Διαχείριση Παράκτιων Υδατικών Συστημάτων

Κεφάλαιο 6 – Βαρέα Μέταλλα στα Παράκτια Συστήματα

Δρ. Γιώργος Συλαίος Ωκεανογράφος – Καθηγητής ΤΜΠ-ΔΠΘ

'Βαρέα Μέταλλα' ή Ιχνοστοιχεία

(heavy metals, trace metals, toxic metals, trace elements)

Απαντώνται στη φύση στο φλοιό της Γης (π.χ., αλουμίνιο και σίδηρος) όπου σχηματίζουν σύμπλοκα μετάλλων (ενώσεις με οξυγόνο και πυρίτιο).

 Απελευθερώνονται στο έδαφος και το νερό μέσω της φυσικής και χημικής αποσάθρωσης των ηφαιστειακών και μεταμορφωμένων πετρωμάτων. Παρουσία Βαρέων Μετάλλων στα Υδατικά Συστήματα

- Φυσικός Εμπλουτισμός (αποσάθρωση διάβρωση πετρωμάτων λεκάνης απορροής)
- Ανθρώπινη Επίδραση (αστική, βιομηχανική, γεωργική δραστηριότητα)
- Μέταλλα όπως ο σίδηρος και το αλουμίνιο έχουν φυσική παρουσία σε υψηλές σχετικά συγκεντρώσεις.

Μέταλλα όπως ο υδράργυρος, το κάδμιο και το χρώμιο είναι ιδιαίτερα σπάνια και βρίσκονται συνήθως σε χαμηλές συγκεντρώσεις.

____ ιχνοστοιχεία (trace elements) ή μικρο-θρεπτικά

Μέταλλα όπως ο υδράργυρος και ο μόλυβδος, διαθέτουν υψηλή τοξικότητα επηρεάζοντας σημαντικά τις βιολογικές διεργασίες των οργανισμών.

Βαρέα Μέταλλα στο Παράκτιο Περιβάλλον

ATMOSPHERE

Metals

AQUATIC ENVIRONMENT (Coastal and estuarine system)

Metals

SOILS

Metals 🧏

WATER

Metals

SEDIMENTS

Anthropogenic origin Natural origin

Βαρέα Μέταλλα στο Παράκτιο Περιβάλλον

Οι ανθρώπινες δραστηριότητες αυξάνουν τις συγκεντρώσεις βαρέων μετάλλων πάνω από τα φυσικά τους επίπεδα. Ανθρωπογενείς πηγές βαρέων μετάλλων περιλαμβάνουν:

- βιομηχανικά και αστικά απόβλητα,
- γεωργικά υπολείμματα,
- λεπτόκοκκα ιζήματα προϊόντα διάβρωσης,
- ατμοσφαιρικά κατακρημνίσματα,
- υφαλοχρώματα πλοίων,
- παραπροϊόντα μεταλλείων, κλπ.

Τα βαρέα μέταλλα εμφανίζονται στα παράκτια υδατικά συστήματα σε διαλυμένη φάση, σε αιωρούμενη φάση, στα ιζήματα πυθμένα και στους υδρόβιους οργανισμούς.

Μετασχηματισμοί Βαρέων Μετάλλων

Τα βαρέα μέταλλα μετασχηματίζονται εύκολα στο υδάτινο περιβάλλον, δηλ. περνούν από τη μία φάση στην άλλη.

Οι κύριες διεργασίες μετασχηματισμού τους περιλαμβάνουν:

- τη προσρόφηση (adsorption),
- τη συμπλοκοποίηση (complexation),
- τη κατακρήμνιση (precipitation) και
- τη βιολογική πρόσληψη (biological uptake).

Προσρόφηση

Είναι συνήθως η κυρίαρχη διεργασία μετασχηματισμού από τη διαλυμένη στην αιωρούμενη φάση Εμφανίζεται ως:

- Συμμετοχή μετάλλων στα οξείδια σιδήρου και μαγγανίου,
- Προσρόφησή τους από το οργανικό υλικό, και
- Προσρόφησή τους από τα λεπτόκοκκα αιωρούμενα υλικά όπως η ιλύς και η άργιλος.

Αυτό σημαίνει ότι τα βαρέα μέταλλα τείνουν να συσσωρεύονται στα ιζήματα πυθμένα.

Η διαλυμένη φάση των μετάλλων αντιπροσωπεύει τη κύρια βιολογικά διαθέσιμη πηγή μετάλλων για ένα παράκτιο σύστημα.

Ευνοείται σε συνθήκες:

- χαμηλού pH (όξινο περιβάλλον),
- χαμηλού φορτίου αιωρούμενων σωματιδίων και
- υψηλών συγκεντρώσεων διαλυμένου οργανικού υλικού.

Από τους παράγοντες αυτούς, ο πιο σημαντικός είναι το pH.

Το χαμηλό pH είναι ιδιαίτερα σημαντικό διότι:

- η διαλυτοποίηση των υδροξειδίων των μετάλλων αυξάνει όσο το pH μειώνεται,
- η προσρόφηση των στερεών επιφανειών των αιωρούμενων σωματιδίων μειώνεται, και
- τα κατιόντα υδρογόνου ανταγωνίζονται με τα μέταλλα για τη συμμετοχή τους στα μόρια οργανικών ουσιών.

Άλλος σημαντικός παράγοντας είναι η αλατότητα, η αύξηση της οποίας συνήθως οδηγεί σε μείωση των διαλυμένων συγκεντρώσεων βαρέων μετάλλων, καθώς τα λεπτόκοκκα αιωρούμενα υλικά και τα οργανικά μόρια σχηματίζουν συσσωματώματα αποκτώντας υψηλή ταχύτητα καταβύθισης.

Γενικά,

Η παρουσία υψηλών τιμών pH (αλκαλικό περιβάλλον) και οι αυξημένες συγκεντρώσεις αιωρούμενου οργανικού υλικού ευνοούν την αιωρούμενη φάση των βαρέων μετάλλων και έτσι τη τελική μεταφορά τους στο πυθμένα.

Mn Co 100 100 ж жу ж 75 75 % sorbed % sorbed ж 50 50 25 25 ***** 0; 0 Cd Zn 100 100 75 75 ж ж % sorbed ж % sorbed * ** ** 50 50 ж ×xxx×^{xxx}* 25 25 Жĸ 0 0 Cr Fe 100 100 75 75 % sorbed % sorbed 50 50 ж ж 25 25 ж ж 0 0 2 3 2 3 9 5 6 7 я 9 4 5 6 7 8 pН pН Freshwater
Seawater

V Hatje et al. / Environment International 29 (2003) 619-629

Ποσοστό Προσρόφησης Βαρέων Μετάλλων Στο Αιωρούμενο υλικό

V. Hatje et al. / Envir. Intern. 29 (2003) 619–629

Πηγές Βαρέων Μετάλλων στη Παράκτια Θάλασσα

Τα βαρέα μέταλλα εισέρχονται στο παράκτιο θαλάσσιο περιβάλλον, μέσω:

- Α) της ποτάμιας παροχής γλυκού νερού,
- Β) της ατμοσφαιρικής κατακρήμνισης,
- Γ) της υδροθερμικής έκλυσης και

Δ) της διάχυσης από ιζήματα.

Οι τρείς πρώτες είναι οι κύριες πηγές βαρέων μετάλλων.

<u>Ποτάμια Παροχή</u>

Μεταφέρει βαρέα μέταλλα σε αιωρούμενη και διαλυμένη μορφή (χημικής και μηχανικής αποσάθρωσης χερσαίων πετρωμάτων).

Η διαλυτοποίηση των μετάλλων είναι γενικά χαμηλή, οπότε αυτά βρίσκονται κυρίως σε αιωρούμενη μορφή.

Η σύσταση ποτάμιου νερού εξαρτάται από τη σύσταση των πετρωμάτων της υδρολεκάνης και τις τοπικές περιβαλλοντικές συνθήκες, όπως η βροχόπτωση και η θερμοκρασία.

Fig. 3. Annual water (a; km³ yr⁻¹), SPM (b; Mt yr⁻¹) and dissolved (c; t yr⁻¹) and particulate (d; t yr⁻¹) trace element fluxes (F) into the Gironde Estuary via the Garonne, Dordogne and Isle Rivers from 1999 to 2002. Black circles represent the mean annual discharge-weighted dissolved (c; ng l⁻¹) and weighted (by SPM fluxes) particulate (d; mg kg⁻¹) metal concentrations (C_w).

Table 1

Station	Sample group 1 (SW-1)											
	V nmol l ⁻¹	Cr nmol 1 ⁻¹	Co nmol l ⁻¹	Ni nmol l ⁻¹	Cu nmol l ⁻¹	Zn nmol l ⁻¹	U nmol l ⁻¹	Salinit ‰	y pH	O_2 ml l ⁻¹	Yb pmol l ⁻¹	
132	15.73	3.33	1.76	17.90	20.00	7.11	17.51	28.0	6.4	3.6	163.0	
148	20.24	0.19	0.30	25.54	17.31	11.87	18.51	31.7	8.5	2.9	17.5	
149	12.12	0.06	0.17	4.58	8.65	4.62	13.04	34.0	8.5	2.9	12.6	
150	20.18	0.03	0.26	8.05	23.97	14.72	22.55	31.6	8.2	3.7	22.2	
153	15.40	0.27	0.37	4.41	7.23	7.50	19.44	31.6	8.2	3.7	15.7	
129	23.15	4.17	0.36	15.76	14.58	16.53	20.96	31.2	6.3	3.2	21.8	
141	16.74	0.35	0.30	7.94	21.10	8.66	22.74	31.6	6.8	3.7	17.8	
143	15.11	0.51	0.64	6.48	15.33	9.28	18.74	31.6	6.8	3.7	28.6	
128	11.94	1.23	1.06	71.58	20.08	25.05	18.78	31.5	6.2	3.5	41.3	
EF	3.81	0.41	0.00	9.97	16.05	3.05	224.06					
$\pm \sigma$	3.17	0.32	0.00	6.65	12.27	1.88	192.89					
	V	Cr	Co	Ni	Cu	Zn	U		Salinity	pH	O2	
V	1.00											
Cr	0.36	1.00										
Co	-0.31	0.53	1.00									
Ni	-0.28	0.16	0.43	1.00								
Cu	0.27	0.10	0.32	0.34	1.00							
Zn	0.13	0.23	0.13	0.83	0.45	1.00						
U	0.60	0.07	-0.17	-0.03	0.58	0.37	1.00					
Salinity	-0.20	-0.63	-0.82	-0.14	-0.45	-0.05	-0.27		1.00			
pН	0.03	-0.69	-0.61	0.42	-0.37	-0.43	-0.28		0.56	1.00		
O ₂	-0.14	-0.01	0.35	-0.05	0.37	0.07	0.58		-0.46	-0.43	1.00	

Salinity, pH, dissolved oxygen, heavy metal concentrations measured in dissolved phase and correlation matrices

Συντελεστές συσχέτισης διαλυμένων βαρέων μετάλλων

Table 2

SPM contents in samples of seawater, heavy metal concentrations in suspended particulate matter, and related correlation matrices

Station	Sample group 1 (SPM-1)											
	[SPM]	V	Cr	Mn	Fe	Co	Ni		Cu	Zn	U	Yb
	mg 1 ⁻¹	mg kg ⁻¹	mg kg ⁻¹	mg kg ⁻¹	g kg ⁻¹	mg kg	⁻¹ mg l	cg ⁻¹	mg kg ⁻¹	mg kg ⁻¹	mg kg ⁻¹	mg kg ⁻¹
132	9.8	84.88	46.72	212.67	0.57	19.89	3.5	6	1.14	66.46	7.73	2.96
148	6.0	55.00	18.22	21.25	5.83	8.15	nd		17.32	17.37	7.69	2.00
149	6.0	75.60	17.96	18.33	5.90	18.14	nd		17.47	159.22	12.41	3.68
150	5.8	71.17	27.96	124.81	6.26	25.43	6.3	2	18.46	137.65	12.73	6.17
153	6.0	67.77	22.94	63.37	6.65	14.55	nd		19.88	181.52	12.65	3.32
129	5.2	64.15	19.79	29.27	6.77	12.53	1.7	9	2.67	12.13	8.71	2.22
141	5.2	98.50	19.83	26.42	6.78	17.96	nd		2.73	339.54	1.92	1.46
143	6.3	63.27	23.75	111.70	6.93	15.50	14.6	3	16.38	122.55	7.69	3.29
128	5.2	87.33	17.41	26.58	7.13	26.57	nd		2.43	236.13	1.15	1.32
EF	0.71	0.60	0.18	0.98	0.78	0.69	0.3	0	0.96	1.71		
$\pm \sigma$	0.31	0.31	0.13	0.27	0.36	0.38	0.1	9	0.78	0.74		
	v	Cr	Mn	Fe	Со	Ni	Cu	Zn	U	Salinity	PH	O ₂
V	1.00											
Cr	0.19	1.00										
Mn	0.08	0.95	1.00									
Fe	-0.20	-0.90	-0.76	1.00								
Co	0.62	0.23	0.29	-0.06	1.00							
Ni	-0.42	-0.25	0.07	0.39	-0.02	1.00						
Cu	-0.64	-0.25	-0.09	0.31	-0.25	0.72	1.00					
Zn	0.77	-0.26	-0.26	0.35	0.50	0.71	-0.15	1.00				
U	-0.58	0.16	0.22	-0.10	-0.19	-0.15	0.72	-0.45	1.00			
Salinity	-0.20	-0.84	-0.76	0.75	-0.09	0.43	0.55	0.27	0.23	1.00		
pН	-0.46	-0.25	-0.22	0.15	-0.26	0.20	0.87	-0.11	0.68	0.56	1.00	
O ₂	0.44	0.41	0.53	-0.04	0.49	0.68	-0.19	0.49	-0.22	-0.46	-0.43	1.00

Fig. 2. Inter-elements relationships in the different studied samples. Samples of seawater (closed triangles), SPM (closed circles), sediment samples (open circles). All the units are mg kg⁻¹, except for Fe (g kg⁻¹).

Log-to-Log Συσχετίσεις συγκεντρώσεων διαλυμένων και αιωρούμενων βαρέων μετάλλων.

Τα σωματιδιακά μέταλλα που παρέχουν οι ποταμοί εγκλωβίζονται στους ποταμόκολπους και τις ποταμοεκβολές στις θέσεις απόθεσης του αιωρούμενου υλικού.

Τα μέταλλα που αποτίθενται στο ίζημα σταδιακά θάβονται στο πυθμένα, και μόνο ένα μικρό μέρος αυτών επαναδιαλυτοποιείται, όπως ο σίδηρος που μπορεί σε διαλυτή μορφή να προσληφθεί από το φυτοπλαγκτόν. Τα διαλυμένα μέταλλα από το ποτάμι, μειώνουν σταδιακά τις συγκεντρώσεις τους λόγω ανάμειξης.

Κάποιες από τις διεργασίες διάλυσης είναι αβιοτικές όπως η ιοντοανταλλαγή, που αυξάνει το ρυθμό διάλυσης υπό συνθήκες αυξημένου pH, αλατότητας και τη τοπικής μείξης.

Σε αντίθεση με την αιωρούμενη φάση, η διαλυμένη έχει τη δυνατότητα γρήγορης και έντονης ανταλλαγής και μείξης με το νερό του ανοικτού ωκεανού.

ΑΠΟΤΕΛΕΜΣΑΤΑ

Βαρέα Μέταλλα στα Ιζήματα

Ατμοσφαιρική Κατακρήμνιση

Μεταφέρει βαρέα μέταλλα στη θάλασσα υπό αιωρούμενη και διαλυμένη φάση.

Κυρίως βέβαια σε σωματιδιακή φάση από κόκκους διαμέτρου μικρότερης των 10 μm (aerosols).

Η μεταφορά μπορεί να είναι ξηρή (μέσω ανέμων) ή υγρή (μέσω βροχόπτωσης όπου η σταγόνες βροχής εγκλωβίζουν σωματίδια άμμου).

Κατά την υγρή μεταφορά, κάποια βαρέα μέταλλα μπορούν να διαλυθούν και να πέσουν στη θάλασσα ως διαλυμένοι ρύποι.

Table 2

Average trace metal concentrations including the uncertainty in rain and snow at Lake Balaton and at other sites

Precipitation	Co (µg L ⁻¹)	Ni (μg L ⁻¹)	Cu (µg L ⁻¹)	Zn (µg L ⁻¹)	Сd (µg L ⁻¹)	Pb (μg L ⁻¹)	Rain amount (mm)	Reference
Rain								
Lochnagar, 1997–1998		0.85	2.54	21.5	0.18	1.11		(Yang et al., 2002)
Lewes Delaware Bay 1991-1996		0.345	0.412	1.597	0.030	0.328		(Kim et al., 2000)
Stillpond/Wye Chesapeak Bay		0.519	0.413	2.885	0.044	0.490		(Kim et al., 2000)
Balaton, February 2000 (N=2)	0.007 ± 0.001	0.56±0.10	0.69±0.12	17.6±2.5	0.049±0.011	0.94±0.17	7	This study
Balaton, June 2000 (N=2)	0.006±0.001	0.35 ± 0.06	0.37±0.06	5.6±0.7	0.008±0.001	0.11 ± 0.02	7	This study
Balaton, September 2001 (N=3)	0.139±0.016	9.2±1.8	5.1±1.1	126±30	0.238±0.047	3.54±0.65	20-27	This study
Rural areas	0.75	2.4	5.4	36	0.5	12		(Galloway et al., 1982)
Remote areas	-	-	0.060	0.22	0.008	0.090		(Galloway et al., 1982)
Snow								
Chamonix valley	0.006		0.191	0.750	0.032	0.809		(Veysseyre et al., 2001)
Marienne valley	0.275		0.210	1.290	0.023	0.596		(Veysseyre et al., 2001)
Balaton, February 2000 (N=2)	0.087 ± 0.004	9.96±0.70	4.83±0.30	248±15	0.577±0.051	6.77±0.68		This study

Σε κάθε παράκτιο σύστημα, η καταγραφή των βαρέων μετάλλων θα πρέπει να περιλαμβάνει τη συλλογή δειγμάτων σε διαλυμένη και αιωρούμενη φάση.

Μελέτες βιογεωχημείας των παράκτιων συστημάτων θα πρέπει να περιλαμβάνουν επίσης και αξιόπιστες μετρήσεις pH.

Οι συγκεντρώσεις της διαλυμένης φάσης των βαρέων μετάλλων εκφράζονται σε μg/l ενώ στο αιωρούμενο υλικό και το ίζημα σε μg/g ή σε mg/kg ξηρού δείγματος.

Διεργασίες μετραφοράς, μετασχηματισμού, απόθεσης, επανα-αιώρησης και εξόδου των βαρέων μετάλλων από ένα παράκτιο υδατικό σύστημα.

Station 1 - Cadmium (µg/L)

Station 2 - Cadmium (µg/L)

Fig. 3 Dissolved metal profiles in the water column from two coastal regions of Singapore (a, c, e, g, i, k, m Station 1 Kranji and b, d, f, h, j, l, n Station 2 Pulau Tekong)

Ο συντελεστής μετασχηματισμού K_d ορίζει το λόγο μεταξύ της συγκέντρωσης ενός μετάλλου στο αιωρούμενο υλικό και τη συγκέντρωσή του ίδιου μετάλλου στη διαλυμένη φάση.

Ο συντελεστής περιγράφει τη κατανομή και ουσιαστικά τη προτίμηση των βαρέων μετάλλων μεταξύ της διαλυμένης και της αιωρούμενης φάσης.

$$K_{d} = \frac{C_{SPM} (\mu g / g SPM)}{C_{Dissolved} (\mu g / g seawater)}$$

Μία υψηλή τιμή του συντελεστή Κ_d δείχνει την υψηλή τάση του μετάλλου να συγκεντρώνεται στα αιωρούμενα σωματίδια του παράκτιου συστήματος.

Για καλύτερη διαχείριση του συντελεστή, χρησιμοποιούμε τη τιμή (log10 K_d).

Οι χαμηλές τιμές (4-5) της παραμέτρου (log10 K_d) δείχνουν ότι τα συγκεκριμένα μέταλλα προτιμούν τη διαλυμένη φάση, ενδιάμεσες τιμές (5-6) δείχνουν τη διαμοίρασή τους και στις δύο φάσεις ενώ υψηλές τιμές (>6) σημαίνουν τη προτίμηση του μετάλλου προς την αιωρούμενη φάση.
P. Censi et al. / Chemosphere 64 (2006) 1167-1176

Fig. 4. Variations of distribution coefficients $(LogK_d)$ of heavy metals with SPM concentrations.

A decrease in $log(K_d)$ for Cr, Co, Cu and Zn is observed with an evident increase in SPM load in seawater. Conversely, the $log(K_d)$ values for V, Ni and U increase with SPM weight.

Δείκτες Ρύπανσης βαρέων μετάλλων

Η εκτίμηση των επιπέδων ρύπανσης στο ίζημα πυθμένα μίας παράκτιας περιοχής βασίζεται σε μία σειρά από δείκτες, όπως: 1. ο δείκτης συσσώρευσης ρύπανσης (pollution load index, PLI), 2. ο συντελεστής εμπλουτισμού (enrichment factor), και 3. ο δείκτης γεω-συσσώρευσης (geo-accummulation index, Igeo).

Δείκτες Συσσώρευσης Ρύπανσης (PLI)

Ο δείκτης συσσώρευσης ρύπανσης (PLI) προκύπτει ως η συγκέντρωση κάθε βαρέου μετάλλου ως προς τη τιμή συγκέντρωσης του μετάλλου σε ένα μέσο μη-ρυπασμένο ίζημα.

Συνήθως χρησιμοποιούμε τη μέση παγκόσμια συγκέντρωση βαρέων μετάλλων σε ωκεάνεια ιζήματα, με βάση τις σχέσεις:

$$CF_{Metal} = \frac{C_{Metal}}{C_{Background}} \quad PLI = \sqrt[n]{CF_1 \times CF_2 \times \ldots \times CF_n}$$

Όπου CF είναι ο δείκτης εμπλουτισμού για κάθε μέταλλο, n είναι ο συνολικός αριθμός βαρέων μετάλλων που αναλύθηκαν σε κάθε δείγμα και C_{background} είναι η συγκέντρωση κάθε μετάλλου σε ένα μέσο μηρυπασμένο ίζημα.

In this study, the world average concentrations of the metals studied reported for shale (Wedepohl 1995) were used as the background for those heavy metals Cu: 45 µg/g; Ni: 68 μg/g; Zn: 95 μg/g; Pb: 20 μg/g; Cd: 0.3 µg/g; Cr: 90 µg/g.

Wedepohl, K.H. (1995). The composition of the continental crust. *Geochimica et Cosmochimica Acta, 59,* 1217–1232.

PLI Classification Scheme

Class No.	Index value	Sediment Quality
1	PLI ~ 0	Unpolluted area – no action is needed
2	PLI < 1.0	Moderately polluted area - continuous monitoring is needed
3	PLI ≥ 1.0	Extremely polluted area - immediate intervention is required

Συντελεστής Εμπλουτισμού (EF)

Ο συντελεστής εμπλουτισμού (EF) υπολογίζεται με βάση τη παρακάτω εξίσωση:

Όπου (tracer/normalizer)_{Sample} και (tracer/normalizer)_{background} αντίστοιχα, είναι οι συγκεντρώσεις μετάλλων (σε μg/g ξηρού δείγματος) στο δείγμα και στη μη-ρυπασμένη περιοχή.

Συνήθως ως normalizer χρησιμοποιούμε ένα μέταλλο αναφοράς του οποίου η συγκέντρωση δεν οφείλεται σε ανθρωπογενή επίδραση. Τέτοια μέταλλα είναι ο σίδηρος, το αλουμίνιο, το σελήνιο, το ουράνιο, το θόριο.

EF Classification Scheme

Class No.	Index value	Sediment Quality
1	EF < 1	No enrichment
2	$1 \leq \text{EF} < 3$	Minor pollution
3	$3 \le EF < 5$	Moderate pollution
4	$5 \le \text{EF} < 10$	Moderately severe pollution
5	$10 \le \mathrm{EF} < 25$	Severe pollution
6	$25 \le \mathrm{EF} < 50$	Very severe pollution
7	EF > 50	Extremely severe pollution

Δείκτης Γεω-συσσώρευσης (I_{geo})

Ο δείκτης γεω-συσσώρευσης (I_{geo}) συγκρίνει τις σημερινές συγκεντρώσεις βαρέων μετάλλων σε ένα δείγμα με τις αντίστοιχες τιμές σε προ-βιομηχανικά επίπεδα. Ο υπολογισμός του δείκτη γίνεται με τη παρακάτω σχέση:

$$I_{geo} = \log_2\left(\frac{C_n}{1.5B_n}\right)$$

Όπου C_n είναι η μετρούμενη συγκέντρωση του εξεταζόμενου μετάλλου n στο ίζημα, B_n είναι η γεωχημική συγκέντρωση αναφοράς σε προβιομηχανικό ίζημα και ο παράγοντας 1,5 αποτελεί συντελεστή διόρθωσης.

I _{geo} Classification Scheme							
Class No.	Index value	Sediment Quality					
1	< 0	Unpolluted					
2	$0 \le I_{geo} < 1$	From unpolluted to moderately polluted					
3	$1 \le I_{geo} < 2$	Moderately polluted					
4	$2 \le I_{geo} < 3$	From moderately polluted to strongly polluted					
5	$3 \le I_{geo} < 4$	Strongly polluted					
6	$4 \le I_{geo} < 5$	From strongly polluted to extremely polluted					
7	> 5	Extremely polluted					

Δείκτης Δυνητικής Οικολογικής Επικινδυνότητας (RI)

Ο δείκτης δυνητικής οικολογικής επικινδυνότητας εκφράζει την τοξικότητα κάθε μετάλλου και στου συνόλου των μετάλλων που υπάρχουν στο περιβάλλον ως προς τις θαλάσσιες βιοκοινότητες. Ο υπολογισμός του δείκτη γίνεται με τη παρακάτω σχέση:

$$E_{f} = CF_{metal} \times T_{f-metal}$$
$$RI = \sum EF_{f}$$

Όπου T_f είναι ο παράγοντας βιολογικής τοξικότητας κάθε μετάλλου, δηλ. As = 10, Co = 5, Cu = 5, Mn = 1, Ni = 5, Pb = 6, V = 2, Zn = 1, Cd = 30. (Hakanson, 1980)

 Table 3: Categorization of Enrichment Factor, Potential Ecological Risk and Toxicity Risk Index of heavy metal elements.

Enrichment	Enrichment	Potential	Risk	Potential	Risk	PLI	PLI Soil Quality
Factor	Level	Ecological	Level per	toxicity	Level	Value	
		Risk Index	factor	Risk index			
		(\mathbf{E}_f)		(RI)			
< 0.5	Point and	< 40	Low	RI < 150	Low	0-2	Unpolluted to
	non-point				grade		slightly polluted
	source						
0.5 - 1.5	Crustal	40 - 80	Moderate	150 - 300	Moderate	2-4	Moderately
	material						polluted
1.5 - 2	Minimal	80 - 160	High	300 - 600	Sever	4-6	Significantly

							polluted
2-5	Moderate	160 - 320	Higher	< 600	Serious	6-8	Strongly
							Polluted
5-20	Significant	> 320	Serious			8-10	Extremely
							polluted
20 - 40	Very High						
> 40	Extremely						
	High						

Συγκεντρώσεις βαρέων μετάλλων στα μη-ρυπασμένα ιζήματα καθώς και όρια ανά μέταλλο που θέτει η Υπηρεσία Περιβάλλοντος των ΗΠΑ (ΕΡΑ).

	Φυσική	Ταξινόμηση Συστήματος ΕΡΑ					
Μέταλλο	Συγκέντρωση Αναφοράς	Χαμηλή ρύπανση	Μέτρια ρύπανση	Υψηλή ρύπανση			
Cu	$\textbf{23.9} \pm \textbf{2.5}$	< 25	25-50	>50			
Cr	6.2 ± 1.5	< 25	25-75	>75			
Fe	891.4 ± 79.8						
Ni	17.4 ± 3.4	< 20	20-50	>50			
Pb	14.4 ± 0.8	< 40	40-60	>60			
V	2.7 ± 0.5						
Zn	103.8 ± 15.2	< 90	90-200	>200			

Trace elements concentrations in the surface sediments of Kavala Gulf (Northern Greece)

N.I. Kamidis, N. Stamatis & G. Sylaios

National Agricultural Research Foundation, Fisheries Research Institute, Nea Peramos 640 07, Kavala, Greece

Soil and Sediment Contamination: An International Journal

Publication details, including instructions for authors and subscription information: <u>http://www.tandfonline.com/loi/bssc20</u>

Assessment of Trace Metals Contamination in the Suspended Matter and Sediments of a Semi-enclosed Mediterranean Gulf

Georgios Sylaios ^a , Nikolaos Kamidis ^{a b} & Nikolaos Stamatis ^b

^a Laboratory of Ecological Engineering & Technology, Department of Environmental Engineering, Democritus University of Thrace, Xanthi, Greece

^b National Agricultural Research Foundation, Fisheries Research Institute, Kavala, Greece

Accepted author version posted online: 19 Jun 2012. Version of record first published: 14 Aug 2012

GENERAL OVERVIEW

Semi-enclosed coastal Water body. Located in N. Aegean Sea Major fishing ground

Area : 264 x 10⁶ m² Coastal length: 62,800 m Average depth: 32 m Maximum depth: 60 m

Main Land-based Human Activities:

- Tourist (western part)
- Urban (central)
- Industrial (central-eastern)
- Aquaculture (eastern)
- Agriculture (eastern)

Map of sampling area. Samples were collected from 24 stations (18 inshore and 6 offshore sites)

Figure 1. Map of Kavala Gulf, location of point and non-point land-based pollution sources and sites sampled.

SAMPLING AND ANALYSIS

 \succ Sediment samples were collected in June 2002, with a Van Veen stainless crab, and were immediately frozen.

➢ After defrosting the samples were digested in a mixture of 1 ml HF and 4 ml of aqua regia in a microwave oven.

➤ The samples were analyzed using a Perkin Elmer AAnalyst 800 atomic absorption spectrophotometer with Zeeman background correction. Precision and accuracy were checked using the MESS-3 (N.R.C. of Canada) marine sediment as reference material.

Table 2Comparison of standard reference material MESS-3 with present study (mean \pm SD in μ g/g)								
MESS-3	Cu	Ni	Cd	Pb	Cr	Zn	Hg	As
Certified values Present Study	33.9 32.8± 1.43	46.9 44.0± 1.2	$0.24 \\ 0.22 \pm \\ 0.009$	21.9 17.61± 1.55	105.0 99.33± 3.34	159.0 182.18± 18.77	0.091 0.10± 0.01	21.2 18.50± 1.02

SD is for n = 4.

Instrumentation Used

Figure 3. Spatial variability of mean values throughout all samplings for (a) water temperature, (b) salinity, (c) dissolved oxygen (in mg/l), (d) pH, (e) suspended particulate matter (in mg/l), and (f) chlorophyll-a concentrations (in μ g/l) in the surface (solid squares) and the bottom (open circles) water of Kavala Gulf.

682

G. Sylaios et al.

	Salinity	рН	TSS	DO	Cu	Ni	Cd	Pb	Cr	Zn
Salinity	1.000									
рН	-0.012	1.000								
TSS	0.136	0.198	1.000							
DO	0.259	0.182	-0.199	1.000						
Cu	-0.269*	0.028	-0.266	-0.143	1.000					
Ni	-0.021	-0.186	-0.023	-0.172	0.053	1.000				
Cd	-0.158	0.149	0.288*	-0.038	0.026	-0.151	1.000			
Pb	-0.083	0.119	-0.135	-0.082	0.607**	0.233	0.118	1.000		
Cr	-0.047	-0.115	-0.010	-0.147	0.175	0.781**	0.014	0.389**	1.000	
Zn	-0.167	-0.268	-0.093	-0.110	-0.230	0.036	0.085	-0.171	0.100	1.000

Table 5. Pearson's Correlation Matrix for the particulate trace metals in Kavala Gulf (n=54).

* Correlation significant at the 0.05 level (2-tailed)

** Correlation significant at the 0.01 level (2-tailed)

Other correlations were non-significant (p>0.5).

Grain size analysis: Site percentage of 63 µm

Distribution of Arsenic concentrations (As, mg/kg) in the coastal sediments of Kavala Gulf.

Distribution of Cadmium concentrations (Cd, mg/kg) in the coastal sediments of Kavala Gulf.

Distribution of Copper concentrations (Cu, mg/kg) in the coastal sediments of Kavala Gulf.

Distribution of Chromium concentrations (Cr, mg/kg) in the coastal sediments of Kavala Gulf.

Distribution of Mercury concentrations (Hg, mg/kg) in the coastal sediments of Kavala Gulf.

Distribution of Nickel concentrations (Ni, mg/kg) in the coastal sediments of Kavala Gulf.

Distribution of Lead concentrations (Pb, mg/kg) in the coastal sediments of Kavala Gulf.

Distribution of Zinc concentrations (Zn, mg/kg) in the coastal sediments of Kavala Gulf. Table 7. Correlation matrix for organic matter (OM), silt+clay (S+C) and metal concentrations in the surface sediments of Kavala Gulf.

	OM	S+C	Cu	Ni	Zn	Pb	Cd	Cr	Hg	As	Fe
OM	1.000										
S+C	0.769 **	1.000									
Cu	0.073	0.035	1.000								
Ni	0.667**	0.750**	0.166	1.000							
Zn	0.011	-0.024	0.951 **	0.002	1.000						
Pb	0.181	0.133	0.911 **	0.071	0.920**	1.000					
Cd	-0.199	-0.213	0.825**	0.105	0.704**	0.609**	1.000				
Cr	0.546**	0.620**	0.298	0.963**	0.118	0.170	0.298	1.000			
Hg	-0.035	-0.093	0.944 **	-0.053	0.967 **	0.939**	0.728**	0.090	1.000		
As	-0.025	-0.035	0.170	-0.205	0.245	0.191	0.290	-0.186	0.245	1.000	
Fe	0.512*	0.599**	0.477 *	0.747**	0.362	0.413 *	0.299	0.736**	0.329	-0.017	1.000

Correlation significant at the 0.05 level (2-tailed)
 Correlation significant at the 0.01 level (2-tailed)

Other correlations were non-significant (p>0.5).

Figure 6
Table 5

Paired samples two-tailed *t*-test to compare means of temporal (summer-to-winter) for surface and bottom values and spatial (surface-to-bottom) for summer and winter values of physico-chemical parameters and particulate trace metal concentrations in Kavala Gulf (significant at P<0.05 indicated in bold)

Winter-to-Summer									
		Surface Da	ata		Bottom Da	ta			
	N	t	Р	N	t	Р			
Physico-chemical Par	ameter								
Temperature	24	85.73	0.001	24	6.85	0.003			
Salinity	24	1.96	0.056	24	0.34	0.733			
Dissolved Oxygen	24	1.60	0.115	24	1.58	0.119			
pH	24	5.02	0.005	24	6.57	0.006			
Chlorophyll-a	24	0.75	0.451	24	0.45	0.648			
SPM	24	0.70	0.483	24	0.61	0.542			
Particulate Metals									
Pb	24	4.64	0.004	24	5.54	0.002			
Cr	24	8.98	0.005	24	10.82	0.001			
Cd	24	0.32	0.745	24	1.05	0.297			
Cu	24	6.88	0.011	24	8.79	0.001			
Ni	24	4.58	0.008	24	5.60	0.008			
Zn	24	9.80	0.007	24	9.60	0.000			

Surface-to-Bottom									
		Summer D	ata		Winter Da	ta			
	N	t	Р	Ν	t	Р			
Physico-chemical Par	ameter								
Temperature	24	54.71	0.000	24	3.87	0.003			
Salinity	24	5.53	0.001	24	5.60	0.002			
Dissolved Oxygen	24	1.68	0.099	24	0.40	0.689			
pH	24	1.03	0.304	24	0.15	0.887			
Chlorophyll-a	24	0.75	0.451	24	0.61	0.544			
SPM	24	4.40	0.011	24	2.66	0.011			
Particulate Metals									
Pb	24	0.48	0.626	24	1.19	0.238			
Cr	24	0.15	0.880	24	0.10	0.920			
Cd	24	1.86	0.067	24	0.06	0.951			
Cu	24	2.50	0.015	24	1.12	0.265			
Ni	24	1.07	0.289	24	1.09	0.281			
Zn	24	0.88	0.379	24	7.19	0.001			

Table 6. Organic matter and trace metal concentrations (Mean \pm STD) at the sediments of Kavala Gulf, in relation to land-based activities.

Stations	OM	Cu	Ni	Zn	Pb	Cd	Cr	Hg	As
	(%)	(µg/g)	(µg/g)	(µg/g)	(µg/g)	(µg/g)	(µg/g)	(µg/g)	(µg/g)
Tourist Stations	2.9 ± 1.8	4.4 ± 3.3	5.4 ± 4.0	68.8 ± 17.2	29.7 ± 6.7	0.10 ± 0.04	29.1 ± 5.7	0.05 ± 0.02	0.30 ± 0.04
Urban Stations	2.8 ± 1.7	22 ± 7.5	11 ± 5.8	104 ± 26	60.6± 23.6	0.35 ± 0.16	57.4 ± 17	0.17 ± 0.11	$\begin{array}{c} 0.20 \pm \\ 0.11 \end{array}$
Industrial Stations	2.9 ± 0.8	65 ± 59	26 ± 17.7	339 ± 457	80.8 ± 82.4	1.37 ± 0.67	$\begin{array}{r} 105.1 \pm \\ 45 \end{array}$	0.37 ± 0.14	0.29 ± 0.07
Aquaculture Stations	2.9 ± 0.5	21 ± 15.7	30 ± 13.2	98.8 ± 38.6	36.9 ± 10.1	0.27 ± 0.09	94.3 ± 29	0.07 ± 0.03	$\begin{array}{c} 0.20 \pm \\ 0.07 \end{array}$
Deep water stations	7.8 ± 1.0	27 ± 3.8	41 ± 5.4	136.7 ± 13	61.5 ± 10.7	0.29 ± 0.15	130 ± 26.6	0.13 ± 0.05	0.24 ± 0.03
Area Mean	4.4 ± 2.8	25 ± 29.7	22 ± 16.9	139.8 ± 117.1	52.8± 37	0.41 ± 0.5	80.8 ± 47	0.14 ± 0.21	0.25 ± 0.07
Area Max (Station)	9.2 (19)	154 (13)	50 (19)	1024 (13)	203.2 (13)	2.1 (13)	185.2 (19)	1.10 (13)	0.34 (13)

STD: standard deviation

METALS NORMALIZATION

* significant at *P*<0.05

ENRICHMENT FACTORS FOR As, Cd, Cr & Cu

ENRICHMENT FACTORS FOR Hg, Ni, Pb & Zn

Station	PLI	Geoaccumulation Index, Igeo					
		Cu	Ni	Zn	Pb	Cd	Cr
1	0.42	-2.8	-3.1	-0.6	0.2	-2.3	-2.0
2	0.19	-5.3	-6.0	-1.4	-0.7	-1.8	-2.5
3	0.38	-3.1	-3.8	-0.8	0.2	-2.0	-2.0
4	0.30	-4.2	-4.0	-1.3	0.1	-1.6	-2.2
5	0.22	-5.1	-5.4	-1.2	-0.2	-2.9	-2.5
6	0.35	-3.7	-3.7	-0.9	0.3	-2.0	-1.9
7	0.16	-6.4	-6.9	-1.6	-0.3	-3.9	-2.5
8	n.d	n.d	n.d	n.d	n.d	n.d	n.d
9	0.61	-1.3	-3.2	-0.1	1.5	-0.5	-1.4
10	0.45	-1.6	-5.0	-0.4	1.4	-1.7	-1.9
11	0.48	-2.6	-2.9	-1.0	0.5	-0.1	-1.0
12	0.59	-1.3	-2.6	-0.5	0.4	0.2	-0.9
13	0.61	-0.6	-3.3	-0.3	0.9	1.6	-1.2
14	1.30	1.2	-3.1	2.8	2.8	2.2	-0.8
15	0.79	-0.8	-1.2	-0.5	0.1	1.8	0.3
16	0.70	-1.5	-1.4	-0.4	0.1	0.1	-0.2
17	0.39	-3.4	-1.2	-1.3	-0.1	-0.5	-1.3
18	0.61	-2.0	-3.0	-0.7	0.4	-1.8	-0.5
19	0.80	-0.9	-1.8	-0.1	0.7	-1.3	-0.3
20	0.72	-1.6	-1.6	-0.3	1.0	-1.7	-0.4
21	n.d	n.d	n.d	n.d	n.d	n.d	n.d
22	0.86	-1.3	-1.3	0.1	1.4	-0.8	-0.2
23	0.86	-1.1	-1.3	0.1	1.1	-0.4	-0.1
24	0.84	-1.2	-1.2	0.0	1.1	-0.6	0.0
25	0.73	-1.7	-1.5	-0.1	0.6	-1.7	-0.3
26	0.81	-1.3	-1.2	0.0	1.1	-0.8	-0.1
27	0.87	-1.2	-1.0	-0.1	0.8	0.4	0.5

Table 8. Pollution Load Index (PLI) and Geoaccumulation Index (I_{geo}) for the stations sampled in Kavala Gulf. Values in bold represent increased PLI and I_{geo} sites.

Figure 7. Distribution of PLI values in Kavala Gulf (line represents mean area's PLI).

Comparison of Sediment Concentrations in other Greek coastal areas

Area	Cd	Cr	Cu	Ni	Pb	Zn	Digestio n method	Reference
Kavala Gulf	0.01- 0.952	36.93- 113.8	0.5-75	0.4- 47.3	24.9- 209.1	41.83- 1,353	Total	Present study
Thermaikos Gulf	0.3-3	31-107	4-37	-	13-228	23-229	0.5 N HCI	Chester & Voutsinou, 1981
Thermaikos Gulf	0.3-6.5	42-229	7-69	-	16-268	39-560	HNO ₃ conc.	Voutsinou-Taliadouri & Satsmadjis, 1983
Thermaikos Gulf	0.3-8.7	39-386	7-200	-	11-334	32-2600	5 N HCI	Voutsinou-Taliadouri & Varnavas, 1995
Pagassitikos Gulf	-	97-395	14-32	-	20-34	45-74	2 N HCI	Voutsinou-Taliadouri, 1984
Lesvos Island	-	40-247	3-12	-	10-39	18-43	2 N HCI	Voutsinou-Taliadouri, 1984
Saronikos Gulf	-	114-480		-	-	12-1400	0.5 N HCI	Angelidis <i>et al</i> ., 1982
Patraikos Gulf	-	70-210	23-101	-	10-40	275-430	Total	Varnavas & Ferentinos, 1982
Kalamata Bay	-		11-56	-	8-40	-	Total	Varnavas <i>et al</i> ., 1984
Evoikos Gulf	0.095- 0.652	247-404	11.4- 43	246- 698	7.29- 36.7	39.5- 129	Total	Angelidis & Aloupi, 2000
Lesvos Island	0.044- 0.495	40-154	5.34- 86.2	-	20.7- 93	12.9- 230	Total	Aloupi & Angelidis, 2001

DEVELOPMENT OF FUZZY LOGIC MODEL

- Consider $S = \{s_1, s_2, ..., s_{24}\}$ the sampling sites in Kavala Gulf.
- Consider $X = \{x_1, x_2, ..., x_8\}$ the trace metals determined in Kavala Gulf.
- Metal concentration of the i-th metal in the j-th station $x_i(s_j)$, can be normalized according to:

$$z_{j} = z \left\{ x_{i}(s_{j}) \right\} = \frac{x_{i}(s_{j}) - \min \left\{ x_{i}(s_{k}) \right\}}{\max_{k} \left\{ x_{i}(s_{k}) \right\} - \min_{k} \left\{ x_{i}(s_{k}) \right\} k = 1,...,24}$$

DEVELOPMENT OF FUZZY MODEL

• Class Membership Degree :

A) If $z_j < k(z_j) - \sigma_{z(j)}$ then: $\mu_L(s_j) = \Sigma(w_i \times \mu_L(z_j))$ and $\mu_{ML}(s_j) = \Sigma(w_i \times \mu_M(z_j))$, where $\mu_L(z_j) + \mu_M(z_j) = 1$

B) If
$$z_j > k(z_j) + \sigma_{z(j)}$$
 then:
 $\mu_H(s_j) = \Sigma(w_i \times \mu_H(z_j))$ and $\mu_{MH}(s_j) = \Sigma(w_i \times \mu_M(z_j))$,
where $\mu_H(z_j) + \mu_M(z_j) = 1$

C) If
$$k(z_j) - \sigma_{z(j)} < z_j < k(z_j) + \sigma_{z(j)}$$
 then:
 $\mu_{MK}(s_j) = \Sigma(w_i \times \mu_K(z_j))$ and
finally for $0 < z_j < 1$:
 $\mu_M(s_j) = \mu_{ML}(s_j) + \mu_{MH}(s_j) + \mu_{MK}(s_j) = 1 - [\mu_L(s_j) + \mu_H(s_j)]$

where w_i the weights produced according to a normalized metal toxicity matrix (Lu and Lo, 2002), such that $\Sigma w_i = 1$.

Hg	0.25	Cr	0.10
As	0.20	Ni	0.05
Cd	0.17	Zn	0.04
Pb	0.15	Cu	0.04

RESULTS OF FUZZY LOGIC MODEL

CONCLUSIONS

- 8 trace metals from 24 sampling stations were analyzed in Kavala Gulf.
- Fe was used as the reference element to describe the natural granulometric and mineralogical variability of metal contents.
 The urban-industrial area of the Gulf was the most contaminated
- area in Cd, Cu, Hg, Pb and Zn, while deeper stations were enriched in Ni.
- As and Cr showed low contamination values in the whole Gulf.
- A fuzzy logic model was developed to present the global contamination degree for each station and divide stations into global clusters.
- This fuzzy logic model proved its ability to compare different areas according to their metals contamination.

TABLEI

Depth of the sampling stations, metal mean concentrations and *t*-test results in the study area

Station	Depth	Concentration (ppm)						
	(m)	Cu	Pb	Zn	Cr	Ni		
1	15.0	16.2	39.2	90.0	136.1	51.5		
2	15.0	10.4	23.4	53.2	103.0	35.2		
3	25.0	29.3	44.7	94.9	178.7	64.0		
4	14.5	42.0	74.3	135.6	187.7	71.9		
5	31.5	34.7	78.9	118.7	150.1	54.2		
6	15.0	35.9	92.5	127.6	183.6	69.3		
7	29.0	7.0	29.7	43.2	53.5	20.5		
8	67.7	28.3	82.3	107.6	148.0	57.4		
9	68.5	35.2	91.7	126.4	178.2	69.2		
10	65.5	36.4	106.7	146.0	203.3	72.1		
11	53.0	36.5	108.1	144.8	197.0	68.0		
12	54.0	36.6	123.2	147.5	201.9	71.3		
13	55.0	36.7	124,2	153.5	213.0	74.5		
14	54.0	7.7	79.3	55.3	74.3	26.5		
15	69.0	31.0	116.4	135.2	192.2	67.8		
16	77.0	30.1	122.6	136.9	188.1	66.6		
17	78.0	51.2	130.5	159.0	185.0	70.1		
18	69.0	30.3	124.8	134.2	187.3	66.3		
19	53.0	29.4	124.3	90.7	116.8	47.2		
20	40.0	5.3	57.2	50.2	62.3	18.9		
21	42.0	34.5	115.9	141.3	196.8	70.5		
22	20.0	10.7	115.8	94.5	75.6	30.0		
23	42.0	26.8	111.6	127.8	170.3	59.7		
24	16.0	40.8	127.8	128.0	105.7	35.6		
25	32.0	8.1	32.4	24.3	29.2	9.1		
26	68.0	24,4	116.7	124.6	150.6	53.2		
27	73.0	50.5	440.2	387.5	242.3	95.0		
28	59.0	56.6	511.7	486.5	264.1	100.4		
29	60.0	48.7	226.5	260.8	134.9	49.6		
30	12.5	0.0	60.4	39.6	17.1	2.1		
31	25.0	179.1	1558.1	889.4	364.2	144.3		
32	66.0	70.0	683.5	595.0	269.1	112.7		
33	14.0	205.9	2233.1	926.8	173.5	32.0		
34	76.0	58.4	493.5	433.4	237.5	85.0		
35	33.5	8.3	52.9	57.1	53.6	14.4		

Sampling stations included in various subareas of the study region									
Area	Cu	Pb	Zn	Cr	Ni				
I	1, 2, 7, 14, 20, 22, 25, 30, 35	1–26, 30, 35	1–26, 30, 35	1, 2, 5, 7, 8, 14, 19, 20, 22–26, 29, 30, 35	25, 30, 35				
Π	3-6, 8-13, 15, 16, 18, 19, 21, 23, 26	29	29	3, 4, 6, 9, 10–13, 15–18, 21, 33	2, 7, 14, 19, 20 22, 24, 29, 33				
Ш	17, 24, 7–29, 32, 34	27, 28, 32, 34	27, 28, 32, 34	27, 28, 32, 34	1, 3–6, 8–13, 15–18, 21, 23, 26–28, 34				
IV	31, 33	31, 33	31, 33	31	31, 32				

TABLE II

-

	Levels of heavy metals (ppm) in various subareas of Strymonikos and Ierissos Gulfs								
Area		Cu	Pb	Zn	Cr	Ni			
I	Mean	8.2	61.9	99.7	105.7	8.5			
	Range	0.0-16.2	23.4-92.5	43.2-135.6	53.5-150.6	2.1-14.4			
П	Mean	34.9	226.5	260.8	185.5	32.8			
	Range	28.3-42.0	-	-	170.3-196.8	18.9-49.6			
	Pollution ratio	4.6	3.7	2.6	1.8	3.9			
Ш	Mean	53.7	532.2	475.6	256.9	69.4			
	Range	40.8-70.0	440.2-683.4	387.5-595.0	237.5-269.1	51.5-100.4			
	Pollution ratio	7.0	8.6	4.8	2.4	8.2			
IV	Mean	192.5	1895.6	908.1	364.2	128.5			
	Range	179.1-205.9	1558.1-2233.1	889.4-926.8	-	112.7-144.3			
	Pollution ratio	23.5	30.6	9.1	3.5	15.1			

TABLE III

TABLE V

Interelement correlations for surface sediments from the whole study area

	Cu	Cr	Pb	Zn	Ni
Cu	1				
Cr	0.546	1			
Pb	0.954*	0.468	1		
Zn	0.920*	0667	0.946*	1	
Ni	0.425	0.976*	0.341	0.577	1

* High significance by p < 0.05.