3.4 System Dynamics Tool:

 STELLA Version 9 Tutorial 2
Introduction to Computational Science:
 Modeling and Simulation for the Sciences

Angela B. Shiflet and George W. Shiflet
Wofford College
© 2006 by Princeton University Press

Prerequisite: "STELLA Tutorial 1"

Download

Download from the text's website the file unconstrained.stm, which contains a STELLA model to accompany this tutorial.

Introduction

This tutorial introduces the following functions and concepts, which subsequent modules employ: Built-in functions and constants, such as IF, THEN, ELSE, ABS, INIT, EXP, TIME, PI, PULSE, DT, and SINWAVE; relational and logical operators; comparative graphs; and graphical input. Optionally, we cover conveyors, which are useful for some of the later projects.

To understand the material of this tutorial sufficiently, we recommend that you do everything that is requested. While working through the tutorial, answer Quick Review Questions in a separate document.

Built-ins

In the equation mode, we can enter equations into a stock, flow, or converter of a STELLA model. The resulting pop-up menu contains a list of a many of built-in functions that fall into ten categories: array, cycle-time, discrete, financial, logical, mathematical, special purpose, statistical, test input, and trigonometric. In this tutorial, we consider several of these functions that enable us to effectively model many more situations. Browser-accessible documentation that comes with STELLA explains all the functions and features.

Table 3.4.1 lists many of the STELLA functions along with their formats and meanings. The following tutorial illustrates a number of these through examples.

Table 3.4.1 Some STELLA functions
$\operatorname{ABS}(n) \quad|n|$, absolute value n
(ll) AND (l2) Logical AND of $l l$ and $l 2$, where $l l$ and $l 2$ are logical expressions
$\operatorname{COS}(r) \quad \cos (r)$, where r is an angle in radians

COSWAVE (a, p)	Time-dependent cosine function of amplitude a and period p
DT	Time increment
ELSE (s2)	In $\operatorname{IF}(l) \operatorname{THEN}(s 1) \operatorname{ELSE}(s 2)$, if l is false, $s 2$ is returned
$\boldsymbol{E X P}(x)$	e^{x}
$\boldsymbol{F} \boldsymbol{V}(r, n, a, p)$	Future value of present value (p) with n payments of amount a and interest rate of r per period
$\boldsymbol{I F}$	In $I F(l) \operatorname{THEN}(s 1) E L S E(s 2)$, if l is true, $s l$ is executed; if l is false, s is returned
$\boldsymbol{I N I T}(x)$	Initial value of x
INT (x)	Largest integer less than or equal to x
LOG10(x)	$\log _{10}(x)$, logarithm to the base 10 of x; common logarithm of x
LOGN(x)	$\log _{e}(x)$, logarithm to the base e of $x ; \ln (x)$, natural logarithm of x
$\boldsymbol{M A X}(x), x 2, \ldots)$	Maximum of $x 1, x 2, \ldots$; use Euler's method
$\operatorname{MEAN}(x 1, x 2, \ldots)$	Arithmetic mean of $x 1, x 2$,
$\operatorname{MIN}(x 1, x 2, \ldots)$	Minimum of $x 1, x 2, \ldots$; use Euler's method
$\operatorname{MOD}(m, n)$	Integer remainder when m is divided by n
NOT (l)	Logical negation of l, where l is a logical expression
(l1) OR (l2)	Logical OR of $l 1$ and $l 2$, where $l l$ and $l 2$ are logical expressions
PI	Approximation of $\pi=3.14159 \ldots$
$\boldsymbol{P M T}(r, n, p, f)$	Payment every period to go from present value (p) to future value (f) in n payments with interest rate of r per period
$\operatorname{PULSE}(a, t, i)$	Pulse of amount a first delivered at time t and at every time interval of length i afterwards; by default $t=0$ and $i=D T$
$\boldsymbol{P V}(r, n, a, f)$	Present value of future value (f) with n payments of amount a and interest rate of r per period
ROUND (x)	x rounded to the nearest integer; use Runge-Kutta
SIN(r)	$\sin (r)$, where r is an angle in radians
SINWAVE (a, p)	Time-dependent sine function of amplitude a and period p
SQRT (x)	Square root of x
$\boldsymbol{S T E P}(h, t)$	0 before time t and h for time $\geq t$
TAN(a)	$\tan (a)$, where a is an angle in radians
THEN	In $I F(l) T H E N(s l) E L S E(s 2)$, if l is true, $s 1$ is executed
TIME	Model simulation's current time

INIT, EXP , and TIME

Open the STELLA file unconstrained.stm and save a copy of the file under the name unconstrainedError.stm.

The file models an unconstrained growth situation where the rate of change of the population, P, is $d P / d t=0.1 P$ with an initial population of $P_{0}=100$. In Module 3.2 on "Unconstrained Growth," we discovered the following analytical solution to this initial valued differential equation: $P=100 e^{0.10 t}$. Suppose we wish to calculate and plot analytical population values along with the simulation population values. Navigate to the Model level in the STELLA file.

Create a converter with the name analytical_population to store the analytical solution for the population, $P=100 e^{0.10 t}$, at time t. Because the analytically obtained solution uses the initial population and the growth rate, draw connectors from the stock population and the converter growth_rate to the new converter, analytical_population. Double-click the latter to enter the equation for $100 e^{0.10 t}$. We might want to run the simulation with various initial values of population instead of always using 100. Thus, we do not want to type 100 in the equation for analytical_population. Fortunately, STELLA provides a function, INIT, to return the initial value of a stock, flow, or converter. Under the Built-ins menu on the right, scroll down and select INIT. With the cursor automatically inside the parentheses, click on population in the Required Inputs menu to obtain INIT(population). After typing the multiplication symbol, *, we enter the STELLA equivalent of $e^{0.10 t}$. Select the STELLA built-in exponential function, EXP. Click on growth_rate from the Required Inputs menu to place the variable inside the parentheses for $E X P$. The exponent is the product of growth_rate, which in this example has a value of 0.10 , and the current time, which is the STELLA built-in TIME.

Quick Review Question 1 Give the STELLA equation for analytical_population, which in mathematics is $P_{0} e^{r t}$, where P_{0} is the initial population, r is the growth_rate, and t is the time.

ABS

Module 2.2 on "Errors" defines relative error as |correct - result $|\mid$ correct $|$. To have STELLA calculate this error of the simulation population at every time step, first make a converter with the name relative_error and connect population and analytical_population to this new converter. Then, double-click on the latter to enter an equation. The STELLA built-in $\boldsymbol{A B S}$ returns the absolute value of an expression. Complete the formula. Run the simulation generating a graph for population and analytical_population and a table for population, analytical_population, and relative_error.

Quick Review Question 2 Give the STELLA formula for relative_error.

Sine and Cosine

For the next example, save the downloaded file, unconstrained.stm, as periodic.stm, and open the new file.

Suppose we wish to illustrate a periodic growth whose rate is 5\% at the beginning of the year, increases to 10% by the beginning of April, is 0% six months later, and returns to 5% with the new year (see Figure 3.4.1). To model such periodicity, we can employ the trigonometric function sine or cosine, which are SIN and COS, respectively, in STELLA. However, STELLA offers even easier-to-use functions for this example, SINWAVE or COSWAVE. For these functions we specify the amplitude, or height above the horizontal line through the center of the graph, and the period, or length on the
horizontal axis before the graph starts to repeat. In this example, the amplitude is 0.05 and the period is 12 months, as in Figure 3.4.2. As with SIN, the graph of SINWAVE begins at the origin, while the graphs of $C O S$ and $C O S W A V E$ begin at the high point. Thus, we employ $\operatorname{SINWAVE}(0.05,12)$ to generate the graph in Figure 3.4.2. However, to obtain the desired graph for Figure 3.4.1, add 0.05 to the result. Double-click on the converter growth_rate and enter the appropriate formula. Run the simulation generating a graph for population and a table for growth_rate and population.

Quick Review Question 3 Give the equation for growth_rate so that its periodic graph has amplitude 0.05 , period 12 months, and starts at the 0.05 as in Figure 3.4.1.

Figure 3.4.1 Periodic growth rate

Figure 3.4.2 $\operatorname{SINWAVE}(0.05,12)$

PULSE

For the next example, save the downloaded file, unconstrained.stm, as pulse.stm, and open this new file.

Suppose the unconstrained growth of a colony of bacteria on a Petri dish is tempered by a researcher removing 50 bacteria every eight hours starting at hour 1. For the model, we make the simplifying assumption that the scientist is able to extract a constant number of bacteria. We can accomplish this task with the STELLA function PULSE, which has the following format:
where amount is the amount that the function returns during a pulse, initial_time is the time of the first pulse, and interval is the length of time between pulses. Thus, for our example, amount is 50 ; initial_time is 1 ; and interval is 8 . An interval value of 0 or greater than the length of the simulation results in a one-time pulse. If we omit initial_time and interval, such as with $\operatorname{PULSE}(50)$, the system uses default values of initial_time $=0$ and interval $=D T$ so that the pulse occurs every time step from the beginning of the simulation.

In pulse.stm, have a flow called removal coming out of population. Create three converters called amount_removed, init_removal_time, and frequency_of_removal; and connect each to the flow removal. Enter a formula for removal and values for each of the converters as described in the previous paragraph. Run the simulation.

Quick Review Question 4 Give the equation for the flow removal.

Quick Review Question 5 Without changing amount_removed or init_removal_time, using the STELLA model, determine the largest value (as a multiple of $D T=0.25$) of frequency_of_removal that will cause the population of bacteria to go to zero eventually, but not necessarily in 8 hours.

Logic

For the next example, save the downloaded file, unconstrained.stm, as logicIF.stm, and open this new file.

Frequently, we want the computer to do one of two things based on a situation. For instance, suppose a population of bacteria has a growth rate of 10% if its size is less than some threshold, such as 1000 , but a growth rate of 5% for larger sizes. To model the situation we use IF-THEN-ELSE. The format of the combination of these elements is as follows:

```
IF (condition) THEN choicel ELSE choice2
```

If logical expression condition is true, then the construct returns choicel; otherwise, the returned value is choice 2 . Thus, the equation for growth_rate described above is as follows:

```
IF (population < threshold) THEN 0.1 ELSE 0.05
```

Add a converter for threshold and connectors from threshold and population to growth_rate in the STELLA model. Change the equation for growth_rate as described and run the model.

Quick Review Question 6 Describe the appearance of the graph of population.

The "less-than" symbol, <, in the condition of the $I F$ is an example of a relational operator. A relational operator is a symbol that we use to test the relationship between
two expressions, such as the two variables population and threshold. Table 3.4.2 lists the six relational operators in STELLA.

Table 3.4.2 STELLA's relational operators

Relational Operator	
$=$	Meaning
$>$	equal to
$<$	greater than
$!=$	less than
$>=$	not equal to
$<=$	greater than or equal to
	less than or equal to

Definition A relational operator is a symbol that we use to test the relationship between two expressions. The relational operators in STELLA are $=($ equal to $),>$ (greater than), $<$ (less than), $!=($ not equal to), $>=$ (greater than or equal to), and $<=$ (less than or equal to).

Quick Review Question 7 Consider the following equation:

```
IF (population < threshold) THEN 0.1 ELSE 0.05
```

Keeping population and threshold in the same order, write an equivalent equation to the expression than employs the $>=$ symbol. Implement your answer in the STELLA model.

Logical Operators

For the next example, save the downloaded file, unconstrained.stm, as logicalAND.stm, and open the new file.

We use logical operators to combine or negate expressions containing relational operators. For example, suppose when the number of bacteria is between 500 and 1000 , the scientist refrigerates the Petri dish, which results in a lower growth rate (growth_rate_2 $=5 \%$). However, at room temperature, the growth rate returns to its initial value (growth_rate_l $=10 \%$). To write this expression for growth, we employ the logical operator $A N D$ in conjunction with the relational operators < and >, being careful to enclose each relational expression in parentheses, as follows:

```
IF (500 < population) AND (population < 1000)
THEN growth_rate_2 * population
ELSE growth_rate_1 * population
```

The compound condition, ($500<$ population) AND (population < 1000), is true only when both ($500<$ population) and (population <1000) are both true. In every other circumstance, the condition is false. Table 3.4 .3 summarizes this rule in a truth table with "T" and "F" indicating true and false, respectively. With p representing ($500<$ population) and q representing (population <1000), we read the first line of this table as,
"When p is false and q is false, then $(p) A N D(q)$ is false." Notice that the only way to get a true from an $A N D$ is for both (or all) conditions to be true.

Table 3.4.3 Truth table for (p) AND (q)

\boldsymbol{p}	\boldsymbol{q}	(\boldsymbol{p}) AND (q)	Interpretation
F	F	\mathbf{F}	(false) AND (false) is (false)
F	T	\mathbf{F}	(false) AND (true) is (false)
T	F	\mathbf{F}	(true) AND (false) is (false)
T	T	\mathbf{T}	(true) AND (true) is (true)

In logicalAND.stm, change the name of growth_rate to growth_rate_1. Add another converter, growth_rate_2, with constant value 0.05 and connect it to growth. Adjust the equation for growth as above to employ the rate growth_rate_2, when the population is between 500 and 1000. Run the simulation and observe the effect on the graph and table values.

Quick Review Question 8 In the equation for growth, change the condition " $(500<$ population) AND (population < 1000)" to " $(500<$ population < 1000)", which as we will see is incorrect. Run the simulation. By observing the values in the table, determine which growth rate, growth_rate_ $1=0.1$ or growth_rate_ $2=0.05$, STELLA is using. Although in mathematics we can have a condition such as $500<$ $x<1000$, in STELLA we must use AND between the two relational expressions. Correct the equation for growth.

When at least one of two conditions must be true in order for the compound condition to be true, we use the logical operator $\boldsymbol{O R}$. For example, the compound condition (population $<=500)$ OR (1000 <= population) is true in every situation, except when both (population $<=500$) and ($1000<=$ population) are false; that is, when population is exclusively between 500 and 1000 . Table 3.4 .4 has the truth table for (p) $O R(q)$. We read the second line of the table as, "If p is false or q is true, then $(p) O R(q)$ is true." As that and the remaining lines reveal, if p or q or both are true, then $p O R q$ is true.

Table 3.4.4 Truth table for $(p) O R(q)$

\boldsymbol{p}	\boldsymbol{q}	$(\boldsymbol{p}) \boldsymbol{O R}(\boldsymbol{q})$	Interpretation
F	F	\mathbf{F}	(false) $O R$ (false) is false
F	T	\mathbf{T}	(false) $O R$ (true) is true
T	F	\mathbf{T}	(true) $O R$ (false) is true
T	T	\mathbf{T}	(true) OR (true) is true

Quick Review Question 9 Save logicalAND.stm as logicalOR.stm, and open the new file. In logicalOR.stm, change the equation for growth to have the condition (population $<=500)$ OR $(1000<=$ population) for the IF. Change the remainder of the equation to obtain equivalent results to the above simulation, where the growth rate is 5% for populations between 500 and 1000 and 10% otherwise. Give the $I F$ THEN ELSE statement.

A third logical operator, NOT, obeys Table 3.4.5. As the table indicates, this operator reverses the truth value of the expression to its immediate right. We can accomplish the same result by changing an expression so that it uses the inverse relational operator. For example,

```
IF (NOT(population < threshold))
```

is equivalent to

```
IF (population >= threshold)
```

In many cases, this latter notation is preferable because it is simpler.

Table 3.4.5 Truth table for $N O T(p)$

\boldsymbol{p}	$\boldsymbol{N O T}(\boldsymbol{p})$	Interpretation
F	\mathbf{T}	NOT (false) is true
T	\mathbf{F}	NOT (true) is false

Definition A logical operator is a symbol that we use to combine or negate expressions that are true or false. The logical operators in STELLA are NOT, AND, and OR.

Quick Review Question 10 Save logicalAND.stm as logicalNOT.stm, and open the new file. In logicalNOT.stm, alter the growth equation to employ one NOT as indicated with adjustments to the relational operators and the logical operator:

```
IF NOT((500
```

\qquad

``` population)
``` \(\qquad\)
``` (population
THEN growth_rate_2 * population
ELSE growth_rate_1 * population
The resulting simulation should produce results equivalent to those of
```

\qquad 1000)) logicalAND.stm.

For the next example, save the file pulse.stm as $d t . s t m$, and open this new file.

In Run Specs, we specify the interval for the time step, DT. Sometimes it is useful to employ this constant in a model. For example, suppose each time the population of bacteria reaches 200 , a scientist harvests 100 of the bacteria for an experiment. In $d t . s t m$, delete the converters connected to removal and have a connector from population to removal.

Quick Review Question 11

a. Using IF-THEN-ELSE, give the equation for removal that accomplishes the following: If the population is greater than 200, then return 100 , else return 0 .
b. Add columns for growth and removal in the table. With $D T=0.25$, run the simulation. Give the values for time, population, growth, and removal when the population first exceeds 200.
c. Give the values for time and population at the next time step.
d. For the values from Part b, compute population + growth - removal. Does the result equal the population from Part c ?
e. As indicated in section "Difference Equation" of Module 3.2 on "Unconstrained Growth," growth is multiplied by $D T$ before being added to population. Similarly, at each time step, removal $* D T$, not just removal, is subtracted from population. Give the formula for population (t) as listed at the equation level.
f. For the values in Part b, compute population (t). Does this result agree with the value of population from Part c?
g. Suppose when the population exceeds 200, we wish to remove 100 bacteria, not 25 . To cancel out the effect of STELLA's multiplication by $D T$, we divide 100 by $D T$ in the equation for growth. Give the resulting IF-THEN-ELSE equation. Implement this change and run the simulation, observing the graph and table.
h. Give the values for time, population, growth, and removal when the population first exceeds 200.
i. Give the values for time and population at the next time step.
j. For the values in Part h, compute population (t). Does this result agree with the value of population from Part i?

Comparative Graphs

For the next example, save the downloaded file, unconstrained.stm, as comparative.stm, and open the new file.

Suppose we wish to compare the effect of unconstrained growth on population using various growth rates, such as $0.10,0.11,0.12$, and 0.13 . To do so, in the menu Run, select Sensi Specs.... Figure 3.4.3 displays the resulting pop-up menu.

0
Figure 3.4.3 Sensi Specs... pop-up menu

Because we wish to compare graphs for several different growth rates, double-click growth_rate under the Allowable menu. In the Selected (Value) menu, growth_rate and its default value (0.1) appear. Change the value of \# of Runs to 4 . Click once on growth_rate (0.1) in the Selected menu. Enter the Start value (0.10) and End value (0.13). STELLA automatically divides the interval evenly to obtain the values of growth_rate for the four simulations. Once satisfied with the list, click Set. Figure 3.4.4 displays the resulting menu. While still in the Sensi Specs... menu, click Graph. By default, the graph type is Time Series and Comparative. Double click population to have STELLA plot population versus time for each of the four growth_rate values. Enter the title "Populations for Rates 0.1 to 0.13 ", and click OK. In the main Sensi Specs... menu, click Table, select population to display, and enter the title "Populations for Rates 0.1 to 0.13 ". Run the simulation. The resulting graph and the end of the table are as in Figures 5 and 6, respectively. Comparison of the results reveals the dramatic impact on the population of even a 1% increase in the growth rate.

1
Figure 3.4.4 Values in Sensi Specs... pop-up menu

Figure 3.4.5 Graph for comparative simulation

Figure 3.4.6 End of table for comparative simulation

Time	1: population	2: population	3: population	4: population
\ldots	\ldots	\ldots	\ldots	\ldots
38.75	$4,594.09$	$6,701.68$	$9,767.19$	$14,221.96$
39.00	$4,708.94$	$6,885.98$	$10,060.21$	$14,684.17$
39.25	$4,826.66$	$7,075.34$	$10,362.02$	$15,161.41$
39.50	$4,947.33$	$7,269.91$	$10,672.88$	$15,654.15$
39.75	$5,071.01$	$7,469.84$	$10,993.06$	$16,162.91$
Final	$5,197.79$	$7,675.26$	$11,322.86$	$16,688.21$

Quick Review Question 12 Lock the current graph and table. Generate a comparative graph and table where (initial) populations are 100, 200, 300, 400, and 500. Give the populations for time $=40$ hours.

Graphical Input

For the next example, save the downloaded file, unconstrained.stm, as graphInput.stm, and open this new file.

Sometimes we have a concept of the trend of a converter or flow without knowing an expression to represent the equation. For example, perhaps we have experimental data that we wish to use in a model. In this case, we can employ graphical input. Suppose we know that growth_rate has a certain shape that depends on the time. Double-click growth_rate; in place of the equation type TIME, the independent variable; and click To Graphical Function on the lower left of the pop-up menu. We can either enter the raw data in the Time and growth_rate columns on the right, or we can click on appropriate values on the graph. For example, suppose the growth rate starts at 0.10 , decreases to almost 0 , and then increases again. Adjust the maximum growth_rate graphical value to be 0.1. By clicking on the graph, enter values for growth rate related to time as in Figure 3.4.7. Using the Edit Input box, adjust the values as necessary to agree with those in the far right column of Figure 3.4.7. Run the simulation. The resulting graph of population versus time should appear as in Figure 3.4.8.

Figure 3.4.7 Graphical input

3
Figure 3.4.8 Resulting graph from growth_rate input graph in Figure 3.4.7

Quick Review Question 13 Double-click growth_rate. By clicking the graph icon on the lower left, clear the graphical input for growth_rate. Generate graphical input for growth_rate versus population, not time. Have growth_rate vary from 0 to 0.1 and population from 100 to 10000 . Use 10 data points. For a population of size less than 300 , have a growth rate of 0.03 . For all other populations, have a growth rate of 0.100 . Describe the shape of the graph and explain the results.

Conveyor

The material in this section is useful for Project 4 in Module 6.5 on "Modeling Malaria" and could be used for several projects in Module 6.2 on "Spread of SARS" and in Chapter 7.

Sometimes in a model we wish to indicate that each input amount of material remains in that stock for a fixed amount of time before exiting. Thus, the stock is a conveyor that processes each discrete input batch for a certain amount of time. For example, such a conveyor could model a group of people infected by a virus that has an incubation period of three days.

As another example, with such a conveyor we could model the blood supply at a new blood bank, where processing and screening of a donation takes one week. Start a new model with stocks for processing and total_out. Have a flow (input) into processing and a flow, (output) from processing to total_out. The basic unit of time should be one day. Let the simulation run for the default 12 days with $D T=0.25$ days. Make the value for input be 100 pints per day and the initial value of total_out be 0 pints. Double-click processing; and using the radio buttons, change the stock type from Reservoir to
Conveyor. Make the transit time be 7 days and the initial value 0 pints. After clicking $O K$, we see a model diagram similar to Figure 3.4 .9 with the conveyor, processing, represented with vertical lines through a rectangle. As we see in the next quick review question, we do not need to enter a value or equation for the flow output; the conveyor regulates output flow. Save your work in a file called conveyor.stm.

Figure 3.4.9 Model with conveyor processing

Quick Review Question 14 Double-click output. Give the value in the large text box at the bottom of the popup menu and give its meaning.

Generate a graph for processing and a table containing processing and total_out. Run the simulation, and save again. We note that processing builds steadily for the first 7 days, increasing by 100 pints per day. With $D T$ being 0.25 , processing is actually increasing by 25 pints per quarter of a day (i.e., 25 pints each 6 hours) for the first week. During that time, total_out remains 0 . Then, at 7.25 days, the 25 pints that entered the conveyor, processing, at time 0.25 days leave processing and go into total_out. From then on, the quantity in processing is in a steady state with the same number of pints entering as leaving at any time step.

Quick Review Question 15 Give the values of each of the following at time 12 days:
a. processing
b. total_out

Projects

For additional projects, see Module 7.4 on "Cardiovascular System-A Pressure-Filled Model" and Module 7.8 on "Mercury Pollution-Getting on Our Nerves."

Reference

Getting Started with the STELLA Software, A Hands-On Experience, a booklet distributed with the software from isee systems that includes a tutorial (http://www.iseesystems.com/)

