
Δείκτες(pointers) - 1

Οι δείκτες στη γλώσσα C

Δείκτης είναι µία µεταβλητή η οποία περιέχει σαν
τιµή µία διεύθυνση της µνήµης

Η τιµή ενός δείκτη δείχνει σε µία άλλη

µεταβλητή,
η οποία µπορεί να προσεγγισθεί έµµεσα

µε τους ειδικούς τελεστές δεικτών
* και &

Η σωστή χρήση των
δεικτών θεωρείται πολύ
σηµαντική επιτυχία για
κάθε προγραµµατιστή της
γλώσσας C .

Δείκτες(pointers) - 3

Οι δείκτες στη γλώσσα C
 O τελεστής * προσδιορίζει το περιεχόµενο µιας
µεταβλητής της οποίας η διεύθυνση είναι η τιµή ενός
δείκτη.
 Μπορούµε να θυµόµαστε τον τελεστή *
περιφραστικά µε την έκφραση "στη διεύθυνση".
 Ο τελεστής & επιστρέφει τη διεύθυνση µιας
µεταβλητής και µπορούµε να τον θυµόµαστε
περιφραστικά µε την έκφραση "η διεύθυνσή της".
 Π.χ. αν a και b είναι 2 ακέραιες µεταβλητές και h είναι
ένας ακέραιος δείκτης τότε οι εντολές :

 h = &a;
 b = *h;

µεταβιβάζουν την τιµή της µεταβλητής a στη
µεταβλητή b.

Δείκτες(pointers) - 4

Οι Δείκτες σαν διευθύνσεις

a και b ακέραιες
 µεταβλητές στις
διευθύνσεις 00FF

 και FF00
h ακέραιος δείκτης

h=&a;
b=*h;

O δείκτης παίρνει
 την τιµή OOFF
και δίνει το
περιεχόµενο
αυτής της
διεύθυνσης
στη µεταβλητή

 b

Σαν το ποδήλατο …

Δείκτες(pointers) - 5

• Κουράγιο:
– Η εκµάθηση της χρήσης δεικτών είναι σαν να µαθαίνει
κανείς ποδήλατο: εκεί που θεωρεί ότι είναι αδύνατο να µάθει
τους δείκτες, ξαφνικά τα καταφέρνει!
– Επιπλέον, εάν µάθει κανείς να χρησιµοποιεί δείκτες,
δύσκολα θα χάσει αυτή τη δεξιότητα.

Πριν µετά

Δείκτες(pointers) - 6

? ?

f f_addr

4300 4304

?

any float

any address

? 4300

f f_addr

4300 4304

Δείκτες-Pointers (1)
float f; /* απλή µεταβλητή */
float *f_addr; /* µεταβλητή δείκτη */

f_addr = &f; /* & = τελεστής διεύθυνσης */

Δείκτες(pointers) - 7

Δείκτες-Pointers (2)

f_addr = 3.2; / * = τελεστής έµµεσης διεύθυνσης */

f f_addr

4300 4304

3.2 4300

f f_addr

4300 4304

1.3 4300

float g = *f_addr;/* Η τιµή του g γίνεται 3.2 */
 f = 1.3; /* το g παραµένει 3.2 */

Δείκτες(pointers) - 8

Οι δείκτες πρέπει να δηλώνονται
 π.χ.
 int *x;
 float *y; (δείκτης µιας πραγµατικής τιµής)
Το απόσπασµα προγράµµατος που ακολουθεί θα
µεταγλωττισθεί χωρίς σφάλµατα αλλά δεν θα δώσει το
επιθυµητό αποτέλεσµα (γιατί;)
 float x, y;
 x=12.35;
 y=-3.78;
 int *p;
 p=&x;
 y=*p;

Δείκτες(pointers) - 9

Aριθµητικοί τελεστές
 Υπάρχουν µόνο δύο αριθµητικοί τελεστές οι οποίοι
µπορούν να χρησιµοποιηθούν
 O + και ο -
Έστω ότι p1 είναι ο δείκτης ενός ακεραίου µε τρέχουσα
τιµή 2000. Μετά την εντολή :
 p1++;
 το περιεχόµενο του p1 θα είναι 2002, όχι 2001 (γιατί;)

Η έκφραση: p1 = p1+ 9;
 θα κάνει το p1 να δείξει στο ένατο στοιχείο του τύπου
p1, πιο πέρα απ' αυτό στο οποίο δείχνει τώρα.

Δείκτες(pointers) - 10

Τελεστές Δεικτών

 Δεν µπορούµε δύο δείκτες :

1.  να πολλαπλασιάσουµε
2.  να διαιρέσουµε
3.  ν' αφαιρέσουµε
4.  να προσθέσουµε
5.  να εφαρµόσουµε τη µετατόπιση bitwise

 Επίσης, δεν µπορούµε να προσθέσουµε ή να αφαιρέσουµε
τύπους float ή double στους δείκτες. Μόνο ακεραίους!

Δύο δείκτες οι οποίοι αναφέρονται σε ξεχωριστούς τύπους

µεταβλητών δεν έχουν σχέση µεταξύ τους.

Δείκτες(pointers) - 11

Αρχικές τιµές δεικτών

Αν χρησιµοποιήσουµε ένα δείκτη πριν του δώσουµε µία
τιµή, πιθανόν θα καταστρέψουµε όχι µόνο το πρόγραµµα
µας αλλά ακόµη και το λειτουργικό σύστηµα του
υπολογιστή.

 Συµβατικά δίνουµε σε ένα δείκτη µία αρχική µηδενική
τιµή, προκειµένου να φανεί ότι δεν δείχνει πουθενά.

 Ένας δείκτης που έχει τιµή µηδέν (NULL) δεν δείχνει
σε κανένα σηµείο κι έτσι είναι ελεύθερος για χρήση

Όταν δηλωθεί ο δείκτης, και πριν χρησιµοποιηθεί,
θα περιέχει µία τιµή χωρίς νόηµα.

Δείκτες(pointers) - 12

H συνάρτηση malloc()
H συνάρτηση malloc() χρησιµοποιείται για να
ζητήσουµε (να δεσµεύσουµε) µια περιοχή της µνήµης
(Heap).

Π.χ.
 int *p1;
 p1 = malloc (50) ;
 void *malloc();

Η συνάρτηση malloc() επιστρέφει ένα δείκτη σε void, ή την
τιµή NULL εάν δεν υπάρχει αρκετή διαθέσιµη µνήµη ή
ακόµη εάν υπάρχει κάποιο άλλο λάθος

Δείκτες(pointers) - 13

H συνάρτηση free
H συνάρτηση free() χρησιµοποιείται για να
απελευθερωθεί η περιοχή της µνήµης η οποία έχει
δεσµευτεί µε τη συνάρτηση malloc() (περιοχή Heap).
Π.χ.

 int * iptr = (int*) malloc(sizeof(int));
 free(iptr);

Προσοχή ! Δεν πρέπει να απελευθερώνουµε την ίδια

περιοχή µνήµης ΔΥΟ φορές.

Δείκτες(pointers) - 14

Παράδειγµα

// memory management problems
#include <stdlib.h>

int main()
{
 void *pMem=malloc(100);
 free(pMem);
 free(pMem);
 return 0;

}

Δείκτες(pointers) - 15

Πίνακες

 Λέµε πίνακα (array) µια δοµή δεδοµένων, στην οποία ένα σύνολο
αντικειµένων του ίδιου τύπου αποθηκεύονται σειριακά (το ένα µετά
το άλλο). Δηλώνουµε την παρουσία ενός πίνακα, γράφοντας:

 int m[100]; /* Δήλωση πίνακα 100 θέσεων */

Ο δείκτης του πρώτου στοιχείου ενός πίνακα είναι πάντα το µηδέν
 δηλαδή, αν γράψουµε:

 int m[2];

Αυτό σηµαίνει ότι δεσµεύουµε δύο θέσεις µνήµης, τις :

 m[0] και m[1]

Δείκτες(pointers) - 16

Ιδιότητες ενός πίνακα
Έστω οι εντολές:
 char str [80];
 char *p1;
 p1 = str;

Το p1 λαµβάνει τη διεύθυνση του πρώτου στοιχείου του πίνακα str

Av θέλουµε να προσεγγίσουµε το πέµπτο στοιχείο του πίνακα str
θα µπορούσαµε να γράψουµε :

 str [4] γιατί;
 ή
 *(p1+4)

Δείκτες(pointers) - 17

Δείκτες και πίνακες
•  Υπάρχει µία στενή σχέση ανάµεσα στους δείκτες και
τους πίνακες.

•  Η C επιτρέπει δύο µεθόδους προσέγγισης στοιχείων
ενός πίνακα.

•  Οι αριθµητικοί δείκτες µπορεί να είναι ταχύτεροι από
την δεικτοποίηση του πίνακα.

•  Επειδή η ταχύτητα είναι συχνά σηµαντική στον
προγραµµατισµό, η χρήση των δεικτών στην εισαγωγή
των στοιχείων πινάκων είναι πολύ διαδεδοµένη στα
προγράµµατα της γλώσσας C.

Δείκτες(pointers) - 18

Παράδειγµα

Δείκτες(pointers) - 20

Δείκτες σε Δείκτες

 Δείκτης Μεταβλητή

 Απλή έµµεση διεύθυνση

 Δείκτης Δείκτης Μεταβλητή

 Πολλαπλή έµµεση διεύθυνση

 διεύθυνση

 τιµή

διεύθυνση

διεύθυνση

 τιµή

 main()
 {
 int x, *p, **q;
 x = 10;
 p = &x;
 q = &p;
 printf("%d", **q);
 }

Δείκτες(pointers) - 21

Προβλήµατα µε τους δείκτες
 Οι δείκτες είναι ευχή αλλά και κατάρα.

Προσφ έ ρ ο υ ν τ ε ρ άσ τ ι α δ ύ ν α µ η σ τ ο ν
προγραµµατιστή και είναι απαραίτητοι σε πολλά
προγράµµατα αλλά αν, παρ’ ελπίδα,
ένας δείκτης περιέχει µια λάθος τιµή µπορεί να
γίνει το δυσκολότερο πρόβληµα που έχουµε να
αντιµετωπίσουµε.
Π.χ. main()
 { int x, *p;
 x = 10;
 p = x;
 printf("%d", *p);
 }

Eleftheria Katsiri

#include <stdio.h>
int main()
{
 int x, *p;
 x = 10;
 p = x;
 printf("%d\n", *p);
}

Eleftheria Katsiri

Eleftheria Katsiri

Eleftheria Katsiri
warning: incompatible integer to pointer conversion assigning to 'int *' from 'int'; take the address with & [-Wint-conversion]
 p = x;
 ^ ~
 &
1 warning generated.
zsh: segmentation fault

Δείκτες(pointers) - 22

ΑΣΚΗΣH

Γράψτε µία συνάρτηση που θα ονοµάζεται
swapmin() και η οποία θα ανταλλάξει την τιµή
δύο ακεραίων αν, και µόνον αν, η πρώτη
παράµετρος είναι µικρότερη από τη δεύτερη.
 swapmin(a,b)

 int *a, *b;
 { int t;
 if (*a>= *b) return ;
 t = *a;
 *a = *b;
 *b = t;
 }

Eleftheria Katsiri

Δείκτες(pointers) - 23

Οι πολυδιάστατοι πίνακες στη C

Ο γενικός τύπος δήλωσης ενός πολυδιάστατου πίνακα
είναι :
 τύπος όνοµα[a][b][c]... [z];
Η αποθήκευση όλων των στοιχείων του πίνακα
δεσµεύεται µονίµως στη µνήµη όσο χρόνο διαρκεί η
εκτέλεση του προγράµµατος.
Στη περίπτωση ενός δισδιάστατου πίνακα, ο αριθµός των
bytes της µνήµης που απαιτούνται:
 σειρές*στήλες*αριθµό των bytes του τύπου των
δεδοµένων
 Έτσι για έναν πίνακα τιµών τύπου float µε διαστάσεις
10,5 θα έχουν δεσµευθεί 10 * 5 * 4 δηλαδή 200 bytes
µνήµης.

Δείκτες(pointers) - 25

Αρχικές τιµές

Για να δώσουµε αρχικές τιµές σ’ ένα πίνακα 2 διαστάσεων
µπορούµε να γράψουµε:

int a[4] [5]={
 {0, 1, 2, 0, 0},
 {2, 3, 4, 0, 0},
 {1, 0, 7, 0, 0},
 {6, 5, 8, 0, 0}
 };

Δείκτες(pointers) - 26

ΑΣΚΗΣH

 Γράψτε µία συνάρτηση η οποία θα
συµπληρώνει µε δυο τρόπους έναν πίνακα
χαρακτήρων µε τα γράµµατα a,b,… έως k.

 O πρώτος τρόπος να χρησιµοποιεί
δεικτοποίηση πινάκων και ο δεύτερος δείκτες.

Δείκτες(pointers) - 27

ΛΥΣΗ

. load1() µε δεικτοποίηση
{ int t;
 for(t=0; t<10; ++t) a[t] = 'a' + t;
}

 load2() µε δείκτες
{ int t;
 char *p;
 p=a;
 for(t=0; t<10; ++t) *p++ = 'a' + t;
}

Δείκτες(pointers) - 28

Πίνακες Δεικτών
Οι δείκτες µπορούν να πινακοποιηθούν όπως γίνεται µε
οποιοδήποτε άλλο τύπο δεδοµένων.
Οι µόνες τιµές τις οποίες µπορούν να κρατήσουν τα
στοιχεία του πίνακα είναι οι διευθύνσεις των µεταβλητών.

Μία συνηθισµένη χρήση των πινάκων δεικτών είναι να
κρατάνε τους δείκτες σε περίπτωση εσφαλµένων
µηνυµάτων

Αν θέλουµε να περάσουµε έναν πίνακα δεικτών σε µία
συνάρτηση, απλώς καλούµε τη συνάρτηση µε το όνοµα του
πίνακα χωρίς καθόλου δείκτες.

Μπορούµε να δηµιουργήσουµε µία συνάρτηση η οποία θα
εξάγει ένα µήνυµα βασισµένο στον ακέραιο αριθµό αυτού
του µηνύµατος.

Δείκτες(pointers) - 29

serror(i)
 int t;
 {
 static char *err[] =
 {
 "syntax error",
 "parentheses expected",
 "undefined variable",
 "duplicate label name"
 };
 printf (err[i]) ;
 }

Eleftheria Katsiri
(int i)

Eleftheria Katsiri

Δείκτες(pointers) - 30

ΑΣΚΗΣH

Να γραφτεί µια συνάρτηση change(x, y) η οποία
θα αλλάζει την τιµή του x σε x+y και την τιµή του
y σε x*y .
Προσοχή, τα x και y, double

Δείκτες(pointers) - 31

Λύση

float change(x, y)
 double *x, *y;

 { double p;
 p= *y;
 *y= (*x)*(*y);
 *x= *x+p;
 return 1;
 }

