

# ELECTRONIC CIRCUITRY

EE 303

### Main Topics

- Thyristors and Other Devices
- Operational Amplifiers
- Op-Amp Frequency Response
- Basic Op-Amp Circuits and Applications
- Active Filters
- Oscillators
- Voltage Regulators

# Thyristors



- Thyristors are devices constructed of four semiconductor layers (*pnpn*).
- Thyristors include: Shockley diode, siliconcontrolled rectifier (SCR), diac and triac.
- They stay on once they are triggered, and will go off only if current is too low or when triggered off.
- Usage: lamp dimmers, motor speed controls, ignition systems, charging circuits, etc.



### The Shockley Diode



### Shockley Diode Characteristic Curve



 $V_{BR(F)}$  = forward-breakover voltage  $I_S$  = switching current  $I_H$  = holding current

### Shockley Diode Basic Operation

- Between 0 V and V<sub>BR(F)</sub>, the Shockley diode is in the *forward-blocking region*, i.e. off state.
- At  $\mathcal{CV}_{BR(F)}$ , the diode switches to the forward-conduction region and  $V_{AK}$  drops to  $V_{BE}+V_{CE(sat)}$ ;  $I_A$  increases rapidly.
- When  $I_A$  is reduced to  $< I_H$ , the diode rapidly switches back to the off state.

### A Shockley Diode Application





**Relaxation Oscillator** 

Voltage Waveform

Capacitor charges through  $R_S$  and discharges through D.

### Silicon-Controlled Rectifier 🛈

- SCR is another four-layer pnpn device.
- Has 3 terminals: anode, cathode, and gate.
- In off state, it has a very high resistance.
- In on state, there is a small on (forward) resistance.
- Applications: motor controls, time-delay circuits, heater controls, phase controls, etc.

### SCR



H. Chan; Mohawk College

9

### Turning The SCR On



### Notes on SCR Turn-On

- The positive pulse of current at the gate turns on  $Q_2$  providing a path for  $I_{B1}$ .
- Q<sub>1</sub> then turns on providing more base current for
  Q<sub>2</sub> even after the trigger is removed.
- Thus, the device stays on (latches).
- The SCR can be turned on without gate triggering by increasing  $V_{AK}$  to  $G \sim V_{BR(F0)}$ .
- But  $I_G$  controls the value of the forward-breakover voltage:  $V_{BR(F)}$  decreases as  $I_G$  is increased.

### Turning The SCR Off



### SCR Characteristics & Ratings

- Forward-breakover voltage,  $V_{BR(F)}$ : voltage at which SCR enters forward-conduction (on) region.
- Holding current,  $I_{\rm H}$ : value of anode current for SCR to remain in on region.
- Gate trigger current, I<sub>GT</sub>: value of gate current to switch SCR on.
- Average forward current,  $I_{F(avg)}$ : maximum continuous anode current (dc) that the SCR can withstand.
- Reverse-breakdown voltage,  $V_{BR(R)}$ : maximum reverse voltage before SCR breaks into avalanche.

### Half-Wave Power Control



### Silicon-Controlled Switch (SCS)



### Notes On SCS

- SCS can be turned on either by a positive pulse at the cathode or a negative pulse at the anode.
- SCS can be turned off by using pulses of the reversed polarity or by anode current interruption methods.
- SCS and SCR are used in similar applications.
- SCS has faster turn-off with pulses on either gate terminal; but it has lower maximum current and voltage ratings than SCR.

### The Diac and Triac



- Both the diac and the triac are types of thyristors that can conduct current in both directions (bilateral). They are four-layer devices.
- The diac has two terminals, while the triac has a third terminal (gate).
- The diac is similar to having two parallel Shockley diodes turned in opposite directions.
- The triac is similar to having two parallel SCRs turned in opposite directions with a common gate.

### The Diac



### Diac Equivalent Circuit



#### The Triac $A_1$ $A_1$ $A_1$ $Q_3$ n n $\mathbf{Q}_1$ p n G p n n G $A_2$ $Q_2$ Gate $A_2$ Symbol Basic Q $A_2$ Construction

Equivalent circuit

### **Triac Phase-Control Circuit**



### The Unijunction Transistor



### Notes on UJT

- UJT has only one pn junction.
- It has an emitter and two bases,  $B_1$  and  $B_2$ .
- $r'_{B1}$  and  $r'_{B2}$  are internal dynamic resistances.
- The interbase resistance,  $r'_{BB} = r'_{B1} + r'_{B2}$ .
- $r'_{B1}$  varies inversely with emitter current,  $I_E$
- $r'_{B1}$  can range from several thousand ohms to tens of ohms depending on  $I_E$ .

### **Basic UJT Biasing**



 $V_{r'B1} = \eta V_{BB}$  $\eta = r'_{B1}/r'_{BB}$  is the standoff ratio.  $If V_{EB1} < V_{r'B1} + V_{pn'}$  $I_{\rm E}$  I ince pn junction is not forward biased ( $V_{pn} = barrier$ potential of pn junction) At  $V_P = \eta V_{BB} + V_{pn}$ , the UJT turns on and operates in a negative resistance region up to a certain value of  $I_{\rm F}$ . It then becomes saturated and  $I_{\rm F}$  increases rapidly with  $V_{\rm E}$ .

### UJT Characteristic Curve



H. Chan; Mohawk College

25

### Applications of UJT

UJT can be used as trigger device for SCRs and triacs. Other applications include nonsinusoidal oscillators, sawtooth generators, phase control, and timing circuits.



### **Conditions For UJT Oscillator Operation**

- In the relaxation oscillator,  $R_1$  must not limit  $I_E$  at the peak point to less than  $I_P$  at turn-on, i.e.,  $V_{BB} V_P > I_P R_1$ .
- To ensure turn-off of the UJT at the valley point,  $R_1$  must be large enough that  $I_E$  can decrease below  $I_V$ , i.e.,  $V_{BB} - V_V \le I_V R_1$ .

• So, for proper operation:

$$\frac{V_{BB} - V_P}{I_P} > R_1 > \frac{V_{BB} - V_V}{I_V}$$

 $R_2$  is usually  $\leq R_1$ , and the frequency of oscillations is

$$f_o = \left[ R_1 C \ln \left( \frac{V_{BB} - V_V}{V_{BB} - V_P} \right) \right]^{-1}$$

### The Programmable UJT

- The PUT is actually a type of thyristor
- It can replace the UJT in some oscillator applications.
- It is more similar to an SCR (four-layer device) except that its anode-to-gate voltage can be used to both turn on and turn off the device.

### PUT Construction & Symbol



### **Basic Construction**

**PUT Symbol and Biasing** 

### Notes On PUT

- Notice that the gate is connected to the *n* region adjacent to the anode.
- The gate is always biased positive with respect to the cathode.
- When  $V_A V_G > 0.7 V$ , the PUT turns on.
- The characteristic plot of  $V_{AK}$  versus  $I_A$  is similar to the  $V_E$  versus  $I_E$  plot of the UJT.

### The Phototransistor

- The phototransistor has a light-sensitive, collectorbase junction and is exposed to light through a lens opening in the transistor package.
- When there is no incident light, there is a small thermally generated leakage current, I<sub>CEO</sub>, called the dark current and is typically in the nA range.
- When light strikes the collector-base pn junction, a base current,  $I_{\lambda}$ , is produced that is directly proportional to the light intensity.



H. Chan; Mohawk College

### Notes on Phototransistor

- A phototransistor can be either a two-lead or three-lead device.
- The collector characteristic curves show the collector current increasing with light intensity.
- Phototransistors are sensitive only to light within a certain range of wavelengths as defined by their spectral response curve.
- Photodarlingtons have higher light sensitivity than phototransistors but slower switching speed .

### **Applications of Phototransistors**

 Phototransistors are used in a wide variety of applications such as automatic door activators, process counters, and various light-activated alarms.



Light-interruption alarm

### The Light-Activated SCR

- The light-activated SCR (LASCR) operates essentially as does the conventional SCR except it can also be light-triggered.
- Most LASCRs have an available gate terminal for conventional triggering.
- The LASCR is most sensitive to light when the gate terminal is open.



## **Optical Couplers**



- Optical couplers provide complete electrical isolation between an input circuit and an output circuit.
- They provide protection from high voltage transients, surge voltage, and low-level noise.
- They also allow voltage level translation, and different grounds for interfacing circuits.
- Input circuit of optical coupler is typically an LED
- Output circuit can take many forms.
#### Common Types of Optical-Coupling Devices



**Phototransistor Output** 



**Photodarlington Output** 



LASCR Output



**Phototriac Output** 

## Optocoupler Parameters



- DC Current Transfer Ratio = I<sub>out</sub>/I<sub>in</sub> (in %); typically 2 to 100% for phototransistors.
- LED Trigger Current is the current (mA) required to trigger light-activated thyristor output devices.
- Transfer Gain =  $V_{out}/I_{in}$  applies to optically isolated ac linear couplers; typically 200 mV/mA.

#### Introduction To Operational Amplifiers





- Op-amps are linear IC devices with two input terminals, and one output terminal. One input is inverting (-), and the other noninverting (+).
- Standard symbol usually does not show dc supply terminals.

### Ideal versus Practical Op-Amp

Ideal op-amp characteristics:  $Z_{in} = \square; A_v = \square;$ bandwidth =  $\square; Z_{out} = 0$ **Practical** op-amp characteristics:  $Z_{in} = \text{very high } (M\Omega);$  $A_v = very high ( ( 100,000 );$ 

 $Z_{out} = very low (<100 \Omega)$ bandwidth = few MHz range  $V_{out}$  and  $I_{out}$  have limitations



#### **Op-amp representation**

## The Differential Amplifier **①**



H. Chan; Mohawk College

## Basic Operation of Diff-Amp

Assuming the transistors are perfectly matched and both inputs are grounded:  $I_{E1} = I_{E2} = I_{RE} / 2$  where Also,  $I_{C1} = I_{C2} \bigcirc I_{E1}$ and  $V_{C1} = V_{C2} = V_{CC} - I_{C1}R_{C1}$  $I_{RE} = \frac{V_E - V_{EE}}{R_E} = \frac{-0.7 - V_{EE}}{R_E}$ 

If input 2 is grounded but a positive voltage is applied to input 1,  $I_{C1}$  increases,  $V_{C1}$  decreases, and  $V_E = V_{B1} - 0.7$  rises. This causes  $V_{BE2}$  to decrease,  $I_{C2}$  to decrease and  $V_{C2}$  to increase. Similarly, if input 1 is grounded, but a positive voltage is applied to input 2,  $I_{C2}$  increases,  $V_{C2}$  decreases,  $I_{C1}$  decreases and  $V_{C1}$  increases. A negative input would have the reversed effects.



H. Chan; Mohawk College

## **Differential Input Operation**

Differential or double-ended input has two out-of-phase signals at the inputs. Output has a peak that is doubled the peak (Vp) for single-ended operation.

2

Vin

-V<sub>in</sub>

H. Chan; Mohawk College

Vout2

 $2V_{r}$ 

V<sub>out1</sub>

## **Common-Mode Input Operation**



Two signals with the same phase, frequency, and amplitude are applied to the inputs. Output is zero due to cancellations. Thus, unwanted signals (noise) appearing at both input lines are essentially cancelled by the diff-amp and do not appear at the outputs.

## **Common-Mode Rejection Ratio**

- Ideally, a diff-amp provides a very high gain for desired signals (single-ended or differential), and zero gain for common-mode signals.
- Common-mode rejection ratio (CMRR) is a measure of the amplifier's ability to reject common-mode signals and is the ratio of the differential voltage gain ( $A_{vd} = |v_{o1}/v_{in}|$ ) to the common mode gain ( $A_{cm} = |v_{o1(cm)}/v_{in(cm)}|$ ):

$$CMRR = \frac{A_{vd}}{A_{cm}}; or \ 20 \log\left(\frac{A_{vd}}{A_{cm}}\right) in \ dB$$

# **Op-Amp** Parameters



- Input Offset Voltage,  $V_{OS}$  is the difference in the voltage between the inputs that is necessary to make  $V_{out(error)} = 0$ .  $V_{out(error)}$  is caused by a slight mismatch of  $V_{BE1}$  and  $V_{BE2}$ . Typical values of  $V_{OS}$  are  $\stackrel{S}{\longrightarrow} 2$  mV.
- Input Offset Voltage Drift specifies how V<sub>OS</sub> changes with temperature. Typically a few μV/°C.
- Input Bias Current is the dc current required by the inputs of the amplifier to properly operate the first stage. By definition, it is the average of the two input bias currents,  $I_{BIAS} = (I_1 + I_2)/2$ .

## Op-Amp Parameters (cont'd) 🖸

- Differential Input Impedance is the total resistance between the inverting and non-inverting inputs.
- Common-mode Input Impedance is the resistance between each input and ground.
- Input Offset Current is the difference of the input bias currents:  $I_{OS} = |I_1 I_2|$ , and  $V_{OS} = I_{OS}R_{in(CM)}$ . Typically in nA range.
- Output Impedance is the resistance viewed from the output terminals.
- Open-Loop Voltage Gain, A<sub>ol</sub>, is the gain of the op-amp without any external feedback connections.

## Op-Amp Parameters (cont'd)

- Common-mode Rejection Ratio for op-amp is defined as  $CMRR = A_{ol}/A_{cm}$  or 20 log  $(A_{ol}/A_{cm})$  in dB.
- Slew Rate is the maximum rate of change of the output voltage in response to a step input voltage. Slew rate =  $\Delta v_{out}/\Delta t$ , where  $\Delta v_{out} = +V_{max} (-V_{max})$ . The units for slew rate is V/µs.
- Frequency Response is the change in amplifier gain versus frequency and is limited by internal junction capacitances.
- Other features include short circuit protection, no latch-up, and input offset nulling.

# Negative Feedback

- Since the open-loop gain of the op-amp is very high, an extremely small input voltage (such as V<sub>OS</sub>) would drive the op-amp into saturation.
- By feeding a portion of the output voltage to the inverting input of the op-amp (negative feedback), the closed-loop voltage gain (A<sub>cl</sub>) can be reduced and controlled (i.e. stable) for linear operations.
- Negative feedback also provides for control of  $Z_{in}$ ,  $Z_{out}$ , and the amplifier's bandwidth.

## Noninverting Amplifier



H. Chan; Mohawk College

## Voltage-Follower



- VF is a special case of the non-inverting amplifier.
- Since B = 1,  $A_{cl(VF)} = 1$
- It has a very high Z<sub>in</sub>, and a very low Z<sub>out</sub>
- Ideal as a buffer amplifier.

## Inverting Amplifier



- Assuming Z<sub>in</sub> between

   ve and +ve terminals
   is infinite, current into
   -ve terminal is zero.
- Therefore,  $I_{in} = V_{in}/R_i$ is equal to  $I_f = -V_{out}/R_f$
- Rearranging,

$$A_{cl(I)} = \frac{V_{out}}{V_{in}} = -\frac{R_f}{R_i}$$

H. Chan; Mohawk College

#### Impedances of Feedback Amplifiers

Noninverting Amplifier:  $Z_{in(NI)} = (1 + BA_{ol})Z_{in}$ 

$$Z_{out(NI)} = \frac{Z_{out}}{1 + BA_{ol}}$$

Voltage Follower:  $Z_{in(VF)} = (1 + A_{ol})Z_{in}$ 

$$Z_{out(VF)} = \frac{Z_{out}}{1 + A_{ol}}$$

Inverting Amplifier:  $Z_{in(I)}$   $CSR_i$ ;  $Z_{out(I)}$   $CSR_i$ 

### **Bias Current Compensation**



#### Input Offset Voltage Compensation



With no input, the potentiometer is adjusted until the output voltage is 0V.

## Bode Plot of Open-Loop Gain



H. Chan; Mohawk College

### **Op-Amp Representation**



H. Chan; Mohawk College

## Closed-Loop vs Open-loop Gain



H. Chan; Mohawk College

59

## **Op-Amp** Bandwidth

- Open-loop bandwidth:  $BW_{ol} = f_{c(ol)}$
- Closed-loop critical frequency:  $f_{c(cl)} = f_{c(ol)}(1 + BA_{ol(mid)})$
- Since  $f_{c(cl)} = BW_{cl}$ , the closed-loop bandwidth is:  $BW_{cl} = BW_{ol}(1 + BA_{ol(mid)})$
- Gain Bandwidth Product is a constant as long as the roll-off rate is fixed:

 $A_{cl}f_{c(cl)} = A_{ol}f_{c(ol)} =$  unity-gain bandwidth

## Positive Feedback & Stability

- Positive feedback, where the output signal being fed back is in-phase to the input, will cause the amplifier to oscillate when the loop gain,  $A_{ol}B > 1$ .
- Phase margin,  $\theta_{pm}$ , is the amount of additional phase shift required to make the total phase shift around the feedback loop 360°.
- To ensure stability for all midrange frequencies, an op-amp must be operated with an A<sub>cl</sub> such that the roll-off rate beginning at  $f_c$  is 3 - 20dB/decade.

#### Phase Compensation



H. Chan; Mohawk College

## **Compensating Circuit**

- Compensation is used to either eliminate openloop roll-off rates greater than -20 dB/dec or extend the -20 dB/dec rate to a lower gain.
- Two basic methods of compensation for IC opamps: internal and external.
- In either case an RC series circuit is added so that its critical frequency is less than the dominant (i.e. lowest) f<sub>c</sub> of the internal lag circuits of the opamp.

## **Op-Amp** Compensation

- Some op-amps (e.g. 741) are fully compensated internally, i.e., their -20 dB/dec slope is extended all the way down to unity gain. Hence, they are unconditionally stable.
- A disadvantage of fully compensated op-amps is that the bandwidth and slew rate are reduced.
- Many op-amps (e.g. LM101A) have provisions for external compensation with a small capacitor. This allows for optimum performance.

#### Zero-Level Detector



Because of the high open-loop voltage gain, a very small difference voltage between the + and - inputs drives the amplifier output into either  $+V_{sat}$  or  $-V_{sat}$ .

#### Nonzero-Level Detector



e.g. a battery or a zener diode.

**Comparator With Hysteresis** (Schmitt Trigger)



67

#### Output Bounding With One Zener



A single zener diode can be used to limit the output voltage to the zener voltage in one direction and to the forward diode on the other.



Two zener diodes would limit the output voltage to the zener voltage plus the forward voltage drop (0.7V) of the forward-biased zener.

#### Window Comparator



The window comparator detects when an input voltage is between two limits, an upper and a lower, called a "window".

## Comparator Application #1



sensing circuit

- R<sub>1</sub> is a thermistor.
- At temperatures below set value,  $R_1 > R_2$ ; op-amp output is  $-V_{sat}$  and does not trigger alarm circuit.
- When temperature rises and exceeds critical value,  $R_1 < R_2$ ; op-amp output turns to  $+V_{sat}$  which turns on alarm or initiate an appropriate response.

## Comparator Application #2



The simultaneous or flash analog-todigital converter (ADC) uses parallel comparators to compare the linear input signal with various reference voltages developed by a voltage divider.
# Operation of Flash ADC

- When V<sub>in</sub> exceeds V<sub>ref</sub> for a given comparator, its output becomes high.
- The priority encoder produces a binary number representing the highest value input.
- The encoder samples its input only when enabled.
- The higher the sampling rate the better the accuracy.
- 2<sup>n</sup> 1 comparators are required for conversion to an n-digit binary number.

#### Summing Amplifier



N-input summing amplifier

By making  $R_1 = R_2 = \ldots = R_N = R$ :

$$V_{out} = -\frac{R_f}{R} (V_{in1} + V_{in2} + \dots + V_{inN})$$

If  $R_f = R$ , it is a unity-gain summing amplifier. If  $R_f = R/N$ , it is an averaging amplifier.

H. Chan; Mohawk College

#### **Op-Amp Integrator**



## **Op-Amp** Differentiator



H. Chan; Mohawk College

76

#### **Basic Instrumentation Amplifier**



H. Chan; Mohawk College

77

#### Notes on Instrumentation Amplifier

- The main purpose of an instrumentation amplifier is to amplify small signals that are riding on large common-mode voltages.
- Commonly used in environments with high common-mode noise, e.g., remote temperature- or pressure sensing over a long transmission line.
- Its main characteristics are: high  $Z_{in}$ , high CMRR, low output offset, and low  $Z_{out}$
- A typical IC instrumentation amplifier : AD521

#### **Operational Transconductance Amplifiers**

- The OTA is primarily a voltage-to-current amplifier where  $I_{out} = g_m V_{in}$ .
- The voltage-to-current gain of an OTA is the transconductance,  $g_m = KI_{BIAS}$  where K is dependent on the internal circuit design.



H. Chan; Mohawk College

## Basic OTA Circuit



Inverting amp with fixed voltage gain

- The voltage gain of the amp.,  $|A_V| = g_m R_L$
- For variable gain, connect a pot. to R<sub>BIAS</sub>
- If R<sub>BIAS</sub> is connected to a separate bias voltage:

$$I_{BLAS} = \frac{+V_{BLAS} + V - 0.7}{R_{BLAS}}$$

H. Chan; Mohawk College

# **OTA** Amplitude Modulator



H. Chan; Mohawk College

# Log Amplifiers

- The basic log amplifier produces an output voltage as a function of the logarithm of the input voltage;
  i.e., V<sub>out</sub> = -K ln(V<sub>in</sub>), where K is a constant.
- Recall that the a diode has an exponential characteristic up to a forward voltage of approximately 0.7 V.
- Hence, the semiconductor pn junction in the form of a diode or the base-emitter junction of a BJT can be used to provide a logarithm characteristic.

#### Diode & BJT Log Amplifiers



$$V_{out} \cong -0.025 \ln \left( \frac{V_{in}}{I_R R_1} \right) V$$

$$V_{out} \cong -0.025 \ln \left( \frac{V_{in}}{I_{EBO} R_1} \right) V$$

 $I_R$  = reverse leakage current

Current  $I_{EBO} = emitter-to-base$ H. Chan; Mohawk College leakage current

83

#### **Basic Antilog Amplifier**



$$V_{out} \cong -R_f I_{EBO} anti \ln\left(\frac{V_{in}}{0.025}\right)$$

- A transistor or a diode can be used as the input element.
- The operation of the circuit is based on the fact that  $V_{out} = -R_f I_C$ , and  $I_C = I_{EBO} e^{Vin/K}$  where  $K \cong 0.025 V$

## Signal Compression With Log Amp.



• When a signal with a large dynamic range is compressed with a logarithmic amplifier, the higher voltages are reduced by a greater percentage than the lower voltages, thus keeping the lower signals from being lost in noise.

#### **Constant-Current Source**

- For the basic constantcurrent circuit, the opamp has a very high  $Z_{in}$ , thus,  $I_L = I_i$ .
- If R<sub>L</sub> changes, I<sub>L</sub> remains constant as long as V<sub>IN</sub> and R<sub>i</sub> are held constant.



 $I_L = I_i = \frac{V_{IN}}{-}$ 

## Current-to-Voltage Converter

Vin

 Since the inverting terminal is at virtual ground,

 $V_{out} = -I_f R_f = -I_i R_f$ 

 As the amount of light changes, the current through the photocell changes; thus

 $\mathcal{D}V_{out} = |\mathcal{D}I_i|R_f$ 

Circuit for sensing light level and converting it to a proportional output voltage

out

#### Voltage-to-Current Converter

- Neglecting  $V_{IO}$ , the (-) and (+) terminals are at the same voltage,  $V_{in}$ . Therefore,  $V_{R1} = V_{in}$ .
- Since I = 0,
  - $I_{L} = I_{1} = V_{in}/R_{1}$



#### Peak Detector

- When a positive voltage is applied, the output charges the capacitor until  $V_C =$  $V_{in(max)}$ .
- If a greater input peak occurs, the capacitor charges to the new peak.





## Low-Pass Filter Response



H. Chan; Mohawk College

## High-Pass Filter Response



H. Chan; Mohawk College

## Band-Pass Filter Response



## Band-Stop Filter Response



- Also known as bandreject, or notch filter.
- Frequencies within a certain BW are rejected.
- Useful for filtering interfering signals.

# Filter Response Characteristics



# Notes On Filter Characteristics

- Butterworth: very flat amplitude response in the passband and a roll-off rate of -20 dB/dec/pole; phase response however is not linear. (A *pole* is simply a circuit with one R and one C).
- Chebyshev: roll-off rate > -20 dB/dec/pole; ripples in passband; very nonlinear phase response.
- Bessel: linear phase response, therefore no overshoot on the output with a pulse input; roll-off rate is < -20 dB/dec/pole.</li>

## **Damping Factor**



The damping factor (DF) of an active filter sets the response characteristic of the filter.

$$DF = 2 - \frac{R_1}{R_2}$$

Its value depends on the order (# of poles) of the filter. (See Table in text for DF values.)

H. Chan; Mohawk College

# Active Filters



- Advantages over passive LC filters:
  - Op-amp provides gain
  - high  $Z_{in}$  and low  $Z_{out}$  mean good isolation from source or load effects
  - less bulky and less expensive than inductors when dealing with low frequency
  - easy to adjust over a wide frequency range without altering desired response
- Disadvantage: requires dc power supply, and could be limited by frequency response of op-amp. H. Chan; Mohawk College

# Single-pole Active LPF

Nout

 $R_1$ 

 $R_2$ 



Roll-off rate for a single-pole filter is -20 dB/decade. A<sub>cl</sub> is selectable since DF is optional for single-pole LPF

## Sallen-Key Low-Pass Filter



Selecting  $R_A = R_B = R$ , and  $C_A = C_B = C$ :



The roll-off rate for a two-pole filter is -40 dB/decade. For a Butterworth 2ndorder response, DF = 1.414; therefore,  $R_1/R_2 = 0.586$ .

#### Cascaded Low-Pass Filter



H. Chan; Mohawk College

100

# Single-Pole High-Pass Filter



- Roll-off rate, and formulas for f<sub>c</sub>, and A<sub>cl</sub> are similar to those for LPF.
- Ideally, a HPF passes all frequencies above f<sub>c</sub>. However, the opamp has an upperfrequency limit.

## Sallen-Key High-Pass Filter



Again, formulas and roll-off rate are similar to those for 2nd-order LPF.

To obtain higher rolloff rates, HPF filters can be cascaded.



H. Chan; Mohawk College

# Notes On Cascading HPF & LPF

- Cascading a HPF and a LPF to yield a band-pass filter can be done as long as  $f_{c1}$  and  $f_{c2}$  are sufficiently separated. Hence the resulting bandwidth is relatively wide.
- Note that  $f_{c1}$  is the critical frequency for the HPF and  $f_{c2}$  is for the LPF.
- Another BPF configuration is the multiplefeedback BPF which has a narrower bandwidth and needing fewer components

#### Multiple-Feedback BPF



H. Chan; Mohawk College

#### Multiple-Feedback Band-Stop Filter



H. Chan; Mohawk College

The multiple-feedback BSF is very similar to its BP counterpart. For frequencies between  $f_{c1}$ and  $f_{c2}$  the op-amp will treat  $V_{in}$  as a pair of common-mode signals thus rejecting them accordingly.

#### Filter Response Measurements

- Discrete Point Measurement: Feed a sine wave to the filter input with a varying frequency but a constant voltage and measure the output voltage at each frequency point.
- A faster way is to use the swept frequency method:



The sweep generator outputs a sine wave whose frequency increases linearly between two preset limits.

H. Chan; Mohawk College

# **Oscillator Principles**

- Conditions for sustained oscillation:
  - the phase shift around the feedback loop must be 0° or 360° (i.e. positive feedback)
  - the loop gain  $|BA_v| = 1$ , where B = attenuation of feedback circuit, and  $A_v$  = amplifier's gain.



Basic elements of an oscillator
## Basic Wien-Bridge Oscillator 🛈



Two forms of the same circuit

### Notes on Wien-Bridge Oscillator

- At the resonant frequency the lead-lag circuit provides a positive feedback (purely resistive) with an attenuation of 1/3 when  $R_3 = R_4 = X_{C1} = X_{C2}$ .
- In order to oscillate, the non-inverting amplifier must have a closed-loop gain of 3, which can be achieved by making  $R_1 = 2R_2$
- When  $R_3 = R_4 = R$ , and  $C_1 = C_2 = C$ , the resonant frequency is:

$$f_r = \frac{1}{2\pi RC}$$



## Phase-Shift Oscillator



 $A_{cl} = \frac{R_f}{R_3} = 29$ 

Choosing  $R_1 = R_2 = R_3 = R$ ,  $C_1 = C_2 = C_3 = C$ , the resonant frequency is:

 $f_r = \frac{1}{2\pi\sqrt{6}RC}$ 

Each RC section provides  $60^{\circ}$  of phase shift. Total attenuation of the three-section RC feedback, B = 1/29.

### **Colpitts Oscillator**



$$B = \frac{C_2}{C_1} = \frac{1}{A_V}$$

#### Neglecting loading effect,



where

(

$$C_T = \frac{C_1 C_2}{C_1 + C_2}$$

# Clapp Oscillator



The Clapp oscillator is a variation of the Colpitts. It has a capacitor,  $C_3$  in series with L in the resonant circuit. Formulas are similar to those for Colpitts except

$$C_T = \frac{1}{\frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}}$$

# Hartley Oscillator



$$A_V = \frac{L_2}{L_1} = \frac{1}{B}$$

#### Neglecting loading effect

$$f_r = \frac{1}{2\pi\sqrt{L_T C_2}}$$

where  $L_T = L_1 + L_2$ 

# Crystal-Controlled Oscillators **①**

- For stable and accurate oscillations, a piezoelectric crystal (e.g. quartz) is used in the feedback loop.
- Piezoelectric effect: When a changing mechanical stress is applied to the crystal, a voltage develops at the frequency of mechanical vibrations.
  Conversely, when an ac voltage is applied across the crystal, it vibrates at the frequency of the applied voltage. The greatest vibration occurs at the crystal's natural resonant frequency.

### Symbol & Electrical Equivalent of Crystals





- A crystal can operate either in series or parallel resonance.
- Crystals have very high Q.
- Resonant frequency depends on dimension, type of cut, thickness, temperature, etc.

# **Basic Crystal Oscillators**



### **Triangular-Wave Oscillator**



H. Chan; Mohawk College

### Square-Wave Oscillator





H. Chan; Mohawk College

### Operation of 555

- Voltage divider sets reference of <sup>™</sup> V<sub>CC</sub> for comparator #1 and <sup>≫</sup> V<sub>CC</sub> for comparator #2.
- When trigger voltage (pin 2) is < X V<sub>CC</sub>, FF output is LO, output at pin 3 is HI, and Q<sub>d</sub> is OFF. This allows capacitor connected to pin 6 to charge up.
- When threshold voltage (pin 6) is >  $\mathbb{T} V_{CC}$ , FF output turns HI, output at pin 3 is LO, and  $Q_d$  is ON, thereby discharging capacitor.
- The cycle then repeats where  $V_{cc}$ .

121

# Notes on 555 Timer/Oscillator IC

- Widely used as a monostable or astable multivibrator.
- Can operate between 4.5 and 16 V.
- Output voltage is approximately V<sub>CC</sub> 2 V.
- Max. output frequency is about 10 kHz.
- $f_0$  varies somewhat with  $V_{CC}$ .
- *Threshold* input (pin 6) and *trigger* input (pin 2) are normally tied together to external timing RC.

## 555 as a Simple Oscillator



Duty cycle is:

$$D = \frac{t_{ch}}{T} = \frac{R_1 + R_2}{R_1 + 2R_2}$$

Given 
$$f_o$$
 and D,  
 $R_1 = \frac{2D - 1}{0.693 f_o C_1}$ ;  $R_2 = \frac{1 - D}{0.693 f_o C_1}$ 

 $t_{ch} = 0.693(R_1 + R_2)C_1$   $t_{disch} = 0.693 R_2C_1$  $T = 0.693(R_1 + 2R_2)C_1$  Note that D must always be > 0.5. To get 50% duty cycle,  $R_1 = 0$ , which would short out  $V_{CC}$ .

### 555 Square-Wave Oscillator



$$D = \frac{R_1}{R_1 + R_2}$$

$$R_1 = \frac{D}{0.693f_oC_1}; R_2 = \frac{1-D}{0.693f_oC_1}$$

 $R_1 = R_2 = \frac{1}{1.386 f_0 C_1}$ 

For 50% duty cycle,

$$t_{ch} = 0.693 R_1 C_1$$
;  $t_{disch} = 0.693 R_2 C_1$ 

$$f_o = \frac{1}{0.693(R_1 + R_2)C_1}$$

# Line Regulation

is a measure of the effectiveness of a voltage regulator to maintain the output dc voltage constant despite changes in the supply voltage.

$$Line regulation = \frac{\Delta V_{out}}{\Delta V_{in}} x100\% \text{ OR}$$

$$Line \ regulation = \frac{\Delta V_{out}}{\Delta V_{in}} x \frac{100}{V_{out}} \% / V$$

## Load Regulation

is a measure of the ability of a regulator to maintain a constant dc output despite changes in the load current.

Load regulation=
$$\frac{V_{NL} - V_{FL}}{V_{FL}} \times 100\%$$

Load regulation=
$$\frac{V_{NL} - V_{FL}}{V_{FL}} x \frac{100}{I_{FL}} \% / mA$$

H. Chan; Mohawk College

DR

# Regulator Block Diagram

The essential elements in a series voltage regulator is shown in the block diagram below:



## **Op-Amp** Voltage Regulators



H. Chan; Mohawk College

128

### Notes on Op-Amp Voltage Regulator

- More flexibility possible in design of voltage output than IC voltage regulator packages.
- The essential circuit elements are: a zener reference, a pass or shunt transistor, a sensing circuit, and an error/amplifier circuit.
- Equation indicates that V<sub>o</sub> depends on R<sub>2</sub>, R<sub>3</sub>, and V<sub>Z</sub>. However, V<sub>i</sub> must be greater than V<sub>o</sub>.
- The shunt configuration is less efficient but R<sub>2</sub> offers short-circuit current limiting.

# Constant Current Limiting



can be used for short-circuit or overload protection of the series voltage regulator.



Q<sub>2</sub> and R<sub>4</sub> form the current limiter. Output current

is limited to:



H. Chan; Mohawk College

#### Three-Terminal Fixed Voltage Regulators

- Less flexible, but simple to use
- Come in standard TO-3 (20 W) or TO-220 (15 W) transistor packages
- 78/79XX series regulators are commonly available with 5, 6, 8, 12, 15, 18, or 24 V output
- Max. output current with heat sink is 1 A
- Built-in thermal shutdown protection
- 3-V dropout voltage; max. input of 37 V

### Basic Circuits With 78/79XX Regulators



- Both the 78XX and 79XX regulators can be used to provide +ve or -ve output voltages
- C<sub>1</sub> and C<sub>2</sub> are generally optional. C<sub>1</sub> is used to cancel any inductance present, and C<sub>2</sub> improves the transient response.

#### Dual-Polarity Output with 78/79XX Regulators



# 78XX Regulator with Pass Transistor



$$R_1 = \frac{0.7}{I_{\text{max}}}$$
  $R_2 = \frac{0.7}{I_{R2}}$ 

- $Q_1$  starts to conduct when  $V_{R2} = 0.7$  V.
- R2 is typically chosen so that max.  $I_{R2}$  is 0.1 A.
- Power dissipation of  $Q_1$  is  $P = (V_i V_o)I_L$ .
- $Q_2$  is for current limiting protection. It conducts when  $V_{R1} = 0.7$  V.
- $Q_2$  must be able to pass max. 1 A; but note that max.  $V_{CE2}$  is only 1.4 V.

### **78XX Floating Regulator**



$$V_o = V_{reg} + \left(\frac{V_{reg}}{R_1} + I_Q\right)R_2$$

01

- It is used to obtain an output > the V<sub>reg</sub> value up to a max.of 37 V.
- $R_1$  is chosen so that  $R_1 \stackrel{\hspace{0.1em}{\leftarrow}}{\leftarrow} 0.1 V_{reg}/I_Q$ , where  $I_Q$  is the *quiescent current* of the regulator.

$$R_2 = \frac{R_1(V_o - V_{reg})}{V_{reg} + I_Q R_1}$$

# **3-Terminal Variable Regulator**

- The floating regulator could be made into a variable regulator by replacing R<sub>2</sub> with a pot. However, there are several disadvantages:
  - Minimum output voltage is  $V_{reg}$  instead of 0 V.
  - I<sub>Q</sub> is relatively large and varies from chip to chip.
  - Power dissipation in R<sub>2</sub> can in some cases be quite large resulting in bulky and expensive equipment.
- A variety of 3-terminal variable regulators are available, e.g. LM317 (for +ve output) or LM 337 (for -ve output).

## Basic LM317 Variable Regulator Circuits



Circuit with capacitors to improve performance

(a)

(b) Circuit with protective diodes

# Notes on Basic LM317 Circuits

- The function of  $C_1$  and  $C_2$  is similar to those used in the 78/79XX fixed regulators.
- C<sub>3</sub> is used to improve ripple rejection.
- Protective diodes in circuit (b) are required for highcurrent/high-voltage applications.

$$V_o = V_{ref} + \left(\frac{V_{ref}}{R_1} + I_{adj}\right) R_2$$

$$R_{2} = \frac{R_{1}(V_{o} - V_{ref})}{V_{ref} + I_{adj}R_{1}}$$

where  $V_{ref} = 1.25$  V, and  $I_{adj}$  is the current flowing into the adj. terminal (typically 50  $\mu$ A).

 $R_1$  is typically 120  $\blacklozenge$  or 240  $\blacklozenge$ 

# Switching Regulators



- Instead of operating the pass transistor in a linear manner, switching regulators use a transistor switch to improve the power efficiency.
- A basic block diagram is shown below:



H. Chan; Mohawk College

### Comparing Switching to Linear Regulators

#### Advantages:

- 70-90% efficiency (about double that of linear ones)
- can make output voltage > input voltage, if desired
- can invert the input voltage
- can result in considerable weight and size reductions

#### Disadvantages:

- More complex circuitry
- Potential EMI problems unless good shielding, low-loss ferrite cores and chokes are used

# Switch-Mode Operation

The duty cycle of the series transistor (power switch) determines the average dc output of the regulator. A circuit to control the duty cycle is shown in the schematic below:



H. Chan; Mohawk College

### Notes On Switch-Mode Operation

- The *error amplifier* compares a sample of the regulator  $V_o$  to an internal  $V_{ref}$ . The difference or error voltage is amplified and applied to a *modulator* where it is compared to a triangle wave. The result is an output pulse whose width is proportional to the error voltage.
- Darlington transistors and TMOS FETs with  $f_T$  of at least 4 MHz are often used. TMOS FETs are more efficient.
- A fast-recovery rectifier, or a Schottky barrier diode (sometimes referred to as a *catch diode*) is used to direct current into the inductor.
- For proper switch-mode operation, current must always be present in the inductor.

### Step-Down or Buck Converter



• When the transistor is turned ON,  $V_L$  is initially high but falls exponentially while  $I_L$  increases to charge C. When the transistor turns OFF,  $V_L$  reverses in polarity to maintain the direction of current flow.  $I_L$  decreases but its path is now through the forward-biased diode, D. Duty cycle is adjusted according to the level of  $V_o$ .

### V & I Waveforms for Buck Regulator


## Step-Up, Flyback, or Boost Regulator



• Assuming steady-state conditions, when the transistor is turned ON, L reacts against  $V_{in}$ . D is reverse-biased and C supplies the load current. When the transistor is OFF,  $V_L$  reverses polarity causing current to flow through D and charges C. Note that  $V_{out} > V_{in}$  because  $V_L$  adds on to  $V_{in}$ .

H. Chan; Mohawk College

## Voltage-Inverting or Buck-Boost Regulator



- $V_o$  can be either step-up or step-down and its polarity is opposite to input.
- During ON period, V<sub>in</sub> is across L, and D is reverse-biased.
- During OFF period,  $V_L$  reverses polarity causing current to flow through C and D.

Thank you for viewing my lecture notes. Your feedback is very important!

Please send your comments to the author

H. Chan; Mohawk College