
Εντολές ανακύκλωσης - 1

Δομές Ανακυκλώσεων

• Σε όλες τις γλώσσες προγραμματισμού, οι εντολές 
ανακυκλώσεων επιτρέπουν να επαναλαμβάνουμε ένα σύνολο 
εντολών, περισσότερες από μια φορές και μέχρι να επιτευχθεί 
μια ορισμένη συνθήκη

• Αυτή η συνθήκη μπορεί να έχει ορισθεί εκ των προτέρων ή να 
μην έχει οριστεί δηλαδή, να έχει ανοικτό τέλος

• Οι εντολές ανακυκλώσεων είναι:
1. H ανακύκλωση for

2. Η ανακύκλωση  while

3. Η ανακύκλωση do-while 

4. Η εντολή goto



Εντολές ανακύκλωσης - 2

H ανακύκλωση while
• Ο βρόχος while λειτουργεί με τον εξής τρόπο: 
• Ελέγχεται κατ’ αρχήν η παράσταση μέσα στις παρενθέσεις.
• Αν είναι αληθής (μη-μηδενική) τότε εκτελείται το σώμα του βρόχου.
• Κατόπιν η παράσταση ελέγχεται ξανά και εφόσον είναι αληθής

εκτελείται ξανά ο βρόχος.
• Όταν ο έλεγχος διαπιστώσει ότι η παράσταση είναι ψευδής ο βρόχος

τερματίζεται και η εκτέλεση συνεχίζεται με την εντολή που ακολουθεί το
βρόχο. Εκτός και αν δεν υπάρχουν στο πρόγραμμα άλλες εντολές
οπότε τερματίζεται το πρόγραμμα.

• Οι περισσότερες εργασίες γίνεται μέσα στο σώμα του βρόχου



Εντολές ανακύκλωσης - 3

Η ανακύκλωση  while

while ( παράσταση )
εντολή;

παράσταση

Αληθής

εντολή

Ψευδής

Επόμενη εντολή



Εντολές ανακύκλωσης - 4

H ανακύκλωση while
• Το σώμα ενός βρόχου μπορεί να αποτελείται από μία ή περισσότερες

εντολές κλεισμένες σε άγκιστρα ή από μια μοναδική εντολή χωρίς
άγκιστρα:

while ( i < j )
i= 2 *  i ;

• Και στις 2 περιπτώσεις θα γράφουμε πάντα τις εντολές που ελέγχονται 
από την while μια θέση στηλοθέτη πιο μέσα ή αλλιώς 4 κενά πιο μέσα 
ώστε να βλέπουμε με μια ματιά ποιες εντολές βρίσκονται μέσα στο 
βρόχο. 

• Συνιστούμε να γράφετε μόνο μία εντολή σε κάθε γραμμή και να 
χρησιμοποιείτε κενά πριν και μετά από τους τελεστές για να 
αποσαφηνίσετε την ομαδοποίηση. 

• Η θέση των αγκίστρων είναι λιγότερο σημαντική πρέπει να επιλέξετε το 
στυλ που σας αρέσει και να το χρησιμοποιείτε συστηματικά.



Παράδειγμα

Εντολές ανακύκλωσης - 5



Εντολές ελέγχου - 6

H ανακύκλωση for
• Ο γενικός τύπος της ανακύκλωσης for για να επαναλάβει

μία μόνον εντολή είναι:

for (αρχική τιμή; συνθήκη; βήμα)
εντολή;

Π.χ.
for ( k = 1 ; k <=100 ; k++ )

printf ("%d ", k) ;



Εντολές ανακύκλωσης - 7

H ανακύκλωση for

παράσταση

Αληθής

εντολή

Ψευδής

Αρχική τιμή

βήμα

έξοδος

Συνέχιση ...



Εντολές ελέγχου - 8

H ανακύκλωση for

• Για να επαναλάβει μία σειρά ομαδοποιημένων
εντολών ο γενικός τύπος είναι:

fοr (αρχική τιμή; συνθήκη; βήμα) {
εντολή 1;
εντολή 2;

.
εντολή x;

}



Εντολές ελέγχου - 9

Ισοδυναμία for με while
Η εντολή for:

for ( παρ1 ;  παρ2 ; παρ3 )
εντολή

είναι ισοδύναμη με την:

παρ1 ;
while ( παρ2 ) {

εντολή
παρ3 ;

}

Με μόνη διαφορά τη συμπεριφορά της εντολής continue



Εντολές ελέγχου - 10

Η ανακύκλωση  while
/* Εμφάνιση των αριθμών από το 1 μέχρι και το 9 */

int i;
i = 1;
while ( i < 10 ) { 

printf(“%d\n”, i);  
i++;

}
/* Αναμονή μέχρι να πατηθεί ο χαρακτήρας Α */

wait_ for_ char( ) {
char ch;
ch=0;
while ( ch ! = 'A’)

ch = getchar( );
}



Εντολές ελέγχου - 11

for αναλυτικά
• Γραμματικά τα 3 στοιχεία ενός βρόχου for είναι παραστάσεις. 
• Συνήθως η παρ1 και η παρ3 είναι παραστάσεις απόδοσης τιμής ή 

κλήσεις συναρτήσεων ενώ η παρ2 είναι παράσταση συσχέτισης. 
Οποιοδήποτε από τα 3 τμήματα μπορεί να παραλείπεται αν και τα 
ελληνικά ερωτηματικά πρέπει να υπάρχουν. 

• Αν παραλειφθεί η παρ1 ή η παρ3 απλώς απορρίπτεται και στην 
ανάπτυξη της εντολής. 

• Αν δεν υπάρχει ο έλεγχος δηλαδή η παρ2 τότε θεωρείται μόνιμα αληθής 
και έτσι η κατασκευή:

for( ; ; ) {
. . .
}

είναι ένας ατέρμων βρόχος που διακόπτεται με άλλα μέσα όπως μια εντολή 
break ή μια εντολή return.



Εντολές ελέγχου - 12

Προτίμηση για while?

• Η χρήση βρόχου while είναι κυρίως ζήτημα προσωπικής 
προτίμησης για παράδειγμα στο τμήμα κώδικα:

while ( ( c = getchar() ) = = ΄ ΄ || c = =  ΄\n΄ || c = = ΄\t ‘) ;
/* παράβλεψη χαρακτήρων λευκού διαστήματος */

• Δεν υπάρχει απόδοση ή αποκατάσταση αρχικών τιμών σε 
μεταβλητές και έτσι ο βρόχος while αποτελεί πολύ φυσική λύση.



Προτίμηση για for

• Ο βρόχος for είναι προτιμότερος όταν έχουμε απλή απόδοση 
αρχικής τιμής και αύξηση επειδή διατηρεί συγκεντρωμένες τις 
εντολές ελέγχου του βρόχου στο πάνω μέρος του όπου 
φαίνονται εύκολα αυτό γίνεται προφανές στο τμήμα κώδικα

for ( i = 0 ; i < n ; i ++)

• πού είναι το ιδίωμα της C για την επεξεργασία των πρώτων 
στοιχείων ενός πίνακα

Εντολές ανακύκλωσης - 13



2ος τρόπος

Εντολές ανακύκλωσης - 14



Εντολές ανακύκλωσης - 15

riza()
{

int x,z;
for (x = 100 ; x != 65 ; x = x – 5 )
{

z = x * x ;
printf ( "Το τετράγωνο του

%d = %d ", x, z ) ;
}

}

sign_on ( )
{

int x ;
for ( x = 0 ; x < 3 ; ++x )
{

printf ( ” Δώστε το password ") ;
…….

}
if ( x < 3 ) hang_up ( );
else printf ( ” Λάθος password ” ) ;

}

x = 10 ;
for ( y = 10 ; y != x ; ++x )
{

printf ( "%d", y ) ;
}

printf ( "%d", y ) ;

char y;
int x;
for ( x = 0, y = 0 ; x + y < 10 ; ++x )
{

y = getchar ( ) ;
y = y + 'A’ ;
printf ( "%c”, y ) ;

}



do-while
• Οι βρόχοι for και while ελέγχουν τη συνθήκη τερματισμού στην κορυφή του 

βρόχου. Αντίθετα ο τρίτος βρόχος της C do-while, ελέγχει τη συνθήκη στο τέλος 
του, αφού ολοκληρώσει το κάθε πέρασμα από το σώμα του βρόχου. Tο σώμα 
εκτελείται πάντοτε τουλάχιστον μία φορά. 

• Η σύνταξη του βρόχου do είναι:

do

εντολή

while (παράσταση) ;

• Εκτελείται η εντολή και μετά υπολογίζεται η παράσταση. Αν είναι αληθής τότε η 
εντολή εκτελείται ξανά κ.ο.κ . Όταν η παράσταση γίνει ψευδής ο βρόχος 
τερματίζεται. Ο βρόχος do-while είναι ισοδύναμος με την εντολή repeat-until της 
pascal

Εντολές ανακύκλωσης - 16



Εντολές ανακύκλωσης - 17

Η ανακύκλωση do-while

do
εντολή

while ( παράσταση ) ;

παράσταση

Αληθής

εντολή

Ψευδής

Επόμενη εντολή



Εντολές ελέγχου - 18

Η ανακύκλωση do-while 
/* Αθροισμα των ζυγών αριθμών από το
2 μέχρι και το 10 */

x = 2; 
sum = 0;
do 
{

sum += x;
x += 2;

} 
while ( x <= 10 );
printf(“Άθροισμα= %d ", sum);

/* Ανάγνωση αριθμών μέχρι να δοθεί
μια τιμή μικρότερη του 100 */

char s[80];
do
{

num= getnum2(s,80 );
}
while (num>99);



Break

• Μερικές φορές εξυπηρετεί να μπορούμε να βγούμε από ένα βρόχο 
χωρίς να εκτελέσουμε τον έλεγχο της αρχής ή του τέλους. 

• Η εντολή break προσφέρει τη δυνατότητα πρόωρης εξόδου από τους 
βρόχους for, while, do που ακριβώς όπως και στην εντολή switch. 

• Ή εντολή break προκαλεί άμεση έξοδο από τον πιο εσωτερικό βρόχο ή 
την εντολή switch.

Εντολές ανακύκλωσης - 19



Παράδειγμα
• H strlen επιστρέφει το 

μήκος ενός αριθμητικού. 
• Ο βρόχος for ξεκινά από 

το τέλος και σαρώνει το 
αλφαριθμητικό προς τα 
πίσω αναζητώντας τον 
πρώτο χαρακτήρα που 
δεν είναι κενό, 
στηλοθέτης ή χαρακτήρας 
αλλαγής γραμμής. 

• Ο βρόχος διακόπτεται 
όταν βρεθεί ένας τέτοιος 
χαρακτήρας ή όταν το n
γίνει αρνητικό (δηλαδή 
όταν θα έχει σαρωθεί 
ολόκληρο το 
αλφαριθμητικό.) Εντολές ανακύκλωσης - 20



Εντολές ελέγχου - 21

Έξοδος των ανακυκλώσεων
(εντολή break)

main ( )
{

int t;
for(t=0;t<100;t++)
{
printf("%d ",t);
if( t = =10 ) break;

}
. . . . .
}



Continue
• Η εντολή continue σχετίζεται με τη break αλλά χρησιμοποιείται σπανιότερα.
• Προκαλεί την έναρξη της επόμενης επανάληψης του βρόχου for, while, do

που την περιέχει.
• Στους βρόχους while και do αυτό σημαίνει ότι εκτελείται αμέσως το τμήμα

ελέγχου ενώ στο βρόχο for ο έλεγχος περνάει στο βήμα αύξησης.
• Η εντολή continue εμφανίζεται μόνο σε βρόχους όχι όμως και στην εντολή

switch.
• Μια εντολή continue σε μια switch που βρίσκεται μέσα σε βρόχο προκαλεί την

επόμενη επανάληψη του βρόχου.
• Ως παράδειγμα το επόμενο απόσπασμα επεξεργάζεται μόνο τα μη αρνητικά

στοιχεία του πίνακα α ενώ οι αρνητικές τιμές παραβλέπονται.

for ( i = 0 ; i < n; i++ ) {
if ( a [i] < 0 ) /* παράβλεψη αρνητικών στοιχείων */

continue;
. . . /* επεξεργασία θετικών στοιχείων */

}
Εντολές ανακύκλωσης - 22



Εντολές ελέγχου - 23

Συνέχιση των ανακυκλώσεων
(εντολή continue)

do {
x=getnum(s,80);
if(x<0) continue;
printf("%d ", x);

} while(x!=100);



Εντολές ελέγχου - 24

Τερματισμός του προγράμματος
(συνάρτηση exit ( ) )

• Η συνάρτηση  exit( ) προκαλεί άμεσο τερματισμό του 
προγράμματος και επιστροφή στο λειτουργικό σύστημα

π.χ.

main( )
{

if ( !color_card( ) ) exit(1);
. . . . .

}



Goto
• Η C διαθέτει την απεριόριστα κακοποιημένη εντολή goto καθώς και 

ετικέτες για τις διακλαδώσεις της.  
• Τυπικά η goto δεν χρειάζεται ποτέ και όντως είναι σχεδόν πάντα 

εύκολο να γράψουμε τον κώδικα χωρίς αυτή πάντως υπάρχουν 
λίγες περιπτώσεις που η goto μπορεί να έχει θέση. 

• Η πιο συνηθισμένη περίπτωση είναι η έξοδος από την επεξεργασία 
σε κάποια πολύ βαθιά ένθετη δομή, όπως η ταυτόχρονη έξοδος 
από 2 ή περισσότερους βρόχους. Η εντολή break δε μπορεί να 
χρησιμοποιηθεί άμεσα επειδή προκαλεί την έξοδο μόνο από τον 
πιο εσωτερικό βρόχο. 

Εντολές ανακύκλωσης - 25



Παράδειγμα

Έτσι: 

for (  …  )
for (  …  ) {

….
if ( disaster ) \* αν συμβεί καταστροφή *\

goto error;
}

. . . 
error:

τακτοποιεί την κατάσταση

Εντολές ανακύκλωσης - 26



Εντολές ελέγχου - 27

Ετικέτες και goto
Μία ανακύκλωση από το 1 έως το 100 θα μπορούσε να

γραφτεί με τη χρησιμοποίηση του goto ως εξής:

x=1;
loop_h : x++;

if ( x<100 ) goto loop_h;

H goto δεν πρέπει να χρησιμοποιείται συχνά, αν όχι 
καθόλου

Αν είναι δύσκολο να αλλάξουμε τη δομή ενός 
υπάρχοντος  προγράμματος ή 

αν έχει σημασία η ταχύτητα εκτέλεσης, 

μόνο τότε, μπορούμε να χρησιμοποιήσουμε την εντολή goto



Εντολές ελέγχου - 28

Ασκήσεις

Δείξτε τρεις τρόπους γραφής της συνάρτησης
count( ) οι οποίοι απλώς εμφανίζουν τους
αριθμούς από το 1 μέχρι το 100 στην οθόνη

(Μη χρησιμοποιείτε την εντολή goto).



Εντολές ελέγχου - 29

Λύσεις

count1( )

{

int t;

for ( t = 1; t < 101 ;
++t )

printf( "%d”,t ) ;

}

count2( )

{

int t ;

t =1 ;

while ( t < 101 )

printf( "%d", t++);

}

count3( )

{

int t;

t=1;

do

{

printf("%d",t);

t++;

} while( t<101) ;

}



Εντολές ελέγχου - 30

Να αναπτυχθεί ένα πρόγραμμα το οποίο θα 
πρέπει να διαβάζει από το πληκτρολόγιο 
έναν ακέραιο αριθμό έστω Κ, ο οποίος θα 

πρέπει να ελέγχεται ώστε να ισχύει η σχέση    
0 ≤ Κ ≤ 1000

Στη συνέχεια να υπολογίζει το άθροισμα
1+2+...+Κ.

(k<0 || k>1000)

while (k<0 || k>1000)



Εντολές ελέγχου - 31

#include <stdio.h>
main()
{ int i, k, sumk;  // Δήλωση των μεταβλητών
do {

printf("Δώστε ένα θετικό αριθμό Κ μικρότερο του 1000 \n");
printf("για να υπολογιστεί ");
printf("το άθροισμα 1+2+ . .+Κ \n K = ");

scanf("%d", &k);  // Ανάγνωση της τιμής
} while (k<0 || k>1000);  // Έλεγχος της πληκτρολόγησης
sumk=0;   // Αρχική τιμή του αθροίσματος
for (i=1; i<=k; i++)
sumk=sumk+i; // Υπολογισμός του διαδοχικού αθροίσμ.

printf("Άθροισμα των αριθμών = %d\n", sumk);
}



Εντολές ελέγχου - 32

Άσκηση (TEST)

Να γράψετε ένα πρόγραμμα το οποίο όταν ξεκινά την 
εκτέλεσή του, θα ζητά υποχρεωτικά ένα θετικό ακέραιο 
αριθμό μικρότερο από το 10 και μεγαλύτερο από το 4, 
από το πληκτρολόγιο και θα εμφανίζει στην οθόνη το 
μήνυμα ΕΜΦΑΝΙΣΗ ΤΙΜΩΝ τόσες φορές όσες εκφράζει η 
τιμή του ακέραιου αριθμού που έχει πληκτρολογηθεί. 

Το πρόγραμμα θα πρέπει να επαναλαμβάνεται αυτόματα 
και να ζητά εκ νέου ένα νέο αριθμό μικρότερο από το 10 
και μεγαλύτερο από το 4 και να σταματά τις επαναλήψεις 
(τέλος του προγράμματος) όταν ο εισαγόμενος αριθμός 
είναι η τιμή -999, με την εμφάνιση και ενός μηνύματος 
που θα δείχνει πόσες φορές επαναλήφθηκε η όλη 
διαδικασία εισαγωγής τιμής από το πληκτρολόγιο.

Eleftheria Katsiri
Να γράψετε ένα πρόγραμμα το οποίο όταν ξεκινά την εκτέλεσή του, θα ζητά υποχρεωτικά ένα θετικό ακέραιο αριθμό μικρότερο από το 10 και μεγαλύτερο από το 4, από το πληκτρολόγιο και θα εμφανίζει στην οθόνη το μήνυμα ΕΜΦΑΝΙΣΗ ΤΙΜΩΝ τόσες φορές όσες εκφράζει η τιμή του ακέραιου αριθμού που έχει πληκτρολογηθεί.

Το πρόγραμμα θα πρέπει να επαναλαμβάνεται αυτόματα και να 
ζητά εκ νέου ένα νέο αριθμό μικρότερο από το 10 και μεγαλύτερο από το 4, μέχρις ότου ο χρήστης του δώσει έναν αριθμό που να πληρεί αυτή την προϋπόθεση.   

Το πρόγραμμα θα σταματά τις επαναλήψεις είτε όταν ο χρήστης δώσει ένα σωστό αριθμό, ως άνω, ή όταν ο εισαγόμενος αριθμός είναι η τιμή -999, οπότε, στην περίπτωση αυτή, θα εμφανίσει 
πρώτα ένα μήνυμα που θα δείχνει πόσες φορές επαναλήφθηκε 
η όλη διαδικασία εισαγωγής τιμής από το πληκτρολόγιο, προτού τερματιστεί.


