ФY^ヘADIO 5, AटKHEH 6, EAPINO 2024

The standard normal probability density function is $\left[\exp \left(-x^{2} / 2\right)\right] /(2 \pi)^{1 / 2}$. The probability that the random variable X lies between 0 and 1 is:

$$
P=\operatorname{Pr}(0 \leq X \leq 1)=\frac{1}{\sqrt{2 \pi}} \int_{0}^{1} e^{-x^{2} / 2} d x
$$

Application of the trapezoidal rule with different numbers of segments over this interval gives the results tabulated below. Using these results, calculate the estimate of P with the highest possible order, carrying 7 decimal places. Arrange your work in tabular form, and show all formulas you use. What is the order of error of your result?

h	0.5	0.25	0.125
$\#$	2	4	8
P	0.3362609	0.3400818	0.3410295

Solution:

Use Romberg Integration starting with the $\mathrm{O}\left(\mathrm{h}^{2}\right)$ trapezoidal results given above and tabulate in the appropriate column of the typical Romberg integration table:

\# Trap. segments	Trapezoidal	Simpson's 1/3	Boole 5-point	
2	0.3362609	$\mathrm{O}\left(\mathrm{h}^{4}\right)$	$\mathrm{O}\left(\mathrm{h}^{6}\right)$	$\mathrm{O}\left(\mathrm{h}^{8}\right)$
4	0.3400818	0.3413454		
8	0.3410295			

To find $\mathrm{O}\left(\mathrm{h}^{4}\right)$ from $\mathrm{O}\left(\mathrm{h}^{2}\right)$, we use:

$$
\frac{4 \times \mathrm{P}_{\text {better }}-1 \times \mathrm{P}_{\text {poorer }}}{3}=\mathrm{P}_{\text {better }}+\frac{\mathrm{P}_{\text {better }}-\mathrm{P}_{\text {poorer }}}{3}
$$

To find $O\left(\mathrm{~h}^{6}\right)$ from $\mathrm{O}\left(\mathrm{h}^{4}\right)$, we use:

$$
\frac{16 \times \mathrm{P}_{\text {better }}-1 \times \mathrm{P}_{\text {poorer }}}{15}=\mathrm{P}_{\text {better }}+\frac{\mathrm{P}_{\text {better }}-\mathrm{P}_{\text {poorer }}}{15}
$$

To find $\mathrm{O}\left(\mathrm{h}^{8}\right)$ from $\mathrm{O}\left(\mathrm{h}^{6}\right)$, we would use (not needed here):

$$
\frac{64 \times P_{\text {better }}-1 \times P_{\text {poorer }}}{63}=P_{\text {better }}+\frac{P_{\text {better }}-P_{\text {poorer }}}{63}
$$

The best order results that we can obtain here is that $\mathbf{P}=\mathbf{0 . 3 4 1 3 4 4 7}$. From its position in the above table, we see that this is an $O\left(h^{6}\right)$ estimate.

