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Abstract:

Local cubic law (LCL) is one of the most commonly applied physical laws for flow in single fractures (SF) and fractured
media. The foundation of LCL is Darcian flow. This experimental study examines if LCL is valid for flow in a single rough
fracture and how the fracture roughness and Reynolds number (Re) affect flow. Similar to the Moody diagram for flow in
pipes, a diagram for flow in a single rough fracture has been generated to relate the friction coefficient with Re and the
roughness. Under the experimental condition of this study, flow appears to be substantially different from Darcian flow. The
flow law of q / enJm appears to be valid for describing the flow scheme where q, e, and J are the unit width flux, the average
aperture, and the hydraulic gradient. The value of the power index m is found to be around 0Ð83 ¾ 0Ð98, less than what has
been used in Darcian flow (m D 1). The power index n is around 11Ð2 and 13Ð0, much greater than the n value used in the
LCL (n D 3), and it increases with the average velocity. The Moody type of diagram shows that the friction factor for flow
in SFs is influenced by Re and the roughness. It decreases with Re when Re is small, and becomes less sensitive to Re when
Re is large enough. It also increases with the roughness. Copyright  2010 John Wiley & Sons, Ltd.
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INTRODUCTION

Flow and transport in a single fracture (SF) have been
a focus of research in hydrology, petroleum engineer-
ing, and other disciplines for many decades because of
their importance in various applications including nuclear
waste repository (Lomize, 1951; Louis, 1969; Wither-
spoon et al., 1980; Pyrak-Nolte et al., 1987; Zimmer-
man et al., 1991; Zimmerman and Bodvarsson, 1996;
Konzuk and Kueper, 2004; Ranjith and Darlington, 2007;
Nowamooz et al., 2009). Despite enormous progress
made, some basic aspects of flow in an SF still remain
unstudied (Berkowitz, 2002). From a rigorous theoreti-
cal point of view, flow in an SF should be investigated
with the Navier–Stokes equation (NSE) (Zimmerman
and Bodvarsson, 1996). Unfortunately, the full NSE is
often too difficult to solve, either analytically or numer-
ically (Zimmerman and Yeo, 2000). As a result, only a
handful of studies have been reported on the numerical
simulation of the NSE in an SF (Brush and Thomson,
2003; Al-Yaarubi et al., 2005; Cardenas et al., 2007)
and even fewer studies on the analytical solutions of
the NSE in an SF (Hasegawa and Izuchi, 1983; Basha
and El-Asmar, 2003). Therefore, various approximations
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are usually made, which reduce the NSE to a simplified
equation. A commonly employed simplification is to dis-
card the acceleration term in the NSE, which yields the
linear Stokes equation (SE) (Zimmerman and Bodvars-
son, 1996; Zimmerman and Yeo, 2000). The condition
for this simplification is that the Reynolds number (Re)
is less than a certain limit, which is often chosen to be 10
(Zimmerman and Yeo, 2000). Although the SE is linear,
it is still quite difficult to solve and only a few stud-
ies have been devoted to solve the SE in an SF (Brown
et al., 1995; Mourzenko et al., 1995; Brush and Thom-
son, 2003). The next simplification is to replace the SE
by the lubrication equation or the so-called ‘local cubic
law’ (LCL) (Brown, 1987; Zimmerman and Yeo, 2000).
The LCL states that the fluid volumetric flow rate in
a fracture is proportional to the fracture aperture to the
power of three. The condition for this simplification is
that the wavelength of the dominant aperture variations
is more than three times greater than the mean aperture
(Zimmerman and Yeo, 2000). Other investigators such
as Oron and Berkowitz (1998) gave somewhat similar
conditions for simplifying the NSE to the SE and to the
lubrication equation or LCL.

Because of its simplicity, the LCL has been studied
extensively and has become the primary governing law
for flow in an SF (Iwai, 1976; Brown, 1987; Moreno
et al., 1988; Thompson and Brown, 1991; David, 1993;
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Unger and Mase, 1993; Amadei and Illangasekare, 1994;
Brush and Thomson, 2003; Nazridoust et al., 2006). In a
rigorous sense, the LCL works the best for Darcian flow
in a highly idealized SF with smooth and parallel fracture
surfaces (Lomize, 1951; Louis, 1969). Unfortunately,
field observations indicate that natural fractures are very
unlikely to have smooth and parallel surfaces (Meheust
and Schmittbuhl, 2001). Witherspoon et al. (1980) tested
the validity of the LCL in an SF where the surfaces were
in contact and the aperture was being decreased under
stress using samples of granite, basalt, and marble. They
concluded that the LCL was valid whether the fracture
surfaces were held open or being closed under stress; the
effects of deviations from the ideal parallel plate concept
could be dealt with by using a reduced geometric factor
(Witherspoon et al., 1980). This conclusion was based
on Darcian flow in an SF. Konzuk and Kueper (2004)
pointed out that the cubic law calculated with either
the geometric mean aperture or incorporating surface
roughness factors provided reasonable (š10%) estimates
of the observed flow rates for Re less than 1. The LCL
over-predicted the observed flow rates by at least 1Ð9
times. Konzuk and Kueper (2004) further pointed out the
merit in conducting additional studies of the cubic law
applied at the single-fracture scale to determine whether
similar results were achievable in all fracture types.

The LCL will become invalid when either of the
two conditions that lead the NSE to the SE and to the
lubrication equation is not satisfied. When Re increases
to more than 10 and/or the wavelength of the dominant
aperture variations is less than three times the mean
aperture, one may see the deviation from the LCL.
This theoretical argument was supported by mounting
computational (Skjetne et al., 1999; Basha and El-Asmar,
2003; Bues et al., 2004; Koyama et al., 2008) and
experimental evidences (Lomize, 1951; Louis, 1969;
Raven and Gale, 1985; Pyrak-Nolte et al., 1987; Durham
and Bonner, 1994; Keller et al., 1995; Vandergraaf,
1995; Qian et al., 2005, 2006, 2007) which showed
that the LCL was not adequate when flow velocity
was high and/or fracture roughness increased. Durham
and Bonner (1994) used profilometry to show that
flow channels became more torturous as joint faces
approached one another and permeability of an SF
dropped faster than the parallel plate approximation
predicted. Cook (1992) also showed that flow through
a fracture decreased more rapidly than the cube of the
mean aperture. Ranjith and Darlington (2007) found a
Forchheimer-type quadratic relationship between the flow
rate and the pressure change when modelling water flow
through a real rock fracture at confining pressures from
0Ð55 to 3Ð0 MPa. Similarly, Zimmerman et al. (2004)
reported that at Re above about 20, both the simulations
and experiments exhibited a Forchheimer-type regime, in
which the pressure drop was quadratic in the flow rate.

Lomize (1951) showed that for Darcian flow in an
SF, the flow rate was proportional to the cube of the
aperture; however for turbulent flow, the flow rate was
proportional to 1Ð5 power of the aperture. Louis (1969)

further studied groundwater flow in an SF with the
condition /e > 0Ð033, where  is the asperity height
of the fracture surface and e is the fracture aperture. His
finding was similar to that of Lomize (1951). Pyrak-Nolte
et al. (1987) reported a comprehensive experimental
study of the mechanical and hydraulic behaviour of
natural fractures in crystalline rock under normal stress
and concluded that the LCL did not hold at either high
or low stresses for natural fractures, as has also been
found by Raven and Gale (1985). Pyrak-Nolte et al.
(1987) concluded that the flow rate was proportional to
the mechanical aperture in a single, nature fracture to
a power index varying between 7Ð6 and 9Ð8. Sisavath
et al. (2003) found that a power-law relationship can be
obtained between the flow rate and the average aperture
with an exponent as high as 10, which is consistent with
the finding of Pyrak-Nolte et al. (1987). Xu et al. (2003)
studied water flow in a rough SF made of steel and
concluded that the power index of flow rate was between
5Ð5 and 7Ð6 for a non-inosculated fracture. As can be
seen from the above references, a wide range of power
index values has been reported for various fracture flow
problems.

To test if the LCL is valid or not, a very important issue
is to choose the ‘average’ fracture aperture in the formula.
Unfortunately, the geometric complexity of a real fracture
may cause some ambiguity on this issue and there are still
considerable debates on what ‘average’ aperture to use
for simulating flow and transport in an SF (Tsang, 1992;
Ge, 1997; Oron and Berkowitz, 1998). Tsang (1992)
illustrated that some discrepancy among different results
of flow and transport in an SF was due to different
choices of the average aperture and she provided a careful
analysis of different definitions of fracture aperture. Ge
(1997) used two vectorial variables of fracture geometry
(true aperture and tortuosity) to study flow in an SF.
Oron and Berkowitz (1998) argued that the cubic law
aperture should not be measured on a point-to-point basis
but rather as an average over a certain length.

The purpose of this study is to experimentally investi-
gate flow in an SF when Re is considerably greater than
10. In order to avoid any unnecessary ambiguity in inter-
preting the experimental data and to precisely control the
parameters in the experiments, we use a parallel-plane
SF with glued identical square plates on one surface to
simulate the fracture roughness. We are aware that this
artificially made SF is an idealized one, i.e. different from
a realistic SF with variable apertures. But its aperture
and surface roughness can be precisely controlled; thus,
the ambiguity of choosing the average fracture and sur-
face roughness is avoided. In fact, a similarly idealized
SF has been used in other studies as well. For instance,
Fourar and Lenormand (2001) generated an artificial SF
by gluing a layer of glass beads to two glass plates to
study two-phase flow at high velocities through such an
SF. Bues et al. (2004, Figure 1) studied flow in an SF
with rectangular corrugation or roughness. One goal of
this study is to examine a generic relationship between
the flow rate and the hydraulic gradient for flow in an
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Figure 1. Diagram showing the friction factor as a function of Re and the
roughness for flow in SFs. This diagram is similar to the Moody diagram

used to describe flow in pipes

SF based on various controlled surface roughnesses. A
diagram similar to the Moody diagram for flow in pipes
will be generated for flow in an SF (Munson et al., 1998).
The finding of this study can be used as a benchmark to
compare with further studies using a realistic SF.

EXPERIMENTAL DESIGN

A series of experiments have been performed on an arti-
ficial SF constructed in the laboratory. Figure 2a shows
the general design of the experiments. The fracture is
constructed between two plexiglass plates of dimensions
982 mm in length and 250 mm in width. The hydraulic
gradient through the fracture is controlled by adjusting the
water level difference between the inflow and the outflow
flumes. The range of the hydraulic gradient is between
0Ð015 and 0Ð046, as shown in Table I. The fracture is
vertical and open at the top; thus an unconfined flow con-
dition exists. The vertical fracture used here is different
from the horizontal fractures used in other studies such
as the one by Iwai (1976). However, the conclusions are
not expected to depend on the orientation of the fracture
except that confined flow exists for a horizontal fracture,
whereas unconfined flow exists for a vertical fracture.
Because the hydraulic gradient used in the experiment
is small enough over the distance of flow, the nonlinear
effect of the unconfined flow is negligible.

Figure 2b is a schematic diagram showing the design
of the rough fracture surface. The rough surface is
constructed by gluing many identical small plexiglass
plates to the center of the black areas with dimensions
of 40 mm ð 40 mm. Six different plexiglass plates have

Figure 2. (a) Schematic diagram of experimental set-up for groundwater
flow in an SF. 1, overflow pipe; 2, inflow pipe; 3, high-level recharge
flume providing different constant water level; 4, inflow flume; 5,
distributing flow board; 6, fracture aperture; 7, fracture plane; 8, discharge
flume; 9, low-level discharge flume providing different constant water
level; and 10, overflow pipe; (b) schematic diagram of roughness design
on one of the fracture surfaces. The rough surface is constructed
through gluing different square plexiglass plates to the black squares;

and (c) photograph of the apparatus set-up

been used to represent six different roughnesses, namely
pattern 1 to pattern 6. These six patterns have dimensions
of 40 mm ð 40 mm ð 1 mm (pattern 1), 40 mm ð
40 mm ð 2 mm (pattern 2), 40 mm ð 40 mm ð 3 mm
(pattern 3), 20 mm ð 20 mm ð 1 mm (pattern 4), 20 mm
ð 20 mm ð 2 mm (pattern 5), and 20 mm ð 20 mm
ð 3 mm (pattern 6). The detail of design is as follows.
First, keep one of the two fracture surfaces smooth, and
the other one to be glued with different plates selected
from patterns 1 to 6. When gluing the plates to the black
squares of Figure 2b, make sure the sides of the plates
are parallel to those of the black squares and the plate is
at the center of the black square occupied. For patterns
1–3, the glued square plates will cover the entire black
squares of Figure 2b, whereas for patterns 4–6, the glued
square is smaller and only covers the central part of each
black square. A photograph of the actual set up is shown
in Figure 2c.

After making the rough fracture surface, mounting the
rough and smooth surfaces vertically in the apparatus and
making sure they are parallel, an artificial rough SF is
constructed. The asperity height of the fracture, , is the
thickness of the glued plates. For instance, for patterns 1,
2, and 3, the values of the asperity heights are 1, 2, and
3 mm, respectively. Similarly, the values of the asperity
heights for patterns 4, 5, and 6 are also 1, 2, and 3 mm,
respectively. The roughness is given by /e, where e is
the average aperture defined as

e D Volf
1

2
�h1 C h2�l

�1�

where Volf is the water volume contained in the fracture
(m3), h1 and h2 are the water levels at the recharge and
discharge flumes, respectively (m), and l is the distance
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Table I. Values of the discharge per unit width (q) versus the
hydraulic gradient (J) with different fracture patterns

Fracture e (mm) /e Experiment No. J q (mm2/s)

1 0Ð0015 75Ð19
2 0Ð0022 114Ð44
3 0Ð0030 151Ð76

Pattern 1 4Ð90 0Ð204 4 0Ð0041 198Ð89
5 0Ð0047 239Ð19
6 0Ð0056 273Ð55

1 0Ð0015 38Ð60
2 0Ð0022 56Ð00
3 0Ð0033 81Ð12

Pattern 2 4Ð50 0Ð444 4 0Ð0043 101Ð66
5 0Ð0058 161Ð26
6 0Ð0094 219Ð06

1 0Ð0126 32Ð46
2 0Ð0379 90Ð87
3 0Ð0500 122Ð03

Pattern 3 3Ð78 0Ð794 4 0Ð0533 152Ð59
5 0Ð0621 156Ð63
6 0Ð1407 293Ð16

1 0Ð0031 47Ð65
2 0Ð0063 95Ð61
3 0Ð0099 124Ð72

Pattern 4 4Ð80 0Ð208 4 0Ð0120 175Ð09
5 0Ð0152 208Ð84
6 0Ð0313 404Ð51

1 0Ð0026 33Ð05
2 0Ð0047 51Ð40
3 0Ð0141 129Ð41

Pattern 5 4Ð24 0Ð472 4 0Ð0162 149Ð13
5 0Ð0225 209Ð74
6 0Ð0319 275Ð38

1 0Ð0037 15Ð64
2 0Ð0183 59Ð68
3 0Ð0256 77Ð12

Pattern 6 3Ð84 0Ð781 4 0Ð0324 93Ð48
5 0Ð0350 100Ð82
6 0Ð0460 128Ð83

between the entrance and exit of the fracture. h1 and h2

are very close to the top elevation of the fracture. Volf
and the average flow velocity (V) are monitored using a
calibrated cylinder with errors less than 2%, and h1 and
h2 are measured using pressure transducers with errors
less than 0Ð5 mm. Under steady-state flow condition, the
hydraulic gradient, J, is given by

J D h1 � h2

l
�2�

Rigorously speaking, the hydraulic gradient of an
unconfined flow system changes with distance from the
two constant-head boundaries; however, the difference
between h1 and h2 are very small, as can be seen
from Table I. Thus Equation (2) is a reasonably good
approximation of the hydraulic gradient. The unit width
flux (m2/s), denoted as q, is also measured as q D
Q/[�h1 C h2�/2], where Q is the total discharge rate
through the fracture and �h1 C h2�/2 is the averaged
saturated width of the fracture. The difference between
h1 and h2 is very small, so �h1 C h2�/2 is very close to h1

(or h2). Note that the unit width flux q is different from
the specific discharge which equals to q/e.

PROPOSED FLOW LAW

Theoretical background of the proposed flow law

The LCL is based on the following Darcian flow

q D ge3

12�
J �3�

where q is the unit width flux (m2/s), e is the average
aperture (m), g is the acceleration of gravity (m/s2), � is
the kinematic viscosity (m2/s), and J is the hydraulic gra-
dient. Lomize (1951) modified Equation (3) for Darcian
and turbulent flow by considering fracture roughness. The
one for Darcian flow is

q D ge3

12�
J

1

1 C 6�/e�1Ð5 �4�

where /e is the roughness.
Pyrak-Nolt et al. (1987) modified Equation (3) as

q D q0 C Cen
m �5�

where q0 is a background constant unit width flux (m2/s),
em is the mechanical aperture, n is a power index which
varies from 7Ð6 to 9Ð8, and C is a unit converting the
constant coefficient with a dimension of m�2�n�/s. Xu
et al. (2003) summed up the models mentioned above
and obtained the following formula:

q D C0 gen

12�
Jm 1

1 C ��/e�� �6�

where n, m, and � are the dimensionless power indexes
of e, J, and /e, respectively; � is a dimensionless
coefficient of (/e), C0 (m�3�n�) is a unit converting
constant to make sure the unit to the right-hand side of
Equation (6) is consistent with that of q. The use of C0
here is similar to the use of ‘C’ in Equation (5) by Pyrak-
Nolt et al. (1987). Equation (6) is a generic formula that
incorporates many previous equations as special cases.
Since porosity of the SF is unity, q is related to the
average flow velocity V as

V D q/e �7�

In the following, we will adopt Equation (6) to explain
the experimental data.

Numerical analysis

In order to use Equation (6), one needs to develop a
procedure for identifying three power indexes n, m, and
�, and one coefficient � based on the experimental data.
The parameter C0 is simply a constant to make sure the
units on both sides of Equation (6) are consistent; thus it
is not discussed in the following. We will determine m
first, n second, and � and � together last. If non-Darcian
flow occurs, which is likely for high-speed flow in an

Copyright  2010 John Wiley & Sons, Ltd. Hydrol. Process. (2010)



EXPERIMENTAL STUDY OF THE EFFECT OF ROUGHNESS AND REYNOLDS NUMBER

SF, the relationship between q and J is nonlinear and m
is not 1. To find the value of m from experimental data,
taking logarithm on both sides of Equation (6) leads to

log q D m log J C log G �8�

where

G D C0gen

12�[1 C ��/e��]
�9�

G is a characteristic parameter related to the aperture
and surface roughness of the fracture. In some sense,
G can be regarded as a ‘non-Darcian’ conductivity
coefficient of the fracture. Similar but slightly different
terminology has been used by Wen et al. (2006) to
describe the power-law non-Darcian flow. One way to
find the value of m is to plot q versus J in a log–log
paper. If a straight line can be identified from the plot,
the slope of that straight line will yield the value of m.
Substituting Equation (9) into Equation (8) leads to

log q D n log e � log[1 C ��/e��] C �m log J

C log�C0g� � log�12��� �10�

To determine n, one needs to conduct the experi-
ments with different values of e, which is obtained via
Equation (1) and to plot q versus e in a log–log paper.
If a straight line can be identified from such a plot, then
the slope of that straight line is the value of n.

To determine � and �, one needs a different approach.
Here we have employed an optimization procedure based
on Equation (10). This procedure is briefly explained as
follows. Reorganizing Equation (10) as

log[1 C ��/e��] D n log e

C (
m log J C log�C0g� � log�12��

) � log q �11�

where all the terms on the right-hand side of Equation
(11) are known except the constant C0. The idea is to start
with some initial guessing values of �, �, and C0 and then
to minimize the difference between the left-hand side of
(11) with the right-hand side of (11) until reaching the
global minimum after several iterations. The optimization
procedure is accomplished with a Matlab program and the
optimized values are obtained.

EXPERIMENTAL RESULTS AND DISCUSSION

Relationship between q and J

On the basis of experimental results, the unit width
flux (q) is measured. The average aperture (e) and the
hydraulic gradient (J) are obtained through Equations (1)
and (2), respectively. The results are summarized in
Table I. We then try to interpret the data using Equation
(6), following the procedures described in the Section
on Numerical Analysis. The exponent m of each pattern
fracture is first determined and the result is listed in
Table II. The associated statistical properties such as
the correlation coefficient (�) and the standard deviation

(SD) are also summarized in Table II. The relationships
between q and J for patterns 1–6 are drawn in log–log
plots in Figure 3a–f. To see if the obtained m value
is related to the roughness /e, Figure 4 is plotted,
where Case (a) is for patterns 1–3 and Case (b) is for
patterns 4–6. One should be aware that the purpose
of Figure 4 is to identify the trend, not to precisely
determine the functionality of m and /e. To serve this
purpose, a minimum of three data points are acceptable
for identifying the trend.

Table II shows that the values of m lie in 0Ð98 and
0Ð83 for patterns 1–6. The largest m value is for pattern 1
which has the smallest roughness, whereas the smallest m
value is for pattern 6 which has the largest roughness. For
patterns 1 and 2, the m values are close to 1, indicating
that flow is close to Darcian. For patterns 3–6, the m

Table II. The values of the exponent m of each pattern fracture
and their statistical analysis

Fracture m Correlative
coefficient (�)

Standard
deviation (SD)

Pattern 1 0Ð98 0Ð999 0Ð0087
Pattern 2 0Ð97 0Ð995 0Ð0289
Pattern 3 0Ð93 0Ð992 0Ð0431
Pattern 4 0Ð92 0Ð997 0Ð0280
Pattern 5 0Ð85 0Ð999 0Ð0170
Pattern 6 0Ð83 0Ð999 0Ð0057

y = -5.6286x + 5.3797
R2 = 0.8944

y = -10.487x + 10.572
R2 = 0.9261
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a b
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Figure 3. Log–log plots of the unit width flux (q) versus the hydraulic
gradient (J) in different fractures
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Figure 4. Plots of the power index m in Equation (6) versus the roughness
(/e). Case (a) there is for patterns 1–3 (40 mm ð 40 mm) (open circles)

and Case (b) is for patterns 4–6 (20 mm ð 20 mm) (black squares)
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values become increasingly smaller than 1, indicating
a trend of deviation from Darcian flow. Table II also
shows the nearly perfect correlation between q and Jm,
reflected in the correlation coefficients that are very close
to 100%. The excellent correlation between q and Jm is
also seen from Figure. 3a–f. The slope of the simulated
line represents the m value.

Table II and Figure 4 also show that the values of m
vary with the roughness (/e) in different fractures. The
value of m decreases from 0Ð98, 0Ð97, to 0Ð93 when
the pattern changes from 1 to 3 [Figure 4, Case (a)].
Similarly, the value of m decreases from pattern 4 to 6 as
well [Figure 4, Case (b)]. This observation is expected.
As the roughness increases, flow within the fracture
deviates further from the Darcian flow, and becomes
more turbulent, manifested by a decreasing m value from
unity (Darcian).

Another interesting phenomenon observed is that the
m value is smaller for pattern 4 than that for pattern
1 (Figure 5); both even have the same asperity height
(1 mm). Similar conclusions can be drawn when com-
paring results for patterns 5 and 2, or patterns 6 and
3 (Figure 5). The shaded bars in Figure 5 are for pat-
terns with 40 mm by 40 mm, whereas the white bars in
Figure 5 are for patterns with 20 mm ð 20 mm. How-
ever, we do not expect that such findings can be extended
to extremely large or small percentages of roughness
coverage of the fracture surface. For instance, when the
roughness coverage is approaching 100%, meaning that
the entire fracture surface is covered with plates, then
that fracture plane actually becomes ‘smooth’ and homo-
geneous again. On the contrary, when the roughness cov-
erage is approaching 0% also, the fracture plane is nearly
smooth and homogeneous. Flow in either of these two
extremes is expected to be more close to Darcian than
flow in patterns 1–6, provided that the rest conditions
remain the same in the experiments.

Relationship between q, e, and /e

Using the procedures described in the Section on
Numerical Analysis, the value of n is determined by
plotting q versus e in a log–log paper and the results
are shown in Tables III and IV, where Table III is for

Table III. Values of n, �, and � for rough squares of dimension
40 mm ð 40 mm in the fracture

J N � �

0.0015 11Ð24 40Ð34 22Ð57
0.0022 11Ð52 32Ð18 19Ð06
0.0030 11Ð70 8Ð11 19Ð66
0.0041 11Ð73 �0Ð30 0Ð27
0.0056 11Ð92 �0Ð32 0Ð27

Table IV. Values of n, �, and � for rough squares of dimension
20 ð mm ð 20 mm in the fracture

J n � �

0.0015 11Ð86 23Ð86 0Ð53
0.0022 12Ð20 33Ð17 0Ð62
0.0030 12Ð48 43Ð45 0Ð68
0.0041 12Ð75 55Ð28 0Ð76
0.0056 13Ð00 69Ð32 0Ð83

patterns 1–3 and Table IV is for patterns 4–6. After
this, the values of � and � are obtained using the
optimization procedure of the Section on Numerical
Analysis and the results are also shown in Tables III and
IV. The unit converting constant C0 in Equation (6) is
less relevant to our discussion, and thus is not included in
the discussion. Figure 6a shows the relationship between
n and J for patterns 1–3, and Figure 6b shows the
relationship between n and J for patterns 4–6. Several
observations can be made. Firstly, the n values in
Tables III and IV are approximately between 11Ð2 and
13Ð0, which are much greater than 3 (the cubic law);
meaning that flow is substantially deviated from LCL in
such fractures. Secondly, the value of n increases with
the value of J; meaning that a greater hydraulic gradient
will lead to greater deviation from the LCL.

The n value found in this study is greater than what has
been reported in previous studies. For instance, Pyrak-
Nolte et al. (1987) reported n values ranging from 7Ð6 to
9Ð8. Nevertheless, the experimental set-up, in particular,
the design of the fracture roughness varies from study
to study, but our finding of the n values in the range
11Ð2–13Ð0 implies that flow in a single rough fracture

Figure 5. Plots of the power index m in Equation (6) versus different asperity height () for patterns 1–3 (40 mm ð 40 mm) in shaded bars and
patterns 4–6 (20 mm ð 20 mm) in white bars
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Figure 6. Plots of the power index n in Equation (6) versus the hydraulic
conductivity (J) for (a) patterns 1–3 (40 mm ð 40 mm) and (b) patterns

4–6 (20 mm ð 20 mm)

could be much different from what one can expect from
the Darcian flow. The large n value also implies that
flow is sensitive to the aperture e which is defined
specifically in Equation (1). We must point out that
because different investigators may use different ways
to define and measure the aperture, it is possible that
different flow laws will result from the same set of
experimental data. In terms of the second observation
that the value of n increases with the value of J; one can
argue that a greater J value indicates stronger turbulent
flow or greater deviation from Darcian flow, thus a larger
n value.

One notable point from Tables III and IV is that the
values of � and � vary over broader ranges than those
of m and n. This is particularly true for results shown in
Table III. This implies that the form of 1/�1 C ��/e���
in Equation (6) is probably not a good choice for
describing fracture roughness in Table III. Notice that the
difference between Tables III and IV is the size of plates
used to simulate fracture roughness. Table III has a larger
size of plates, thus flow in those fractures of Table III is
expected to be more tortuous than those in Table IV. This
indicates that when the degree of flow tortuosity increases
in an SF, the credibility of Equation (6) decreases.

DISCUSSION

Discussion of Re

The value of Re is calculated via (Qian et al., 2005)

Re D Ve

2�
�12�

where V is the average flow velocity in the fracture. The
values of Re are calculated for patterns 1–6. For instance,
the values of Re are found to be 33Ð86 and 36Ð58 for
flow in fractures with pattern 1 and pattern 6 roughnesses
(Table I). The range of Re is consistent with those of Iwai
(1976), Schrauf and Evans (1986), and Zimmerman and
Yeo (2000) who showed that turbulent flow can occur in
an SF for Re greater than 10. However, the flow scheme
does not depend on Re alone. The surface roughness

is another important factor to consider. Therefore, the
flow scheme will at least depend on both Re and the
surface roughness for flow in SFs. In fact, in the literature
for studying flow in pipes, it has long been recognized
that the flow scheme is a function of both Re and the
surface roughness. The broadly used Moody diagram in
fluid mechanics graphically shows such a relationship
(Munson et al., 1998).

Diagram of friction coefficient of flow on Re and the
roughness

It is desirable to generate a diagram for flow in SFs
similar to the Moody diagram for flow in pipes. With
such a diagram as a reference, one can tell different
flow schemes qualitatively and calculate flow discharge
quantitatively, based on Re and the surface roughness.
One may argue that the existing Moody diagram for
flow in pipes as shown in Munson et al. (1998) may
be useful for interpreting flow in SFs as well. However,
without experimental evidence to support, one is not sure
if the Moody diagram for flow in pipes is valid, or at
least, sufficiently accurate for dealing with flow in SFs,
because pipes and SFs have very different geometries.
Unfortunately, such a diagram for flow in SFs does not
exist in the literature to our knowledge.

In the following, we attempt to generate such a diagram
for flow in SFs, similar to what was done for flow in
pipes (Munson et al., 1998). Ideally, one likes to generate
such a diagram with a wide range of flow velocity
and Re. Unfortunately, the range of the flow velocity
and Re reported in this study are not broad enough
to cover the entire evolution of flow from laminar, to
partially turbulent, then to fully developed turbulent flow.
Additional experimental studies are needed in the future
to augment the diagram of this study for such a purpose.
The procedure of generating such a diagram is as follows.

Substituting Equation (6) into Equation (7) leads to

V D C0 gen�1

12�
Jm 1

1 C ��/e�� �13�

Because J D h/l, where h is the hydraulic head
loss (h D h1 � h2) and l is the distance of flow,
Equation (13) is written as follows:

h D
{

12�[1 C ��/e��]

C0gen�1

} 1
m

lV
1
m �14�

When flow is Darcian, m is 1; when flow is fully
turbulent, m is 0Ð5; and when flow is partially developed
turbulent (transitional turbulent), m has a value between
0Ð5 and 1. Whatever the case, Equation (14) can be
expressed as the Darcy–Weisbach type of equation

h D fw
lV2

2gR
�15�

where R is the hydraulic aperture and fw is the friction
coefficient which is a function of Re and the roughness
fw D fw�Re, /e� (Louis, 1969). For flow in an SF,
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Qian et al. (2005, Equation (3)) have shown that R D
e/2 when recognizing the fact that the aperture e is
much smaller than h1 or h2. Therefore, Equation (15) is
modified to

fw D geh

lV2 �16�

We use Equation (16) to calculate fm for each of the six
patterns 1–6, and to plot fm as a function of Re and
the roughness. The result is shown in Figure 1. Several
features can be identified from this figure. First, fm is
obviously influenced by Re and the roughness. Second,
for the same Re, fm increases with the roughness. Third,
for the same roughness, fm decreases with Re at first,
but when Re is large enough, fm is less sensitive to
the change of Re. Two bands of curves are observed in
Figure 1. One has the friction factor below 2 and the
other above 2. The friction factor curve for roughness of
0Ð47 is abnormal and is less reliable. The exact reason for
this unusual behaviour is not clear but could be caused by
measurement errors. The diagram generated in Figure 1
is in some degree similar to the Moody diagram generated
for flow in circular pipes (Munson et al., 1998).

If needed, a diagram showing the fracture hydraulic
conductivity, K, as a function of Re for different frac-
ture roughness can be generated based on Figure 1
and Equation (15). Reformulating Equation (15) into the

form of Darcy’s law, one has K D 2gR
fwV .

The discussion of friction factor here is focused on
the power-law type of the flow law. This is a reasonable
choice because the range of Re in the experiments is
quite small [about one order of magnitude, Figure (1)]. If
the range of Re is over a few orders of magnitude, it is
probably better to use the Forchheimer type of flow law.
This is a subject that deserves further study in the future.

About the surface roughness

There are a few interesting issues related to surface
roughness that can be explored in the future. Firstly,
although different patterns of roughness are used in this
study, the rough and smooth elements were regularly
installed. This may generate another research topic, i.e.
with the same roughness, will the conclusion change
when the roughness plates are randomly rather than
orderly distributed? Our hypothesis is that the conclu-
sion here is not sensitive to the spatial arrangement of
the rough element, but it is sensitive to the pattern of the
roughness used. Furthermore, if different roughness pat-
terns coexist in an SF, which pattern will influence the
flow law the most? This question is a little difficult to
answer, but we hypothesize that the roughness element
with greater thickness will have greater influence on the
flow law. Secondly, the roughness patterns used in this
experiment are squares with sharp corners which can eas-
ily generate turbulent flow and cause great resistance to
flow as well. If the roughness patterns have shapes with-
out sharp corners such as elliptical or circular plates, it
will be harder to generate turbulent flow and flow resis-
tance will be smaller as well. We hypothesize that the

flow law will be closer to the LCL for such roughness,
provided that the rest conditions remain unchanged. Test-
ing the hypotheses discussed above will lead to the choice
of an adequate flow law for flow in a natural SF under
high Re.

SUMMARY AND CONCLUSIONS

The focus of this experimental study is to examine how
the surface roughness and Re affect flow in an SF and
if the LCL is valid for flow there. The roughness of the
fracture is made by gluing identical plates following a
regular order on one of the fracture surfaces. Two dif-
ferent square sizes of 40 mm ð 40 mm and 20 mm ð
20 mm with three different thicknesses of 1, 2, and 3 mm
have been used to generate six different roughness pat-
terns. The artificially made SF is then mounted vertically
in a tank and connected with two constant-head flumes
to establish steady-state horizontal flow in the fracture.
Various flow discharges have been created to examine
the flow schemes under various Re values and fracture
roughness. Similar to the Moody diagram for flow in
pipes, a diagram for flow in an SF has been generated to
relate the friction coefficient with Re and the roughness.
The following conclusions can be summarized from this
study. This study can be a benchmark for further study
of flow in a natural SF under high Re.

1. Under the experimental condition of this study, flow
appears to be substantially different from the Dar-

cian flow. The flow law of q D C0 gen

12�Jm 1
1 C ��/e��

appears to be valid for describing the flow scheme.
The value of the power index m is found to be around
0Ð83 ¾ 0Ð98, less than what has been used in Darcian
flow (m D 1). The m value deviates more from unity
when the roughness becomes greater. The credibility
of this flow law decreases when the flow tortuosity in
the SF increases.

2. The power index n of the above flow law is around
11Ð2 and 13Ð0, which is much greater than the n value
used in the LCL. The value of n is found to increase
with the average velocity for a given roughness of
fracture.

3. The Moody type of diagram shows that the friction
factor for flow in SFs is influenced by Re and the
roughness in the following fashion. It decreases with
Re when Re is small and becomes less sensitive to Re
when Re is large enough. It also increases with the
roughness.
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