the band in which the nonzero
elements are distributed.

11.2 Iterative Methods for Sparse
Linear Systems

Iterative methods are techniques to solve systems of equations of the form Ax = b that
generate a sequence of approximations to the solution vector x . In each iteration, the
coefficient matrix A is used to perform a matrix-vector multiplication. The number of
iterations required to solve a system of equations with a desired precision is usually data
dependent; hence, the number of iterations is not known prior to executing the algorithm.
Therefore, in this section we analyze the performance and scalability of a single iteration
of an iterative method. Iterative methods do not guarantee a solution for all systems of
equations. However, when they do yield a solution, they are usually less expensive than
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direct methods for matrix factorization. In the following section, we study some commonly
used iterative methods for solving large sparse systems of linear equations.

11.2.1 Jacobi Iterative Method

The Jacobi iterative method is one of the simplest iterative techniques. The i th equation of
a system of linear equations Ax = b is

n−1∑
j=0

A[i, j]x[ j] = b[i]. (11.13)

If all the diagonal elements of A are nonzero (or are made nonzero by permuting the rows
and columns of A), we can rewrite Equation 11.13 as

x[i] = 1

A[i, i]

(
b[i] −

∑
j �=i

A[i, j]x[ j]

)
. (11.14)

The Jacobi method starts with an initial guess x0 for the solution vector x . This initial vector
x0 is used in the right-hand side of Equation 11.14 to arrive at the next approximation x1 to
the solution vector. The vector x1 is then used in the right hand side of Equation 11.14, and
the process continues until a close enough approximation to the actual solution is found. A
typical iteration step in the Jacobi method is

xk[i] = 1

A[i, i]

(
b[i] −

∑
j �=i

A[i, j]xk−1[ j]

)
. (11.15)

The process is said to have converged after k iterations of Equation 11.15 if the
magnitude of the vector (b − Axk) becomes reasonably small. The vector (b − Ax) is
zero for the exact solution x . Hence, (b − Axk), denoted by rk , represents the error in the
approximation of x and is referred to as the residual after k iterations. The square root

of the inner product rT
k rk (that is,

√
rT
k rk , which is also called the two-norm of rk and is

denoted by ‖rk‖2) is commonly used to represent the magnitude of the error at the end of the
k th iteration. The procedure terminates when ‖rk‖2 falls below a predetermined threshold,
which is usually a very small fraction ε‖r0‖2 (where, 0 < ε � 1) of the two-norm of the
initial residual r0.

We now express the iteration step of Equation 11.15 in terms of the residual rk .
Equation 11.15 can be rewritten as

xk[i] = 1

A[i, i]

(
b[i] −

n−1∑
j=0

A[i, j]xk−1[ j]

)
+ xk−1[i]. (11.16)

By the definition of the residual, rk−1 = b − Axk−1. Therefore, b[i] − �n−1
j=0 A[i, j]xk−1[ j]

in Equation 11.16 can be replaced by rk−1[i]. Hence, a Jacobi iteration is given by the
following equation:

xk[i] = rk−1[i]

A[i, i]
+ xk−1[i] (11.17)
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1. procedure JACOBI METHOD (A,b,x ,ε)
2. begin
3. k := 0;
4. Select initial solution vector x0;
5. r0 := b − Ax0;
6. while (‖rk‖2 > ε‖r0‖2) do
7. begin
8. k := k + 1;
9. for i := 0 to n − 1 do
10. xk[i] := rk−1[i]/A[i, i] + xk−1[i]; /* Equation 11.17 */
11. rk := b − Axk ;
12. endwhile;
13. x := xk ;
14. end JACOBI METHOD

Program11.2 The serial Jacobi iterativemethod for solving a system of linear equations.

The resulting algorithm is given in Program 11.2. The Jacobi algorithm given in Pro-
gram 11.2 is not guaranteed to converge for all types of matrices. One class of matrices for
which it always converges is that of diagonally-dominant matrices. An n × n matrix A is
diagonally dominant if and only if |A[i, i]| > �j �=i |A[i, j]|, 0 ≤ i < n.

Parallel Implementation

Each iteration of the Jacobi method given in Program 11.2 performs three main compu-
tations: the inner product on line 6, the loop of lines 9 and 10, and the matrix-vector
multiplication on line 11. If the matrix and the vector are mapped onto the processors of
a parallel computer such that A[i, i], rk[i], and xk[i] are assigned to the same processor
for 0 ≤ i < n, then the loop of lines 9 and 10 does not require any communication.
The mappings shown in Figures 11.9–11.13 all satisfy this condition. Sometimes, for the
purpose of load balancing, a mapping like the one shown in Figure 11.29(a) (Problem 11.1)
may be desirable. In this mapping, each processor performs the same number of scalar
multiplications and additions while multiplying the matrix with a vector; however, A[i, i]
and x[i] may not be assigned to the same processor. This situation can be remedied by
modifying the mapping slightly. The principal diagonal of the n × n coefficient matrix A
is treated as an n × 1 vector and is stored separately from the rest of the matrix. Now the
elements of the principal diagonal are mapped onto the same processors as those of the
vectors rk and xk , and the rest of the matrix is mapped as shown in Figure 11.29(a).

Thus, the loop on lines 9 and 10 can be executed in parallel without any commu-
nication. The two steps that require communication in each iteration are the computation
of the norm of the residual rk (line 6), which is a vector inner product, and matrix-vector
multiplication (line 11). Vector inner product and sparse matrix-vector multiplication are
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discussed in Sections 11.1.2 and 11.1.3, respectively. Of these, the operation with the larger
communication overhead determines the overall performance and scalability of the Jacobi
algorithm on a parallel architecture.

As discussed in Section 11.1.2, if no special hardware is available to add p numbers
distributed on p processors, the communication time for an inner-product computation is
�(log p) on a hypercube and �(

√
p) on a square mesh. This translates to a total overhead of

�(p log p) and �(p3/2) for each iteration on a hypercube and a mesh, respectively. There-
fore, the isoefficiency function of an iteration of the Jacobi method is at least �(p log p) on
a hypercube and �(p3/2) on a mesh. As discussed in Section 11.1.3, the communication
overhead in parallel sparse matrix-vector multiplication depends on the sparsity pattern on
the matrix. If the structure of the sparse matrix is such that the isoefficiency function due
to matrix-vector multiplication is less than that due to inner-product computation, then it is
possible to reduce the overall isoefficiency function of an iteration of the Jacobi algorithm.
Recall from Program 11.2 that the inner-product is computed in each iteration only to test
for convergence (line 6). If the convergence test is performed once every log p iterations
on a hypercube, then the total number of iterations may increase by at most log p, but the
overhead of each inner-product calculation is amortized over log p iterations. Thus, the
total overhead due to the inner product calculations is reduced to �(p). The isoefficiency
function due to the inner-product calculation is then also reduced to �(p). Similar results
can be obtained by performing the convergence check once every �(

√
p) iterations on a

mesh.

11.2.2 Gauss-Seidel and SOR Methods

As we mentioned earlier, the Jacobi algorithm does not always converge. Even if it does,
the rate of its convergence is often very slow. The Gauss-Seidel method improves on
the convergence properties of the Jacobi method. However, like the Jacobi method, the
Gauss-Seidel method is not always guaranteed to converge.

An iteration of the Jacobi method is based on Equation 11.15. During the k th iteration
of Jacobi algorithm to solve an n × n system, the step of Equation 11.15 is performed to
compute each xk[i] for 0 ≤ i < n. The computation of xk[i] uses the values of xk−1[0],
. . ., xk−1[i − 1], xk−1[i + 1], . . ., xk−1[n − 1]. Assuming that the xk[i] values are computed
in increasing order of i , the values of xk[0], . . . , xk[i − 1] have already been computed
before Equation 11.15 is used to compute xk[i]. However, the Jacobi algorithm uses
xk−1[0], . . . , xk−1[i − 1] from the previous iteration. The Gauss-Seidel algorithm uses the
most recent value of each variable, and as a result, often achieves faster convergence than
the Jacobi algorithm. The basic Gauss-Seidel iteration is given by

xk[i] = 1

A[i, i]

(
b[i] −

i−1∑
j=0

xk[ j]A[i, j] −
n−1∑

j=i+1

xk−1[ j]A[i, j]

)
. (11.18)
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Parallel Implementation

The Gauss-Seidel algorithm performs the basic iteration given by Equation 11.18 until sat-
isfactory convergence is achieved. As in Jacobi method, the test for convergence requires
an inner-product computation that involves global communication. However, a conver-
gence check need not be performed after each iteration. Given a parallel architecture, the
frequency of the convergence check can be chosen to optimize the overall performance on
that architecture (Section 11.2.1). The issues in parallelizing the inner-product computation
are discussed in Section 11.1.2. In this section we concentrate on performing the iteration
step of Equation 11.18 in parallel.

From a preliminary glance at Equation 11.18 it might appear that computing xk[0],
xk[1], . . ., xk[n − 1] in the k th iteration is completely sequential because xk[i] cannot be
computed until xk[i − 1] has been computed for 0 ≤ i < n. This is indeed the case if the
coefficient matrix A is dense. However, if A is sparse, the computation of xk[i] need not
wait until xk[0], . . . , xk[i −1] have all been computed. A majority of elements in the sparse
matrix A are zero. If A[i, j] is zero, then xk[i] on the left-hand side of Equation 11.18
does not depend upon xk[ j]. Thus, xk[i] can be computed as soon as all xk[ j] have been
computed such that j < i and A[i, j] �= 0. At any time, all xk[i] for which this condition
is true can be computed in parallel.

Since the computation of xk[i] depends only on the nonzero elements A[i, j] (with
j < i) in the coefficient matrix, the degree of parallelism in Gauss-Seidel method is a
function of the sparsity pattern of the lower-triangular part of A. For example, consider
the block-tridiagonal matrix of the form shown in Figure 11.7. Such a matrix results
from a finite difference discretization with a natural ordering of grid points, as shown in
Figure 11.8. In the

√
n ×√

n grid in Figure 11.8, except for the points on the left periphery,
every point i has point i −1 as its neighbor. Therefore, except in the rows corresponding to
the grid points on the left periphery, A[i, i−1] is not equal to zero. As a result, for all but

√
n

values of i , the computation of xk[i] has to wait until xk[i − 1] has been computed. Hence,
natural ordering is not suitable for a parallel implementation of Gauss-Seidel algorithm. It
can be shown that each Gauss-Seidel iteration on an n × n block-tridiagonal matrix of the
form shown in Figure 11.7 takes at least �(

√
n) time regardless of the number of processors

used (Problem 11.13).
The order in which the grid points in a discretized domain are numbered determines

the order of the rows and columns in the coefficient matrix, and hence, the location of
its nonzero elements. The degree of parallelism in the Gauss-Seidel algorithm depends
heavily on this ordering. The rate of convergence of the Gauss-Seidel algorithm for a given
grid is also sensitive to this ordering. However, given enough processors, an ordering more
amenable to parallelization is likely to yield a better overall performance, unless it results
in much worse convergence.

Red-Black Ordering We now introduce a numbering scheme for a finite difference grid
so that the resulting coefficient matrix permits a high degree of parallelism in a Gauss-Seidel
iteration. We will later extend this scheme to deal with sparse matrices other than those
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Figure 11.14 A partitioning among four processors of a 4 × 4 finite difference grid with
red-black ordering.

resulting from a finite difference discretization. Figure 11.14(a) illustrates this ordering,
which is known as red-black ordering. In red-black ordering, alternate grid points in each
row and column are colored red, and the remaining points are colored black. For a uniform
two-dimensional grid in which each point has a maximum of four neighbors, this ensures
that no two directly-connected grid points have the same color. After assigning colors to
the grid points, all red points are numbered first in natural order, leaving out the black
points. This is followed by numbering all the black points in natural order. If the grid has
a total of n points and n is even, the red points are numbered from 0 to (n/2) − 1 and the
black points are numbered from n/2 to n − 1.

Figure 11.14(b) shows the sparse matrix resulting from the 4 × 4 grid of Fig-
ure 11.14(a). In the coefficient matrix, the first n/2 rows correspond to the red points,
and the last n/2 rows correspond to the black points in the grid. Since red points have only
black neighbors and vice versa, the first n/2 rows have nondiagonal nonzero elements in
only the last n/2 columns, and the last n/2 rows have nondiagonal nonzero elements in
only the first n/2 columns.

Consider a parallel implementation of the Gauss-Seidel method on a two-dimensional
mesh of processors. The grid is partitioned among the processors of the mesh in a block-
checkerboard fashion. Figure 11.14 shows the allocation of grid points and the rows of
the coefficient matrix among four processors. With red-black ordering, each iteration
of the Gauss-Seidel algorithm is performed in two phases. In the k th iteration, first,
xk[0], xk[1], . . . , xk[n/2−1] are computed in parallel. Each of these variables corresponds
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to red points, and uses values of the variables corresponding to its black neighbors from
the previous iteration. To perform this computation, each processor sends the variables
corresponding to the black points lying at each of its four partition boundaries to the
respective neighboring processors. A typical processor has four boundaries with

√
n/p

points on each boundary. Half of these points are red and the other half are black. Therefore,
the communication time of the first phase is 4 × (ts + tw

√
n/p × 1/2), which is equal to

4ts + 2tw
√

n/p. In the second phase, xk[n/2], xk[n/2 + 1], . . . , xk[n − 1] are computed
in parallel. Each of these variables use the values of the variables corresponding to the
red neighbors that were computed in the first phase of the k th iteration. This requires an
exchange of all the

√
n/(2

√
p) variables corresponding to the red points at each of the four

partition boundaries. As in the first phase, the communication in the second phase takes
4ts + 2tw

√
n/p time.

Each evaluation of Equation 11.18 for the coefficient matrix resulting from a grid of
the form shown in Figure 11.14(a) requires at most four multiplications, four subtractions,
and one division. The number of multiplications and subtractions is at most four because
there are at most four nondiagonal nonzero elements in each row of A—one corresponding
to each of the four neighbors of a point in the grid. These operations are performed once
for each variable in every iteration. Assuming that this constant amount of computation
per grid point (or per row of the coefficient matrix) takes time tc, the total execution time
per iteration is

TP = tcn/p + 8ts + 4tw
√

n/p. (11.19)

Equation 11.19 does not include the time spent in testing for convergence, which depends
on how and with what frequency the convergence test is performed.

MulticoloredOrdering for General Matrices Recall from Figure 11.12 that a matrix
A can be regarded as the adjacency matrix of a graph G(A). We now extend the idea behind
red-black ordering to devise an ordering scheme for sparse matrices that arise from finite
element problems (Section 11.3).

Multicolored ordering is an ordering scheme in which the nodes of graph G(A)

associated with a matrix A are colored such that no two neighboring nodes have the same
color. Although coloring the graph in such a way is a combinatorial problem of expo-
nential complexity, usually simple heuristics are sufficient to color most graphs arising
out of practical problems by using a small number of colors. The nodes of each color
are assigned labels one after the other, and all nodes of the same color have consecutive
labels. The system of equations is rewritten such that the i th equation and the variable xi

correspond to the node labeled i in G(A). Figure 11.15 shows the multicolored order-
ing of a graph with four colors. The coefficient matrix of the system of linear equations
resulting from the grid of Figure 11.15 is of size 32 × 32. An iteration of parallel Gauss-
Seidel algorithm to solve this system is performed in four phases. In the first phase of
the k th iteration, xk[0], . . . , xk[7] are computed in parallel using xk−1[8], . . . , xk−1[31].
In the second phase, xk[8], . . . , xk[15] are computed in parallel using xk[0], . . . , xk[7]
and xk−1[16], . . . , xk−1[31]. In the third phase, xk[16], . . . , xk[23] are computed in par-
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Figure 11.15 Multicolored ordering of a finite element
graph using four colors.

allel using xk[0], . . . , xk[15] and xk−1[24], . . . , xk−1[31], and finally, in the fourth phase,
xk[24], . . . , xk[31] are computed in parallel using xk[0], . . . , xk[24].

In general, if the coefficient matrix is ordered using multicolored ordering, the number
of phases in a Gauss-Seidel iteration is equal to the number of colors used in the ordering.
In any iteration, all variables corresponding to the grid points of the same color can be
updated in parallel.

The SOR Method

Often, we can obtain a significant improvement in convergence speed by modifying the
iteration step of Equation 11.18. The successive overrelaxation (SOR) method is such
an extension of the Gauss-Seidel method. The SOR method computes xk[i] in the k th

iteration as a weighted average of xk−1[i] and the xk[i] given by Equation 11.18. In the
SOR algorithm, a parameter ω (typically, 0 < ω ≤ 2) is appropriately chosen, and the
following iteration step is used:

xk[i] = (i − ω)xk−1[i] + ω

A[i, i]

(
b[i] −

i−1∑
j=0

xk[ j]A[i, j] −
n−1∑

j=i+1

xk−1[ j]A[i, j]

)
(11.20)

The parallelization issues and the communication costs in a parallel implementation of the
SOR algorithm are the same as those for the Gauss-Seidel algorithm.

� 11.2.3 The Conjugate Gradient Method

The conjugate gradient (CG) method is one of the most powerful and widely used iterative
methods for solving large sparse systems of linear equations of the form Ax = b, where
A is a symmetric positive definite matrix. A real n × n matrix A is positive definite if
xT Ax > 0 for any n × 1 real, nonzero vector x .

The CG method belongs to a class of iterative methods known as minimization
methods. For a symmetric positive definite matrix A, the unique x that minimizes the
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quadratic function q(x) = (1/2)xT Ax − xT b is the solution to the system Ax = b. The
reason is that the gradient of q(x) is Ax − b, which is zero when q(x) is minimum. An
iteration of a minimization method is of the form

xk = xk−1 + αk pk, (11.21)

where αk is a scalar step size and pk is the direction vector. For a given xk−1 and pk , the
scalar αk is chosen to minimize q(xk); that is, αk is the value of α for which q(xk−1 + αpk)

is minimum. The function q(xk−1 + αpk) is quadratic in α, and its minimization leads to
the condition

αk = pT
k rk−1

pT
k Apk

, (11.22)

where rk−1 = b − Axk−1 is the residual vector after k − 1 iterations. The residual need not
be computed explicitly in each iteration because it can be computed incrementally by using
its value from the previous iteration. In the k th iteration, the residual rk can be expressed as
follows:

rk = b − Axk

= b − A(xk−1 + αk pk)

= b − Axk−1 − αk Apk

= rk−1 − αk Apk (11.23)

Thus, the only matrix-vector product computed in each iteration is Apk , which is already
required to compute αk (Equation 11.22).

If A is a symmetric positive definite matrix and p1, p2, . . ., pn are direction vectors
that are conjugate with respect to A (that is, pT

i Apj = 0 for all 0 < i, j ≤ n, i �= j), then
xk in Equation 11.21 converges to the solution of Ax = b in at most n iterations, assuming
no rounding errors. In practice, however, the number of iterations that yields an acceptable
approximation to the solution is much smaller than n. In the CG algorithm, the set of
A-conjugate direction vectors is chosen as follows:

p1 = r0 = b

pk+1 = rk + ‖rk‖2
2 pk

‖rk−1‖2
2

(11.24)

With the preceding choice of direction vectors, the ratio (pT
k rk−1)/(pT

k Apk) is equal to
‖rk−1‖2

2/(p
T
k Apk). Thus, Equation 11.22 can be rewritten as follows:

αk = ‖rk−1‖2
2

pT
k Apk

(11.25)

Equations 11.21, 11.23, 11.24, and 11.25 lead to the conjugate gradient algorithm
given in Program 11.3. The algorithm terminates when the two-norm of the current residual
falls below a predetermined fraction of the two-norm of the initial residual r0.
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1. procedure CG (A,b,x ,ε)
2. begin
3. k := 0; x0 := 0; r0 := b; ρ0 := ‖r0‖2

2;
4. while (

√
ρi > ε‖r0‖2) do

5. begin
6. if (k = 0) then p1 := r0

7. else pk+1 := rk + ρk pk/ρk−1; /* Equation 11.24 */
8. k := k + 1;
9. wk := Apk ;
10. αk := ρk−1/pT

k wk ; /* Equation 11.25 */
11. xk := xk−1 + αk pk ; /* Equation 11.21 */
12. rk := rk−1 − αkwk ; /* Equation 11.23 */
13. ρk := ‖rk‖2

2;
14. endwhile;
15. x := xk ;
16. end CG

Program 11.3 The conjugate gradient (CG) algorithm.

The Preconditioned Conjugate Gradient Algorithm

If the coefficient matrix A has l distinct eigenvalues, the conjugate gradient algorithm
given in Program 11.3 converges to the solution of the system Ax = b in at most l
iterations (assuming no rounding errors). Therefore, if A has many distinct eigenvalues
that vary widely in magnitude, the CG algorithm may require a large number of iterations to
converge to an acceptable approximation to the solution. The speed of convergence of the
CG algorithm can be increased by preconditioning A with the congruence transformation
Ã = RART , where R is a nonsingular matrix. R is chosen such that Ã has fewer distinct
eigenvalues than A. The CG algorithm is then used to solve Ãx̃ = b̃, where x̃ = (RT )−1x
and b̃ = Rb. The resulting algorithm is called the preconditioned conjugate gradient
(PCG) algorithm.

There are certain problems with applying the CG algorithm directly to the system
Ãx̃ = b̃. Unless R is a diagonal matrix, the sparsity pattern of A is not preserved in
Ã. Moreover, the matrix multiplications involved in computing Ã can be expensive.
Fortunately, it is possible to formulate the PCG algorithm so that the explicit computation
of Ã is avoided. A practical PCG algorithm works with the original matrix A; however,
it maintains the same convergence rate as that for the system Ãx̃ = b̃. Such a practical
PCG algorithm is given in Program 11.4. The matrix M in the program is referred to as the
preconditioner matrix and is given by M = (RT R)−1. If M is an identity matrix, then the
PCG algorithm reduces to the unpreconditioned algorithm of Program 11.3.

In practical implementations of the PCG algorithm, the preconditioner M is directly
chosen as a symmetric positive definite matrix, and computing it by using M = (RT R)−1
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1. procedure PCG (A,b,M,x ,ε)
2. begin
3. k := 0; x0 := 0; r0 := b; ρ0 := ‖r0‖2

2;
4. while (

√
ρi > ε‖r0‖2) do

5. begin
6. Solve the system Mzk = rk ;
7. γk := rT

k zk ;
8. if (k = 0) then p1 := z0

9. else pk+1 := zk + γk pk/γk−1;
10. k := k + 1;
11. wk := Apk ;
12. αk := γk−1/pT

k wk ;
13. xk := xk−1 + αk pk ;
14. rk := rk−1 − αkwk ;
15. ρk := ‖rk‖2

2;
16. endwhile;
17. x := xk ;
18. end PCG

Program 11.4 The preconditioned conjugate gradient (PCG) algorithm.

is not required. For obvious reasons, M is chosen such that solving the system Mzk = rk

on line 6 in each iteration of Program 11.4 is not too costly.

Parallel Implementations of the PCG Algorithm

As Program 11.4 shows, the PCG algorithm involves the following four types of computa-
tions in each iteration:

(1) SAXPY operations: The operations on lines 9, 13, and 14 of Program 11.4
are known as simple ax plus y (SAXPY) operations, where a is a scalar, and x
and y are vectors. Each of these operations can be performed sequentially in
time �(n), regardless of the preconditioner and the type of coefficient matrix. If
all vectors are distributed identically among the processors, these steps require
no communication in a parallel implementation. The reason is that the vector
elements with the same indices are involved in a given arithmetic operation, and
thus are locally available on each processor. Using p processors, each of these
steps is performed in time �(n/p) on any architecture.

(2) Vector inner products: Lines 7, 12, and 15 in Program 11.4 involve vector inner-
product computation. In a serial implementation, each of these steps is performed
in �(n) time. As discussed in Section 11.1.2, a parallel implementation with
p processors takes �(n/p) + ts log p time on the hypercube architecture and
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�(n/p)+ ts log p+2th
√

p time on a mesh. If the parallel computer supports fast
reduction operations, the communication time for the inner-product calculations
can be ignored.

(3) Matrix-vector multiplication: The computation and the communication cost of
the matrix-vector multiplication step of line 11 depends on the structure of the
sparse matrix A. We study parallel implementations of the PCG algorithm for
two cases—one in which A is a block-tridiagonal matrix of the type shown in
Figure 11.7, and the other in which it is a banded unstructured sparse matrix.

(4) Solving the system Mzk = rk: The PCG algorithm solves a system of linear
equations Mzk = rk in each iteration (line 6). The preconditioner M is chosen so
that solving the system Mzk = rk is inexpensive compared to solving the original
system of equations Ax = b. Nevertheless, preconditioning increases the amount
of computation in each iteration. For good preconditioners, however, the increase
is compensated by a reduction in the number of iterations required to achieve
acceptable convergence.
The computation and the communication requirements of this step depend on the
type of preconditioner used. In this chapter we study parallel implementations
of the PCG algorithm for two types of preconditioning methods: (1) diagonal
preconditioning, in which the preconditioner matrix M has nonzero elements only
along the principal diagonal, and (2) incomplete Cholesky (IC) preconditioning,
in which M is based on an incomplete Cholesky factorization of A. There are
several variants of the IC preconditioner. We describe a few variants for which
solving the system Mzk = rk is an easily parallelizable operation. A PCG
algorithm using IC preconditioning is also referred to as an ICCG algorithm.

Note that, among the four types of computations that we just described, an unpre-
conditioned conjugate gradient algorithm performs only the first three. In the remainder
of this section, we consider parallel implementations of the PCG algorithm for different
combinations of preconditioners and coefficient matrix types. As we will see, if M is a
diagonal preconditioner, then solving the system Mzk = rk does not require any interpro-
cessor communication. Hence, the communication time in a CG iteration with diagonal
preconditioning is the same as that in an iteration of the unpreconditioned algorithm.

A Diagonal Preconditioner and a Matrix Resulting from a Finite Difference
Discretization Assume that the n × n coefficient matrix A arises from a

√
n × √

n
finite difference grid, and that the grid points (and hence, the matrix rows) are partitioned
among the processors as shown in Figure 11.10. Let the preconditioner matrix M be a
simple diagonal matrix with nonzero elements only along its principal diagonal, which is
usually derived from (or is the same as) the principal diagonal of A. Solving the system
Mzk = rk on line 6 of Program 11.4 is equivalent to dividing each element of r by the
diagonal entry of the corresponding row of M. No communication is required because
elements with identical indices reside on the same processor. Hence, in a p-processor
implementation, each processor performs this operation in �(n/p) time. The matrix-
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vector multiplication operation requires �(n/p) time for computation and 4ts + 4tw
√

n/p
time for communication (Equation 11.6). Each of the three inner products takes �(n/p)

for computation. Additionally, it takes approximately ts log p time for communication on a
hypercube and ts log p + 2th

√
p time on a mesh with cut-through routing (Section 11.1.2).

The total time spent in performing all the computation in each iteration is �(n/p).
If t

′
c is the constant associated with the computation, then the parallel run time for a

single iteration of the PCG algorithm on hypercube and mesh architectures is given by the
following equations:

Hypercube:

TP =
computation︷︸︸︷

t
′
c

n

p
+

inner products︷ ︸︸ ︷
3ts log p +

matrix-vector multiplication︷ ︸︸ ︷
4ts + 4tw

√
n/p (11.26)

Mesh with cut-through routing:

TP =
computation︷︸︸︷

t
′
c

n

p
+

inner products︷ ︸︸ ︷
3ts log p + 6th

√
p +

matrix-vector multiplication︷ ︸︸ ︷
4ts + 4tw

√
n/p (11.27)

The isoefficiency functions of this implementation of the PCG algorithm for the
hypercube and mesh architectures can be derived using the expressions in Equations 11.26
and 11.27, respectively. Since the total useful computation performed in each iteration is
�(n), the isoefficiency function for the hypercube is �(p log p), and that for the mesh
is �(p

√
p) for an iteration of the algorithm. Both isoefficiency functions result from the

communication due to vector inner-product computations. If the algorithm is executed on
a machine with a fast built-in reduction operation, this overhead can be ignored. In that
case, the only time spent in communication in each iteration is 4ts + 4tw

√
n/p on both the

mesh and hypercube architectures. The resulting expression for parallel run time is

TP = t
′
c

n

p
+ 4ts + 4tw

√
n/p. (11.28)

An isoefficiency function of �(p) follows from Equation 11.28, which means that the
parallel system is ideally scalable (Problem 11.17). Thus, for this algorithm, the availability
of a fast reduction operation proves to be very useful.

An IC Preconditioner and a Matrix Obtained from Red-Black Ordering Pro-
gram 5.6 gives a row-oriented Cholesky factorization algorithm for dense matrices. If the
same algorithm is used to factorize a sparse matrix A as the product L × LT , where L is a
lower-triangular matrix, then the factors L and LT are much less sparse than A. A no-fill
incomplete Cholesky factorization is a procedure that performs the computation of line 10
of Program 5.6 only if A[i, j] is nonzero. Replacing line 10 of Program 5.6 by

if A[i, j] �= 0 then A[i, j] := A[i, j] − A[k, i] × A[k, j];
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and executing the resulting algorithm on a sparse matrix A yields a sparse upper-triangular
matrix L

′T . The locations of the nonzero elements in L
′T coincide exactly with the locations

of the nonzero elements in the upper-triangular portion of A. Since A is symmetric, the
locations of nonzero elements in L

′
coincide with those in the lower-triangular part of A.

We use the matrix M = L
′
L

′T as the preconditioner on line 6 of the PCG algorithm
given in Program 11.4. With this choice of M, the system Mzk = rk is solved by solving
the following two triangular systems:

(1) solve L
′
u = rk

(2) solve L
′T zk = u

We can adapt the back-substitution algorithm described in Section 5.5.3 to solve
both of the preceding triangular systems (for the lower-triangular system, the outer loop
of the back-substitution algorithm in Program 5.5 must be reversed). In the worst case,
this process can be almost completely sequential; that is, it may require the variables of
the triangular system to be solved one after the other. Therefore, it is important that the
coefficient matrix A, and hence the triangular matrices L

′
and L

′T , is ordered so that the
solution to Mzk = rk in each iteration of the PCG algorithm can be parallelized effectively.

Consider an n × n matrix A of the form shown in Figure 11.14(b), which results
from a red-black ordering of the points in a

√
n × √

n finite difference grid. The ma-
trices L

′
and L

′T have nonzero elements in the same locations as the nonzero elements
in A’s lower- and upper-triangular parts, respectively. While solving L

′
u = rk , first,

u[0], u[1], . . . , u[(n/2) − 1] are computed in parallel. The absence of nondiagonal nonze-
ros in the upper half of L

′
permits the values of these variables to be computed in parallel.

Next, the values of these variables are substituted in the lower half of the system L
′
u = rk

and the remaining variables u[n/2], u[(n/2) + 1], . . . , u[n − 1] are computed in parallel.
Similarly, the upper-triangular system L

′T zk = u is solved in two phases—each computing
half of the elements of zk in parallel. Thus, the entire system Mzk = rk is solved in four
phases.

It is interesting to observe that there is a close similarity between performing a Gauss-
Seidel iteration (Equation 11.18) on a matrix A and solving triangular systems with the
same sparsity pattern as the corresponding triangular halves of A. If the coefficient matrix
is derived from a red-black ordering of the points of a finite difference grid, then just like a
Gauss-Seidel iteration, a triangular system is solved in two phases. In general, an ordering
scheme that allows parallelization of a Gauss-Seidel iteration also allows parallelization of
the solution of Mzk = rk in the PCG algorithm.

Assume that the
√

n×√
n finite difference grid from which the coefficient matrix A is

derived is mapped onto a p-processor mesh by using a block-checkerboard partitioning as
shown in Figure 11.10. A processor that stores the information related to the i th point in the
grid also stores the i th rows of the factors L

′
and L

′T of the preconditioner matrix M. With
this mapping of matrix rows onto the processors, the communication and computation
times for solving Mzk = rk in a PCG iteration are identical to the communication and
computation times for performing the step given by Equation 11.18 in a Gauss-Seidel
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iteration (Problem 11.18). The other operations (that is, SAXPY, inner products, and
matrix-vector multiplication) in an iteration of the parallel PCG algorithm take the same
amount of time as in the case of diagonal preconditioning discussed earlier.

A Truncated IC Preconditioner and a Block-Tridiagonal Matrix It is usually
observed that natural ordering of grid points leads to faster convergence of the conjugate
gradient algorithm than do the red-black or multicolored orderings. In the IC precondition-
ing technique previously described, the step of solving the system Mzk = rk is parallelizable
to only a limited extent for block-tridiagonal matrices (Problems 11.13 and 11.18), which
arise from the natural ordering of points in a finite difference grid. We now describe an-
other variant of the IC preconditioner that permits a highly parallel solution to the system
Mzk = rk for a block-tridiagonal matrix of coefficients.

If A is a symmetric positive definite matrix, it can be expressed as

A = D + L + LT ,

where D is the diagonal matrix consisting of the diagonal entries of A, and L is the strictly
lower-triangular matrix consisting of the two lower diagonals of A. The preconditioner
matrix M is chosen as

M = (I + L D̃−1)D̃(I + D̃−1LT ), (11.29)

where the diagonal matrix D̃ is chosen such that the principal diagonals of A and M are
the same. Hence, the relationship between D and D̃ is as follows:

D = diag(M)

= diag((I + L D̃−1)D̃(I + D̃−1LT ))

= diag(D̃ + LT + L + L D̃−1LT )

= D̃ + diag(L D̃−1LT ) (11.30)

Since D and L are known from A, the diagonal D̃ can be determined using Equa-
tion 11.30 (Problem 11.16). This D̃, substituted in Equation 11.29, determines the precon-
ditioner M. However, the matrix M is not assembled explicitly. Only the triangular matrix
L D̃−1 needs to computed.

Let us refer to L D̃−1 by the strictly lower-triangular matrix −L
′
. From Equa-

tion 11.29, the matrix M can be expressed as M = (I − L
′
)D̃(I − L

′T ). Now the system
Mzk = rk is solved by the following steps:

(1) solve (I − L
′
)u = rk

(2) solve D̃v = u
(3) solve (I − L

′T )zk = v

Since L
′

is a strictly lower-triangular n × n matrix, L
′i = 0 for i ≥ n. Therefore,

(I − L
′
)−1 can be expressed as (I + L

′ + L
′2 + · · · + L

′n−1). A similar expansion also
holds for L

′T . These series can be truncated to τ powers of L
′

and L
′T because M is
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a diagonally-dominant matrix, and the contribution of L
′τ and (L

′T )τ to (I − L
′
)−1 and

(I − L
′T )−1, respectively, becomes smaller as τ increases. If L̃ = (I + L

′ + · · · + L
′τ ),

then solving the system Mzk = rk is equivalent to performing the following matrix-vector
multiplications:

(1) u ≈ L̃rk

(2) v ≈ D̃−1u
(3) zk ≈ L̃T v

Usually τ = 2, 3, or 4 is chosen, depending on the degree of diagonal dominance of
M and the degree of precision desired. We discuss each of these three cases of practical
importance separately.

Assume that, in the parallel formulation of this algorithm, the communication over-
head due to vector inner-product computations is eliminated by special hardware that
provides a fast reduction operation. Hence, communication overhead is incurred only in
matrix-vector multiplication on line 11, and in solving the system Mzk = rk on line 6 of
Program 11.4. This assumption allows us to concentrate on the impact of varying τ on
the computation and communication requirements of the algorithm. We assume that the
components of the preconditioner (such as D̃ and L̃) are precomputed. Therefore, the rest
of the analysis in this section pertains only to the computation and communication that is
performed in each iteration in a parallel implementation of the PCG algorithm.

If τ = 2 is used, then L̃ = I +L
′ +L

′2
. The matrix L̃ has six diagonals—the principal

diagonal and diagonals with offsets 1, 2,
√

n,
√

n + 1, and 2
√

n in the lower-triangular
part. Similarly, L̃T has six diagonals in the upper triangular part. Let the time taken
by an addition and a multiplication be tc. Step (2) of the process of solving the system
Mzk = rk is similar to that for the diagonal preconditioner. Besides this step, the truncated
IC preconditioner requires the multiplication of a vector with 12 diagonals—six in step (1),
and six in step (3). As a result, in addition to the tcn/p computation time in each iteration
(as for the diagonal preconditioner), each processor spends an extra 12tcn/p time solving
the system Mzk = rk .

Recall from the discussion of matrix-vector multiplication for the block-tridiagonal
matrix (Section 11.1.3) that to multiply a vector with the diagonals at offsets 1 and

√
n in the

upper- and lower-triangular parts of the coefficient matrix, a grid point requires information
from all four of its neighboring points. As a result, each processor exchanges the vector
elements for its

√
n/p boundary points with each of its four neighbors. If the vector is

multiplied by the diagonals with offsets 1, 2,
√

n,
√

n + 1, and 2
√

n in each half of the
matrix, then each grid point needs information corresponding to the 12 neighboring points
shown in Figure 11.16. Thus, matrix-vector multiplication involving the matrix L̃ requires
each processor to exchange the vector elements for two layers of boundary points (that is,
2
√

n/p points) with each of its four neighbors. The total communication time for steps (1)
and (3) is thus 4ts + 8tw

√
n/p. Accounting for the 4ts + 4tw

√
n/p communication time

for matrix-vector multiplication in line 11 of Program 11.4, the total communication time
in each iteration is 8ts + 12tw

√
n/p. The overall parallel run time of an iteration is given
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Figure 11.16 The 12 grid points from
which point i receives vector elements.

by the following equations:

TP =
matrix-vector multiplications for solving Mzk = rk︷ ︸︸ ︷

12tcn/p

+
other computations︷ ︸︸ ︷

t
′
cn/p

+
communication in solving Mzk = rk︷ ︸︸ ︷

4ts + 8tw
√

n/p

+
communication in matrix-vector multiplication︷ ︸︸ ︷

4ts + 4tw
√

n/p

TP = (t
′
c + 12tc)

n

p
+ 8ts + 12tw

√
n

p
(11.31)

If τ = 3 is chosen, then L̃ = I + L
′ + L

′2 + L
′3, which can be rewritten as

(I +L
′
)(I +L

′2). Here there are two methods to perform steps (1) and (3) of solving Mzk =
rk . The first method constructs the matrices I + L

′ + L
′2 + L

′3 I + L
′T + (L

′T )2 + (L
′T )3

explicitly. Each of these matrices contains ten diagonals with offsets 0, 1, 2, 3,
√

n,√
n + 1,

√
n + 2, 2

√
n, 2

√
n + 1, and 3

√
n. The total computation time for steps (1) and

(3) is 20tcn/p for each processor. Extending the case of τ = 2 to τ = 3, each processor
exchanges the vector elements corresponding to the three layers of boundary points (that is,
3
√

n/p points) with each of its four neighbors before the two matrix-vector multiplications.
This requires a total communication time of 4ts + 12

√
n/p. Thus, the parallel run time of
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an iteration is given by the following equations:

TP =
matrix-vector multiplications for solving Mzk = rk︷ ︸︸ ︷

20tcn/p

+
other computations︷ ︸︸ ︷

t
′
cn/p

+
communication in solving Mzk = rk︷ ︸︸ ︷

4ts + 12tw
√

n/p

+
communication in matrix-vector multiplication︷ ︸︸ ︷

4ts + 4tw
√

n/p

TP = (t
′
c + 20tc)

n

p
+ 8ts + 16tw

√
n

p
(11.32)

The second method for τ = 3 uses the fact that L̃ = (I + L
′
)(I + L

′2). This method
performs step (1) in two stages. The first stage involves the multiplication of the vector r
with (I + L

′2), which has four diagonals at offsets of 0, 2,
√

n + 1, and 2
√

n. The product
is then multiplied with (I + L

′
), which has three diagonals with offsets 0, 1, and

√
n.

Step (3) is performed similarly. Thus, the total computation time is (2 × 4 + 2 × 3)tcn/p
= 14tcn/p per processor, per iteration. This time is less than the computation time for
the case in which L̃ = I + L

′ + L
′2 + L

′3 is used in unfactorized form. However, the
communication time is now higher than in the previous case. Each processor exchanges
vector elements for two layers of boundary points (that is, 2

√
n/p points) with each of

its four neighbors. These vector elements are required for matrix-vector multiplication
involving (I + L

′2) and (I + (L
′T )2). In addition to this, each processor needs to exchange

vector elements corresponding to its
√

n/p boundary points with its four neighbors for
multiplication with (I + L

′
) and (I + L

′T ). Thus, the total communication time (including
that of the matrix-vector multiplication in line 11) per iteration is 12ts + 16tw

√
n/p. The

parallel run time for each iteration is as follows:

TP =
matrix-vector multiplications for solving Mzk = rk︷ ︸︸ ︷

14tcn/p

+
other computations︷ ︸︸ ︷

t
′
cn/p

+
communication in solving Mzk = rk︷ ︸︸ ︷

8ts + 12tw
√

n/p

+
communication in matrix-vector multiplication︷ ︸︸ ︷

4ts + 4tw
√

n/p

TP = (t
′
c + 14tc)

n

p
+ 12ts + 16tw

√
n

p
(11.33)
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A comparison of Equations 11.32 and 11.33 shows that, although the term associated
with tc is smaller in Equation 11.33, the term associated with ts is smaller in Equation 11.32.
Hence, the choice of the method to be used in practice depends on the relative values of the
machine-dependent constants tc and ts and on the values of n and p. Note that, whenever
τ is odd, the series (I + L

′ + · · · + L
′τ ) can be factorized as shown here for τ = 3.

An analysis similar to that for τ = 2 and τ = 3 shows that, for τ = 4, the
computation time for solving the system Mzk = rk is 30tcn/p. The total communication
time per iteration is 8ts + 20tw

√
n/p. For general τ , if L̃ is not factorized, the number of

diagonals in L̃ is (τ + 1)(τ + 2)/2. These diagonals are distributed in τ + 1 clusters at
distances of

√
n from each other. The first cluster, which includes the principal diagonal,

has τ + 1 diagonals, and then the number of diagonals in each cluster decreases by one.
The last cluster has only one diagonal at a distance of τ

√
n from the principal diagonal.

For
√

n/p > τ , solving the system Mzk = rk requires each processor to exchange vector
elements corresponding to τ layers of boundary points (that is, τ

√
n/p points) with each

of its four neighboring processors. The expression for parallel run time for the general case
is given by the following equations:

TP =
matrix-vector multiplications for solving Mzk = rk︷ ︸︸ ︷

(τ + 1)(τ + 2)tcn/p

+
other computations︷ ︸︸ ︷

t
′
cn/p

+
communication in solving Mzk = rk︷ ︸︸ ︷

4ts + 4τ tw
√

n/p

+
communication in matrix-vector multiplication︷ ︸︸ ︷

4ts + 4tw
√

n/p

TP = (t
′
c + (τ 2 + 3τ + 2)tc)

n

p
+ 8ts + 4(τ + 1)tw

√
n

p
(11.34)

Disregarding the communication in computing the inner products, a comparison of
Equations 11.26 and 11.34 shows that the use of a truncated IC preconditioner involves
more computation per iteration of the PCG algorithm over a simple diagonal preconditioner.
On the other hand, an IC preconditioner significantly reduces the number of iterations
required to achieve a given level of precision over a diagonal preconditioner. The truncated
IC preconditioning also results in an efficiency higher than that in the case of diagonal
preconditioning (Problem 11.19), assuming that the efficiency of a parallel implementation
is computed with respect to an identical algorithm running on a single processor. The
overall performance of the PCG algorithm is governed by the amount of computation
per iteration, the number of iterations, and the efficiency of the parallel implementation.
Therefore, IC preconditioning may yield a better overall parallel run time by virtue of
a better efficiency than diagonal preconditioning, even if the latter is faster in a serial
implementation. A comparison of truncated IC preconditioners with different values of
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τ presents similar tradeoffs. Equation 11.34 shows that the amount of computation in
each iteration is proportional to τ 2, and the volume of communication in each iteration
is proportional to τ . Therefore, for the same values of n and p, both parallel run time
and efficiency increase as τ increases. For a given problem, different values of τ may
lead to optimal implementations for different values of p; a higher p favors a higher τ

(Problem 11.19).

A Diagonal Preconditioner and a Banded Unstructured Sparse Matrix Con-
sider a symmetric positive definite matrix of coefficients in which the nonzero elements
are uniformly distributed in a band of width w along the principal diagonal. If there is an
average of m nonzero elements per row, then as shown in Section 11.1.3, the parallel run
time for matrix-vector multiplication is tcmn/p + tswp/n + tww (Equation 11.12). When
we disregard the communication cost of vector inner product computation, the parallel run
time of an iteration of the PCG algorithm using the diagonal preconditioner is

TP = (t
′
c + tcm)

n

p
+ ts

wp

n
+ tww. (11.35)

A Truncated IC Preconditioner and a Banded Unstructured Sparse Matrix
Consider the use of the IC preconditioner for banded sparse matrices. The preconditioner
matrix M is of the form (I − L

′
)D̃(I − L

′T ), where D̃ is a diagonal matrix and L
′

is a
strictly lower-triangular sparse matrix whose nonzero elements are located in exactly the
same positions as in the lower-triangular part of the coefficient matrix A. The system
Mzk = rk is solved in the same manner as in the case of the block-tridiagonal matrix
discussed earlier. Consider the general case in which L̃ = (I + L

′ + · · · + L
′τ ) is used

as an approximation of (I − L
′
)−1. If L

′
has a bandwidth of w/2, then the bandwidth of

L
′τ has an upper bound of τw/2 (Problem 11.20). As a result, L̃ also has a bandwidth

of less than τw/2. The same holds true for L̃T as well. According to Equation 11.12,
the total communication time to multiply both L̃ and L̃T with the vectors is, at most,
tsτwp/n + twτw.

The matrices L
′

and L
′T consist of bands of width approximately w/2 along the

principal diagonal in the lower and the upper-triangular halves, respectively. Since the
sparsity pattern of L

′
and L

′T in their respective halves is identical to that of A, they have
an average of approximately m/2 nonzero elements per row (A has an average of m nonzero
elements per row). If A is large and m � w, then the average number of nonzero elements
per row in L

′τ and (L
′T )τ is (m/2)τ (Problem 11.21). Since 1 + a + a2 + · · · + aτ < aτ+1

for a > 1, the number of nonzero elements in L̃ and L̃T each has upper bound of (m/2)τ+1.
Hence, the computation time per processor for solving the system Mzk = rk on a p-
processor ensemble is 2tc(n/p)(m/2)τ+1 in each iteration. The total time spent in solving
Mzk = rk in each iteration is 2tc(n/p)(m/2)τ+1 + tsτwp/n + twτw.

From Equation 11.12, the time required to perform matrix-vector multiplication is
tcmn/p + tswp/n + tww. Thus, the overall parallel run time per iteration of the PCG
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algorithm with a banded unstructured sparse matrix and truncated IC preconditioner is

TP =
(
t

′
c + tc(2(

m

2
)τ+1 + m)

) n

p
+ ts(τ + 1)

wp

n
+ tw(τ + 1)w. (11.36)

11.3 Finite Element Method

The finite element method (FEM) is an active application area of massively parallel com-
puting. FEM is a computational tool for deriving approximate numerical solutions to partial
differential equations over a discretized domain.

To introduce the finite element method for solving differential equations, we use
the simple example of modeling the steady-state temperature at various points on a metal
sheet. As Figure 11.17 shows, the domain is a two-dimensional rectangular sheet of
metal on which a regular grid of square elements is imposed. The domain is bounded by
the coordinates (0, 0), (1, 0), (1, 1), and (0, 1). As the figure shows, the grid divides the
domain into small areas called elements. There are 48 elements in the discretized domain
shown in Figure 11.17. The internal nodes or grid points at which the coefficients must be
determined are labeled 0 through 48. Unlike the finite difference grid shown in Figure 11.8,
a grid point exchanges information with all the other grid points with which it shares an
element. Hence, each point has nine neighbors (including itself), and each row of the
resulting sparse matrix of coefficients has nine nonzero entries.

The steady-state temperature u at any point (X,Y ) on the metal sheet is governed by
the Laplace equation

δ2u

δX2
+ δ2u

δY 2
= 0. (11.37)

The values of the physical quantity being modeled (in this case, temperature) at
the boundary of the physical domain are governed by what are referred to as boundary
conditions. Since the sheet is insulated at the top and bottom, the following boundary
conditions result:

δu

δY
= 0, Y = 0, 0 ≤ X ≤ 1 (11.38)

δu

δY
= 0, Y = 1, 0 ≤ X ≤ 1 (11.39)

Furthermore, assume that the temperatures at the other two ends of the sheet are U0 and
U1, respectively. The corresponding boundary conditions are as follows:

u = U0, X = 0, 0 ≤ Y ≤ 1 (11.40)

u = U1, X = 1, 0 ≤ Y ≤ 1 (11.41)

The boundary conditions involving derivatives of the solution, such as those given by
Equations 11.38 and 11.39, are referred to as Neumann boundary conditions. Boundary
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Figure 11.17 A grid dividing a sheet of metal into a finite element mesh
of 48 elements. The internal nodes or grid points at which the coefficients
must be determined are labeled 0 through 48. The nodes at the periphery
are not labeled because the temperature at these points is determined by
boundary conditions.

conditions involving only the solution, such as those given by Equations 11.40 and 11.41,
are known as Dirichlet boundary conditions.

The temperature on the surface of the sheet is a continuous function of X and Y
governed by Equation 11.37. The FEM derives an approximation of this function by
dividing the domain into elements. The value of the function is typically expressed as a
simple polynomial that is a linear combination of a set of functions of X and Y called
basis functions. The coefficients of the basis functions at each node are derived from a
system of linear equations. This system arises from the minimization of error between
the approximate and exact solutions of the partial differential equation. Thus, the FEM
transforms the Laplace equation into a set of linear equations of the form Ax = b. In
the context of FEM, the coefficient matrix A is called the stiffness matrix and b the force
vector. This system is solved for the vector x , which gives the value of the coefficients of
the basis functions at different node points in the discretized domain. The stiffness matrix
A for the FEM can be derived by computing a set of definite integrals over the elements of
the finite element graph. If nodes i and j in the finite element mesh share elements, then
A[i, j] is given by the summation of the integrals calculated over all the elements shared
by points i and j . Thus, the only nonzero entries in the matrix are A[i, j] such that grid
points i and j share an element.

The following are some important properties of the stiffness matrix and the force
vector:
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(1) For most applications, the finite element graph is not a regular structure as shown
in Figure 11.17, but is highly irregular. Thus, the stiffness matrix is usually an
unstructured sparse matrix.

(2) Computing the stiffness matrix and force vector is relatively inexpensive com-
pared to the overall solution of the linear system. Furthermore, computing indi-
vidual entries of A requires only computations local to the element. Consequently,
this computation is trivial to parallelize.

(3) The resulting system of linear equations is large and sparse, and hence solving
it is the most computationally expensive phase of the FEM. It is this phase for
which efficient parallel solutions are critical.

Both iterative and direct solvers are used in finite element computations. Iterative
solvers are often less expensive in terms of memory and time. However, in some cases,
iterative solvers are not guaranteed to converge to a solution, necessitating direct solvers. In
this section we assume that an iterative method like the unpreconditioned conjugate gradient
method (Program 11.3) is used, which performs SAXPY operations, vector inner-product
computations, and a matrix-vector multiplication in each iteration.

The SAXPY operations do not involve any communication overhead. The com-
munication time per iteration for vector inner products depends only on the number of
processors in use. This time is �(log p) on a hypercube and �(

√
p) on a mesh. In the

presence of a fast, hardware-supported reduction operation, we can assume that it is a small
constant. The communication requirements of matrix-vector multiplication are critically
dependent on the spatial decomposition of the domain and the assignment of its partitions
to the processors. If the domain is partitioned among processors, then information cor-
responding to the elements at the partition boundaries is exchanged among neighboring
processors during matrix-vector multiplication (Figure 11.12). In each iteration, the time
spent in computation by a processor is proportional to the number of elements assigned to
it. If a partition shares boundaries with α other partitions and has β boundary elements, the
per-iteration communication time of the processor holding this partition is proportional to
αts + βtw.

The principal issues in efficient parallel implementations of FEM are minimizing load
imbalance among processors and maximizing the ratio of computation to communication
on the processors. The former is achieved by assigning a nearly equal number of elements
to each partition. The latter requires that the number of elements along a partition boundary
be small compared to the total number of elements within the partition.

In the remainder of this section, we discuss some commonly used techniques for
partitioning the finite element domain among processors. Although we chose examples
with quadrilateral elements, triangular elements are also commonly used.

Partitioning Methods for Finite Element Graphs

The communication pattern, and hence the overall efficiency, of a parallel implementation
of an FEM computation is a function of the partitioning of the domain among processors.
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Figure 11.18 One-dimensional striped partitioning of a finite element
mesh among four processors.

Deriving an optimal partitioning that balances the load and minimizes communication and
idling costs is an NP-hard problem. Therefore, several heuristic schemes have been devised
to derive reasonable partitions for finite element meshes in polynomial time.

One-Dimensional Striped Partitioning for Mesh Graphs A finite element graph
is called a mesh graph or a finite element mesh if it is composed of quadrilateral elements
and it can be embedded into a uniform two-dimensional grid such that each element
boundary maps onto exactly one edge in the grid. For example, the finite element graph
shown in Figure 11.18 is a mesh graph. A one-dimensional striped partitioning divides
a finite element mesh into p stripes such that each stripe runs the length (or width) of the
mesh. If the mesh has n nodes, striped partitioning assigns either �n/p� or �n/p
 nodes to
each processor. Figure 11.18 illustrates a one-dimensional striped partitioning of a finite
element mesh among four processors.

One-dimensional striped partitioning generates stripes that adjoin only one stripe on
either side. Consequently, even on weak architectures such as a linear array, the partitioning
yields a nearest-neighbor mapping. To enforce the nearest neighbor constraint, a sufficient
condition is that n/p (the number of elements assigned to a processor) is greater than the
smaller dimension of the mesh. Striped partitioning affords good load balance and locality
of communication. However, it may communicate large amounts of data among processors.

Two-Dimensional Striped Partitioning for Mesh Graphs The two-dimensional
striped partitioning scheme maps a finite element mesh onto a two-dimensional mesh of
processors. Figure 11.19 illustrates this process for a 2 × 2 mesh of processors. As shown
in the figure, the two-dimensional striped partitioning uses two orthogonal one-dimensional
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(b)  One-dimensional vertical striping

(c)  One-dimensional horizontal striping

(a)  A finite element mesh

(d)  Overlapping two one-dimensional partitions
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Figure 11.19 Two-dimensional striping of a mesh graph for a 2 × 2 mesh of proces-
sors.

striped partitions. First, the finite element graph is partitioned into vertical stripes (Fig-
ure 11.19(b)). Then the graph is striped horizontally (Figure 11.19(c)). Finally, the two
partitionings are overlapped (Figure 11.19(d)), and the resulting partitions (whose number
is equal to the product of vertical and horizontal partitions) are assigned to processors.

As Figure 11.19 illustrates, two-dimensional striping may not yield partitions with
identical numbers of nodes. Consequently, the partitioning phase must be followed by
another phase that balances the load between partitions. This load-balancing phase is
called boundary refinement. Boundary refinement balances the load by transferring nodes
from heavily loaded to lightly loaded processors. At the same time, it maintains the
nearest-neighbor relationships between partitions.

Assume that the total number of nodes (grid points) in the finite element mesh is n
and that the number of nodes assigned to processor i in the initial partitioning is ni . Also
assume that there are p processors and that n is divisible by p. Boundary refinement uses
a p × p load transfer matrix. Entry (i, j) of this matrix specifies the number of nodes that
must be transferred from the partition assigned to processor i to that assigned to processor
j . For a perfect load balance, the net change in the load (the number of nodes) of processor
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i should be ni − n/p (this can be positive or negative). This load is transferred from one
of the four neighbors of processor i , which are referred to by u(i) (up), d(i) (down), l(i)
(left), and r(i) (right). We ignore minor boundary overlaps between diagonally located
processors (for example, P1 and P2 in Figure 11.19). Let Ui , Di , Li , and Ri represent the
number of elements transferred to processor i from processors u(i), d(i), l(i), and r(i),
respectively (these numbers can be negative). The entries in the load transfer matrix must
satisfy the following conditions:

Li + Ri + Di + Ui = ni − n/p

Li = −Rl(i)

Ui = −Du(i)

In addition to these, there are conditions corresponding to the partitions that lie on the
boundary of the domain. The solution of the system of equations arising from the complete
set of conditions yields the load transfer matrix. Note that the number of variables in this
system of equations is �(p), whereas the number of variables in the original system of
equations being solved by the FEM is n. In practice, n is much greater than p.

Having constructed the load transfer matrix, the load transfer (or boundary refine-
ment) procedure proceeds iteratively. In each step, nodes on the boundary of partitions
between two processors are identified and placed in a queue. The required number of nodes
are transferred from this queue. If the number of nodes that need to be transferred is more
than the number of nodes in the queue, the process is repeated.

Striped Partitioning Schemes for Generalized Graphs In the preceding sections,
we studied striped partitioning for mesh graphs. A finite element graph that is not a mesh
graph is referred to as a generalized graph. The elements of a generalized graph may
not be squares or rectangles of a uniform size. Figure 11.20 shows a generalized finite
element graph. The striping process described for mesh graphs does not extend naturally to
generalized graphs, in which the elements are not organized into explicit rows and columns.
For a generalized graph, a process called levelization organizes the graph into stripes.

Levelization begins by identifying a peripheral node or a set of connected peripheral
nodes. A peripheral node is characterized by a peripheral edge, which belongs to a
single element, unlike a non-peripheral edge, which belongs to two elements. Connected
peripheral nodes on one boundary of the domain are assigned the label 1. All unlabeled
nodes that share an element with a node labeled 1 are labeled 2. This process continues, and
all unlabeled nodes sharing an element with a node labeled l are labeled l +1. Figure 11.20
illustrates a one-dimensional levelization of a finite element graph.

Striped partitioning of generalized graphs counts off nodes at a given level and
proceeds to the next higher level when all the nodes at a level are exhausted. Let n be the
total number of nodes and p be the number of processors. Let m be the total number of
levels (labeled from 1 to m) and ri be the sum of number of nodes in the two contiguous
levels i and i + 1. If r = max {r1, r2, . . . , rm−1}, then a sufficient condition to ensure
nearest-neighbor communication is that n/p > r .
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Figure 11.20 The levelization process for a generalized finite
element graph. The levels partition the graph into four one-
dimensional stripes that are assigned to four processors.

Two-dimensional striping partitions the graph similarly. Again, nodes are counted
by levels, rather than along dimensions as in the case of mesh graphs.

Scattered Decomposition Scattered decomposition (also referred to as modular
mapping) is an extensively applied technique for decomposing highly irregular domains.
This method balances the load by partitioning the domain into a large number r of rectangu-
lar clusters such that r � p. Each processor handles a disjoint set of r/p such clusters. For
irregular problems, increasing r (and consequently decreasing the area of each partition)
yields a better load balance. However, load balance is achieved at the cost of increased
communication overhead between partitions that are not on the same processor.

Recursive Bisection Techniques Recursive bisection techniques partition the do-
main by recursively subdividing it into two parts at each step. For p = 2k processors,
recursively subdividing the domain k times yields p partitions. Bisection techniques differ
in the manner in which the domain is subdivided. These techniques are based on the
assumption that it is possible to derive near-optimal partitions by subdividing the domain
into two parts, maintaining optimality at each step.

In this section, we discuss three recursive bisection techniques based on different
criteria for subdividing the domain.

(1) Recursive Coordinate Bisection: Recursive coordinate bisection is the most
intuitive of the recursive bisection techniques. The domain is subdivided at each
step, based on the physical coordinates of the nodes. Consider a finite element
graph with the set of nodes {v0, v1, . . . , vn−1}. Assume that the spatial coordinates
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of the nodes are available. Recursive coordinate bisection subdivides the domain
into two parts along the longer dimension (assume that this is along the X axis).
Nodes in the set {v0, v1, . . . , vn−1} are sorted by their X coordinate. The first half
of the sorted list of nodes is assigned to the first subdivision and the other half
to the second subdivision. Each subdivision is then recursively divided, and the
process continues until it generates p partitions.
This algorithm has two drawbacks. First, the partitions often have many edges
of the grid that cross partition boundaries. Second, the partitions may be discon-
nected. Both properties are highly undesirable. They occur because recursive
coordinate bisection uses no connectivity information. However, some recent
coordinate bisection schemes do overcome these limitations (Section 11.6).

(2) Recursive Graph Bisection: Since recursive coordinate bisection ignores con-
nectivity information, it is unable to minimize the number of grid edges crossing
partition boundaries. Recursive graph bisection remedies this problem by using
graph distance rather than coordinate distance to partition the domain.
Let di, j be the number of edges on the shortest path from node vi to node vj . The
recursive graph bisection technique first determines the two nodes in the graph
that are farthest in terms of graph distance. Two nodes vi and vj are farthest if
di, j ≥ dp,q for every pair of nodes (vp, vq) in the graph. These nodes are called
the extremities of the graph. All the other nodes are organized according to their
distance from nodes vi and vj . A node is assigned to the partition containing the
closer extremity.
It is computationally expensive to find the exact extremities of a graph. However,
algorithms are available that yield good approximations of the extremities. An
algorithm known as the reverse Cuthill-McKee algorithm is commonly used for
this purpose. This algorithm determines the approximate extremities and uses one
of them as the root for establishing a level structure. This process is identical to
levelization for striped partitioning. Vertices are counted off as they are organized
into the level structure, and the partitioning is complete when half of the nodes
have been assigned. Note that this partitioning strategy ensures that at least one
of the two partitions is connected.

(3) Recursive Spectral Bisection: Given a graph G, recursive spectral bisection
uses the discrete Laplacian LG of the graph to divide the domain into two parts.
The matrix LG is equal to A − D, where A is the adjacency matrix of graph G
and D is a diagonal matrix in which element D[i, i] is the degree g(vi) of node
vi . Therefore,

LG[i, j] =

⎧⎪⎪⎨
⎪⎪⎩

−g(vi) if i = j,

1 if edge (vi , vj ) exists in the graph,

0 otherwise.

(11.42)

The discrete Laplacian LG is a negative semidefinite matrix. Furthermore, its
largest eigenvalue is zero and the corresponding eigenvector consists of all ones.
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Assuming that the graph is connected, the magnitude of the second largest eigen-
value gives a measure of the connectivity of the graph. The eigenvector corre-
sponding to this eigenvalue, when associated with the nodes, gives a measure
of the distances between the nodes. Consequently, it can be used to divide the
domain into two parts. This vector is referred to as the Fiedler vector. The
partitioning is done by sorting nodes according to their weights in the eigenvector
and dividing the sorted list of nodes into two equal parts.
The computationally intensive part of this algorithm is the computation of the
Fiedler vector. One common algorithm used for computing this is the Lanczos
algorithm. The details of this algorithm are beyond the scope of this book.
Readers are referred to Section 11.6 for related bibliographic remarks.

We have seen that recursive coordinate bisection may create partitions with shapes that
have poor communication properties. Recursive graph partitioning yields more compact
partitions but they may be disconnected. Recursive spectral bisection, on the other hand,
yields connected partitions that are well balanced. Although a comprehensive performance
analysis does not exist for these schemes, some experimental results tend to favor recursive
spectral bisection over the other two schemes on a variety of problems.

11.4 Direct Methods for Sparse
Linear Systems

Despite their high computational cost, direct methods are useful for solving sparse linear
systems because they are general and robust. Although there is substantial parallelism
inherent in sparse direct methods, only limited success has been achieved to date in de-
veloping efficient general-purpose parallel formulations for them. The reasons for this are
twofold. First, the amount of computation relative to the size of the system to be solved is
very small. For example, Gaussian elimination involving a dense n×n matrix has a sequen-
tial time complexity of �(n3). In contrast to a dense matrix, consider the block-tridiagonal
matrix of coefficients arising from a natural ordering of points on a

√
n × √

n regular grid
(Figure 11.7). Since the outermost diagonals are at a distance of

√
n rows or columns

from the principal diagonal, the two inner loops of Gaussian elimination are executed only√
n times, resulting in a sequential complexity of �(n2). If the nested-dissection ordering

described in Section 11.4.1 is used instead of a natural ordering, this complexity can be
further reduced to �(n3/2). Since there are few computations in the overall problem, poor
efficiencies result because even a modest amount of communication can create a serious
imbalance in the relative amounts of time that processors spend in communication and
computation.

The second reason for the inefficiency of parallel sparse direct solvers is that most
attempts made to date to implement sparse direct methods on parallel computers are based
on good serial formulations. The goals of a serial formulation, such as minimizing memory
use and operation count, may be inappropriate in a parallel setting. Besides, these goals may
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seriously conflict with the goals of a parallel formulation, such as maximizing the number
of independent tasks, minimizing communication, and balancing load among processors.

Developing efficient general-purpose parallel formulations of direct methods for
unstructured or random sparse matrices is currently an active area of research. Although all
of these methods are based on Gaussian elimination (for general matrices) and Cholesky
factorization (for symmetric positive definite matrices), their parallel formulations can be
quite complicated. In this section we only outline some general techniques used in parallel
sparse direct solvers. We assume row-oriented Gaussian elimination (Program 5.4) and
row-oriented Cholesky factorization (Program 5.6) as the base algorithms to adapt for
sparse linear systems. Parallel implementations with column-oriented versions are very
similar, and may be numerically superior for the reasons discussed in Section 5.5.4.

The process of obtaining a direct solution to a general sparse system of linear equations
of the form Ax = b consists of four distinct phases: ordering, symbolic factorization,
numerical factorization, and solving a triangular system. In the following subsections, we
discuss each of these phases.

11.4.1 Ordering

Ordering is an important phase of solving a sparse linear system because it determines the
overall efficiency of the remaining steps. The aim of ordering is to generate a permutation
of the original coefficient matrix so that the permuted matrix leads to a faster and more
stable solution. The numerical stability of the solution is increased by ensuring that the
diagonal elements or pivots are large compared to the remaining elements of their respective
rows. The ordering criteria for obtaining a faster parallel solution are more complex.

During factorization, when a row of a sparse matrix A is subtracted from another row,
some of the zeros in the latter row may become nonzero. When the k th row is the pivot,
then a zero in position A[i, j] becomes nonzero for all i, j > k such that A[i, k] �= 0 and
A[k, j] �= 0. In this case, the nonzero element at A[i, j] is said to be generated as a result
of fill-in. For example, consider the sparse matrix shown in Figure 11.21(a), in which the
nonzero elements are denoted by the symbol ×. In the first step of factorization, a multiple
of row 0 is subtracted from rows 1, 4, and 7. This step changes the zeros at locations
A[1, 4], A[1, 7], A[4, 1], and A[7, 1] to nonzero values. Each such fill-in is denoted by
the symbol �. Now a multiple of row 1 is subtracted from rows 2, 4, and 7, introducing
nonzero elements in positions A[2, 4], A[2, 7], A[4, 2], and A[7, 2]. Figure 11.21(b) shows
all the fill-in resulting from the complete factorization of the matrix.

It is possible to reorder the rows and columns of the matrix shown in Figure 11.21(a)
so that factorization does not generate any nonzero elements in the positions occupied by
zeros in the unfactorized matrix. Figure 11.21(c) shows one such permutation of this matrix.
In this figure, the label of each row is of the form i ( j). The label denotes that the i th row and
column of the reordered matrix correspond to the j th row and column of the original matrix.
Factorization of the reordered matrix does not result in any fill-in. In general, reordering
may not completely eliminate fill-in, but in most cases it can significantly reduce it.
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Figure 11.21 Fill-in during the factorization of a sparse matrix and its reordering to
eliminate fill-in. The nonzero elements in the original sparse matrix are denoted by ×,
and the nonzero elements introduced due to fill-in are denoted by �. In part (c), the old
row and column numbers before reordering are shown in parentheses.

In addition to providing numerical stability and reducing fill-in, another goal of
ordering in a parallel sparse direct solver is to increase the number of independent tasks.
For example, for the matrix shown in Figure 11.21(c), a multiple of row 0 can be subtracted
from row 7 in parallel with the subtraction of a multiple of row 1 from row 2. In other
words, both rows 0 and 1 can be used as pivots simultaneously. This kind of parallelism in
Gaussian elimination is available only for sparse matrices. During the factorization of the
original matrix in Figure 11.21(a), all pivots from 0 to 7 must be used sequentially. Thus,
reordering the coefficient matrix can not only reduce the fill-in, but can also increase the
parallelism in the factorization process.

Ordering the rows and columns of a matrix to minimize fill-in is a very expensive
combinatorial problem with an exponential complexity. Therefore, heuristics are used for
ordering. For a given sparse matrix, the best heuristic for reducing fill-in is not necessarily
the one that results in maximum parallelism or minimum interprocessor communication.
On current and future generation of message-passing parallel computers, the availability
of memory may not be a major concern. Hence, reducing fill-in to restrict memory use is
relatively less important in the parallel context.

In addition to increasing the memory requirement, fill-in also increases computation.
However, even some increase in computation can be compensated, provided that the or-
dering scheme increases the number of parallel tasks and/or lowers communication during
the factorization phase. This is because two important causes of inefficiency of parallel
sparse direct methods are a low computation-to-communication ratio and insufficient par-
allelism. Hence, a parallel sparse direct solver may benefit from an ordering that reduces
communication and increases parallelism, even at the cost of increasing the fill-in to some
extent.

Although several good heuristics for ordering are known, in this section we describe
two schemes that show promise for adaptation to parallel sparse direct solvers.
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Nested-Dissection Ordering

Nested-dissection ordering is best explained in terms of finite difference grids, as shown
in Figure 11.22. Part (a) of this figure shows a small square grid of points. To obtain
a nested-dissection ordering of the coefficient matrix resulting from this grid, we assign
numbers to the grid points by following the nested-dissection algorithm. First, a set of
points is chosen whose removal divides the domain into two disconnected subdomains of
equal (or almost equal) size. The points that are chosen are numbered after all the points
in both subdomains have been numbered. The points in the subdomains are recursively
numbered by using the same strategy. After all grid points are numbered, the ordered
matrix of coefficients is obtained by making the i th point correspond to the i th variable and
the i th equation. The sparse matrix resulting from the nested-dissection ordering of the
points in the grid of Figure 11.22(a) is shown in Figure 11.22(b).

Nested dissection can even be used for irregular grids and for sparse matrices that
do not arise from finite element problems. An n-node graph can be constructed from the
n × n matrix of coefficients A by placing an edge between points i and j if and only
if A[i, j] �= 0 or A[ j, i] �= 0, as shown in Figure 11.12. The nodes of the graph are
renumbered as previously described. The matrix is then reordered according to the new
numbering, subject to numerical stability.

Minimum-Degree Ordering

After k steps of Gaussian elimination, let ci be the number of nonzero elements in the
i th column of the (n − k) × (n − k) active matrix, and let ri be the number of nonzero
elements in its i th row. We define a cost function C(i) as the product (ci − 1)× (ri − 1). In
minimum-degree ordering, The i th column is chosen as the pivot in the (k + 1)st iteration
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(that is, the i th row and column become the (k + 1)st row and column) if C(i) is minimum
and A[i, i] satisfies some numerical stability criterion.

The sparsity pattern of the matrix resulting from minimum-degree ordering is sensitive
to tie-breaking between candidate pivots whose cost is the same. For example, the matrix
shown in Figure 11.22(b) happens to satisfy the minimum-degree criterion, although other
minimum-degree permutations are possible. Different permutations of a matrix satisfying
the minimum-degree criterion may result in different degrees of fill-in and parallelism
during the factorization phase (Problems 11.23 and 11.29).

11.4.2 Symbolic Factorization

The symbolic factorization phase determines the structure of the triangular matrices that
would result from factorizing the ordered coefficient matrix. Symbolic factorization sets
up the data structures for storing the resulting matrices, and allocates an appropriate amount
of memory for these data structures. The information on the structure of the factors is also
used by the algorithms for numerical factorization, which is the next phase of solving the
system.

Symbolic factorization is quite complicated if numerical pivoting is required. In
such cases, it is usually merged with the next phase, which is numerical factorization. If
numerical pivoting is not required, then determining the sparsity pattern of the factors is
straightforward. In this case, symbolic factorization simply determines the fill-in caused by
the elimination of each row of the matrix in sequence. When the k th row of the coefficient
matrix A is used as the pivot, a fill-in is created for every A[i, j] �= 0 if i, j > k, A[i, k] �= 0,
and A[k, j] �= 0.

For performing symbolic factorization on matrices that do not require numerical
pivoting, serial algorithms are available whose run time is proportional to the number of
nonzero elements in the matrix (Section 11.6). Due to the availability of very fast serial
algorithms, and the high data-distribution cost involved in parallelizing them, implementa-
tions of parallel symbolic factorization on message-passing computers tend to be inefficient.
Moreover, symbolic factorization is often performed once and then several systems with
the same sparsity pattern are solved, amortizing the cost of symbolic factorization over all
the systems.

11.4.3 Numerical Factorization

Numerical factorization refers to performing arithmetic operations on the coefficient matrix
A to produce a lower-triangular matrix L and an upper triangular matrix U . Usually, the
basic algorithm used for numerical factorization is either Gaussian elimination (for general
systems) or Cholesky factorization (for symmetric positive definite systems). In this section
we choose the row-oriented versions of these algorithms given in Programs 3.1 and 5.6,
respectively.

In Gaussian elimination for dense matrices, pivots are chosen sequentially because
a pivot modifies all the rows of the unfactorized part of the matrix. A row can be chosen
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Figure 11.23 A sparse matrix and the corresponding elimination tree.

as a pivot row only after it has been modified by the previous pivot. In the sparse case,
however, two or more rows can be completely independent. In a sparse matrix A, row k
directly modifies row i if i > k and A[i, k] �= 0. Row k indirectly modifies row i if a row
j modified (directly or indirectly) by row k modifies row i . Rows k and i are independent
if row k does not modify row i directly or indirectly.

The mutually independent rows of a sparse matrix can be used as pivots in any order,
or even simultaneously in a parallel implementation. This is a very important source of
parallelism in sparse matrix factorization. For example, in Figure 11.22(b), rows 0, 1, 2,
or 3 can be used as pivots in any order, or in parallel. The remaining four rows are modified
by one or more of these rows. For example, row 4 cannot be used as a pivot until rows
0 and 2 have been used as pivots to modify row 4. Similarly, row 5 can be used as a pivot
only after it has been modified by rows 1 and 3. Thus, a partial ordering exists among the
rows of the sparse matrix that determines when a certain row can be used as a pivot.

A useful concept that yields this partial order and helps abstract this form of paral-
lelism in sparse matrix factorization is that of elimination trees. Assume that the matrix
of coefficients A has been ordered such that the numerical stability criteria are satisfied
and choosing pivots in the order 0 to n − 1 yields a stable solution. The elimination tree
corresponding to this matrix has one node for each row. Node j is the parent of node i if
j > i and j is smallest among all k such that A[k, i] is nonzero in the (n−i)×(n−i) active
(unfactorized) part of the matrix remaining after the first (i − 1) rows have been used as
pivots. For instance, the sparse matrix of Figure 11.22(b) is reproduced in Figure 11.23(a),
and the corresponding elimination tree is shown in Figure 11.23(b). In a parallel imple-
mentation, rows whose entire set of descendants has been eliminated can be eliminated in
parallel.

Since each level of an elimination tree must be processed one after the other from the
leaves to the root, the parallel run time is a function of the height of the tree. The average
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number of independent tasks, and hence the amount of parallelism, is a function of the
width of the elimination tree. Thus, short and bushy elimination trees are more suitable for
parallel sparse direct solvers than tall and lean trees.

The ordering of rows and columns of the sparse matrix plays an important role
in determining the structure of the resulting elimination tree. Usually, nested-dissection
ordering results in short, well-balanced trees, and minimum-degree ordering results in
tall, unbalanced trees. However, it is observed in practice that minimum-degree ordering
generates less fill-in than does the nested-dissection ordering.

Serial Sparse Factorization Algorithms

In the row-oriented serial Gaussian elimination algorithm for dense matrices (Program 5.4),
during the k th iteration, the k th row of the matrix is used to update all remaining n − k − 1
rows. However, in the sparse case, the k th row is used to update only those rows in the active
part of A that have a nonzero element in the k th column. Therefore, the serial algorithm for
the sparse case is more complex since it must keep track of the sparsity pattern of the active
part of the matrix to determine the rows that require modification by a pivot. To describe
the sparse algorithm, we introduce the following two operations:

(1) divide(k), which divides every nonzero element of the k th row in the upper-
triangular part of the matrix by A[k, k]; and

(2) modify(i, A[k, ∗]), which subtracts a multiple of the sparse vector A[k, ∗] from
the i th row of the matrix A. This multiple is the product of A[i, k] and the k th row
of A.

The divide operation corresponds to lines 5 and 6 of the dense algorithm given in Pro-
gram 5.4, and the modify operation corresponds to lines 11 and 12. To keep track of the
rows that each pivot should modify, we define a data structure Si as the set of all the rows
of A with indices smaller than i that modify the i th row during the factorization of A.

Program 11.5 outlines a serial sparse Gaussian elimination algorithm. This algorithm
is fairly straightforward. It assumes that the numerical stability criteria have been taken
into account in the ordering phase and that pivots can be chosen in order from 0 to n − 1.
When the k th row is chosen as the pivot, all the modify (modify gauss) operations are
performed on this row (line 7). Then the pivot row is ready for the divide (divide gauss)
operation (line 8). The divide operation is followed by incorporating the pivot row (that is,
the k th row) in Si for all i such that the i th row needs to be modified by the k th row (line 9).
Program 11.5 generates the data structures Si during the course of factorization. Often,
the data structures Si are generated during the symbolic factorization phase. Note that, in
practice, the steps on lines 6 and 7 do not require that the condition j ∈ Sk be checked
serially for all j from 0 to k − 1. The data structures of the sparse storage scheme being
used maintain the relevant rows in the correct order. Similarly, all A[i, k] (k < i < n) on
line 9 and all A[k, j] (k < j < n) on lines 15 and 21 in Program 11.5 are not explicitly
checked for nonzero entries. If that was the case, then each execution of lines 9, 15 and
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1. procedure SERIAL SPARSE GAUSS (A)
2. begin
3. for i := 0 to n − 1 do Si := ∅;
4. for k := 0 to n − 1 do
5. begin
6. for j := 0 to k − 1 do
7. if j ∈ Sk then modify gauss (k, A[ j, ∗]);
8. divide gauss (k);
9. for all i such that ((i > k) and (A[i, k] �= 0)) do Si := Si ∪ {k};
10. endfor;
11. end SERIAL SPARSE GAUSS
12.
13. procedure modify gauss (i, A[k, ∗])
14. begin
15. for all j such that (( j > k) and (A[k, j] �= 0)) do
16. A[i, j] := A[i, j] − A[i, k] × A[k, j];
17. end modify gauss
18.
19. procedure divide gauss (k)
20. begin
21. for all j such that (( j > k) and (A[k, j] �= 0)) do
22. A[k, j] := A[k, j]/A[k, k];
23. end divide gauss

Program 11.5 A serial sparse Gaussian elimination algorithm and the corresponding
modify (modify gauss) and divide (divide gauss) operations.

21 would take �(n) time—the same as that for a dense matrix. The use of sparse storage
schemes described in Section 11.1.1 helps keep track of the nonzero entries in a row or
column of A. Thus, these operations can be performed in �(m) time, where m is the
number of nonzero entries in the k th column (line 9) or the k th row (lines 15 and 21) of the
active part of the matrix during the k th iteration of the outer loop of Gaussian elimination.

An algorithm similar to procedure SERIAL SPARSE GAUSS in Program 11.5 can
be used to perform Cholesky factorization on a sparse symmetric positive definite matrix
A. The modify and divide operations to be used in the case of Cholesky factorization are
given by procedures modify chol and divide chol in Program 11.6. Note that, in the case
of Cholesky factorization, the rows in Sk can be chosen in any order to modify the k th row.
This is in contrast to Gaussian elimination, in which the rows in Sk must be applied in an
increasing order while modifying the k th row.
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1. procedure modify chol (i,Vector)
2. begin
3. for all j such that (( j ≥ i) and (Vector[ j] �= 0)) do
4. A[i, j] := A[i, j] − Vector[ j];
5. end modify chol
6.
7. procedure divide chol (k)
8. begin
9. A[k, k] := √

A[k, k];
10. for all j such that (( j > k) and (A[k, j] �= 0)) do
11. A[k, j] := A[k, j]/A[k, k];
12. end divide chol

Program 11.6 The modify (modify chol) and divide (divide chol) operations for use with
a sparse row-oriented Cholesky factorization.

A Parallel Implementation of Sparse Gaussian
Elimination

There are three levels of parallelism available in sparse factorization:

(1) Fine-grain parallelism at the level of individual scalar floating-point operations.
(2) Medium-grain parallelism at the level of performing floating-point operations

over nonzero elements of entire rows or columns of the coefficient matrix (such
as divide and modify operations).

(3) Coarse-grain parallelism at the level of updating groups of rows or columns that
can be solved independently of other such groups. If the factorization process
is viewed as a collection of subtasks whose partial ordering is defined by an
elimination tree, then coarse-grain parallelism refers to processing entire subtrees
of the elimination tree.

Fine-grain parallelism is not suitable for message-passing computers, even with
state-of-the-art hardware technology. We first describe a parallel implementation of sparse
Gaussian elimination that exploits only medium-grain parallelism. In the next two subsec-
tions, we will describe parallel algorithms for sparse matrix factorization that exploit both
medium- and coarse-grain parallelism.

Program 11.7 shows a parallel sparse Gaussian elimination algorithm for a message-
passing parallel computer, in which each processor stores one row of the coefficient matrix.
This algorithm uses n processors to factorize the n × n matrix A whose k th row is initially
assigned to the k th processor. Thus, the k th processor performs all the modify(k, A[i, ∗])
operations (for any i such that the i th row modifies the k th row; that is, i ∈ Sk) and the
divide(k) operation. In the loop that starts at line 3, a processor receives the information
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1. procedure PARALLEL SPARSE GAUSS (my id, A[my id, ∗])
2. begin
3. for i := 0 to my id − 1 do
4. if i ∈ Smy id then
5. begin
6. receive (A[i, ∗]) from the processor labeled i ;
7. modify gauss (my id, A[i, ∗]);
8. endif; /* Line 4 */
9. divide gauss (my id);
10. for all j such that (( j > my id) and (A[ j,my id] �= 0)) do
11. send (A[my id, ∗]) to the processor labeled j ;
12. end PARALLEL SPARSE GAUSS

Program 11.7 A parallel sparse Gaussian elimination algorithm for the case in which
each processor stores one row of the matrix of coefficients. Data is mapped such that
the processor labeled my id stores row number my id. The algorithm assumes that
Smy id has been generated during symbolic factorization, and is available before numerical
factorization starts.

required to modify the row it stores. Note that a processor is blocked on the receive on line 6
until the divide(i) operation has been performed at processor i . When the entire subtree
rooted at node k of the elimination tree has been processed and the modify(k, A[i, ∗])
operations have been performed for all i ∈ Sk , the divide(k) operation is performed. After
performing the divide operation, a processor sends its row to all the processors that need
this row to modify the rows assigned to them.

Program 11.7 is of academic interest only, as it would be too inefficient on any
practical parallel computer. In practice, the number of processors used is much less than
n, the dimension of the coefficient matrix A. An algorithm similar to Program 11.7 can
be used to perform sparse Cholesky factorization as well. Unlike Gaussian elimination,
for Cholesky factorization the modifying rows need not be received in order; a processor
labeled k receives a sparse vector of the form A[i, ∗] as soon as it arrives, and performs the
modify(k, A[i, ∗]) operation. Finally, when modify(k, A[i, ∗]) has been performed for all
i ∈ Sk , processor k performs divide(k).

Parallel Fan-Out Algorithm

We now describe a parallel algorithm (Program 11.8), known as the fan-out algorithm,
for sparse matrix factorization. This algorithm uses fewer than n processors for an n × n
matrix, and each processor stores more than one row of the sparse matrix of coefficients
A. The set of rows belonging to the i th processor is stored in List(i). The algorithm
performs a divide operation (line 10) on any of its rows after the subtree rooted at the node
corresponding to that row has been processed and all the modify operations on that row have
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1. procedure PARALLEL FAN OUT (my id, List(my id))
2. begin
3. while (List(my id) �= ∅) do
4. begin
5. if (∃i ∈ List(my id) such that

vectors A[k, ∗] have been received for all k ∈ Si ) then
6. begin
7. for k := 0 to i − 1 do
8. if k ∈ Si then modify gauss (i, A[k, ∗]);
9. List(my id) := List(my id) − {i};
10. divide gauss (i);
11. for all j such that (( j > i) and(A[ j, i] �= 0)) do
12. send ( j, A[i, ∗]) to processor storing the j th row;
13. endif; /* Line 5 */
14. if (there is an incoming message) then
15. receive and store the message;
16. endwhile; /* Line 3 */
17. end PARALLEL FAN OUT

Program 11.8 A parallel fan-out algorithm for Gaussian elimination. Processor my id
stores the set of rows assigned to it in a list called List(my id). The algorithm assumes
that Smy id has been generated during symbolic factorization, and is available before
numerical factorization starts.

been performed. The algorithm then sends the divided row to the processors responsible
for the rows that must be modified by the divided row.

Program 11.8 can be easily modified for sparse Cholesky factorization. In Cholesky
factorization, the modify operations (line 8) can be performed in any order. Hence, it is not
necessary to store a message. As soon as a message is received, the corresponding modify
operation can be performed.

Note that, in the fan-out algorithm, the processor storing the i th row receives a message
for every modify(i, A[k, ∗]) operation if the i th and k th rows reside on different processors.
The total number of messages sent can be reduced by concatenating all outgoing messages
from a processor that modify the same row. If k ∈ Si∩ List(my id) (that is, A[k, ∗] belongs
to those rows in Si that reside on processor my id), then a single message containing all such
rows A[k, ∗] is sent from processor my id to the processor storing the i th row. This message
is sent after the divide(k) operations for all k ∈ Si∩ List(my id) have been performed on
processor my id. This strategy does not reduce the total volume of communication in
sparse Gaussian elimination, but it reduces the overhead due to message startup time,
which may otherwise dominate the communication time.
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Parallel Fan-In Algorithm for Cholesky
Factorization

This subsection describes a parallel algorithm for the row-oriented Cholesky factorization
of sparse symmetric positive definite matrices. This algorithm, known as the fan-in
algorithm, is an improvement over the fan-out algorithm. Recall from Program 11.5 that
the modify(i, A[k, ∗]) operation in Gaussian elimination subtracts a multiple of a part of
the k th row of the coefficient matrix from the corresponding part of the i th row. The factor
by which the modifying row (that is, the k th row) is multiplied is the element A[i, k] of the
row to be modified (that is, the i th row). Unlike Gaussian elimination, in a row-oriented
Cholesky factorization algorithm (Program 5.6), the factor by which the modifying row
(that is, the k th row) is multiplied is the element A[k, i] of the modifying row itself. This
means that the multiple of the k th row that needs to be subtracted from the i th row can be
computed at the processor that stores the k th row.

Recall that the number of messages passed in the fan-out algorithm can be reduced
by concatenating all the outgoing messages from a processor that modify the same row.
In the case of Cholesky factorization, the appropriate multiples of these outgoing rows
can be added together and sent to the destination processor as a single vector, which is
then subtracted from the row to be modified. Thus, not only the number of messages, but
also the total volume of communication, is reduced. The fan-in algorithm is based on this
strategy.

Program 11.9 gives the fan-in algorithm for the row-oriented Cholesky factorization
of an n × n sparse symmetric positive definite matrix A. A significant difference between
Programs 11.8 and 11.9 is that, after performing the divide(i) operation, a processor does
not send the i th row to all the processors storing the rows that must be modified by the i th

row. Instead, each processor stores sparse vectors Updatej for 0 ≤ j < n. Initially, all the
elements in these vectors are zeros. If the i th row modifies the j th row, then after divide(i)
has been performed, the appropriate multiple of the former is computed by multiplying
it with A[i, j]. The product A[i, ∗] × A[i, j] is then added to Updatej . After the divide
operation has been performed on all rows stored at processor my id that modify the j th

row, processor my id sends Updatej to the processor storing the j th row. Thus, instead
of sending one message for each component of Updatej , each processor with a nonzero
Updatej sends only one message to the processor storing the j th row. The processor storing
the j th row, upon receiving an Updatej , subtracts it from the j th row.

Mapping Matrix Rows onto Processors

As mentioned earlier, fine-grain parallelism in sparse matrix factorization is not suitable
for message-passing computers. However, exploiting only coarse-grain parallelism is
unlikely to yield highly scalable parallel formulations. The reason is that, despite reducing
communication costs, using only coarse-grain parallelism limits the degree of concurrency,
which decreases further as the computation progresses toward the root of the elimination
tree.
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1. procedure PARALLEL FAN IN (my id, List(my id))
2. begin
3. for i := 0 to n − 1 do Updatei := 0;
4. while (List(my id) �= ∅) do
5. begin
6. if (∃i ∈ List(my id) such that

divide( j) has been performed for all j ∈ Si ) then
7. begin
8. while (messages of the form (i,Vector) have not been received

from all processors that store rows belonging to Si ) do
9. begin
10. receive (i,Vector);
11. modify (i,Vector);
12. endwhile; /* Line 8 */
13. List(my id) := List(my id) − {i};
14. divide(i);
15. for all j such that (( j > i) and(A[ j, i] �= 0)) do
16. begin
17. Updatej := Updatej + A[i, j] × A[i, ∗];
18. if (divide(k) has been performed

for all k ∈ (Sj∩ List(my id))) then
19. send ( j,Updatej ) to the processor storing the j th row;
20. endfor; /* Line 15 */
21. endif; /* Line 6 */
22. endwhile; /* Line 4 */
23. end PARALLEL FAN IN

Program 11.9 A parallel fan-in algorithm for sparse direct row-oriented Cholesky fac-
torization of symmetric positive definite matrices. The algorithm assumes that Smy id has
been generated during symbolic factorization, and is available before numerical factoriza-
tion starts.

An ideal parallel formulation exploits both coarse-grain and medium-grain paral-
lelism. As the computation progresses up the elimination tree, the availability of coarse-
grain parallelism diminishes because the number of independent subtrees of the elimination
tree decreases. However, medium-grain parallelism becomes more viable as the fill-in in
the unfactorized part of the coefficient matrix increases, and hence, a typical divide or
modify operation encounters more nonzero elements in a row. Therefore, it is advantageous
to shift the emphasis systematically from coarse-grain to medium-grain parallelism as the
computation progresses. Figure 11.24 shows a distribution of the rows of the matrix among
the processors based on this approach.
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Figure 11.24 An example of a good strategy for using four processors to partition the
elimination tree that corresponds to a matrix of coefficients resulting from the nested-
dissection numbering of a 7 × 7 finite difference grid in which each processor has four
neighbors.

Figure 11.24 shows the elimination tree corresponding to a matrix resulting from
a nested-dissection numbering of a 7 × 7 finite difference grid of the form shown in
Figure 11.8 (Problem 11.28). The lower, wider part of the elimination tree is partitioned
vertically. In this part, independent subtrees are assigned to individual processors that
perform complete updates on their respective sets of sparse rows. This assignment of
subtrees to processors exploits coarse-grain parallelism. The upper, narrower part of the
elimination tree is partitioned horizontally among the processors so that medium-grain
parallelism is exploited. In this part of the elimination tree, individual rows are assigned to
processors, and each processor performs modify and divide on its respective rows.

The partitioning strategy illustrated in Figure 11.24 keeps communication low in the
initial stage of parallel factorization because the modifying and the modified rows mostly
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belong to the same processor. In the later part, the communication per processor increases
but is balanced by a corresponding increase in the amount of computation that a modify or a
divide operation requires. At the same time, processors do not starve due to the narrowing
of the elimination tree. Such an approach is likely to yield better parallel formulations of
sparse factorization because it limits the communication cost while providing a high degree
of concurrency. Both of these factors are important for achieving good scalability.

11.4.4 Solving a Triangular System

Like the ordering phase, solving a triangular system requires much less computation than the
factorization phase. Furthermore, often this step has only a limited amount of parallelism.
Still, it is desirable to perform this step in parallel for a number of reasons. First, gathering
the triangular factors at a single processor after the parallel factorization phase entails
substantial communication overhead. Second, the amount of memory available on a single
processor may be insufficient to accommodate the entire problem. Third, with a relatively
more efficient parallel factorization method, this step may dominate the overall run time.
Therefore, to prevent this step from becoming a bottleneck, whatever gain in run time is
achieved by parallelizing it should be exploited. Even if a parallel implementation of this
step is inefficient and provides only a moderate speedup, it will increase the efficiency of
the entire process of solving the sparse linear system.

The overall approach for solving a sparse triangular system in parallel is straightfor-
ward. First, all the equations with only one variable are solved. The values of the solved
variables are then substituted concurrently into all the equations in which these variables
are used. This step results in a fresh set of equations with only one unsolved variable each.
All the equations in this set are now solved in parallel. These steps are repeated until the
entire system is solved.

11.5 Multigrid Methods

Multigrid methods are iterative algorithms for solving partial differential equations by
using multiple grids of varying degrees of fineness over the same domain. An approximate
solution obtained by a coarse discretization is used as the initial approximation for obtaining
a more precise solution by a finer discretization, and so on.

Consider a domain D and a sequence of successively finer discretizations G0, G1,
. . ., Gm . Discretization G0 is the coarsest, and Gm is the finest. Figure 11.25 illustrates
such discretizations for a square domain with m = 3. As the figure shows, the grid points
in Gi are a subset of the grid points in Gi+1. The linear system of equations arising from
discretization G0 is the smallest and, consequently, the easiest to solve. After a solution
or an approximation to the solution of this system has been obtained, the values of the
physical quantity being modeled (say, u) at the grid points in G1 −G0 are approximated by
interpolation from the values of u at the grid points in G0. The values of u at the grid points
in G1 thus obtained serve as the initial approximation for an iterative method to solve the
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Figure 11.25 Successively finer discretizations of a domain.

system of linear equations arising out of G1. This procedure is continued for successively
finer discretizations.

The process that we just described is only a part of the multigrid method. In this
method, which has several variations, information is exchanged bidirectionally between
grids of varying granularity. The information from coarser discretizations is used to derive
approximate starting points for finer grids. Information is also projected onto the coarser
grids from the finer grids. In general, iterations over a certain discretization Gi are used
to refine the solution at its grid points. This improved solution is either projected onto the
next coarser grid Gi−1 or interpolated onto the next finer grid Gi+1. Different variations
of the multigrid method use different cycles of interpolation and projection, some of which
are shown in Figure 11.26.

In summary, a typical multigrid algorithm involves three types of computations:

(1) Interpolation of values of variables in discretization Gi to approximate the values
of variables in the next finer discretization Gi+1.
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Figure 11.26 Some typical cycles of interpolation and projection used in multigrid
methods.

(2) Projection of values of variables in discretization Gi onto the variables in the
next coarser discretization Gi−1. Since Gi−1 is a subset of Gi , the variables in
Gi−1 can simply inherit the values from the corresponding variables in Gi during
projection. This process is known as injection. Otherwise, a variable in Gi−1 can
be assigned a value based on the weighted average of the values of a cluster of
variables around it in Gi .

(3) Relaxation, which is the process of applying an iterative method to refine the
approximate solution at any level of discretization. Typically, Jacobi, damped
or weighted Jacobi, or Gauss-Seidel methods are used to perform relaxation in
multigrid algorithms.

The advantages of using the multigrid technique are manifold. Usually, iterative
methods converge faster on coarse grids than on fine grids. Furthermore, since the number
of variables in the systems corresponding to coarse grids is very small, it is often possible to
obtain exact solutions for these systems by using direct methods. Therefore, it is possible
to obtain good starting points for iterations on fine grids at a relatively low computational
cost. Iterative methods also converge faster with good initial approximations. In addition,
the convergence rate of an iterative method is usually higher during the initial iterations.
By iterating only a few times at each step of a cycle, we always work in the region of a high
convergence rate. Thus, multigrid methods arrive at an acceptable solution to a system of
linear equations arising out of a fine grid at a much faster rate than a typical iterative method
applied directly on the same grid. Multigrid methods can be used for finite difference, finite
element, or finite volume problems.

Parallel Implementation

We now consider a parallel implementation of a simple multigrid computation on a mesh-
connected computer with cut-through routing. Since a mesh can be embedded into a hy-
percube, adapting this implementation for a hypercube is straightforward (Problem 11.31).
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Figure 11.27 The domain of Figure 11.25
mapped onto four processors.

We assume that the domain is partitioned among the processors in a block-checkerboard
fashion. Parallel implementations with the domain stripe-partitioned in one dimension are
less efficient and less scalable (Problem 11.33).

First, we describe a parallel implementation of the multigrid technique for the simple
case, in which the number of processors is less than or equal to the number of elements
in the coarsest discretization of the domain. In this case there is no processor idling, and
the only overhead is due to communication. Figure 11.27 shows such a partitioning of the
domain and its discretizations G0, G1, G2, and G3, shown in Figure 11.25. Assume that
m +1 is the total number of discretizations used (G0, G1, . . ., Gm), the number of elements
in the finest discretization Gm is n, and the number of elements in every successively
coarser discretization reduces by a factor of c (in Figure 11.27, m = 3, n = 256, and
c = 4). Hence, the number of elements in the coarsest discretization G0 is n/cm (for the
case under consideration, p ≤ n/cm). Also assume that the total number of interpolations,
projections, and relaxation iterations is the same for each discretization. Let this number
be η.

While working with discretization Gi , the amount of computation that a processor
performs during an interpolation, projection, or relaxation iteration is proportional to the
number of elements in a partition in Gi . Let the combined constant of proportionality for
all three types of computations be tc. Since the number of elements per partition in Gm is
n/p, the total time tcomp spent in computation by each processor during the execution of
the entire multigrid procedure is given by the following equation:

tcomp = ηtc
m∑

i=0

n

pci
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= ηtc
n(c − 1/cm)

p(c − 1)

≈ tcηcn

p(c − 1)
(11.43)

During the interpolation phases, a grid point of the finer grid requires values cor-
responding to the points of the coarse grid around it. Thus, an exchange of the values
corresponding to the coarse-grid points lying at partition boundaries among neighboring
processors suffices to perform interpolation in parallel. Projection using injection requires
no communication. If the method of weighted averages is used for projection, then this
phase requires an exchange of the values corresponding to the points on the finer grid points
lying at partition boundaries among neighboring processors. For the partitioning illustrated
in Figure 11.27, the iterative method used in the relaxation phases also requires nearest-
neighbor communication of values corresponding to the points along partition boundaries
to compute the matrix-vector product in each iteration (Section 11.1.3 and Figure 11.10).
We disregard the communication penalty in computing vector inner products during re-
laxation. This assumption is valid if either hardware-supported fast reduction operations
render the cost of computing a global sum insignificant, or a relaxation method like the
Jacobi method is used so that an inner product is not computed in every iteration (Sec-
tion 11.2.1). Thus, in each interpolation and projection step, as well as in each relaxation
iteration, a processor exchanges four messages—one with each neighbor. The size of each
message is proportional to the number of grid points along an edge of the square partition
assigned to the processor. The number of such boundary elements in discretization Gi is
equal to the square root of the number of elements in each partition in Gi . Hence, the total
time tcomm spent in communication by each processor during the entire multigrid procedure
is given by the following equation:

tcomm = 4η

m∑
i=0

(
ts + tw

√
n

pci

)

= 4(m + 1)tsη + 4twη

√
c − 1/cm/2

√
c − 1

√
n

p

≈ 4(m + 1)tsη + 4twη

√
cn

(
√

c − 1)
√

p
(11.44)

From Equations 11.43 and 11.44, the total parallel run time tcomp + tcomm is

TP = η

(
tc

cn

p(c − 1)
+ 4(m + 1)ts + 4tw

√
cn

(
√

c − 1)
√

p

)
. (11.45)

We now consider the case in which the number of processors is greater than the number
of elements in the coarsest discretization. Assume that p = n/cr , where 0 ≤ r < m; that
is, the number of processors is equal to the number of elements in Gm−r . This case
is illustrated in Figure 11.28 for n = 256, m = 3, r = 1, c = 4, and p = 64. As
shown in the figure, some processors remain idle during the computations corresponding
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Figure 11.28 The domain of Figure 11.25 partitioned among 64 processors.
In discretizations G0 and G1 there are multiple processors for a single element.
Therefore, some processors remain idle and only the shaded processors are
active. In discretization G2, one element is assigned to each processor, and in
G3, four elements are assigned to each processor.
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to G0, G1, . . ., Gm−r−1. During the interpolations, projections, and relaxation iterations
corresponding to these discretizations, the active processors perform only one computation
and one communication in every iteration. However, on a two-dimensional mesh, the
active processors are no longer directly-connected (Figures 11.28(a) and (b)). In the
remaining discretizations Gm−r , . . ., Gm , the computation per processor is proportional to
the number of elements in each partition, and the volume of communication per processor
is proportional to the square root of the number of elements in each partition. The overall
parallel run time on a mesh with cut-through routing is given by the following equation:

TP =

computation or idling︷ ︸︸ ︷
η

(
(m − r)tc + tc

r∑
i=0

n

pci

)

+

communication︷ ︸︸ ︷
η

(
4(m + 1)ts + 4(m − r)tw + 4tw

r∑
i=0

√
n

pci
+ 4th

m−r∑
i=1

√
ci

)

In practice, the number of processors p is much smaller than the number of elements n in
the finest discretization. Hence, (m − r) � √

n/p, and the expression for parallel run time
can be approximated by

TP ≈ η

(
(m − r)tc + tc

cn

p(c − 1)

)

+ η

(
4(m + 1)ts + 4tw

√
cn

(
√

c − 1)
√

p
+ 4th

√
c√

c − 1
(c(m−r)/2 − 1)

)
.

(11.46)

The isoefficiency function of a multigrid computation on a mesh with cut-through
routing is �(p) in the absence of overhead due to inner-product computations (Prob-
lem 11.30). In other words, the parallel system is ideally scalable and requires that n be
proportional to p for cost optimality or for maintaining constant efficiency. However, the
constant of proportionality depends on the values of m, r , and c (besides the hardware-
related constants). Even if the number of processors is greater than the number of elements
in the coarsest discretization, the isoefficiency function remains linear in p (Problem 11.32).
The idling time of processors during the computation of coarse discretizations is only a
small fraction of the total parallel run time. The reason is that the complexity of the
interpolation, projection, and relaxation steps increases rapidly as the grid is made finer.
Therefore, a large fraction of the run time is spent working with fine discretizations, which
do not involve any idling.

11.6 Bibliographic Remarks

Due to the importance of sparse matrices in scientific and engineering applications, the
amount of literature on parallel algorithms for sparse matrix computations is immense.
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There are a number of good references for storage schemes and basic operations on sparse
matrices [DER90, FWPS92, GL81, Pet91, Saa90, Wij89]. Ferng et al. [FPW93] discuss
implementations of some basic sparse matrix-vector computations on SIMD computers.
Parallel sparse matrix-vector multiplication is discussed by several authors [BEP93, CS93a,
CS93b, Ham92].

Iterative methods for solving large sparse systems are very popular on parallel com-
puters because they can be parallelized more easily than direct methods. Parallel it-
erative methods in general are discussed by Bertsekas and Tsitsiklis [BT89], Dongarra
et al. [DDSvdV91], Golub and Ortega [GO93], and Petiton [Pet91]. Among iterative
methods, parallelization of the conjugate gradient (CG) algorithm (and its variants) has
received the most attention [And88, AOES88, DM91, GKS92, HS92, JP92, KC91, KS84a,
LR88, MG87, PWD91, SS85, vdV82, vdV87a]. The description of the serial unprecon-
ditioned and preconditioned CG algorithms in this chapter is based on the description by
Golub and Van Loan [GL89b] and Golub and Ortega [GO93]. The truncated incomplete
Cholesky preconditioner for block-tridiagonal matrices described in this chapter was first
used by van der Vorst [vdV82] and subsequently studied by Kamath and Sameh [KS84b],
and Gupta, Kumar, and Sameh [GKS92]. Variations of the CG algorithm for reducing
the overall communication cost of synchronization and vector inner-product computa-
tion have been presented by some authors [AAIT89, CG89, DER93, DR92]. Parallel
relaxation methods such as Jacobi, Gauss-Seidel, and SOR are described by Adams and
Ortega [AO82], Bertsekas and Tsitsiklis [BT89], and Golub and Ortega [GO93]. In ad-
dition to the red-black and multicolored orderings for Gauss-Seidel and SOR methods
presented in this chapter, Golub and Ortega [GO93] describe a diagonal ordering that
facilitates pipelined implementations of these methods. In this chapter, we have not cov-
ered a class of iterative solvers known as projection methods. Parallel projection methods
have been discussed by Bramley and Sameh [BS89] and Kamath and Weeratunga [KW91].
Parallel implementations of the finite element method (FEM) based on unpreconditioned
CG methods without explicitly assembling the stiffness matrix are discussed in detail by
Fox et al. [FJL+88]. The performance of these techniques depends on the partitioning of
the domain. A number of heuristic approaches have been presented to derive reasonable
suboptimal partitions [AOES88, CR92, MO87, PCF+91, SE87].

A number of techniques have been developed for partitioning finite element graphs.
Striped partitioning is described by Morrison and Otto [MO87] and Schwan et al. [SBB+87].
The use of scattered decomposition in FEM is described by Fox et al. [FJL+88], Morrison
and Otto [MO87], and Williams [Wil87]. A detailed discussion on scattered decomposition
along with several interesting analytical results is presented by Nicol and Saltz [NS90].
Berger and Bokhari [BB87] describe the use of binary decomposition. Sadayappan and Er-
cal [SE87] proposed the two-dimensional decomposition scheme with boundary refinement.
Chung and Ranka [CR92] describe the two-way striping and greedy assignment schemes
for partitioning FEM graphs and give the details of the load balancing algorithm for use in
conjunction with two-dimensional striped partitioning. Heath and Raghavan [HR92] give a
fully parallel algorithm for computing graph separators based on coordinate bisection. This
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scheme uses connectivity information to limit cross edges. Raghavan [Rag93b] extends
this scheme to the three-dimensional case. Our discussion of recursive bisection is based
on its description by Simon [Sim91]. Pothen et al. [PSL90] discuss the use of eigenvectors
of the adjacency matrix to partition finite element graphs. A discussion of the Lanczos
algorithm for computing the Fiedler vector can be found in the book by Parlett [Par80].
Pothen et al. [PSWB92] describe a new partitioning scheme for FEM graphs called spec-
tral nested dissection. The scalability of some of these partitioning techniques has been
analyzed by Grama and Kumar [GK92].

Various ordering schemes for sparse matrices, and their suitability for parallel fac-
torization have been studied by a number of researchers [GL89a, JK82, Liu89a, Liu89b,
LL87, LPP89, PSWB92]. The work in developing efficient parallel ordering algorithms is
fairly rudimentary to date, and only a few references are available on this topic [Con90,
HR92, Liu85, Pet84].

Parallel symbolic factorization is treated by Alaghband [Ala89], Gilbert and Haf-
steinsson [GH90], George et al. [GHLN87], Heath et al. [HNP91], Heath and Ragha-
van [HR93], and Zmijewski and Gilbert [ZG88].

The most computationally expensive phase of obtaining a direct solution to a sparse
system of linear equations is numerical factorization. As a result, parallel numerical fac-
torization has received much attention [AEL90a, AEL+90b, AJ85, BDK+89, CGLN84,
Con86, DDSvdV91, GHLN89, GHLN88, GLN89, GN89, GS92, HNP91, HR93, Leu89,
Rag93a, SR89, Zmi87]. A class of algorithms called multifrontal methods [DR83, Liu90a]
is becoming increasingly popular for solving sparse linear systems on parallel computers.
Multifrontal methods are generalizations of frontal methods, which keep a relatively small
portion of the matrix in main memory at a time and use a full matrix representation for
this active portion of the matrix. Multifrontal methods use multiple active portions, and
this is the basic source of parallelism in a multifrontal algorithm. Parallel formulations of
multifrontal methods have been described by Duff [Duf86], Geist [Gei87], Lucas [Luc87],
Pothen and Sun [PS91], and Pozo and Smith [PS93]. Ashcraft et al. [AELS90] compare
the fan-out, fan-in, and multifrontal approaches for sparse numerical factorization. The
discussion on fine, medium, and coarse levels of granularity in sparse numerical factoriza-
tion is due to Liu [Liu86]. Liu [Liu90b] discusses the role of elimination trees in sparse
factorization in detail.

Solving triangular systems involves very few computations compared to factorization.
Moreover, the process has limited parallelism. Therefore, the prospects for developing
efficient parallel implementations of this phase are bleak. Solving sparse triangular systems
of linear equations is discussed by Alvarado, Pothen, and Schreiber [APS92], Anderson
and Saad [AS89], and Alvarado and Pothen [AS93].

In Section 11.4, we concentrated mainly on direct methods for solving sparse lin-
ear systems involving unstructured sparse matrices of coefficients. There are systems
of practical importance in which the matrix of coefficients has a special structure. No-
table among such systems are tridiagonal, block-tridiagonal, and banded systems. Par-
allel algorithms for solving tridiagonal systems have been described by Stone [Sto73,
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Figure 11.29 A 6 × 6 sparse matrix in the coordinate format and its scattered form
distributed among three processors.

Sto75], van der Vorst [vdV87b], and Wang [Wan81]. Parallel banded systems are dis-
cussed by Cleary [Cle89], Dongarra and Johnsson [DJ87], Johnsson [Joh85], Lawrie and
Sameh [LS84], and Meier [Mei85].

Despite the best research efforts, there are still gaps in the current understanding
of parallel sparse factorization. Most of the research up to the time of this writing has
been empirical, and very few efforts to theoretically analyze the scalability and available
parallelism of sparse direct methods have been made [Sch92, Wor91].

Multigrid techniques are gaining some popularity for solving linear systems. A few
texts, such as those by Briggs [Bri87] and Hackbrush [Hac85], provide excellent discussions
on multigrid methods. Bertsekas and Tsitsiklis [BT89], Fox et al. [FJL+88], and Golub
and Ortega [GO93] present parallelization techniques for the multigrid method. Chan
and Saad [CS86], and Chan and Tuminaro [CT87] describe parallel implementations of
multigrid algorithms on hypercubes. Chan and Schreiber [CS85] also address some issues
in parallel multigrid algorithms.

Problems

11.1 Consider an unstructured sparse matrix stored in the coordinate format and par-
titioned uniformly among p processors as shown in Figure 11.29(a). Assuming
that the underlying architecture is a hypercube with cut-though routing, give an
expression for the time spent in communication to have the original matrix uni-
formly distributed among the processors in Ellpack-Itpack format as shown in
Figure 11.29(b). Assume that the size of the matrix is n × n, the total number of
nonzero elements is q, and the number of processors is p. Describe algorithms for
conversion between the two forms shown in Figures 11.29(a) and (b).
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Hint: Use all-to-all personalized communication.

11.2 Assume that an n ×n sparse matrix A with a total of q nonzero elements is mapped
onto p processors as shown in Figure 11.29(a), so that each processor is assigned
q/p elements. Assume that an n × 1 vector x is uniformly distributed among
the processors so that each processor is assigned n/p of its elements. Describe
an algorithm to compute the matrix-vector product Ax on a hypercube with cut-
through routing. What is the parallel run time?
Hint: Two communication operations are involved—all-to-all broadcast and all-
to-all personalized communication—both with messages of size at most n/p.

11.3 Refer to Problem 11.2. What is the parallel run time if the matrix A is mapped onto
the processors as shown in Figure 11.29(b), so that each processor is responsible
for n/p rows of the matrix? Compare this time with that obtained in Problem 11.2.
What could be a possible advantage of using the coordinate format over the Ellpack-
Itpack format?

11.4 Derive an expression for the parallel execution time of matrix-vector multiplication
involving an n × n unstructured sparse matrix uniformly block-checkerboarded on
a p-processor hypercube. Use the expected value of the maximum computation
time as the effective computation time of all the processors. This time accounts for
the idle time of all the processors other than the one that has the maximum amount
of work. Assume a random distribution of nonzero elements among the rows of
the matrix such that the average number of zeros per row is m.
Hint: [KW85] If there are r independent tasks with a mean completion time of μ

and a standard deviation of σ , and if they are assigned to p processors such that each
processor gets r/p tasks, then the expected completion time for the processor with
the maximum load is rμ/p + σ

√
2(r/p) log p, provided that r is large compared

to p log p. In the problem at hand, r = n2. The values of μ and σ can be computed
as follows: Each of the elements of the n × n matrix can be considered equivalent
to a task that takes zero time if the element is zero and tc time if the element is
nonzero. Since mn/n2 (= m/n) of the elements are nonzero, the expected value of
the completion time of any task is

μ = tcm/n.

The standard deviation is

σ =
√

�n2

i=1(tcxi − μ)2

n2
,

where xi = 0 if the i th (out of n2) element of the matrix is zero, and xi = 1 if the i th

element is nonzero. Since the number of nonzero elements is mn and the number
of zeros is n2 − mn, we have

σ = tc

√
mn(1 − m

n )2 + (n2 − mn)(m
n )2

n2
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= tc

√
m(1 + (m

n )2 − 2m
n ) + (n − m)(m

n )2

n

= tc

√
m

n
− (

m

n
)2.

11.5 Repeat Problem 11.4 for the case in which the matrix is mapped onto a p-processor
hypercube by using block-striped partitioning.

11.6 Assuming that q = mn, compare the parallel execution times obtained in Prob-
lems 11.2 and 11.5. Use the comparison to determine the situations in which the
coordinate format (Figure 11.29(a)) is preferable over the Ellpack-Itpack format
(Figure 11.29(b)) and vice versa.

11.7 Rewrite Equation 11.2 for an l1 × l2 finite difference grid. Describe the structure of
the block-tridiagonal coefficient matrix corresponding to the system of equations
resulting from this finite difference grid.

11.8 Consider the multiplication of the matrix shown in Figure 11.12(a) with a 16 × 1
vector using four processors. For the mapping of rows onto processors as shown
in the figure, what is the parallel run time of an optimal algorithm in terms of tc
(time to perform one multiplication and one addition), ts , and tw? How does this
time compare with the run times of the other two mappings given in Section 11.1.3
(Equations 11.8 and 11.9).

11.9 Consider a parallel implementation of unstructured sparse matrix-vector multi-
plication based on partitioning the graph associated with the matrix as shown in
Figure 11.12. Assume that (1) the n × n matrix has an average of m nonzero
elements in each row and that the graph associated with the matrix is a planar
graph partitioned uniformly among p processors; (2) in a typical partition of the
graph, the number of nodes lying along the partition boundary (that is, the nodes
with incident edges that cross the partition boundary) is of the order of the square
root of the total number of nodes in the partition; and (3) each partition shares its
boundaries with at most c other partitions, where c is a small constant. Derive an
expression for the parallel run time of matrix-vector multiplication in order terms.
Is the algorithm scalable? If so, derive an expression for the isoefficiency function
in order terms.

11.10 Derive an expression for the isoefficiency function for multiplying a banded sparse
n × n matrix with an n × 1 vector by using the mapping shown in Figure 11.13.
Assume that a row of the matrix has an average of m nonzero elements distributed
uniformly in a band of width w around the principal diagonal of the matrix.

11.11 Derive an expression for the parallel run time on p processors for multiplying a
banded unstructured sparse n × n matrix with an n × 1 vector such that a row of
the matrix has an average of m nonzero elements distributed uniformly in a band
of width w around the principal diagonal of the matrix. Assume that m = αns

(α > 0, 0 ≤ s ≤ 1) and w = βnt (β > 0, 0 ≤ t ≤ 1). Derive expressions in terms
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of p, E, tc, ts, and tw for the rate at which n has to increase with p to maintain the
efficiency fixed at a value E for the following sets of values for α, β, s, and t :

(a) α = 5.0, s = 0.0, β = 1.0, t = 0.5
(b) α = 0.001, s = 0.5, β = 1.0, t = 0.5
(c) α = 0.001, s = 0.5, β = 1.0, t = 1.0
(d) α = 0.001, s = 1.0, β = 1.0, t = 1.0
(e) α = 0.001, s = 1.0, β = 1.0, t = 0.5

11.12 Derive an expression for the isoefficiency function for the multiplication of an n×n
block-tridiagonal matrix of the form shown in Figure 11.7 with an n × 1 vector on
a p-processor hypercube with the data mapping shown in Figure 11.9. Treat the
cases p >

√
n and p ≤ √

n separately.

11.13 Show that a Gauss-Seidel iteration requires at least 2
√

n − 1 sequential steps for
a block-tridiagonal matrix derived from a

√
n × √

n finite difference grid of the
form shown in Figure 11.8. Show that, in the k th iteration, the computation of
Equation 11.18 can be used to compute xk[i] for at most

√
n values of i in parallel.

11.14 Give optimal partitionings of the grid shown in Figure 11.15 for the Gauss-Seidel
algorithm on a four- and a 16-processor mesh with store-and-forward routing. Do
any of the mappings change if the architecture is a hypercube or a mesh with
cut-through routing?

11.15 Consider an
√

n × √
n finite element graph of the type shown in Figure 11.15.

Given an
√

p × √
p mesh of processors, give an optimal partitioning for Gauss-

Seidel algorithm. Disregarding the time spent in testing for convergence, what is
the parallel run time of each iteration?

11.16 [KS84b] Consider the relationship D = D̃ + diag(L D̃−1LT ), where the diagonal
matrix D and the strictly lower-triangular matrix L are known. Derive a recurrence
relation to determine the nonzero entries D̃[i, i] of the unknown diagonal matrix
D̃.

11.17 Derive the isoefficiency functions for an iteration of the PCG algorithm with a diag-
onal preconditioner for the hypercube and mesh architectures. Take the expressions
for parallel run times for these architectures from Equations 11.26 and 11.27, re-
spectively. Do the asymptotic isoefficiency functions change if the overhead due
to vector inner-product computation is ignored (that is, if the expression for the
parallel run time is taken from Equation 11.28)?

11.18 Show that, for an n × n matrix A derived from a finite difference grid partitioned
among the processors as shown in Figure 11.10, the time to perform the step of
Equation 11.18 in parallel is exactly equal to the parallel run time for solving
Mzk = rk , where M is the preconditioner matrix derived from a no-fill incomplete
Cholesky factorization of A.
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11.19 Assume that n = 65536, t
′
c = 10, tc = tw = 1, and ts = 40. Disregarding the

3ts log p term in Equation 11.26, plot TP versus p curves for Equations 11.26,
11.31, 11.32, and 11.33. How does the value of τ effect the parallel run time,
speedup, and isoefficiency function of an iteration of the PCG algorithm with a
truncated IC preconditioner?

11.20 Show that a banded unstructured sparse matrix of bandwidth w1 + w2 − 1 results
from the multiplication of two n × n banded unstructured sparse matrices with
their nonzero elements distributed within bands of width w1 and w2 along their
respective principal diagonals.

11.21 In Problem 11.20, assume that the average number of nonzero elements per row in
the two matrices to be multiplied is m1 and m2, respectively. Show that the average
number of nonzero elements per row in the product matrix is approximately m1m2.
Assume that n is large, m1 � w1, and m2 � w2.

11.22 Show that the sparse matrix of Figure 11.22(b) satisfies the criterion of minimum-
degree ordering.

11.23 Reorder the sparse matrix shown in Figure 11.22(b) according to a different
minimum-degree tie-breaking criterion. If, at any stage, there are multiple rows
with the same cost, choose the one with the highest index. Which matrix has a
higher fill-in, the one shown in Figure 11.22(b), or the one derived in this problem?

11.24 Plot the sparsity pattern of the coefficient matrix resulting from the nested-dissection
ordering of a 7 × 7 finite difference grid of the form shown in Figure 11.8.

11.25 Reorder the sparse matrix of Problem 11.24 using minimum-degree ordering. To
break ties, choose a row with the smallest index.

11.26 Reorder the sparse matrix of Problem 11.24 using a natural ordering and a red-black
ordering of grid points.

11.27 Plot the locations of fill-in upon factorization in all the four sparse matrices in
Problems 11.24–11.26. Which of these leads to maximum fill-in?

11.28 Draw the elimination trees for the four sparse matrices of Problems 11.24–11.26.
Which of these results in maximum parallelism?

11.29 Reorder the sparse matrix of Problem 11.24 using minimum-degree ordering. To
break ties, choose the row with the highest index. Plot the locations of fill-in upon
factorization of the resulting matrix. Also draw the corresponding elimination tree.
Does the tie-breaking strategy of minimum-degree ordering affect fill-in? Does it
affect the degree of parallelism in numerical factorization?

11.30 Derive an expression for the isoefficiency function of the multigrid computation
described in Section 11.5 for a mesh-connected parallel computer with cut-through
routing. Assume that there is no overhead due to global sum computations and
that the number of processors is equal to the number of elements in the coarsest
discretization. What is the isoefficiency function in the absence of this assumption?
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Figure 11.30 A domain with three levels
of discretization stripe-partitioned among
four processors of a linear array.

11.31 Derive an expression for the parallel run time and the isoefficiency function for
performing the multigrid computation described in Section 11.5 on a hypercube.
Assume that there is no overhead due to global sum computations, and the number
of processors is equal to the number of elements in the coarsest discretization.

11.32 Show that the isoefficiency function of a multigrid computation on a mesh with cut-
through routing in the absence of any overhead due to inner-product computations
is linear in p, even if the number of processors is greater than the number of
elements in the coarsest discretization.
Hint: Show that the total overhead due to processor idling is �(p).

11.33 Consider the multigrid algorithm for a square domain with discretizations G0, G1,
. . ., Gm . The finest discretization Gm has n elements, and the number of elements
reduces by a factor of four in each successively coarser discretization. The domain
is partitioned into stripes and distributed on a p-processor linear array as illustrated
in Figure 11.30 for m = 2, n = 256, and p = 4. Derive expressions for the
parallel run time and the isoefficiency function for this parallel implementation of
the multigrid method under the assumptions of Section 11.5. For simplicity, assume
that the number of processors is less than or equal to

√
n/2m , so that there is no

idling and so that communication always takes place among directly-connected
processors in the linear array.
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