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Part I 

Nuclear Magnetic Resonance 
(NMR) 
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The principle of NMR  

 

The following analysis is focused to  

hydrogen nucleus, the proton. 
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What are the basic properties of 
proton for NMR? 

• A  proton turns around itself, so it has its intrinsic 
angular momentum. We call it spin  
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Why proton looks like a magnetic 
dipole? 

• The positively electric charged proton, after its 
spin, is equivalent to a very small current loop.  

• That current loop creates a small magnetic 
dipole and has a magnetic moment  μ. 
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Approximations of Proton spin and 
its magnetic moment 

7 S.J. Kouridakis 



In quantum mechanics we take for μ: 
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What happens when a proton is 
placed in a static magnetic field B? 
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• When a proton is placed in a static magnetic field 
B, spins (rotates) about its own axis and precesses 
about the direction of B. The precessing frequency 
f0 is proportional to the magnetic field B:   

f0 = γ*Β   

• f0 is called “the Larmor frequency”,  

• γ* is called “the gyromagnetic ratio”.  

 For H2 protons γ* = 42,58 MHz / T  

NOTICE  

spin never aligns to B.  

Spin only precesses about the direction of B.  
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For H2 protons, magnetic moment has one of two 
components (states) on direction z of magnetic 

field B.  

• A parallel to it (μz) or  

• an antiparallel (-μz) (opposite direction).   

 

• More spins tend to precess about the magnetic 
field B, with their z component (μz) to be parallel 
(same direction) with the field B.  

• Spins parallel to B have lower energy than spins 
antiparallel to B. 
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Macroscopic view of magnetization. 
Net Magnetization Mz  

• When hydrogen atoms are placed in a static 
magnetic field B, a slightly larger fraction of 
spins aligns parallel to this field B.  

• Summation of  individual magnetic moment 
vectors represent the Longitudinal 
magnetization Mz in the z-direction.  
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Macroscopic view of magnetization. 
Net Magnetization Mz  

• Energy difference between spin orientations 
(parallel and antiparallel) depends on the 
strength of the external magnetic field. 

• Spins parallel to B are directly proportional to 
it.  

• Longitudinal Magnetization Mz increases with 
the field strength. 
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Building up of net magnetization, 
the Longitudinal Magnetization Mz. 
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Net Magnetization depends on B as well as on 
temperature T  
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The interaction of Mz and RF pulse  

 When protons are excited by an RF pulse of 
magnetic field B1, perpendicular to B and having 
the Larmor frequency f0 then NMR happens and: 

• Longitudinal magnetization Mz precesses with f0  
and flips gradually to the transverse xy plane 
building  the transverse magnetization Mxy.  

• Actually, a phase coherent movement of spins is 
imposed during RF pulse, so Mxy magnetization is 
developed gradually. 
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RF pulse excitation and Mz 
rotation to Mxy plane 

18 S.J. Kouridakis 



1)Uncoherent spins give Mxy=0 (upper) 
2)Coherent spins after 90o RF pulse give Mxy>0 
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The interaction of Mz and RF pulse 

    After Mxy is built,  RF excitation pulse - called 
900 pulse - stops. Then: 

• Transverse Magnetization Mxy continuous 
precessing with f0 and slowly flips out to its 
original direction, Mz. 

• With a coil placed axially to x or y axis a voltage 
(signal) is induced in f0 which is exponentially 
reduced with time constant T2. 

• This is called FID (Free Induction Decay) signal. 
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Excitation of Mz with 900 RF pulse (left) 
and FID signal with pick up coil (right) 
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The interaction of Mz and RF pulse 
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FID signal 
T2 is the transverse or spin-spin relaxation time 
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After 900 pulse: 
Recovery of Longitudinal Mz and decay of Mxy 
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Longitudinal or Spin-Lattice 
Relaxation Time T1 

• Longitudinal or Spin-Lattice Relaxation Time T1 is 
the time for Mz magnetization to recover to 63% 
of its magnitude M0 after relaxing on z axis 

• Mz increases exponentially with time constant T1 

• T1 is greater than T2 
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Transverse or spin – spin relaxation 
time T2 

• Transverse or spin – spin relaxation time T2 
represents the decay time constant of 
transverse magnetization Mxy, to reach 37% 
of its maximum magnitude, after 900 RF pulse 

• Mxy decays exponentially with time 

• T2 represents the duration of dephasing of μxy 
vectors from individual spins 
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Bloch Equation 

• Bloch equation describes the magnetization 
attributes of a nuclei magnetization vector M 
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Bloch Equation 

• Magnetic coordinates after RF excitation are 
given:  
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Bloch Equation 

• Their solutions are given by next equations 
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Part II 

 Magnetic Resonance Imaging (MRI) 
Techniques 
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How an image is achieved 

• MRI scanner or MRI tomographer is an  
imaging system of human body. 

• It is based on NMR of Hydrogen atoms 
(protons) in  human body, after excitation of 
chosen areas (slices) with RF pulses. 

• FID signals are received by suitable coils and 
after amplification and decoded they translate 
the magnitude of FID to contrast for every 
point of scanning area.  
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How an image is achieved 

• Slice selection of an image is achieved by a 
gradient magnetic field Gz, linearly changed 
on z direction 

• Voxel selection on every point of slice is 
achieved by two gradient magnetic fields Gx 
and Gy, called the frequency and phase 
encoding gradients. 
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Magnetic Resonance Imaging (MRI) – 
proton density imaging example 
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F r e q u e n c y   e n c o d i n g  



Image contrast  

  

• Contrast is the difference in brightness 
between the light and dark areas of a picture. 
For MRI imaging, tissues with high signal are 
bright on the image and tissues with low 
signal are dark. Tissues with intermediate 
signal are gray.  
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Image contrast  

• Tissues with a large transverse component of 
magnetisation give a large signal amplitude. 

• Tissues with a small transverse component of 
magnetisation give a low signal amplitude. 
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MRI of head and dependence of 
contrast on NMR signal  
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Image contrast  

• Different kinds of tissues on human body have 
different T1 and T2 relaxation times, therefore 
image contrast is obtained through three 
mechanisms in MRI: 

•  T1 recovery,  

• T2 decay and 

• proton density.  

 The image contrast depends on how we 
control these three parameters.   
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Image contrast  

 The corresponding MRI imaging is: 

• T1 weighted imaging 

• T2 weighted imaging 

• Proton Density weighted imaging 
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T1 weighted imaging for two different tissues 
(fat and cerebrospinal fluid CSF) 
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T1 for some brain tissues 
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BRAIN tissues T1 (ms) 1.5 T 

Gray matter 921 

White matter 787 

Tumours 1073 

Meningioma 979 

Glioma 959 

Oedema 1090 
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T1 weighted image (slice) of a head. Fat is 
bright, CSF is dark because of different T1 
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T1 weighted imaging 

• Short TR → strong T1 weighting 
Long TR → low T1 weighting 

• For T1 weighting we should choose a short TR. 

• Tissues with a short T1 appear bright  

• Tissues with a long T1 appear dark  

• A typical T1-weighted spin echo (SE) sequence 
is acquired with a TR/TE of 400/15 msec 
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T2 weighted imaging for two different tissues 
(fat and cerebrospinal fluid CSF) 
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T2 for some brain tissues 
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BRAIN tissues T2 (ms) 1.5 T 

Gray matter 101 

White matter 92 

Tumours 121 

Meningioma 103 

Glioma 111 

Oedema 113 
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T2 weighted image (slice) of a head. Fat is dark, 
CSF is bright because of different T2 

49 S.J. Kouridakis 



T2 weighted imaging 

• Short TE → low T2 weighting 

• Long TE → strong T2 weighting 

• Tissues with a short T2 appear dark on T2-
weighted images. 

• Tissues with a long T2 appear bright on T2-
weighted images. 

• A T2-weighted fast spin echo (FSE) MR image 
can be acquired with a TR/TE of 3000/100 msec 
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Proton Density weighted imaging 

• The image contrast in PD images is not 
dependent on T1 or T2 relaxation. The signal 
we receive is completely dependent on the 
amount of protons in the tissue 

• Short TE → diminish T2 weighting. 

• Long TR → diminish T1 weighting 

• A typical PD weighted spin echo (SE) sequence 
is acquired with a TR/TE of 2500/15 msec. 
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Proton Density weighted image (slice) of a head. 
Fat  and CSF are grey because of different PD’s 
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Pulse sequences for NMR-MRI 

Partial Saturation recovery sequence 
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Inversion Recovery Sequence 
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spin – echo sequence and multiple spin – echo 
sequence 
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multiple spin – echo sequence 
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Imaging Techniques 
 

Spin echo imaging for T1, T2, PD weighted images 
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Spin echo Inversion recovery imaging  
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Multislice spin echo Imaging  
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Some MRI images examples 
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MRI neck coronal STIR (Short Time 
Inversion Recovery) image 

61 S.J. Kouridakis 



MRI Hips Coronal T1 Image 
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MRI spine sagittal T1 image 

63 S.J. Kouridakis 



MRI head axial T2 weighted spin echo 
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MRI hand coronal T1 image 
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MRI knee sagittal T1 image 
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Knee T1 spin echo sagittal MRI 
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Knee T1 FLASH WE sagittal 
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Spine T1 TSE sagittal MRI 
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Head T2 TSE sagittal MRI (1) 
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Head T1 FLASH sagittal MRI (2) 
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Magnetic tomographer (scanner) 
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Magnet and gradient coils 
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Types of exciting – receiving coils 
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The transmitter  
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The receiver   
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Spectroscopy   

• Chemical shift is the variation in resonant frequency of a 
particular nucleus. It is caused by slight non uniformity in 
the local magnetic field ought to:  

i. electronic shielding  
ii. nucleus coupling 
iii. interconnection between atoms in a molecule 
iv. the surrounding molecular structure. 
• NMR spectroscopy is a powerful tool to investigate  and 

extract detailed molecular information 
• It is used to investigate foods, alcoholic drinks, on 

chemistry, on biology, on genetics, on petroleum research 
and many other applications.    
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Proton chemical shifts of some 
simple molecules and groups 

S.J. Kouridakis 78 



Some spectroscopy examples  

Scotch and scotch liqueur spectrums 
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Ethanol solution spectrum 

80 S.J. Kouridakis 



Alcoholic drinks spectrum 
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Gasoline spectroscopy 

82 S.J. Kouridakis 



83 S.J. Kouridakis 



Conclusions  

 

• NMR is an important property of nucleus to 
help us on modern science of medicine, 
physics, chemistry, food technology, 
petroleum industry and on NDT. 
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