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The need for speed control

Speed control is necessary everywhere!

•Industrial processes (control and energy saving)

•Transportations (public means, elevators/escalators)

•Everyday life (HVAC and other appliances control and energy savings)

Harris HIP 4011 dc motor driveAdjustable speed drive block diagram



Everyone loves dc machines!
•Separate excitation current – natural direct field control

•Linear machines, i.e. rotor voltage regulates rotor speed

•Heavy constructions, high inertia, low efficiency, maintenance costs

DC Machine (OEMER)

Speed control diagrams under constant excitation

(separate excitation DC machine)



Asynchronous machines improve use of 
energy

Hereby we refer to 3-phase IMs

•Robust construction, especially the 
squirrel-cage one

•Lower weight and inertia, comparing to 
DC Machines

•More efficient, comparing to DC 
Machines

•Suitable for very high-speeds (e.g. up 
to tens of thousands of rpm)

•Suitable for harsh operational 
environments

•Low maintenance costs

How about speed control facilitation???
Three-Phase Asynchronous Machine Spare Parts (AEG)



Asynchronous machine torque curves

Highly non-linear behavior

•Single-speed machine: operation close 
to the synchronous speed, minus slip!

•Stator voltage regulation does not 
contribute to speed control: only 

suitable for machine soft start (starting 
current regulation)

•Excitation and rotor currents are mixed 
together – difficult to implement torque 

control

How about speed control facilitation???
Three-Phase Asynchronous Machine Typical Torque-Speed Curve 

(MICROCHIP, AN887)



Asynchronous machine Scalar-based control

Inverter block diagram (MICROCHIP, AN887)

V-f Curve (MICROCHIP, AN887)

•Scalar methods  Machine equivalent

circuit in a steady-state!

•Proper operation in applications in

which fast changes in the machine torque,

speed, flux, etc. are not required!



Open-loop V-F control

• Simple and efficient control technique for regular applications

• Variable speed is obtained by regulating synchronous speed (i.e. stator frequency)

• Stator voltage is kept proportional to frequency setpoint, providing the so-called Constant Torque 
Region (Flux remains almost constant)

• For speeds higher than the nominal one, the machine operates in constant power region by keeping 
stator voltage to its nominal value

• Imprecise control of rotor speed due to slip 

• Absence of feedback lead to incorrect estimation of instantaneous machine quantities (i.e. due to 
drop in the stator resistance, variations of the DC link voltage feeding the inverter, etc.)
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1) V/F with Speed Feedback Control and PWM Modulation

(Source: Control Strategies for Induction Motors in Railway Traction Applications, Review, Energies, MDPI, 2020)
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2) Flux & Torque Control with

PWM Modulation

(Source: Control Strategies for Induction Motors in Railway Traction Applications, Review, Energies, MDPI, 2020)

Flux and Torque control loops

instead of the V/F ratio, to obtain the

desired stator voltage magnitude and

angle.

 Precise control of the machine’s

operating point in a steady‐state!

- Coupling between flux and torque

is not considered for the control

design, so a very slow dynamic

response is required to avoid over

currents and torque pulsations!
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3) V/F Flux & Torque Control

with Feedback & Feedforward

• Two Feedforward terms to

enhance the dynamic response

of the closed‐loop V/F control!

• The dynamic response relies on

the accuracy of the

feedforward terms!

 Torque regulator  The

desired torque is followed with

no error!

 Easy operation in the

field‐weakening region.

(Source: Control Strategies for Induction Motors in Railway Traction Applications, Review, Energies, MDPI, 2020)
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Slide 10

na1 ωslip, ref, ff --> Vas, p. 285 (pdf)
nena apostolidou; 11/8/2020
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4) Flux & Torque Control

with Feedback &

Feedforward

(Source: Control Strategies for Induction Motors in Railway Traction Applications, Review, Energies, MDPI, 2020)
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Flux & Torque Control with Feedback & Feedforward, based on the machine d-q model in the

rotor flux reference frame

- Mismatch between model and actual parameters  Errors in the feedforward voltages!

- Derivatives are problematic in practice.

 Reduced effect of Rs when the control is intended to operate at a high speed!

Closed-loop Scalar control 5/5

(Source: Control Strategies for Induction Motors in Railway Traction Applications, Review, Energies, MDPI, 2020)



Industrial V-F drive example

V-f control does not contribute to the separate regulation of the excitation and the rotor currents

Need for torque control, especially in transportation systems and high-power industrial processes

Can we control the asynchronous machine like a separate-excited DC machine???



Experimental 3-L 
inverter example

DSPACE control – 97.4% efficiency (A. Babouras, Diploma Thesis, 
DUTH, 2016
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Vector Control pros:

• Independent torque and field (flux) control (via separate stator current
components)

• Superior system dynamic response

• Satisfactory torque control at low speed (including zero speed)

Vector Control cons:

• Complicated control, based on rotating vector coordinate transformation
system

• Hardware computational burden

Vector Control of Asynchronous 
Machines



Vector control target:

Independent torque current (IΑ ) and magnetic flux (ψF) control, as in separate
excitation DC machines

E/M torque equation: Te=c ψF IΑ= c IF IΑ

Independence of armature voltage (VA) and excitation voltage (VF) supply
circuits, so IF , IΑ independence

So, E/M torque control via separate current components!!



DC machines E/M torque control pros over AC machines E/M torque control :

• Simpler implementation, IF , IΑ (time invariant, DC quantities)

• Collector-brushes system obtains 900 constant angle between IΑand ψF



Vector Control Basics

• Amplitude and phase angle of stator current vector (Is)

• Two separate components of (Is), field current (IF) and torque current (IΑ)

How??

Transformation of AC stator quantities into time invariant ones (that is DC!!!)



• d-q 2-phase coordinate system

• Rotates with synchronous speed ωe

• isd
e proportional to Flux linkage

(ψr), so isd
e ~ IF

• isq
e ~ IΑ

• Te= c isd
e isq

e =c IF IΑ

So, E/M Torque control

from separate stator current
components!!
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Asynchronous machines vector control Pros over conservative control of DC 
machines:

• Better torque control dynamic response (in terms of speed)

• AC machines have lower electric time constant (τe)

• AC machines have lower Inertia 

Cons

• More difficult implementation

• Higher cost



Vector control coordinate systems

• Transformation of isΑ, isΒ, isC into isd
s , isd

s (stator stationary reference
frame)

• Clarke transformation (a-b-c, time variant reference frame into ds-qs, space variant
reference frame)

• Both reference frames are stationary (in time and space, respectively), resulting in
rotating machine quantities!
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Vector control coordinate systems

• Transformation of isd
s , isq

s into isd
e , isq

e (synchronously rotating reference 
frame, ωe )

• Park Transformation (a-b-c into de-qe or ds-qs into de-qe)

����
����  = 

  �����     ������  

−������     �����  
����
����



• A-B-C : stationary axes, rotating 
vectors (time variant reference 
frame)

• ds-qs : stationary axes, rotating 
vectors (time variant reference 
frame)

• de-qe : rotating axes, static space 
vectors!d

s

q
e
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Clarke-Park in time domain • A-B-C : stationary axes, rotating 
vectors (time variant reference 
frame)

• ds-qs : stationary axes, rotating 
vectors (time variant reference 
frame)

• de-qe : rotating axes, static space 
vectors!



• is stator current

• ψ΄er= ψ΄
e
rd rotor flux 

linkage (stator oriented)

• ωe synchronous speed

• ωr rotor speed

• θe rotating frame – stator 

angle

• θr rotor – stator angle

• θsl slip angle

• γr = tan-1(isq
e / isd

e) phase 

angle in rotating reference 

frame 
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Clark – Park Transformations of sinusoidal quantities (N. 

Apostolidou MSc Thesis, DUTH, 2018)



Conclusions:

While is
s rotates with respect to stationary ds-qs frame, 

is
e ,ψ΄r

e are stationary with respect to rotating de-qe (both rotate with ωe ), so

time invariant quantities (that is DC quantities!)  Easier to be used as 

control variables!!

NOTE : Direct transformation from ABC to de-qe is possible (that is skipping 

Clarke)



Assumptions:

• 3 Phases, 2 poles

• Concentrated windings

• Symmetrical phase windings

• Reference magnetic axis sA

Implementation of Space Vectors in AC 
Machine
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Instantaneous Phase Currents
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Phase currents space vectors, s : stationary stator reference frame
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Notable:

• Space vector is
s rotates with ωe

• Time vector amplitude equals space vector amplitude ( Is ), so torque 

equations the same in time and space domain συνεπώς ίδιες 

• Machine Electrical and Magnetic quantities presented as space rotating 

vectors



Distributed stator and rotor windings r : rotor reference frame (stationary 
with respect to rotor)

BUT

Rotor rotates!!

So, transformation from rotor 

reference frame to stator reference 

frame inevitable! 

θr : rotor speed angle

ωr : rotor speed
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Rotor vectors into Stator reference frame

• Rotor current vector: ir
΄= ir /a, a= Νseq/Nreq , a transformer ratio

• Stator flux linkage :

, where rotor current into stator reference frame �)$(
� = �)$(

(��*(

+$ �� = ,� �̅� + ,- )̅((��*(



Subsequently, 

Rotor space vectors multiplied by e jθr refer to stator reference frame

while

Stator space vectors multiplied by e -jθr refer to rotor reference frame!

i.e.  �̅( =  �̅����*(



Asynchronous Machine dynamic electrical equivalent circuits

• 3-phase, stationary reference frame ABC:



Rotor quantities into 
stator reference 
frame:

Equations:

where –jωrψrABC : rotational induced voltage 
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Asynchronous Machine dynamic electrical equivalent circuits

• 2-phase, stationary reference frame dq (Stator):

d Axis:



q Axis:



Equations in Matrix form:

0�(� = ' και 0�(� = 'Squirrel cage asynchronous machine:

0���
0���
0�(�
0�(�

=

/� + ,�
�
��                0                        ,-

�
��                        0 

     '                 /� + ,�
�
��                    0                          ,-

�
��

    ,-
�
��                −ωr ,-               /( + ,(

�
��                  −ωr ,( 

        ωr,-                    ,-
�
��                    ωr ,(                    /( + ,(

�
��

     
����
����
��(�
��(�



Asynchronous Machine dynamic electrical equivalent circuits

• 2-phase, synchronously rotating (ωe) reference frame:

d Axis:



q Axis :



Equations in Matrix form:
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Flux oriented Asynchronous Machine control

.
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Rotor Flux oriented:

Magnatizing Flux oriented:

3 alternatives:

Stator Flux oriented:



3 alternative torque (Te ) equations for 3 alternative control approaches:

3� = �|+$ �1|| �̅1|���5� = �|+$ �1|��61
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• Stator flux oriented control:

• Rotor flux oriented control :

• Magnetizing flux oriented control :



• Flux linkage vector determines the is reference axis, in other words sets the 

reference frame orientation! That why it’s called “field oriented control”!!

• ,  the vertical stator component of is the torque current and the      , the 

horizontal component of      is the field current and is coincident with flux 

linkage vector, in flux linkage oriented reference frame. (x:general 

reference frame)

 �̅�1

 �̅1 
 �̅�1 �̅1



In most cases, the rotor flux linkage oriented control is adopted, thanks to 
rotor flux linkage synchronous reference frame orientation (ψr rotates with 
ωe!!)
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Vector Control Techniques

Direct Indirect

Field angle θe directly Field angle θe fromωr and 

from is or vs or ωr or                                          machine dynamic model

Εs -BEMF (Flux sensor)   



Schematic of direct vector control (reverse Park-Clarke)
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Schematic of direct vector control (reverse Park)
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Schematic of indirect vector control (reverse Park-Clarke)
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Schematic of indirect vector control (reverse Park)
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Direct Torque (DTC) of asynchronous machine 

• Direct and independent control of Te and ψs
s

• Direct application of appropriate inverter switching states (switching 

vectors)

• Stator flux oriented control!!



Schematic of DTC 
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• Phase or Line voltages 

• Phase or Line currents

• Flux linkage components estimation

• Synchronous angle 

• E/M torque
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Flux linkage comparator

Torque comparator
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Flux vector – Sector estimation

θs determines sector!!
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Inverter voltage vectors array
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Inverter switching states
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Pros:

Fast torque response due to its direct control

No need for Park Transformations and PI controllers

Lower inverter switching frequency (fs), less harmonic losses!

Absence of speed feedback, fewer controllers

Reduced number of controllers, comparing to indirect torque control

Simple implementation, comparing to indirect torque control



Cons:

- Implementation difficulties in machine start-up, as well as under low 

speeds

- Very sensitive to machine parameters’ deviations - Inevitable flux linkage 

estimation via mathematical integration of voltage and current  Model 

accuracy highly depends on T0C (Rs) & measurement noise

- Torque and flux fluctuations (due to hysteresis control)

- Variable switching frequency – difficulties in filter design – EMI issues



Sensorless Technique – Speed and position control without sensors!

DTC example: 

Torque control, no speed control                                    Electric vehicle!

Acceleration/deceleration via torque command.

No closed speed control necessary



Alternative to DTC Direct‐Self Control (DSC), proposed for high‐power 
drives (Depenbrock, 1987)

• 3 flux hysteresis controllers determine the voltage applied to the machine 
by comparing a flux magnitude command with the estimated flux for each 
phase.

• 1 two‐level hysteresis torque controller determines the amount of zero 
voltage.

• DSC produces Hexagonal stator flux trajectory:

Smooth transition into overmodulation 

- Problematic below approximately 30% of the base speed

(Source: Control Strategies for Induction Motors in Railway Traction Applications, Review, Energies, MDPI, 2020)



Direct‐Self Control (DSC) 

(Source: Control Strategies for Induction Motors in Railway Traction Applications, Review, Energies, MDPI, 2020)



DTC Space Vector Modulation (SVM):

• Constant switching frequency!

The required stator voltage vector is calculated over a sampling period to achieve the desired torque and 

stator flux. The voltage vector is synthesized using SVM.

Fast dynamics of DTC if the inverter operates in the linear region

Effectively cancels the flux error for relatively small values of GGGGsampling

-Voltage distortions intrinsic to overmodulation can result in magnitude and phase deviations of the actual

stator flux vector, leading to instability problems

-Large steady‐state errors in case of low switching frequencies

(Source: Control Strategies for Induction Motors in Railway Traction Applications, Review, Energies, MDPI, 2020)



DTC Space Vector Modulation (SVM)

(Source: Control Strategies for Induction Motors in Railway Traction Applications, Review, Energies, MDPI, 2020)



Block diagrams of Direct and Indirect Vector Control as well as Direct Torque Control of induction machines, where pointer -s

refers to stator reference frame and -r to rotor reference frame (N. Apostolidou, N. Papanikolaou et al. PACET 2017 Conference)
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Industrial example – Vector control of Athens trolley-buses

• Direct Vector Control (DVC) scheme is 
used for the 240 kW asynchronous machine

• 1700 V / 1800 A IGBT Modules are used as 
the 2-Level inverter main switches



Implementation of Direct Torque Control at Athens trolley-buses 
2-L inverter module

Flux control under DTC, implemented at a 2-L 
inverter (N. Apostolidou, MSc Thesis, DUTH, 

2018)

DTC has no fixed switching pattern – it switches the 

inverter according to the load needs

DTC block diagram (MICROCHIP, AN887)



Study on the performance of DTC & DVC techniques for the 
case of Athens trolley-buses

 DTC is more efficient under high-

torque operation (i.e. trolley-bus

acceleration / braking)

 DVC is more efficient under low-

torque conditions (i.e. during constant

speed operation)

Energy consumption performance for Athens Trolley-buses under DVC and DTC
control schemes (N. Apostolidou, MSc Thesis, DUTH, 2018)



Conclusions

70

 Asynchronous machines is a significant machine type for all kinds of human

activities (Industry, Transportations, Appliances etc.)

 Its efficient operation under various speeds leads to significant energy savings,

contributing to a greener footprint

 Modern switch-mode inverters and the sophisticated control techniques that

they incorporate are the key component for the effective control of

asynchronous machines


