
Δείκτες(pointers) - 1

Οι δείκτες στη γλώσσα C

Δείκτης είναι μία μεταβλητή η οποία περιέχει σαν

τιμή μία διεύθυνση της μνήμης

Η τιμή ενός δείκτη δείχνει σε μία άλλη μεταβλητή,

η οποία μπορεί να προσεγγισθεί έμμεσα

με τους ειδικούς τελεστές δεικτών

* και &

ΟΙ ΔΕΙΚΤΕΣ ΣΤΗ C

Η σωστή χρήση των

δεικτών θεωρείται πολύ

σημαντική επιτυχία για

κάθε προγραμματιστή της

γλώσσας C .

Δείκτες(pointers) - 3

Οι δείκτες στη γλώσσα C

O τελεστής * προσδιορίζει το περιεχόμενο μιας

μεταβλητής της οποίας η διεύθυνση είναι η τιμή ενός

δείκτη.

Μπορούμε να θυμόμαστε τον τελεστή *

περιφραστικά με την έκφραση "στη διεύθυνση".

 Ο τελεστής & επιστρέφει τη διεύθυνση μιας

μεταβλητής και μπορούμε να τον θυμόμαστε

περιφραστικά με την έκφραση "η διεύθυνσή της".

Π.χ. αν a και b είναι 2 ακέραιες μεταβλητές και h είναι

ένας ακέραιος δείκτης τότε οι εντολές :

h = &a;

b = *h;

μεταβιβάζουν την τιμή της μεταβλητής a στη

μεταβλητή b.

Δείκτες(pointers) - 4

Οι Δείκτες σαν διευθύνσεις

a και b ακέραιες

μεταβλητές στις

διευθύνσεις 00FF

 και FF00

h ακέραιος δείκτης

h=&a;

b=*h;

O δείκτης παίρνει

την τιμή OOFF

και δίνει το

περιεχόμενο

αυτής της

διεύθυνσης

στη μεταβλητή

b

Παράδειγμα

Δείκτες(pointers) - 5

Έξοδος

Δείκτες(pointers) - 6

Σαν το ποδήλατο …

Δείκτες(pointers) - 7

Κουράγιο:

Η εκμάθηση της χρήσης δεικτών είναι σαν να μαθαίνει κανείς ποδήλατο:

εκεί που θεωρεί ότι είναι αδύνατο να μάθει τους δείκτες, ξαφνικά τα

καταφέρνει! Επιπλέον, εάν μάθει κανείς να χρησιμοποιεί δείκτες, δύσκολα

θα χάσει αυτή τη δεξιότητα.

πριν μετά

Δείκτες(pointers) - 8

? ?

f f_addr

4300 4304

?

any float

any address

? 4300

f f_addr

4300 4304

Δείκτες-Pointers (1)

float f; /* απλή μεταβλητή */

float *f_addr; /* μεταβλητή δείκτη */

f_addr = &f; /* & = τελεστής διεύθυνσης */

Δείκτες(pointers) - 9

Δείκτες-Pointers (2)

f_addr = 3.2; / * = τελεστής έμμεσης διεύθυνσης */

f f_addr

4300 4304

3.2 4300

f f_addr

4300 4304

1.3 4300

float g = *f_addr;/* Η τιμή του g γίνεται 3.2 */

 f = 1.3; /* το g παραμένει 3.2 */

Το απόσπασμα προγράμματος αυτού θα μεταγλωττισθεί χωρίς
σφάλματα αλλά δε θα δώσει το επιθυμητό αποτέλεσμα (γιατί;)

Δείκτες(pointers) - 10

Οι δείκτες πρέπει να δηλώνονται

Οι δείκτες πρέπει να δηλώνονται

Δείκτες(pointers) - 11

Οι δείκτες πρέπει να δηλώνονται

Το απόσπασμα προγράμματος αυτού θα μεταγλωττισθεί χωρίς
σφάλματα και θα δώσει το επιθυμητό αποτέλεσμα (γιατί;)

Δείκτες(pointers) - 12

Οι δείκτες πρέπει να δηλώνονται

Δείκτες(pointers) - 13

Δείκτες(pointers) - 15

Aριθμητικοί τελεστές

Υπάρχουν μόνο δύο αριθμητικοί τελεστές οι οποίοι

μπορούν να χρησιμοποιηθούν

O + και ο -

Έστω ότι p1 είναι ο δείκτης ενός βραχέος ακεραίου με

τρέχουσα τιμή 2000. Μετά την εντολή :

p1++;

 το περιεχόμενο του p1 θα είναι 2002, όχι 2001 (γιατί;)

Η έκφραση: p1 = p1+ 9;

θα κάνει το p1 να δείξει στο ένατο στοιχείο του τύπου

p1, πιο πέρα απ' αυτό στο οποίο δείχνει τώρα.

Δείκτες(pointers) - 16

Δε μπορούμε δύο δείκτες :

1. να τους πολλαπλασιάσουμε

2. να τους διαιρέσουμε

3. να αφαιρέσουμε τον ένα από τον άλλο

4. να τους προσθέσουμε

5. να εφαρμόσουμε τη μετατόπιση bitwise

Επίσης, δεν μπορούμε να προσθέσουμε ή να αφαιρέσουμε

τύπους float ή double στους δείκτες. Μόνο ακεραίους!

Δύο δείκτες οι οποίοι αναφέρονται σε ξεχωριστούς

τύπους μεταβλητών δεν έχουν σχέση μεταξύ τους.

Τελεστές δεικτών

Δείκτες(pointers) - 17

Αρχικές τιμές δεικτών

• Αν χρησιμοποιήσουμε ένα δείκτη πριν του

δώσουμε μία τιμή, πιθανόν θα καταστρέψουμε το

πρόγραμμά μας!

• Συμβατικά δίνουμε σε ένα δείκτη μία αρχική μηδενική

τιμή, προκειμένου να φανεί ότι δεν δείχνει πουθενά.

• Ένας δείκτης που έχει τιμή μηδέν (NULL) δεν δείχνει

σε κανένα σημείο κι έτσι είναι ελεύθερος για χρήση

• Όταν δηλωθεί ο δείκτης, και πριν

χρησιμοποιηθεί, θα περιέχει μία τιμή χωρίς

νόημα.

Δείκτες(pointers) - 18

H συνάρτηση malloc()

H συνάρτηση malloc() χρησιμοποιείται για να

ζητήσουμε (να δεσμεύσουμε) μια περιοχή της μνήμης

(Heap).

π.χ.

int *p1;

p1 = malloc (50) ;

 void *malloc();

Η συνάρτηση malloc() επιστρέφει ένα δείκτη σε void,

ή την τιμή NULL εάν δεν υπάρχει αρκετή διαθέσιμη

μνήμη ή ακόμη εάν υπάρχει κάποιο άλλο λάθος

Δείκτες(pointers) - 19

H συνάρτηση free

H συνάρτηση free() χρησιμοποιείται για να

απελευθερωθεί η περιοχή της μνήμης η οποία

έχει δεσμευτεί με τη συνάρτηση malloc()

(περιοχή Heap).

Π.χ.

int * iptr = (int*) malloc(sizeof(int));

free(iptr);

Προσοχή ! Δεν πρέπει να απελευθερώνουμε την

ίδια περιοχή μνήμης ΔΥΟ φορές.

Παράδειγμα

// memory management problems

#include <stdlib.h>

int main()

{

 void *pMem=malloc(100);

 free(pMem);

 free(pMem);

 return (0);

}

Δείκτες(pointers) - 21

Παράδειγμα

Δείκτες(pointers) - 22

Έξοδος

Δείκτες(pointers) - 23

Δείκτες(pointers) - 24

Πίνακες

Λέμε πίνακα (array) μια δομή δεδομένων, στην οποία ένα

σύνολο αντικειμένων του ίδιου τύπου αποθηκεύονται

σειριακά (το ένα μετά το άλλο). Δηλώνουμε την παρουσία ενός

πίνακα, γράφοντας:

int m[100]; /* Δήλωση πίνακα 100 θέσεων */

Ο δείκτης του πρώτου στοιχείου ενός πίνακα είναι πάντα το

μηδέν, δηλαδή, αν γράψουμε:

int m[2];

αυτό σημαίνει ότι δεσμεύουμε δύο θέσεις μνήμης, τις :

m[0] και m[1]

Δείκτες(pointers) - 25

Ιδιότητες ενός πίνακα

• Έστω οι εντολές:

char str [80];

char *p1;

p1 = str;

• Το p1 λαμβάνει τη διεύθυνση του πρώτου στοιχείου του

πίνακα str

• Av θέλουμε να προσεγγίσουμε το πέμπτο στοιχείο του

πίνακα str θα μπορούσαμε να γράψουμε :

str [4] γιατί;

ή

*(p1+4)

Δείκτες(pointers) - 26

Δείκτες και πίνακες

• Υπάρχει μία στενή σχέση ανάμεσα στους δείκτες και

τους πίνακες.

• Η C επιτρέπει δύο μεθόδους προσέγγισης στοιχείων

ενός πίνακα.

• Οι αριθμητικοί δείκτες μπορεί να είναι ταχύτεροι από

την δεικτοποίηση του πίνακα.

• Επειδή η ταχύτητα είναι συχνά σημαντική στον

προγραμματισμό, η χρήση των δεικτών στην εισαγωγή

των στοιχείων πινάκων είναι πολύ διαδεδομένη στα

προγράμματα της γλώσσας C.

Δείκτες(pointers) - 27

Παράδειγμα

Δείκτες(pointers) - 28

Δύο εκδόσεις της συνάρτησης puts()

A. puts(s)

char s[];

 {

 int t;

 for(t=0; s[t]; ++t)

 putchar(s[t]);

 }

B. puts(s)

 char *s;

 {

 while(*s) putchar(*s++);

}

Δείκτες(pointers) - 29

Δείκτες σε Δείκτες

Δείκτης Μεταβλητή

Απλή έμμεση διεύθυνση

Δείκτης Δείκτης Μεταβλητή

Πολλαπλή έμμεση διεύθυνση

διεύθυνση τιμή

διεύθυνση διεύθυνση τιμή

int main()

 {

 int x, *p, **q;

 x = 10;

 p = &x;

 q = &p;

 printf("%d", **q);

 return(0);

 }

Προβλήματα με τους δείκτες

• Οι δείκτες είναι ευχή αλλά

και κατάρα.

• Προσφέρουν τεράστια

δύναμη στον

προγραμματιστή και είναι

απαραίτητοι σε πολλά

προγράμματα αλλά αν,

παρ’ ελπίδα, ένας δείκτης

περιέχει μια λάθος τιμή

μπορεί να γίνει το

δυσκολότερο πρόβλημα

που έχουμε να

αντιμετωπίσουμε.

int main()

{

 int x, *p;

 x = 10;

 p = x;

 printf("%d",*p);

}

Δείκτες(pointers) - 30

Δείκτες(pointers) - 31

ΑΣΚΗΣH

Γράψτε μία συνάρτηση που θα ονομάζεται

swapmin() και η οποία θα ανταλλάξει την τιμή

δύο ακεραίων αν, και μόνον αν, η πρώτη

παράμετρος είναι μικρότερη από τη δεύτερη.

swapmin(a,b)

 int *a, *b;

 { int t;

 if (*a>= *b) return ;

 t = *a;

 *a = *b;

 *b = t;

 }

Δείκτες(pointers) - 32

Οι πολυδιάστατοι πίνακες στη C

Ο γενικός τύπος δήλωσης ενός πολυδιάστατου πίνακα

είναι :

τύπος όνομα[a][b][c]... [z];

Η αποθήκευση όλων των στοιχείων του πίνακα

δεσμεύεται μονίμως στη μνήμη όσο χρόνο διαρκεί η

εκτέλεση του προγράμματος.

Στη περίπτωση ενός δισδιάστατου πίνακα, ο αριθμός των

bytes της μνήμης που απαιτούνται:

σειρές*στήλες*αριθμό των bytes του τύπου των

δεδομένων

Έτσι για έναν πίνακα τιμών τύπου float με διαστάσεις

10,5 θα έχουν δεσμευθεί 10 * 5 * 4 δηλαδή 200 bytes

μνήμης.

Δείκτες(pointers) - 33

Οι πολυδιάστατοι πίνακες στη C

Όταν περνάμε δισδιάστατους πίνακες σε συναρτήσεις,

περνάμε μόνον το δείκτη του πρώτου στοιχείου του

πίνακα.

Αυτό μπορούμε να το κάνουμε χρησιμοποιώντας το

όνομα του πίνακα χωρίς δείκτες.

'Όμως, μία συνάρτηση η οποία δέχεται έναν δισδιάστατο

πίνακα σαν παράμετρο πρέπει να γνωρίζει και το μέγεθος

της δεύτερης διάστασης.

Π.χ. η συνάρτηση func1() η οποία δέχεται ένα

δισδιάστατο πίνακα ακεραίων 30,10 πρέπει να δηλωθεί

ως εξής:

func1(x)

 int x [] [10];

 {

}

Δείκτες(pointers) - 34

Αρχικές τιμές

Για να δώσουμε αρχικές τιμές σ’ ένα πίνακα 2 διαστάσεων

μπορούμε να γράψουμε:

int a[4] [5]={

 {0, 1, 2, 0, 0},

 {2, 3, 4, 0, 0},

 {1, 0, 7, 0, 0},

 {6, 5, 8, 0, 0}

 };

Δείκτες(pointers) - 35

ΑΣΚΗΣH

Γράψτε μία συνάρτηση η οποία θα

συμπληρώνει με δυο τρόπους έναν πίνακα

χαρακτήρων με τα γράμματα a,b,… έως k.

O πρώτος τρόπος να χρησιμοποιεί

δεικτοποίηση πινάκων και ο δεύτερος δείκτες.

Δείκτες(pointers) - 36

ΛΥΣΗ

. load1() με δεικτοποίηση

{ int t;

for(t=0; t<10; ++t) a[t] = 'a' + t;

}

 load2() με δείκτες

{ int t;

 char *p;

 p=a;

 for(t=0; t<10; ++t) *p++ = 'a' + t;

}

Δείκτες(pointers) - 37

Πίνακες Δεικτών

Οι δείκτες μπορούν να πινακοποιηθούν όπως γίνεται με

οποιοδήποτε άλλο τύπο δεδομένων.

Οι μόνες τιμές τις οποίες μπορούν να κρατήσουν τα

στοιχεία του πίνακα είναι οι διευθύνσεις των μεταβλητών.

Μία συνηθισμένη χρήση των πινάκων δεικτών είναι να

κρατάνε τους δείκτες σε περίπτωση εσφαλμένων

μηνυμάτων

Αν θέλουμε να περάσουμε έναν πίνακα δεικτών σε μία

συνάρτηση, απλώς καλούμε τη συνάρτηση με το όνομα του

πίνακα χωρίς καθόλου δείκτες.

Μπορούμε να δημιουργήσουμε μία συνάρτηση η οποία θα

εξάγει ένα μήνυμα βασισμένο στον ακέραιο αριθμό αυτού

του μηνύματος.

Δείκτες(pointers) - 38

serror(i)

 int t;

 {

 static char *err[] =

{

 "syntax error",

 "parentheses expected",

 "undefined variable",

 "duplicate label name"

 };

 printf (err[i]) ;

 }

Δείκτες(pointers) - 39

ΑΣΚΗΣH

Να γραφτεί μια συνάρτηση change(x, y) η οποία

θα αλλάζει την τιμή του x σε x+y και την τιμή του

y σε x*y .

Προσοχή, τα x και y, double

Δείκτες(pointers) - 40

Λύση

float change(x, y)

 double *x, *y;

 { double p;

 p= *y;

 *y= (*x)*(*y);

 *x= *x+p;

 return 1;

 }

	Slide 1: Οι δείκτες στη γλώσσα C
	Slide 2
	Slide 3: Οι δείκτες στη γλώσσα C
	Slide 4: Οι Δείκτες σαν διευθύνσεις
	Slide 5: Παράδειγμα
	Slide 6: Έξοδος
	Slide 7: Σαν το ποδήλατο …
	Slide 8: Δείκτες-Pointers (1)
	Slide 9: Δείκτες-Pointers (2)
	Slide 10
	Slide 11: Οι δείκτες πρέπει να δηλώνονται
	Slide 12: Οι δείκτες πρέπει να δηλώνονται
	Slide 13: Οι δείκτες πρέπει να δηλώνονται
	Slide 15: Aριθμητικοί τελεστές
	Slide 16
	Slide 17: Αρχικές τιμές δεικτών
	Slide 18: H συνάρτηση malloc()
	Slide 19: H συνάρτηση free
	Slide 21: Παράδειγμα
	Slide 22: Παράδειγμα
	Slide 23: Έξοδος
	Slide 24: Πίνακες
	Slide 25: Ιδιότητες ενός πίνακα
	Slide 26: Δείκτες και πίνακες
	Slide 27: Παράδειγμα
	Slide 28: Δύο εκδόσεις της συνάρτησης puts()
	Slide 29: Δείκτες σε Δείκτες
	Slide 30: Προβλήματα με τους δείκτες
	Slide 31: ΑΣΚΗΣH
	Slide 32: Οι πολυδιάστατοι πίνακες στη C
	Slide 33: Οι πολυδιάστατοι πίνακες στη C
	Slide 34: Αρχικές τιμές
	Slide 35: ΑΣΚΗΣH
	Slide 36: ΛΥΣΗ
	Slide 37: Πίνακες Δεικτών
	Slide 38
	Slide 39: ΑΣΚΗΣH
	Slide 40: Λύση

